MMC: Trivial comment cleanup
[linux-2.6/mini2440.git] / drivers / macintosh / smu.c
blob32cb0298f88e8b2b3f1def71e83f0e801fd1a159
1 /*
2 * PowerMac G5 SMU driver
4 * Copyright 2004 J. Mayer <l_indien@magic.fr>
5 * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
7 * Released under the term of the GNU GPL v2.
8 */
11 * TODO:
12 * - maybe add timeout to commands ?
13 * - blocking version of time functions
14 * - polling version of i2c commands (including timer that works with
15 * interrupts off)
16 * - maybe avoid some data copies with i2c by directly using the smu cmd
17 * buffer and a lower level internal interface
18 * - understand SMU -> CPU events and implement reception of them via
19 * the userland interface
22 #include <linux/smp_lock.h>
23 #include <linux/types.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>
26 #include <linux/dmapool.h>
27 #include <linux/bootmem.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/jiffies.h>
31 #include <linux/interrupt.h>
32 #include <linux/rtc.h>
33 #include <linux/completion.h>
34 #include <linux/miscdevice.h>
35 #include <linux/delay.h>
36 #include <linux/sysdev.h>
37 #include <linux/poll.h>
38 #include <linux/mutex.h>
40 #include <asm/byteorder.h>
41 #include <asm/io.h>
42 #include <asm/prom.h>
43 #include <asm/machdep.h>
44 #include <asm/pmac_feature.h>
45 #include <asm/smu.h>
46 #include <asm/sections.h>
47 #include <asm/abs_addr.h>
48 #include <asm/uaccess.h>
49 #include <asm/of_device.h>
50 #include <asm/of_platform.h>
52 #define VERSION "0.7"
53 #define AUTHOR "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
55 #undef DEBUG_SMU
57 #ifdef DEBUG_SMU
58 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
59 #else
60 #define DPRINTK(fmt, args...) do { } while (0)
61 #endif
64 * This is the command buffer passed to the SMU hardware
66 #define SMU_MAX_DATA 254
68 struct smu_cmd_buf {
69 u8 cmd;
70 u8 length;
71 u8 data[SMU_MAX_DATA];
74 struct smu_device {
75 spinlock_t lock;
76 struct device_node *of_node;
77 struct of_device *of_dev;
78 int doorbell; /* doorbell gpio */
79 u32 __iomem *db_buf; /* doorbell buffer */
80 struct device_node *db_node;
81 unsigned int db_irq;
82 int msg;
83 struct device_node *msg_node;
84 unsigned int msg_irq;
85 struct smu_cmd_buf *cmd_buf; /* command buffer virtual */
86 u32 cmd_buf_abs; /* command buffer absolute */
87 struct list_head cmd_list;
88 struct smu_cmd *cmd_cur; /* pending command */
89 int broken_nap;
90 struct list_head cmd_i2c_list;
91 struct smu_i2c_cmd *cmd_i2c_cur; /* pending i2c command */
92 struct timer_list i2c_timer;
96 * I don't think there will ever be more than one SMU, so
97 * for now, just hard code that
99 static struct smu_device *smu;
100 static DEFINE_MUTEX(smu_part_access);
101 static int smu_irq_inited;
103 static void smu_i2c_retry(unsigned long data);
106 * SMU driver low level stuff
109 static void smu_start_cmd(void)
111 unsigned long faddr, fend;
112 struct smu_cmd *cmd;
114 if (list_empty(&smu->cmd_list))
115 return;
117 /* Fetch first command in queue */
118 cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
119 smu->cmd_cur = cmd;
120 list_del(&cmd->link);
122 DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
123 cmd->data_len);
124 DPRINTK("SMU: data buffer: %02x %02x %02x %02x %02x %02x %02x %02x\n",
125 ((u8 *)cmd->data_buf)[0], ((u8 *)cmd->data_buf)[1],
126 ((u8 *)cmd->data_buf)[2], ((u8 *)cmd->data_buf)[3],
127 ((u8 *)cmd->data_buf)[4], ((u8 *)cmd->data_buf)[5],
128 ((u8 *)cmd->data_buf)[6], ((u8 *)cmd->data_buf)[7]);
130 /* Fill the SMU command buffer */
131 smu->cmd_buf->cmd = cmd->cmd;
132 smu->cmd_buf->length = cmd->data_len;
133 memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
135 /* Flush command and data to RAM */
136 faddr = (unsigned long)smu->cmd_buf;
137 fend = faddr + smu->cmd_buf->length + 2;
138 flush_inval_dcache_range(faddr, fend);
141 /* We also disable NAP mode for the duration of the command
142 * on U3 based machines.
143 * This is slightly racy as it can be written back to 1 by a sysctl
144 * but that never happens in practice. There seem to be an issue with
145 * U3 based machines such as the iMac G5 where napping for the
146 * whole duration of the command prevents the SMU from fetching it
147 * from memory. This might be related to the strange i2c based
148 * mechanism the SMU uses to access memory.
150 if (smu->broken_nap)
151 powersave_nap = 0;
153 /* This isn't exactly a DMA mapping here, I suspect
154 * the SMU is actually communicating with us via i2c to the
155 * northbridge or the CPU to access RAM.
157 writel(smu->cmd_buf_abs, smu->db_buf);
159 /* Ring the SMU doorbell */
160 pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
164 static irqreturn_t smu_db_intr(int irq, void *arg)
166 unsigned long flags;
167 struct smu_cmd *cmd;
168 void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
169 void *misc = NULL;
170 u8 gpio;
171 int rc = 0;
173 /* SMU completed the command, well, we hope, let's make sure
174 * of it
176 spin_lock_irqsave(&smu->lock, flags);
178 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
179 if ((gpio & 7) != 7) {
180 spin_unlock_irqrestore(&smu->lock, flags);
181 return IRQ_HANDLED;
184 cmd = smu->cmd_cur;
185 smu->cmd_cur = NULL;
186 if (cmd == NULL)
187 goto bail;
189 if (rc == 0) {
190 unsigned long faddr;
191 int reply_len;
192 u8 ack;
194 /* CPU might have brought back the cache line, so we need
195 * to flush again before peeking at the SMU response. We
196 * flush the entire buffer for now as we haven't read the
197 * reply length (it's only 2 cache lines anyway)
199 faddr = (unsigned long)smu->cmd_buf;
200 flush_inval_dcache_range(faddr, faddr + 256);
202 /* Now check ack */
203 ack = (~cmd->cmd) & 0xff;
204 if (ack != smu->cmd_buf->cmd) {
205 DPRINTK("SMU: incorrect ack, want %x got %x\n",
206 ack, smu->cmd_buf->cmd);
207 rc = -EIO;
209 reply_len = rc == 0 ? smu->cmd_buf->length : 0;
210 DPRINTK("SMU: reply len: %d\n", reply_len);
211 if (reply_len > cmd->reply_len) {
212 printk(KERN_WARNING "SMU: reply buffer too small,"
213 "got %d bytes for a %d bytes buffer\n",
214 reply_len, cmd->reply_len);
215 reply_len = cmd->reply_len;
217 cmd->reply_len = reply_len;
218 if (cmd->reply_buf && reply_len)
219 memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
222 /* Now complete the command. Write status last in order as we lost
223 * ownership of the command structure as soon as it's no longer -1
225 done = cmd->done;
226 misc = cmd->misc;
227 mb();
228 cmd->status = rc;
230 /* Re-enable NAP mode */
231 if (smu->broken_nap)
232 powersave_nap = 1;
233 bail:
234 /* Start next command if any */
235 smu_start_cmd();
236 spin_unlock_irqrestore(&smu->lock, flags);
238 /* Call command completion handler if any */
239 if (done)
240 done(cmd, misc);
242 /* It's an edge interrupt, nothing to do */
243 return IRQ_HANDLED;
247 static irqreturn_t smu_msg_intr(int irq, void *arg)
249 /* I don't quite know what to do with this one, we seem to never
250 * receive it, so I suspect we have to arm it someway in the SMU
251 * to start getting events that way.
254 printk(KERN_INFO "SMU: message interrupt !\n");
256 /* It's an edge interrupt, nothing to do */
257 return IRQ_HANDLED;
262 * Queued command management.
266 int smu_queue_cmd(struct smu_cmd *cmd)
268 unsigned long flags;
270 if (smu == NULL)
271 return -ENODEV;
272 if (cmd->data_len > SMU_MAX_DATA ||
273 cmd->reply_len > SMU_MAX_DATA)
274 return -EINVAL;
276 cmd->status = 1;
277 spin_lock_irqsave(&smu->lock, flags);
278 list_add_tail(&cmd->link, &smu->cmd_list);
279 if (smu->cmd_cur == NULL)
280 smu_start_cmd();
281 spin_unlock_irqrestore(&smu->lock, flags);
283 /* Workaround for early calls when irq isn't available */
284 if (!smu_irq_inited || smu->db_irq == NO_IRQ)
285 smu_spinwait_cmd(cmd);
287 return 0;
289 EXPORT_SYMBOL(smu_queue_cmd);
292 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
293 unsigned int data_len,
294 void (*done)(struct smu_cmd *cmd, void *misc),
295 void *misc, ...)
297 struct smu_cmd *cmd = &scmd->cmd;
298 va_list list;
299 int i;
301 if (data_len > sizeof(scmd->buffer))
302 return -EINVAL;
304 memset(scmd, 0, sizeof(*scmd));
305 cmd->cmd = command;
306 cmd->data_len = data_len;
307 cmd->data_buf = scmd->buffer;
308 cmd->reply_len = sizeof(scmd->buffer);
309 cmd->reply_buf = scmd->buffer;
310 cmd->done = done;
311 cmd->misc = misc;
313 va_start(list, misc);
314 for (i = 0; i < data_len; ++i)
315 scmd->buffer[i] = (u8)va_arg(list, int);
316 va_end(list);
318 return smu_queue_cmd(cmd);
320 EXPORT_SYMBOL(smu_queue_simple);
323 void smu_poll(void)
325 u8 gpio;
327 if (smu == NULL)
328 return;
330 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
331 if ((gpio & 7) == 7)
332 smu_db_intr(smu->db_irq, smu);
334 EXPORT_SYMBOL(smu_poll);
337 void smu_done_complete(struct smu_cmd *cmd, void *misc)
339 struct completion *comp = misc;
341 complete(comp);
343 EXPORT_SYMBOL(smu_done_complete);
346 void smu_spinwait_cmd(struct smu_cmd *cmd)
348 while(cmd->status == 1)
349 smu_poll();
351 EXPORT_SYMBOL(smu_spinwait_cmd);
354 /* RTC low level commands */
355 static inline int bcd2hex (int n)
357 return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
361 static inline int hex2bcd (int n)
363 return ((n / 10) << 4) + (n % 10);
367 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
368 struct rtc_time *time)
370 cmd_buf->cmd = 0x8e;
371 cmd_buf->length = 8;
372 cmd_buf->data[0] = 0x80;
373 cmd_buf->data[1] = hex2bcd(time->tm_sec);
374 cmd_buf->data[2] = hex2bcd(time->tm_min);
375 cmd_buf->data[3] = hex2bcd(time->tm_hour);
376 cmd_buf->data[4] = time->tm_wday;
377 cmd_buf->data[5] = hex2bcd(time->tm_mday);
378 cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
379 cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
383 int smu_get_rtc_time(struct rtc_time *time, int spinwait)
385 struct smu_simple_cmd cmd;
386 int rc;
388 if (smu == NULL)
389 return -ENODEV;
391 memset(time, 0, sizeof(struct rtc_time));
392 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
393 SMU_CMD_RTC_GET_DATETIME);
394 if (rc)
395 return rc;
396 smu_spinwait_simple(&cmd);
398 time->tm_sec = bcd2hex(cmd.buffer[0]);
399 time->tm_min = bcd2hex(cmd.buffer[1]);
400 time->tm_hour = bcd2hex(cmd.buffer[2]);
401 time->tm_wday = bcd2hex(cmd.buffer[3]);
402 time->tm_mday = bcd2hex(cmd.buffer[4]);
403 time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
404 time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
406 return 0;
410 int smu_set_rtc_time(struct rtc_time *time, int spinwait)
412 struct smu_simple_cmd cmd;
413 int rc;
415 if (smu == NULL)
416 return -ENODEV;
418 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
419 SMU_CMD_RTC_SET_DATETIME,
420 hex2bcd(time->tm_sec),
421 hex2bcd(time->tm_min),
422 hex2bcd(time->tm_hour),
423 time->tm_wday,
424 hex2bcd(time->tm_mday),
425 hex2bcd(time->tm_mon) + 1,
426 hex2bcd(time->tm_year - 100));
427 if (rc)
428 return rc;
429 smu_spinwait_simple(&cmd);
431 return 0;
435 void smu_shutdown(void)
437 struct smu_simple_cmd cmd;
439 if (smu == NULL)
440 return;
442 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
443 'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
444 return;
445 smu_spinwait_simple(&cmd);
446 for (;;)
451 void smu_restart(void)
453 struct smu_simple_cmd cmd;
455 if (smu == NULL)
456 return;
458 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
459 'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
460 return;
461 smu_spinwait_simple(&cmd);
462 for (;;)
467 int smu_present(void)
469 return smu != NULL;
471 EXPORT_SYMBOL(smu_present);
474 int __init smu_init (void)
476 struct device_node *np;
477 const u32 *data;
479 np = of_find_node_by_type(NULL, "smu");
480 if (np == NULL)
481 return -ENODEV;
483 printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
485 if (smu_cmdbuf_abs == 0) {
486 printk(KERN_ERR "SMU: Command buffer not allocated !\n");
487 of_node_put(np);
488 return -EINVAL;
491 smu = alloc_bootmem(sizeof(struct smu_device));
492 if (smu == NULL) {
493 of_node_put(np);
494 return -ENOMEM;
496 memset(smu, 0, sizeof(*smu));
498 spin_lock_init(&smu->lock);
499 INIT_LIST_HEAD(&smu->cmd_list);
500 INIT_LIST_HEAD(&smu->cmd_i2c_list);
501 smu->of_node = np;
502 smu->db_irq = NO_IRQ;
503 smu->msg_irq = NO_IRQ;
505 /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
506 * 32 bits value safely
508 smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
509 smu->cmd_buf = (struct smu_cmd_buf *)abs_to_virt(smu_cmdbuf_abs);
511 smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
512 if (smu->db_node == NULL) {
513 printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
514 goto fail;
516 data = of_get_property(smu->db_node, "reg", NULL);
517 if (data == NULL) {
518 of_node_put(smu->db_node);
519 smu->db_node = NULL;
520 printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
521 goto fail;
524 /* Current setup has one doorbell GPIO that does both doorbell
525 * and ack. GPIOs are at 0x50, best would be to find that out
526 * in the device-tree though.
528 smu->doorbell = *data;
529 if (smu->doorbell < 0x50)
530 smu->doorbell += 0x50;
532 /* Now look for the smu-interrupt GPIO */
533 do {
534 smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
535 if (smu->msg_node == NULL)
536 break;
537 data = of_get_property(smu->msg_node, "reg", NULL);
538 if (data == NULL) {
539 of_node_put(smu->msg_node);
540 smu->msg_node = NULL;
541 break;
543 smu->msg = *data;
544 if (smu->msg < 0x50)
545 smu->msg += 0x50;
546 } while(0);
548 /* Doorbell buffer is currently hard-coded, I didn't find a proper
549 * device-tree entry giving the address. Best would probably to use
550 * an offset for K2 base though, but let's do it that way for now.
552 smu->db_buf = ioremap(0x8000860c, 0x1000);
553 if (smu->db_buf == NULL) {
554 printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
555 goto fail;
558 /* U3 has an issue with NAP mode when issuing SMU commands */
559 smu->broken_nap = pmac_get_uninorth_variant() < 4;
560 if (smu->broken_nap)
561 printk(KERN_INFO "SMU: using NAP mode workaround\n");
563 sys_ctrler = SYS_CTRLER_SMU;
564 return 0;
566 fail:
567 smu = NULL;
568 return -ENXIO;
573 static int smu_late_init(void)
575 if (!smu)
576 return 0;
578 init_timer(&smu->i2c_timer);
579 smu->i2c_timer.function = smu_i2c_retry;
580 smu->i2c_timer.data = (unsigned long)smu;
582 if (smu->db_node) {
583 smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
584 if (smu->db_irq == NO_IRQ)
585 printk(KERN_ERR "smu: failed to map irq for node %s\n",
586 smu->db_node->full_name);
588 if (smu->msg_node) {
589 smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
590 if (smu->msg_irq == NO_IRQ)
591 printk(KERN_ERR "smu: failed to map irq for node %s\n",
592 smu->msg_node->full_name);
596 * Try to request the interrupts
599 if (smu->db_irq != NO_IRQ) {
600 if (request_irq(smu->db_irq, smu_db_intr,
601 IRQF_SHARED, "SMU doorbell", smu) < 0) {
602 printk(KERN_WARNING "SMU: can't "
603 "request interrupt %d\n",
604 smu->db_irq);
605 smu->db_irq = NO_IRQ;
609 if (smu->msg_irq != NO_IRQ) {
610 if (request_irq(smu->msg_irq, smu_msg_intr,
611 IRQF_SHARED, "SMU message", smu) < 0) {
612 printk(KERN_WARNING "SMU: can't "
613 "request interrupt %d\n",
614 smu->msg_irq);
615 smu->msg_irq = NO_IRQ;
619 smu_irq_inited = 1;
620 return 0;
622 /* This has to be before arch_initcall as the low i2c stuff relies on the
623 * above having been done before we reach arch_initcalls
625 core_initcall(smu_late_init);
628 * sysfs visibility
631 static void smu_expose_childs(struct work_struct *unused)
633 struct device_node *np;
635 for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
636 if (of_device_is_compatible(np, "smu-sensors"))
637 of_platform_device_create(np, "smu-sensors",
638 &smu->of_dev->dev);
641 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
643 static int smu_platform_probe(struct of_device* dev,
644 const struct of_device_id *match)
646 if (!smu)
647 return -ENODEV;
648 smu->of_dev = dev;
651 * Ok, we are matched, now expose all i2c busses. We have to defer
652 * that unfortunately or it would deadlock inside the device model
654 schedule_work(&smu_expose_childs_work);
656 return 0;
659 static struct of_device_id smu_platform_match[] =
662 .type = "smu",
667 static struct of_platform_driver smu_of_platform_driver =
669 .name = "smu",
670 .match_table = smu_platform_match,
671 .probe = smu_platform_probe,
674 static int __init smu_init_sysfs(void)
677 * Due to sysfs bogosity, a sysdev is not a real device, so
678 * we should in fact create both if we want sysdev semantics
679 * for power management.
680 * For now, we don't power manage machines with an SMU chip,
681 * I'm a bit too far from figuring out how that works with those
682 * new chipsets, but that will come back and bite us
684 of_register_platform_driver(&smu_of_platform_driver);
685 return 0;
688 device_initcall(smu_init_sysfs);
690 struct of_device *smu_get_ofdev(void)
692 if (!smu)
693 return NULL;
694 return smu->of_dev;
697 EXPORT_SYMBOL_GPL(smu_get_ofdev);
700 * i2c interface
703 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
705 void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
706 void *misc = cmd->misc;
707 unsigned long flags;
709 /* Check for read case */
710 if (!fail && cmd->read) {
711 if (cmd->pdata[0] < 1)
712 fail = 1;
713 else
714 memcpy(cmd->info.data, &cmd->pdata[1],
715 cmd->info.datalen);
718 DPRINTK("SMU: completing, success: %d\n", !fail);
720 /* Update status and mark no pending i2c command with lock
721 * held so nobody comes in while we dequeue an eventual
722 * pending next i2c command
724 spin_lock_irqsave(&smu->lock, flags);
725 smu->cmd_i2c_cur = NULL;
726 wmb();
727 cmd->status = fail ? -EIO : 0;
729 /* Is there another i2c command waiting ? */
730 if (!list_empty(&smu->cmd_i2c_list)) {
731 struct smu_i2c_cmd *newcmd;
733 /* Fetch it, new current, remove from list */
734 newcmd = list_entry(smu->cmd_i2c_list.next,
735 struct smu_i2c_cmd, link);
736 smu->cmd_i2c_cur = newcmd;
737 list_del(&cmd->link);
739 /* Queue with low level smu */
740 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
741 if (smu->cmd_cur == NULL)
742 smu_start_cmd();
744 spin_unlock_irqrestore(&smu->lock, flags);
746 /* Call command completion handler if any */
747 if (done)
748 done(cmd, misc);
753 static void smu_i2c_retry(unsigned long data)
755 struct smu_i2c_cmd *cmd = smu->cmd_i2c_cur;
757 DPRINTK("SMU: i2c failure, requeuing...\n");
759 /* requeue command simply by resetting reply_len */
760 cmd->pdata[0] = 0xff;
761 cmd->scmd.reply_len = sizeof(cmd->pdata);
762 smu_queue_cmd(&cmd->scmd);
766 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
768 struct smu_i2c_cmd *cmd = misc;
769 int fail = 0;
771 DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
772 cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
774 /* Check for possible status */
775 if (scmd->status < 0)
776 fail = 1;
777 else if (cmd->read) {
778 if (cmd->stage == 0)
779 fail = cmd->pdata[0] != 0;
780 else
781 fail = cmd->pdata[0] >= 0x80;
782 } else {
783 fail = cmd->pdata[0] != 0;
786 /* Handle failures by requeuing command, after 5ms interval
788 if (fail && --cmd->retries > 0) {
789 DPRINTK("SMU: i2c failure, starting timer...\n");
790 BUG_ON(cmd != smu->cmd_i2c_cur);
791 if (!smu_irq_inited) {
792 mdelay(5);
793 smu_i2c_retry(0);
794 return;
796 mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
797 return;
800 /* If failure or stage 1, command is complete */
801 if (fail || cmd->stage != 0) {
802 smu_i2c_complete_command(cmd, fail);
803 return;
806 DPRINTK("SMU: going to stage 1\n");
808 /* Ok, initial command complete, now poll status */
809 scmd->reply_buf = cmd->pdata;
810 scmd->reply_len = sizeof(cmd->pdata);
811 scmd->data_buf = cmd->pdata;
812 scmd->data_len = 1;
813 cmd->pdata[0] = 0;
814 cmd->stage = 1;
815 cmd->retries = 20;
816 smu_queue_cmd(scmd);
820 int smu_queue_i2c(struct smu_i2c_cmd *cmd)
822 unsigned long flags;
824 if (smu == NULL)
825 return -ENODEV;
827 /* Fill most fields of scmd */
828 cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
829 cmd->scmd.done = smu_i2c_low_completion;
830 cmd->scmd.misc = cmd;
831 cmd->scmd.reply_buf = cmd->pdata;
832 cmd->scmd.reply_len = sizeof(cmd->pdata);
833 cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
834 cmd->scmd.status = 1;
835 cmd->stage = 0;
836 cmd->pdata[0] = 0xff;
837 cmd->retries = 20;
838 cmd->status = 1;
840 /* Check transfer type, sanitize some "info" fields
841 * based on transfer type and do more checking
843 cmd->info.caddr = cmd->info.devaddr;
844 cmd->read = cmd->info.devaddr & 0x01;
845 switch(cmd->info.type) {
846 case SMU_I2C_TRANSFER_SIMPLE:
847 memset(&cmd->info.sublen, 0, 4);
848 break;
849 case SMU_I2C_TRANSFER_COMBINED:
850 cmd->info.devaddr &= 0xfe;
851 case SMU_I2C_TRANSFER_STDSUB:
852 if (cmd->info.sublen > 3)
853 return -EINVAL;
854 break;
855 default:
856 return -EINVAL;
859 /* Finish setting up command based on transfer direction
861 if (cmd->read) {
862 if (cmd->info.datalen > SMU_I2C_READ_MAX)
863 return -EINVAL;
864 memset(cmd->info.data, 0xff, cmd->info.datalen);
865 cmd->scmd.data_len = 9;
866 } else {
867 if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
868 return -EINVAL;
869 cmd->scmd.data_len = 9 + cmd->info.datalen;
872 DPRINTK("SMU: i2c enqueuing command\n");
873 DPRINTK("SMU: %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
874 cmd->read ? "read" : "write", cmd->info.datalen,
875 cmd->info.bus, cmd->info.caddr,
876 cmd->info.subaddr[0], cmd->info.type);
879 /* Enqueue command in i2c list, and if empty, enqueue also in
880 * main command list
882 spin_lock_irqsave(&smu->lock, flags);
883 if (smu->cmd_i2c_cur == NULL) {
884 smu->cmd_i2c_cur = cmd;
885 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
886 if (smu->cmd_cur == NULL)
887 smu_start_cmd();
888 } else
889 list_add_tail(&cmd->link, &smu->cmd_i2c_list);
890 spin_unlock_irqrestore(&smu->lock, flags);
892 return 0;
896 * Handling of "partitions"
899 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
901 DECLARE_COMPLETION_ONSTACK(comp);
902 unsigned int chunk;
903 struct smu_cmd cmd;
904 int rc;
905 u8 params[8];
907 /* We currently use a chunk size of 0xe. We could check the
908 * SMU firmware version and use bigger sizes though
910 chunk = 0xe;
912 while (len) {
913 unsigned int clen = min(len, chunk);
915 cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
916 cmd.data_len = 7;
917 cmd.data_buf = params;
918 cmd.reply_len = chunk;
919 cmd.reply_buf = dest;
920 cmd.done = smu_done_complete;
921 cmd.misc = &comp;
922 params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
923 params[1] = 0x4;
924 *((u32 *)&params[2]) = addr;
925 params[6] = clen;
927 rc = smu_queue_cmd(&cmd);
928 if (rc)
929 return rc;
930 wait_for_completion(&comp);
931 if (cmd.status != 0)
932 return rc;
933 if (cmd.reply_len != clen) {
934 printk(KERN_DEBUG "SMU: short read in "
935 "smu_read_datablock, got: %d, want: %d\n",
936 cmd.reply_len, clen);
937 return -EIO;
939 len -= clen;
940 addr += clen;
941 dest += clen;
943 return 0;
946 static struct smu_sdbp_header *smu_create_sdb_partition(int id)
948 DECLARE_COMPLETION_ONSTACK(comp);
949 struct smu_simple_cmd cmd;
950 unsigned int addr, len, tlen;
951 struct smu_sdbp_header *hdr;
952 struct property *prop;
954 /* First query the partition info */
955 DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
956 smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
957 smu_done_complete, &comp,
958 SMU_CMD_PARTITION_LATEST, id);
959 wait_for_completion(&comp);
960 DPRINTK("SMU: done, status: %d, reply_len: %d\n",
961 cmd.cmd.status, cmd.cmd.reply_len);
963 /* Partition doesn't exist (or other error) */
964 if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
965 return NULL;
967 /* Fetch address and length from reply */
968 addr = *((u16 *)cmd.buffer);
969 len = cmd.buffer[3] << 2;
970 /* Calucluate total length to allocate, including the 17 bytes
971 * for "sdb-partition-XX" that we append at the end of the buffer
973 tlen = sizeof(struct property) + len + 18;
975 prop = kzalloc(tlen, GFP_KERNEL);
976 if (prop == NULL)
977 return NULL;
978 hdr = (struct smu_sdbp_header *)(prop + 1);
979 prop->name = ((char *)prop) + tlen - 18;
980 sprintf(prop->name, "sdb-partition-%02x", id);
981 prop->length = len;
982 prop->value = hdr;
983 prop->next = NULL;
985 /* Read the datablock */
986 if (smu_read_datablock((u8 *)hdr, addr, len)) {
987 printk(KERN_DEBUG "SMU: datablock read failed while reading "
988 "partition %02x !\n", id);
989 goto failure;
992 /* Got it, check a few things and create the property */
993 if (hdr->id != id) {
994 printk(KERN_DEBUG "SMU: Reading partition %02x and got "
995 "%02x !\n", id, hdr->id);
996 goto failure;
998 if (prom_add_property(smu->of_node, prop)) {
999 printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
1000 "property !\n", id);
1001 goto failure;
1004 return hdr;
1005 failure:
1006 kfree(prop);
1007 return NULL;
1010 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
1011 * when interruptible is 1
1013 const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1014 unsigned int *size, int interruptible)
1016 char pname[32];
1017 const struct smu_sdbp_header *part;
1019 if (!smu)
1020 return NULL;
1022 sprintf(pname, "sdb-partition-%02x", id);
1024 DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1026 if (interruptible) {
1027 int rc;
1028 rc = mutex_lock_interruptible(&smu_part_access);
1029 if (rc)
1030 return ERR_PTR(rc);
1031 } else
1032 mutex_lock(&smu_part_access);
1034 part = of_get_property(smu->of_node, pname, size);
1035 if (part == NULL) {
1036 DPRINTK("trying to extract from SMU ...\n");
1037 part = smu_create_sdb_partition(id);
1038 if (part != NULL && size)
1039 *size = part->len << 2;
1041 mutex_unlock(&smu_part_access);
1042 return part;
1045 const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1047 return __smu_get_sdb_partition(id, size, 0);
1049 EXPORT_SYMBOL(smu_get_sdb_partition);
1053 * Userland driver interface
1057 static LIST_HEAD(smu_clist);
1058 static DEFINE_SPINLOCK(smu_clist_lock);
1060 enum smu_file_mode {
1061 smu_file_commands,
1062 smu_file_events,
1063 smu_file_closing
1066 struct smu_private
1068 struct list_head list;
1069 enum smu_file_mode mode;
1070 int busy;
1071 struct smu_cmd cmd;
1072 spinlock_t lock;
1073 wait_queue_head_t wait;
1074 u8 buffer[SMU_MAX_DATA];
1078 static int smu_open(struct inode *inode, struct file *file)
1080 struct smu_private *pp;
1081 unsigned long flags;
1083 pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1084 if (pp == 0)
1085 return -ENOMEM;
1086 spin_lock_init(&pp->lock);
1087 pp->mode = smu_file_commands;
1088 init_waitqueue_head(&pp->wait);
1090 lock_kernel();
1091 spin_lock_irqsave(&smu_clist_lock, flags);
1092 list_add(&pp->list, &smu_clist);
1093 spin_unlock_irqrestore(&smu_clist_lock, flags);
1094 file->private_data = pp;
1095 unlock_kernel();
1097 return 0;
1101 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1103 struct smu_private *pp = misc;
1105 wake_up_all(&pp->wait);
1109 static ssize_t smu_write(struct file *file, const char __user *buf,
1110 size_t count, loff_t *ppos)
1112 struct smu_private *pp = file->private_data;
1113 unsigned long flags;
1114 struct smu_user_cmd_hdr hdr;
1115 int rc = 0;
1117 if (pp->busy)
1118 return -EBUSY;
1119 else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1120 return -EFAULT;
1121 else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1122 pp->mode = smu_file_events;
1123 return 0;
1124 } else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1125 const struct smu_sdbp_header *part;
1126 part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1127 if (part == NULL)
1128 return -EINVAL;
1129 else if (IS_ERR(part))
1130 return PTR_ERR(part);
1131 return 0;
1132 } else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1133 return -EINVAL;
1134 else if (pp->mode != smu_file_commands)
1135 return -EBADFD;
1136 else if (hdr.data_len > SMU_MAX_DATA)
1137 return -EINVAL;
1139 spin_lock_irqsave(&pp->lock, flags);
1140 if (pp->busy) {
1141 spin_unlock_irqrestore(&pp->lock, flags);
1142 return -EBUSY;
1144 pp->busy = 1;
1145 pp->cmd.status = 1;
1146 spin_unlock_irqrestore(&pp->lock, flags);
1148 if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1149 pp->busy = 0;
1150 return -EFAULT;
1153 pp->cmd.cmd = hdr.cmd;
1154 pp->cmd.data_len = hdr.data_len;
1155 pp->cmd.reply_len = SMU_MAX_DATA;
1156 pp->cmd.data_buf = pp->buffer;
1157 pp->cmd.reply_buf = pp->buffer;
1158 pp->cmd.done = smu_user_cmd_done;
1159 pp->cmd.misc = pp;
1160 rc = smu_queue_cmd(&pp->cmd);
1161 if (rc < 0)
1162 return rc;
1163 return count;
1167 static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1168 char __user *buf, size_t count)
1170 DECLARE_WAITQUEUE(wait, current);
1171 struct smu_user_reply_hdr hdr;
1172 unsigned long flags;
1173 int size, rc = 0;
1175 if (!pp->busy)
1176 return 0;
1177 if (count < sizeof(struct smu_user_reply_hdr))
1178 return -EOVERFLOW;
1179 spin_lock_irqsave(&pp->lock, flags);
1180 if (pp->cmd.status == 1) {
1181 if (file->f_flags & O_NONBLOCK)
1182 return -EAGAIN;
1183 add_wait_queue(&pp->wait, &wait);
1184 for (;;) {
1185 set_current_state(TASK_INTERRUPTIBLE);
1186 rc = 0;
1187 if (pp->cmd.status != 1)
1188 break;
1189 rc = -ERESTARTSYS;
1190 if (signal_pending(current))
1191 break;
1192 spin_unlock_irqrestore(&pp->lock, flags);
1193 schedule();
1194 spin_lock_irqsave(&pp->lock, flags);
1196 set_current_state(TASK_RUNNING);
1197 remove_wait_queue(&pp->wait, &wait);
1199 spin_unlock_irqrestore(&pp->lock, flags);
1200 if (rc)
1201 return rc;
1202 if (pp->cmd.status != 0)
1203 pp->cmd.reply_len = 0;
1204 size = sizeof(hdr) + pp->cmd.reply_len;
1205 if (count < size)
1206 size = count;
1207 rc = size;
1208 hdr.status = pp->cmd.status;
1209 hdr.reply_len = pp->cmd.reply_len;
1210 if (copy_to_user(buf, &hdr, sizeof(hdr)))
1211 return -EFAULT;
1212 size -= sizeof(hdr);
1213 if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1214 return -EFAULT;
1215 pp->busy = 0;
1217 return rc;
1221 static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1222 char __user *buf, size_t count)
1224 /* Not implemented */
1225 msleep_interruptible(1000);
1226 return 0;
1230 static ssize_t smu_read(struct file *file, char __user *buf,
1231 size_t count, loff_t *ppos)
1233 struct smu_private *pp = file->private_data;
1235 if (pp->mode == smu_file_commands)
1236 return smu_read_command(file, pp, buf, count);
1237 if (pp->mode == smu_file_events)
1238 return smu_read_events(file, pp, buf, count);
1240 return -EBADFD;
1243 static unsigned int smu_fpoll(struct file *file, poll_table *wait)
1245 struct smu_private *pp = file->private_data;
1246 unsigned int mask = 0;
1247 unsigned long flags;
1249 if (pp == 0)
1250 return 0;
1252 if (pp->mode == smu_file_commands) {
1253 poll_wait(file, &pp->wait, wait);
1255 spin_lock_irqsave(&pp->lock, flags);
1256 if (pp->busy && pp->cmd.status != 1)
1257 mask |= POLLIN;
1258 spin_unlock_irqrestore(&pp->lock, flags);
1259 } if (pp->mode == smu_file_events) {
1260 /* Not yet implemented */
1262 return mask;
1265 static int smu_release(struct inode *inode, struct file *file)
1267 struct smu_private *pp = file->private_data;
1268 unsigned long flags;
1269 unsigned int busy;
1271 if (pp == 0)
1272 return 0;
1274 file->private_data = NULL;
1276 /* Mark file as closing to avoid races with new request */
1277 spin_lock_irqsave(&pp->lock, flags);
1278 pp->mode = smu_file_closing;
1279 busy = pp->busy;
1281 /* Wait for any pending request to complete */
1282 if (busy && pp->cmd.status == 1) {
1283 DECLARE_WAITQUEUE(wait, current);
1285 add_wait_queue(&pp->wait, &wait);
1286 for (;;) {
1287 set_current_state(TASK_UNINTERRUPTIBLE);
1288 if (pp->cmd.status != 1)
1289 break;
1290 spin_unlock_irqrestore(&pp->lock, flags);
1291 schedule();
1292 spin_lock_irqsave(&pp->lock, flags);
1294 set_current_state(TASK_RUNNING);
1295 remove_wait_queue(&pp->wait, &wait);
1297 spin_unlock_irqrestore(&pp->lock, flags);
1299 spin_lock_irqsave(&smu_clist_lock, flags);
1300 list_del(&pp->list);
1301 spin_unlock_irqrestore(&smu_clist_lock, flags);
1302 kfree(pp);
1304 return 0;
1308 static const struct file_operations smu_device_fops = {
1309 .llseek = no_llseek,
1310 .read = smu_read,
1311 .write = smu_write,
1312 .poll = smu_fpoll,
1313 .open = smu_open,
1314 .release = smu_release,
1317 static struct miscdevice pmu_device = {
1318 MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1321 static int smu_device_init(void)
1323 if (!smu)
1324 return -ENODEV;
1325 if (misc_register(&pmu_device) < 0)
1326 printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1327 return 0;
1329 device_initcall(smu_device_init);