2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
12 * enough at me, Linus for the original (flawed) idea, Matthew
13 * Kirkwood for proof-of-concept implementation.
15 * "The futexes are also cursed."
16 * "But they come in a choice of three flavours!"
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation; either version 2 of the License, or
21 * (at your option) any later version.
23 * This program is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 * GNU General Public License for more details.
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, write to the Free Software
30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32 #include <linux/slab.h>
33 #include <linux/poll.h>
35 #include <linux/file.h>
36 #include <linux/jhash.h>
37 #include <linux/init.h>
38 #include <linux/futex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
44 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
47 * Futexes are matched on equal values of this key.
48 * The key type depends on whether it's a shared or private mapping.
49 * Don't rearrange members without looking at hash_futex().
51 * offset is aligned to a multiple of sizeof(u32) (== 4) by definition.
52 * We set bit 0 to indicate if it's an inode-based key.
73 * We use this hashed waitqueue instead of a normal wait_queue_t, so
74 * we can wake only the relevant ones (hashed queues may be shared).
76 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
77 * It is considered woken when list_empty(&q->list) || q->lock_ptr == 0.
78 * The order of wakup is always to make the first condition true, then
79 * wake up q->waiters, then make the second condition true.
82 struct list_head list
;
83 wait_queue_head_t waiters
;
85 /* Which hash list lock to use. */
88 /* Key which the futex is hashed on. */
91 /* For fd, sigio sent using these. */
97 * Split the global futex_lock into every hash list lock.
99 struct futex_hash_bucket
{
101 struct list_head chain
;
104 static struct futex_hash_bucket futex_queues
[1<<FUTEX_HASHBITS
];
106 /* Futex-fs vfsmount entry: */
107 static struct vfsmount
*futex_mnt
;
110 * We hash on the keys returned from get_futex_key (see below).
112 static struct futex_hash_bucket
*hash_futex(union futex_key
*key
)
114 u32 hash
= jhash2((u32
*)&key
->both
.word
,
115 (sizeof(key
->both
.word
)+sizeof(key
->both
.ptr
))/4,
117 return &futex_queues
[hash
& ((1 << FUTEX_HASHBITS
)-1)];
121 * Return 1 if two futex_keys are equal, 0 otherwise.
123 static inline int match_futex(union futex_key
*key1
, union futex_key
*key2
)
125 return (key1
->both
.word
== key2
->both
.word
126 && key1
->both
.ptr
== key2
->both
.ptr
127 && key1
->both
.offset
== key2
->both
.offset
);
131 * Get parameters which are the keys for a futex.
133 * For shared mappings, it's (page->index, vma->vm_file->f_dentry->d_inode,
134 * offset_within_page). For private mappings, it's (uaddr, current->mm).
135 * We can usually work out the index without swapping in the page.
137 * Returns: 0, or negative error code.
138 * The key words are stored in *key on success.
140 * Should be called with ¤t->mm->mmap_sem but NOT any spinlocks.
142 static int get_futex_key(unsigned long uaddr
, union futex_key
*key
)
144 struct mm_struct
*mm
= current
->mm
;
145 struct vm_area_struct
*vma
;
150 * The futex address must be "naturally" aligned.
152 key
->both
.offset
= uaddr
% PAGE_SIZE
;
153 if (unlikely((key
->both
.offset
% sizeof(u32
)) != 0))
155 uaddr
-= key
->both
.offset
;
158 * The futex is hashed differently depending on whether
159 * it's in a shared or private mapping. So check vma first.
161 vma
= find_extend_vma(mm
, uaddr
);
168 if (unlikely((vma
->vm_flags
& (VM_IO
|VM_READ
)) != VM_READ
))
169 return (vma
->vm_flags
& VM_IO
) ? -EPERM
: -EACCES
;
172 * Private mappings are handled in a simple way.
174 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
175 * it's a read-only handle, it's expected that futexes attach to
176 * the object not the particular process. Therefore we use
177 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
178 * mappings of _writable_ handles.
180 if (likely(!(vma
->vm_flags
& VM_MAYSHARE
))) {
181 key
->private.mm
= mm
;
182 key
->private.uaddr
= uaddr
;
187 * Linear file mappings are also simple.
189 key
->shared
.inode
= vma
->vm_file
->f_dentry
->d_inode
;
190 key
->both
.offset
++; /* Bit 0 of offset indicates inode-based key. */
191 if (likely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
192 key
->shared
.pgoff
= (((uaddr
- vma
->vm_start
) >> PAGE_SHIFT
)
198 * We could walk the page table to read the non-linear
199 * pte, and get the page index without fetching the page
200 * from swap. But that's a lot of code to duplicate here
201 * for a rare case, so we simply fetch the page.
205 * Do a quick atomic lookup first - this is the fastpath.
207 spin_lock(¤t
->mm
->page_table_lock
);
208 page
= follow_page(mm
, uaddr
, 0);
209 if (likely(page
!= NULL
)) {
211 page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
212 spin_unlock(¤t
->mm
->page_table_lock
);
215 spin_unlock(¤t
->mm
->page_table_lock
);
218 * Do it the general way.
220 err
= get_user_pages(current
, mm
, uaddr
, 1, 0, 0, &page
, NULL
);
223 page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
231 * Take a reference to the resource addressed by a key.
232 * Can be called while holding spinlocks.
234 * NOTE: mmap_sem MUST be held between get_futex_key() and calling this
235 * function, if it is called at all. mmap_sem keeps key->shared.inode valid.
237 static inline void get_key_refs(union futex_key
*key
)
239 if (key
->both
.ptr
!= 0) {
240 if (key
->both
.offset
& 1)
241 atomic_inc(&key
->shared
.inode
->i_count
);
243 atomic_inc(&key
->private.mm
->mm_count
);
248 * Drop a reference to the resource addressed by a key.
249 * The hash bucket spinlock must not be held.
251 static void drop_key_refs(union futex_key
*key
)
253 if (key
->both
.ptr
!= 0) {
254 if (key
->both
.offset
& 1)
255 iput(key
->shared
.inode
);
257 mmdrop(key
->private.mm
);
261 static inline int get_futex_value_locked(int *dest
, int __user
*from
)
266 ret
= __copy_from_user_inatomic(dest
, from
, sizeof(int));
269 return ret
? -EFAULT
: 0;
273 * The hash bucket lock must be held when this is called.
274 * Afterwards, the futex_q must not be accessed.
276 static void wake_futex(struct futex_q
*q
)
278 list_del_init(&q
->list
);
280 send_sigio(&q
->filp
->f_owner
, q
->fd
, POLL_IN
);
282 * The lock in wake_up_all() is a crucial memory barrier after the
283 * list_del_init() and also before assigning to q->lock_ptr.
285 wake_up_all(&q
->waiters
);
287 * The waiting task can free the futex_q as soon as this is written,
288 * without taking any locks. This must come last.
294 * Wake up all waiters hashed on the physical page that is mapped
295 * to this virtual address:
297 static int futex_wake(unsigned long uaddr
, int nr_wake
)
300 struct futex_hash_bucket
*bh
;
301 struct list_head
*head
;
302 struct futex_q
*this, *next
;
305 down_read(¤t
->mm
->mmap_sem
);
307 ret
= get_futex_key(uaddr
, &key
);
308 if (unlikely(ret
!= 0))
311 bh
= hash_futex(&key
);
312 spin_lock(&bh
->lock
);
315 list_for_each_entry_safe(this, next
, head
, list
) {
316 if (match_futex (&this->key
, &key
)) {
318 if (++ret
>= nr_wake
)
323 spin_unlock(&bh
->lock
);
325 up_read(¤t
->mm
->mmap_sem
);
330 * Requeue all waiters hashed on one physical page to another
333 static int futex_requeue(unsigned long uaddr1
, unsigned long uaddr2
,
334 int nr_wake
, int nr_requeue
, int *valp
)
336 union futex_key key1
, key2
;
337 struct futex_hash_bucket
*bh1
, *bh2
;
338 struct list_head
*head1
;
339 struct futex_q
*this, *next
;
340 int ret
, drop_count
= 0;
343 down_read(¤t
->mm
->mmap_sem
);
345 ret
= get_futex_key(uaddr1
, &key1
);
346 if (unlikely(ret
!= 0))
348 ret
= get_futex_key(uaddr2
, &key2
);
349 if (unlikely(ret
!= 0))
352 bh1
= hash_futex(&key1
);
353 bh2
= hash_futex(&key2
);
356 spin_lock(&bh1
->lock
);
357 spin_lock(&bh2
->lock
);
359 spin_lock(&bh1
->lock
);
361 if (likely(valp
!= NULL
)) {
364 ret
= get_futex_value_locked(&curval
, (int __user
*)uaddr1
);
367 spin_unlock(&bh1
->lock
);
369 spin_unlock(&bh2
->lock
);
371 /* If we would have faulted, release mmap_sem, fault
372 * it in and start all over again.
374 up_read(¤t
->mm
->mmap_sem
);
376 ret
= get_user(curval
, (int __user
*)uaddr1
);
383 if (curval
!= *valp
) {
390 list_for_each_entry_safe(this, next
, head1
, list
) {
391 if (!match_futex (&this->key
, &key1
))
393 if (++ret
<= nr_wake
) {
396 list_move_tail(&this->list
, &bh2
->chain
);
397 this->lock_ptr
= &bh2
->lock
;
402 if (ret
- nr_wake
>= nr_requeue
)
404 /* Make sure to stop if key1 == key2 */
405 if (head1
== &bh2
->chain
&& head1
!= &next
->list
)
411 spin_unlock(&bh1
->lock
);
413 spin_unlock(&bh2
->lock
);
415 /* drop_key_refs() must be called outside the spinlocks. */
416 while (--drop_count
>= 0)
417 drop_key_refs(&key1
);
420 up_read(¤t
->mm
->mmap_sem
);
424 /* The key must be already stored in q->key. */
425 static inline struct futex_hash_bucket
*
426 queue_lock(struct futex_q
*q
, int fd
, struct file
*filp
)
428 struct futex_hash_bucket
*bh
;
433 init_waitqueue_head(&q
->waiters
);
435 get_key_refs(&q
->key
);
436 bh
= hash_futex(&q
->key
);
437 q
->lock_ptr
= &bh
->lock
;
439 spin_lock(&bh
->lock
);
443 static inline void __queue_me(struct futex_q
*q
, struct futex_hash_bucket
*bh
)
445 list_add_tail(&q
->list
, &bh
->chain
);
446 spin_unlock(&bh
->lock
);
450 queue_unlock(struct futex_q
*q
, struct futex_hash_bucket
*bh
)
452 spin_unlock(&bh
->lock
);
453 drop_key_refs(&q
->key
);
457 * queue_me and unqueue_me must be called as a pair, each
458 * exactly once. They are called with the hashed spinlock held.
461 /* The key must be already stored in q->key. */
462 static void queue_me(struct futex_q
*q
, int fd
, struct file
*filp
)
464 struct futex_hash_bucket
*bh
;
465 bh
= queue_lock(q
, fd
, filp
);
469 /* Return 1 if we were still queued (ie. 0 means we were woken) */
470 static int unqueue_me(struct futex_q
*q
)
473 spinlock_t
*lock_ptr
;
475 /* In the common case we don't take the spinlock, which is nice. */
477 lock_ptr
= q
->lock_ptr
;
481 * q->lock_ptr can change between reading it and
482 * spin_lock(), causing us to take the wrong lock. This
483 * corrects the race condition.
485 * Reasoning goes like this: if we have the wrong lock,
486 * q->lock_ptr must have changed (maybe several times)
487 * between reading it and the spin_lock(). It can
488 * change again after the spin_lock() but only if it was
489 * already changed before the spin_lock(). It cannot,
490 * however, change back to the original value. Therefore
491 * we can detect whether we acquired the correct lock.
493 if (unlikely(lock_ptr
!= q
->lock_ptr
)) {
494 spin_unlock(lock_ptr
);
497 WARN_ON(list_empty(&q
->list
));
499 spin_unlock(lock_ptr
);
503 drop_key_refs(&q
->key
);
507 static int futex_wait(unsigned long uaddr
, int val
, unsigned long time
)
509 DECLARE_WAITQUEUE(wait
, current
);
512 struct futex_hash_bucket
*bh
;
515 down_read(¤t
->mm
->mmap_sem
);
517 ret
= get_futex_key(uaddr
, &q
.key
);
518 if (unlikely(ret
!= 0))
519 goto out_release_sem
;
521 bh
= queue_lock(&q
, -1, NULL
);
524 * Access the page AFTER the futex is queued.
525 * Order is important:
527 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
528 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
530 * The basic logical guarantee of a futex is that it blocks ONLY
531 * if cond(var) is known to be true at the time of blocking, for
532 * any cond. If we queued after testing *uaddr, that would open
533 * a race condition where we could block indefinitely with
534 * cond(var) false, which would violate the guarantee.
536 * A consequence is that futex_wait() can return zero and absorb
537 * a wakeup when *uaddr != val on entry to the syscall. This is
540 * We hold the mmap semaphore, so the mapping cannot have changed
541 * since we looked it up in get_futex_key.
544 ret
= get_futex_value_locked(&curval
, (int __user
*)uaddr
);
547 queue_unlock(&q
, bh
);
549 /* If we would have faulted, release mmap_sem, fault it in and
550 * start all over again.
552 up_read(¤t
->mm
->mmap_sem
);
554 ret
= get_user(curval
, (int __user
*)uaddr
);
562 queue_unlock(&q
, bh
);
563 goto out_release_sem
;
566 /* Only actually queue if *uaddr contained val. */
570 * Now the futex is queued and we have checked the data, we
571 * don't want to hold mmap_sem while we sleep.
573 up_read(¤t
->mm
->mmap_sem
);
576 * There might have been scheduling since the queue_me(), as we
577 * cannot hold a spinlock across the get_user() in case it
578 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
579 * queueing ourselves into the futex hash. This code thus has to
580 * rely on the futex_wake() code removing us from hash when it
584 /* add_wait_queue is the barrier after __set_current_state. */
585 __set_current_state(TASK_INTERRUPTIBLE
);
586 add_wait_queue(&q
.waiters
, &wait
);
588 * !list_empty() is safe here without any lock.
589 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
591 if (likely(!list_empty(&q
.list
)))
592 time
= schedule_timeout(time
);
593 __set_current_state(TASK_RUNNING
);
596 * NOTE: we don't remove ourselves from the waitqueue because
597 * we are the only user of it.
600 /* If we were woken (and unqueued), we succeeded, whatever. */
605 /* We expect signal_pending(current), but another thread may
606 * have handled it for us already. */
610 up_read(¤t
->mm
->mmap_sem
);
614 static int futex_close(struct inode
*inode
, struct file
*filp
)
616 struct futex_q
*q
= filp
->private_data
;
623 /* This is one-shot: once it's gone off you need a new fd */
624 static unsigned int futex_poll(struct file
*filp
,
625 struct poll_table_struct
*wait
)
627 struct futex_q
*q
= filp
->private_data
;
630 poll_wait(filp
, &q
->waiters
, wait
);
633 * list_empty() is safe here without any lock.
634 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
636 if (list_empty(&q
->list
))
637 ret
= POLLIN
| POLLRDNORM
;
642 static struct file_operations futex_fops
= {
643 .release
= futex_close
,
648 * Signal allows caller to avoid the race which would occur if they
649 * set the sigio stuff up afterwards.
651 static int futex_fd(unsigned long uaddr
, int signal
)
658 if (!valid_signal(signal
))
661 ret
= get_unused_fd();
664 filp
= get_empty_filp();
670 filp
->f_op
= &futex_fops
;
671 filp
->f_vfsmnt
= mntget(futex_mnt
);
672 filp
->f_dentry
= dget(futex_mnt
->mnt_root
);
673 filp
->f_mapping
= filp
->f_dentry
->d_inode
->i_mapping
;
677 err
= f_setown(filp
, current
->pid
, 1);
684 filp
->f_owner
.signum
= signal
;
687 q
= kmalloc(sizeof(*q
), GFP_KERNEL
);
695 down_read(¤t
->mm
->mmap_sem
);
696 err
= get_futex_key(uaddr
, &q
->key
);
698 if (unlikely(err
!= 0)) {
699 up_read(¤t
->mm
->mmap_sem
);
707 * queue_me() must be called before releasing mmap_sem, because
708 * key->shared.inode needs to be referenced while holding it.
710 filp
->private_data
= q
;
712 queue_me(q
, ret
, filp
);
713 up_read(¤t
->mm
->mmap_sem
);
715 /* Now we map fd to filp, so userspace can access it */
716 fd_install(ret
, filp
);
721 long do_futex(unsigned long uaddr
, int op
, int val
, unsigned long timeout
,
722 unsigned long uaddr2
, int val2
, int val3
)
728 ret
= futex_wait(uaddr
, val
, timeout
);
731 ret
= futex_wake(uaddr
, val
);
734 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
735 ret
= futex_fd(uaddr
, val
);
738 ret
= futex_requeue(uaddr
, uaddr2
, val
, val2
, NULL
);
740 case FUTEX_CMP_REQUEUE
:
741 ret
= futex_requeue(uaddr
, uaddr2
, val
, val2
, &val3
);
750 asmlinkage
long sys_futex(u32 __user
*uaddr
, int op
, int val
,
751 struct timespec __user
*utime
, u32 __user
*uaddr2
,
755 unsigned long timeout
= MAX_SCHEDULE_TIMEOUT
;
758 if ((op
== FUTEX_WAIT
) && utime
) {
759 if (copy_from_user(&t
, utime
, sizeof(t
)) != 0)
761 timeout
= timespec_to_jiffies(&t
) + 1;
764 * requeue parameter in 'utime' if op == FUTEX_REQUEUE.
766 if (op
>= FUTEX_REQUEUE
)
767 val2
= (int) (unsigned long) utime
;
769 return do_futex((unsigned long)uaddr
, op
, val
, timeout
,
770 (unsigned long)uaddr2
, val2
, val3
);
773 static struct super_block
*
774 futexfs_get_sb(struct file_system_type
*fs_type
,
775 int flags
, const char *dev_name
, void *data
)
777 return get_sb_pseudo(fs_type
, "futex", NULL
, 0xBAD1DEA);
780 static struct file_system_type futex_fs_type
= {
782 .get_sb
= futexfs_get_sb
,
783 .kill_sb
= kill_anon_super
,
786 static int __init
init(void)
790 register_filesystem(&futex_fs_type
);
791 futex_mnt
= kern_mount(&futex_fs_type
);
793 for (i
= 0; i
< ARRAY_SIZE(futex_queues
); i
++) {
794 INIT_LIST_HEAD(&futex_queues
[i
].chain
);
795 spin_lock_init(&futex_queues
[i
].lock
);