2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
88 #include <asm/uaccess.h>
89 #include <asm/unistd.h>
91 #include <net/compat.h>
94 #include <linux/netfilter.h>
96 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
);
97 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
98 unsigned long nr_segs
, loff_t pos
);
99 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
100 unsigned long nr_segs
, loff_t pos
);
101 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
103 static int sock_close(struct inode
*inode
, struct file
*file
);
104 static unsigned int sock_poll(struct file
*file
,
105 struct poll_table_struct
*wait
);
106 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
108 static long compat_sock_ioctl(struct file
*file
,
109 unsigned int cmd
, unsigned long arg
);
111 static int sock_fasync(int fd
, struct file
*filp
, int on
);
112 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
113 int offset
, size_t size
, loff_t
*ppos
, int more
);
116 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
117 * in the operation structures but are done directly via the socketcall() multiplexor.
120 static struct file_operations socket_file_ops
= {
121 .owner
= THIS_MODULE
,
123 .aio_read
= sock_aio_read
,
124 .aio_write
= sock_aio_write
,
126 .unlocked_ioctl
= sock_ioctl
,
128 .compat_ioctl
= compat_sock_ioctl
,
131 .open
= sock_no_open
, /* special open code to disallow open via /proc */
132 .release
= sock_close
,
133 .fasync
= sock_fasync
,
134 .sendpage
= sock_sendpage
,
135 .splice_write
= generic_splice_sendpage
,
139 * The protocol list. Each protocol is registered in here.
142 static DEFINE_SPINLOCK(net_family_lock
);
143 static const struct net_proto_family
*net_families
[NPROTO
] __read_mostly
;
146 * Statistics counters of the socket lists
149 static DEFINE_PER_CPU(int, sockets_in_use
) = 0;
153 * Move socket addresses back and forth across the kernel/user
154 * divide and look after the messy bits.
157 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
158 16 for IP, 16 for IPX,
161 must be at least one bigger than
162 the AF_UNIX size (see net/unix/af_unix.c
167 * move_addr_to_kernel - copy a socket address into kernel space
168 * @uaddr: Address in user space
169 * @kaddr: Address in kernel space
170 * @ulen: Length in user space
172 * The address is copied into kernel space. If the provided address is
173 * too long an error code of -EINVAL is returned. If the copy gives
174 * invalid addresses -EFAULT is returned. On a success 0 is returned.
177 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, void *kaddr
)
179 if (ulen
< 0 || ulen
> MAX_SOCK_ADDR
)
183 if (copy_from_user(kaddr
, uaddr
, ulen
))
185 return audit_sockaddr(ulen
, kaddr
);
189 * move_addr_to_user - copy an address to user space
190 * @kaddr: kernel space address
191 * @klen: length of address in kernel
192 * @uaddr: user space address
193 * @ulen: pointer to user length field
195 * The value pointed to by ulen on entry is the buffer length available.
196 * This is overwritten with the buffer space used. -EINVAL is returned
197 * if an overlong buffer is specified or a negative buffer size. -EFAULT
198 * is returned if either the buffer or the length field are not
200 * After copying the data up to the limit the user specifies, the true
201 * length of the data is written over the length limit the user
202 * specified. Zero is returned for a success.
205 int move_addr_to_user(void *kaddr
, int klen
, void __user
*uaddr
,
211 err
= get_user(len
, ulen
);
216 if (len
< 0 || len
> MAX_SOCK_ADDR
)
219 if (audit_sockaddr(klen
, kaddr
))
221 if (copy_to_user(uaddr
, kaddr
, len
))
225 * "fromlen shall refer to the value before truncation.."
228 return __put_user(klen
, ulen
);
231 #define SOCKFS_MAGIC 0x534F434B
233 static struct kmem_cache
*sock_inode_cachep __read_mostly
;
235 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
237 struct socket_alloc
*ei
;
239 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
242 init_waitqueue_head(&ei
->socket
.wait
);
244 ei
->socket
.fasync_list
= NULL
;
245 ei
->socket
.state
= SS_UNCONNECTED
;
246 ei
->socket
.flags
= 0;
247 ei
->socket
.ops
= NULL
;
248 ei
->socket
.sk
= NULL
;
249 ei
->socket
.file
= NULL
;
251 return &ei
->vfs_inode
;
254 static void sock_destroy_inode(struct inode
*inode
)
256 kmem_cache_free(sock_inode_cachep
,
257 container_of(inode
, struct socket_alloc
, vfs_inode
));
260 static void init_once(void *foo
, struct kmem_cache
*cachep
, unsigned long flags
)
262 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
264 if ((flags
& (SLAB_CTOR_VERIFY
|SLAB_CTOR_CONSTRUCTOR
))
265 == SLAB_CTOR_CONSTRUCTOR
)
266 inode_init_once(&ei
->vfs_inode
);
269 static int init_inodecache(void)
271 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
272 sizeof(struct socket_alloc
),
274 (SLAB_HWCACHE_ALIGN
|
275 SLAB_RECLAIM_ACCOUNT
|
279 if (sock_inode_cachep
== NULL
)
284 static struct super_operations sockfs_ops
= {
285 .alloc_inode
= sock_alloc_inode
,
286 .destroy_inode
=sock_destroy_inode
,
287 .statfs
= simple_statfs
,
290 static int sockfs_get_sb(struct file_system_type
*fs_type
,
291 int flags
, const char *dev_name
, void *data
,
292 struct vfsmount
*mnt
)
294 return get_sb_pseudo(fs_type
, "socket:", &sockfs_ops
, SOCKFS_MAGIC
,
298 static struct vfsmount
*sock_mnt __read_mostly
;
300 static struct file_system_type sock_fs_type
= {
302 .get_sb
= sockfs_get_sb
,
303 .kill_sb
= kill_anon_super
,
306 static int sockfs_delete_dentry(struct dentry
*dentry
)
309 * At creation time, we pretended this dentry was hashed
310 * (by clearing DCACHE_UNHASHED bit in d_flags)
311 * At delete time, we restore the truth : not hashed.
312 * (so that dput() can proceed correctly)
314 dentry
->d_flags
|= DCACHE_UNHASHED
;
317 static struct dentry_operations sockfs_dentry_operations
= {
318 .d_delete
= sockfs_delete_dentry
,
322 * Obtains the first available file descriptor and sets it up for use.
324 * These functions create file structures and maps them to fd space
325 * of the current process. On success it returns file descriptor
326 * and file struct implicitly stored in sock->file.
327 * Note that another thread may close file descriptor before we return
328 * from this function. We use the fact that now we do not refer
329 * to socket after mapping. If one day we will need it, this
330 * function will increment ref. count on file by 1.
332 * In any case returned fd MAY BE not valid!
333 * This race condition is unavoidable
334 * with shared fd spaces, we cannot solve it inside kernel,
335 * but we take care of internal coherence yet.
338 static int sock_alloc_fd(struct file
**filep
)
342 fd
= get_unused_fd();
343 if (likely(fd
>= 0)) {
344 struct file
*file
= get_empty_filp();
347 if (unlikely(!file
)) {
356 static int sock_attach_fd(struct socket
*sock
, struct file
*file
)
361 this.len
= sprintf(name
, "[%lu]", SOCK_INODE(sock
)->i_ino
);
365 file
->f_path
.dentry
= d_alloc(sock_mnt
->mnt_sb
->s_root
, &this);
366 if (unlikely(!file
->f_path
.dentry
))
369 file
->f_path
.dentry
->d_op
= &sockfs_dentry_operations
;
371 * We dont want to push this dentry into global dentry hash table.
372 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
373 * This permits a working /proc/$pid/fd/XXX on sockets
375 file
->f_path
.dentry
->d_flags
&= ~DCACHE_UNHASHED
;
376 d_instantiate(file
->f_path
.dentry
, SOCK_INODE(sock
));
377 file
->f_path
.mnt
= mntget(sock_mnt
);
378 file
->f_mapping
= file
->f_path
.dentry
->d_inode
->i_mapping
;
381 file
->f_op
= SOCK_INODE(sock
)->i_fop
= &socket_file_ops
;
382 file
->f_mode
= FMODE_READ
| FMODE_WRITE
;
383 file
->f_flags
= O_RDWR
;
385 file
->private_data
= sock
;
390 int sock_map_fd(struct socket
*sock
)
392 struct file
*newfile
;
393 int fd
= sock_alloc_fd(&newfile
);
395 if (likely(fd
>= 0)) {
396 int err
= sock_attach_fd(sock
, newfile
);
398 if (unlikely(err
< 0)) {
403 fd_install(fd
, newfile
);
408 static struct socket
*sock_from_file(struct file
*file
, int *err
)
413 if (file
->f_op
== &socket_file_ops
)
414 return file
->private_data
; /* set in sock_map_fd */
416 inode
= file
->f_path
.dentry
->d_inode
;
417 if (!S_ISSOCK(inode
->i_mode
)) {
422 sock
= SOCKET_I(inode
);
423 if (sock
->file
!= file
) {
424 printk(KERN_ERR
"socki_lookup: socket file changed!\n");
431 * sockfd_lookup - Go from a file number to its socket slot
433 * @err: pointer to an error code return
435 * The file handle passed in is locked and the socket it is bound
436 * too is returned. If an error occurs the err pointer is overwritten
437 * with a negative errno code and NULL is returned. The function checks
438 * for both invalid handles and passing a handle which is not a socket.
440 * On a success the socket object pointer is returned.
443 struct socket
*sockfd_lookup(int fd
, int *err
)
454 sock
= sock_from_file(file
, err
);
460 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
466 file
= fget_light(fd
, fput_needed
);
468 sock
= sock_from_file(file
, err
);
471 fput_light(file
, *fput_needed
);
477 * sock_alloc - allocate a socket
479 * Allocate a new inode and socket object. The two are bound together
480 * and initialised. The socket is then returned. If we are out of inodes
484 static struct socket
*sock_alloc(void)
489 inode
= new_inode(sock_mnt
->mnt_sb
);
493 sock
= SOCKET_I(inode
);
495 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
496 inode
->i_uid
= current
->fsuid
;
497 inode
->i_gid
= current
->fsgid
;
499 get_cpu_var(sockets_in_use
)++;
500 put_cpu_var(sockets_in_use
);
505 * In theory you can't get an open on this inode, but /proc provides
506 * a back door. Remember to keep it shut otherwise you'll let the
507 * creepy crawlies in.
510 static int sock_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
515 const struct file_operations bad_sock_fops
= {
516 .owner
= THIS_MODULE
,
517 .open
= sock_no_open
,
521 * sock_release - close a socket
522 * @sock: socket to close
524 * The socket is released from the protocol stack if it has a release
525 * callback, and the inode is then released if the socket is bound to
526 * an inode not a file.
529 void sock_release(struct socket
*sock
)
532 struct module
*owner
= sock
->ops
->owner
;
534 sock
->ops
->release(sock
);
539 if (sock
->fasync_list
)
540 printk(KERN_ERR
"sock_release: fasync list not empty!\n");
542 get_cpu_var(sockets_in_use
)--;
543 put_cpu_var(sockets_in_use
);
545 iput(SOCK_INODE(sock
));
551 static inline int __sock_sendmsg(struct kiocb
*iocb
, struct socket
*sock
,
552 struct msghdr
*msg
, size_t size
)
554 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
562 err
= security_socket_sendmsg(sock
, msg
, size
);
566 return sock
->ops
->sendmsg(iocb
, sock
, msg
, size
);
569 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
, size_t size
)
572 struct sock_iocb siocb
;
575 init_sync_kiocb(&iocb
, NULL
);
576 iocb
.private = &siocb
;
577 ret
= __sock_sendmsg(&iocb
, sock
, msg
, size
);
578 if (-EIOCBQUEUED
== ret
)
579 ret
= wait_on_sync_kiocb(&iocb
);
583 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
584 struct kvec
*vec
, size_t num
, size_t size
)
586 mm_segment_t oldfs
= get_fs();
591 * the following is safe, since for compiler definitions of kvec and
592 * iovec are identical, yielding the same in-core layout and alignment
594 msg
->msg_iov
= (struct iovec
*)vec
;
595 msg
->msg_iovlen
= num
;
596 result
= sock_sendmsg(sock
, msg
, size
);
601 static inline int __sock_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
602 struct msghdr
*msg
, size_t size
, int flags
)
605 struct sock_iocb
*si
= kiocb_to_siocb(iocb
);
613 err
= security_socket_recvmsg(sock
, msg
, size
, flags
);
617 return sock
->ops
->recvmsg(iocb
, sock
, msg
, size
, flags
);
620 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
621 size_t size
, int flags
)
624 struct sock_iocb siocb
;
627 init_sync_kiocb(&iocb
, NULL
);
628 iocb
.private = &siocb
;
629 ret
= __sock_recvmsg(&iocb
, sock
, msg
, size
, flags
);
630 if (-EIOCBQUEUED
== ret
)
631 ret
= wait_on_sync_kiocb(&iocb
);
635 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
636 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
638 mm_segment_t oldfs
= get_fs();
643 * the following is safe, since for compiler definitions of kvec and
644 * iovec are identical, yielding the same in-core layout and alignment
646 msg
->msg_iov
= (struct iovec
*)vec
, msg
->msg_iovlen
= num
;
647 result
= sock_recvmsg(sock
, msg
, size
, flags
);
652 static void sock_aio_dtor(struct kiocb
*iocb
)
654 kfree(iocb
->private);
657 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
658 int offset
, size_t size
, loff_t
*ppos
, int more
)
663 sock
= file
->private_data
;
665 flags
= !(file
->f_flags
& O_NONBLOCK
) ? 0 : MSG_DONTWAIT
;
669 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
672 static struct sock_iocb
*alloc_sock_iocb(struct kiocb
*iocb
,
673 struct sock_iocb
*siocb
)
675 if (!is_sync_kiocb(iocb
)) {
676 siocb
= kmalloc(sizeof(*siocb
), GFP_KERNEL
);
679 iocb
->ki_dtor
= sock_aio_dtor
;
683 iocb
->private = siocb
;
687 static ssize_t
do_sock_read(struct msghdr
*msg
, struct kiocb
*iocb
,
688 struct file
*file
, const struct iovec
*iov
,
689 unsigned long nr_segs
)
691 struct socket
*sock
= file
->private_data
;
695 for (i
= 0; i
< nr_segs
; i
++)
696 size
+= iov
[i
].iov_len
;
698 msg
->msg_name
= NULL
;
699 msg
->msg_namelen
= 0;
700 msg
->msg_control
= NULL
;
701 msg
->msg_controllen
= 0;
702 msg
->msg_iov
= (struct iovec
*)iov
;
703 msg
->msg_iovlen
= nr_segs
;
704 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
706 return __sock_recvmsg(iocb
, sock
, msg
, size
, msg
->msg_flags
);
709 static ssize_t
sock_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
710 unsigned long nr_segs
, loff_t pos
)
712 struct sock_iocb siocb
, *x
;
717 if (iocb
->ki_left
== 0) /* Match SYS5 behaviour */
721 x
= alloc_sock_iocb(iocb
, &siocb
);
724 return do_sock_read(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
727 static ssize_t
do_sock_write(struct msghdr
*msg
, struct kiocb
*iocb
,
728 struct file
*file
, const struct iovec
*iov
,
729 unsigned long nr_segs
)
731 struct socket
*sock
= file
->private_data
;
735 for (i
= 0; i
< nr_segs
; i
++)
736 size
+= iov
[i
].iov_len
;
738 msg
->msg_name
= NULL
;
739 msg
->msg_namelen
= 0;
740 msg
->msg_control
= NULL
;
741 msg
->msg_controllen
= 0;
742 msg
->msg_iov
= (struct iovec
*)iov
;
743 msg
->msg_iovlen
= nr_segs
;
744 msg
->msg_flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
745 if (sock
->type
== SOCK_SEQPACKET
)
746 msg
->msg_flags
|= MSG_EOR
;
748 return __sock_sendmsg(iocb
, sock
, msg
, size
);
751 static ssize_t
sock_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
752 unsigned long nr_segs
, loff_t pos
)
754 struct sock_iocb siocb
, *x
;
759 if (iocb
->ki_left
== 0) /* Match SYS5 behaviour */
762 x
= alloc_sock_iocb(iocb
, &siocb
);
766 return do_sock_write(&x
->async_msg
, iocb
, iocb
->ki_filp
, iov
, nr_segs
);
770 * Atomic setting of ioctl hooks to avoid race
771 * with module unload.
774 static DEFINE_MUTEX(br_ioctl_mutex
);
775 static int (*br_ioctl_hook
) (unsigned int cmd
, void __user
*arg
) = NULL
;
777 void brioctl_set(int (*hook
) (unsigned int, void __user
*))
779 mutex_lock(&br_ioctl_mutex
);
780 br_ioctl_hook
= hook
;
781 mutex_unlock(&br_ioctl_mutex
);
784 EXPORT_SYMBOL(brioctl_set
);
786 static DEFINE_MUTEX(vlan_ioctl_mutex
);
787 static int (*vlan_ioctl_hook
) (void __user
*arg
);
789 void vlan_ioctl_set(int (*hook
) (void __user
*))
791 mutex_lock(&vlan_ioctl_mutex
);
792 vlan_ioctl_hook
= hook
;
793 mutex_unlock(&vlan_ioctl_mutex
);
796 EXPORT_SYMBOL(vlan_ioctl_set
);
798 static DEFINE_MUTEX(dlci_ioctl_mutex
);
799 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
801 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
803 mutex_lock(&dlci_ioctl_mutex
);
804 dlci_ioctl_hook
= hook
;
805 mutex_unlock(&dlci_ioctl_mutex
);
808 EXPORT_SYMBOL(dlci_ioctl_set
);
811 * With an ioctl, arg may well be a user mode pointer, but we don't know
812 * what to do with it - that's up to the protocol still.
815 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
818 void __user
*argp
= (void __user
*)arg
;
821 sock
= file
->private_data
;
822 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15)) {
823 err
= dev_ioctl(cmd
, argp
);
825 #ifdef CONFIG_WIRELESS_EXT
826 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
827 err
= dev_ioctl(cmd
, argp
);
829 #endif /* CONFIG_WIRELESS_EXT */
834 if (get_user(pid
, (int __user
*)argp
))
836 err
= f_setown(sock
->file
, pid
, 1);
840 err
= put_user(f_getown(sock
->file
),
849 request_module("bridge");
851 mutex_lock(&br_ioctl_mutex
);
853 err
= br_ioctl_hook(cmd
, argp
);
854 mutex_unlock(&br_ioctl_mutex
);
859 if (!vlan_ioctl_hook
)
860 request_module("8021q");
862 mutex_lock(&vlan_ioctl_mutex
);
864 err
= vlan_ioctl_hook(argp
);
865 mutex_unlock(&vlan_ioctl_mutex
);
870 if (!dlci_ioctl_hook
)
871 request_module("dlci");
873 if (dlci_ioctl_hook
) {
874 mutex_lock(&dlci_ioctl_mutex
);
875 err
= dlci_ioctl_hook(cmd
, argp
);
876 mutex_unlock(&dlci_ioctl_mutex
);
880 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
883 * If this ioctl is unknown try to hand it down
886 if (err
== -ENOIOCTLCMD
)
887 err
= dev_ioctl(cmd
, argp
);
893 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
896 struct socket
*sock
= NULL
;
898 err
= security_socket_create(family
, type
, protocol
, 1);
909 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
922 /* No kernel lock held - perfect */
923 static unsigned int sock_poll(struct file
*file
, poll_table
*wait
)
928 * We can't return errors to poll, so it's either yes or no.
930 sock
= file
->private_data
;
931 return sock
->ops
->poll(file
, sock
, wait
);
934 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
936 struct socket
*sock
= file
->private_data
;
938 return sock
->ops
->mmap(file
, sock
, vma
);
941 static int sock_close(struct inode
*inode
, struct file
*filp
)
944 * It was possible the inode is NULL we were
945 * closing an unfinished socket.
949 printk(KERN_DEBUG
"sock_close: NULL inode\n");
952 sock_fasync(-1, filp
, 0);
953 sock_release(SOCKET_I(inode
));
958 * Update the socket async list
960 * Fasync_list locking strategy.
962 * 1. fasync_list is modified only under process context socket lock
963 * i.e. under semaphore.
964 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
965 * or under socket lock.
966 * 3. fasync_list can be used from softirq context, so that
967 * modification under socket lock have to be enhanced with
968 * write_lock_bh(&sk->sk_callback_lock).
972 static int sock_fasync(int fd
, struct file
*filp
, int on
)
974 struct fasync_struct
*fa
, *fna
= NULL
, **prev
;
979 fna
= kmalloc(sizeof(struct fasync_struct
), GFP_KERNEL
);
984 sock
= filp
->private_data
;
994 prev
= &(sock
->fasync_list
);
996 for (fa
= *prev
; fa
!= NULL
; prev
= &fa
->fa_next
, fa
= *prev
)
997 if (fa
->fa_file
== filp
)
1002 write_lock_bh(&sk
->sk_callback_lock
);
1004 write_unlock_bh(&sk
->sk_callback_lock
);
1009 fna
->fa_file
= filp
;
1011 fna
->magic
= FASYNC_MAGIC
;
1012 fna
->fa_next
= sock
->fasync_list
;
1013 write_lock_bh(&sk
->sk_callback_lock
);
1014 sock
->fasync_list
= fna
;
1015 write_unlock_bh(&sk
->sk_callback_lock
);
1018 write_lock_bh(&sk
->sk_callback_lock
);
1019 *prev
= fa
->fa_next
;
1020 write_unlock_bh(&sk
->sk_callback_lock
);
1026 release_sock(sock
->sk
);
1030 /* This function may be called only under socket lock or callback_lock */
1032 int sock_wake_async(struct socket
*sock
, int how
, int band
)
1034 if (!sock
|| !sock
->fasync_list
)
1039 if (test_bit(SOCK_ASYNC_WAITDATA
, &sock
->flags
))
1043 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE
, &sock
->flags
))
1048 __kill_fasync(sock
->fasync_list
, SIGIO
, band
);
1051 __kill_fasync(sock
->fasync_list
, SIGURG
, band
);
1056 static int __sock_create(int family
, int type
, int protocol
,
1057 struct socket
**res
, int kern
)
1060 struct socket
*sock
;
1061 const struct net_proto_family
*pf
;
1064 * Check protocol is in range
1066 if (family
< 0 || family
>= NPROTO
)
1067 return -EAFNOSUPPORT
;
1068 if (type
< 0 || type
>= SOCK_MAX
)
1073 This uglymoron is moved from INET layer to here to avoid
1074 deadlock in module load.
1076 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1080 printk(KERN_INFO
"%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1086 err
= security_socket_create(family
, type
, protocol
, kern
);
1091 * Allocate the socket and allow the family to set things up. if
1092 * the protocol is 0, the family is instructed to select an appropriate
1095 sock
= sock_alloc();
1097 if (net_ratelimit())
1098 printk(KERN_WARNING
"socket: no more sockets\n");
1099 return -ENFILE
; /* Not exactly a match, but its the
1100 closest posix thing */
1105 #if defined(CONFIG_KMOD)
1106 /* Attempt to load a protocol module if the find failed.
1108 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1109 * requested real, full-featured networking support upon configuration.
1110 * Otherwise module support will break!
1112 if (net_families
[family
] == NULL
)
1113 request_module("net-pf-%d", family
);
1117 pf
= rcu_dereference(net_families
[family
]);
1118 err
= -EAFNOSUPPORT
;
1123 * We will call the ->create function, that possibly is in a loadable
1124 * module, so we have to bump that loadable module refcnt first.
1126 if (!try_module_get(pf
->owner
))
1129 /* Now protected by module ref count */
1132 err
= pf
->create(sock
, protocol
);
1134 goto out_module_put
;
1137 * Now to bump the refcnt of the [loadable] module that owns this
1138 * socket at sock_release time we decrement its refcnt.
1140 if (!try_module_get(sock
->ops
->owner
))
1141 goto out_module_busy
;
1144 * Now that we're done with the ->create function, the [loadable]
1145 * module can have its refcnt decremented
1147 module_put(pf
->owner
);
1148 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1156 err
= -EAFNOSUPPORT
;
1159 module_put(pf
->owner
);
1166 goto out_sock_release
;
1169 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1171 return __sock_create(family
, type
, protocol
, res
, 0);
1174 int sock_create_kern(int family
, int type
, int protocol
, struct socket
**res
)
1176 return __sock_create(family
, type
, protocol
, res
, 1);
1179 asmlinkage
long sys_socket(int family
, int type
, int protocol
)
1182 struct socket
*sock
;
1184 retval
= sock_create(family
, type
, protocol
, &sock
);
1188 retval
= sock_map_fd(sock
);
1193 /* It may be already another descriptor 8) Not kernel problem. */
1202 * Create a pair of connected sockets.
1205 asmlinkage
long sys_socketpair(int family
, int type
, int protocol
,
1206 int __user
*usockvec
)
1208 struct socket
*sock1
, *sock2
;
1212 * Obtain the first socket and check if the underlying protocol
1213 * supports the socketpair call.
1216 err
= sock_create(family
, type
, protocol
, &sock1
);
1220 err
= sock_create(family
, type
, protocol
, &sock2
);
1224 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1226 goto out_release_both
;
1230 err
= sock_map_fd(sock1
);
1232 goto out_release_both
;
1235 err
= sock_map_fd(sock2
);
1240 /* fd1 and fd2 may be already another descriptors.
1241 * Not kernel problem.
1244 err
= put_user(fd1
, &usockvec
[0]);
1246 err
= put_user(fd2
, &usockvec
[1]);
1255 sock_release(sock2
);
1260 sock_release(sock2
);
1262 sock_release(sock1
);
1268 * Bind a name to a socket. Nothing much to do here since it's
1269 * the protocol's responsibility to handle the local address.
1271 * We move the socket address to kernel space before we call
1272 * the protocol layer (having also checked the address is ok).
1275 asmlinkage
long sys_bind(int fd
, struct sockaddr __user
*umyaddr
, int addrlen
)
1277 struct socket
*sock
;
1278 char address
[MAX_SOCK_ADDR
];
1279 int err
, fput_needed
;
1281 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1283 err
= move_addr_to_kernel(umyaddr
, addrlen
, address
);
1285 err
= security_socket_bind(sock
,
1286 (struct sockaddr
*)address
,
1289 err
= sock
->ops
->bind(sock
,
1293 fput_light(sock
->file
, fput_needed
);
1299 * Perform a listen. Basically, we allow the protocol to do anything
1300 * necessary for a listen, and if that works, we mark the socket as
1301 * ready for listening.
1304 int sysctl_somaxconn __read_mostly
= SOMAXCONN
;
1306 asmlinkage
long sys_listen(int fd
, int backlog
)
1308 struct socket
*sock
;
1309 int err
, fput_needed
;
1311 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1313 if ((unsigned)backlog
> sysctl_somaxconn
)
1314 backlog
= sysctl_somaxconn
;
1316 err
= security_socket_listen(sock
, backlog
);
1318 err
= sock
->ops
->listen(sock
, backlog
);
1320 fput_light(sock
->file
, fput_needed
);
1326 * For accept, we attempt to create a new socket, set up the link
1327 * with the client, wake up the client, then return the new
1328 * connected fd. We collect the address of the connector in kernel
1329 * space and move it to user at the very end. This is unclean because
1330 * we open the socket then return an error.
1332 * 1003.1g adds the ability to recvmsg() to query connection pending
1333 * status to recvmsg. We need to add that support in a way thats
1334 * clean when we restucture accept also.
1337 asmlinkage
long sys_accept(int fd
, struct sockaddr __user
*upeer_sockaddr
,
1338 int __user
*upeer_addrlen
)
1340 struct socket
*sock
, *newsock
;
1341 struct file
*newfile
;
1342 int err
, len
, newfd
, fput_needed
;
1343 char address
[MAX_SOCK_ADDR
];
1345 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1350 if (!(newsock
= sock_alloc()))
1353 newsock
->type
= sock
->type
;
1354 newsock
->ops
= sock
->ops
;
1357 * We don't need try_module_get here, as the listening socket (sock)
1358 * has the protocol module (sock->ops->owner) held.
1360 __module_get(newsock
->ops
->owner
);
1362 newfd
= sock_alloc_fd(&newfile
);
1363 if (unlikely(newfd
< 0)) {
1365 sock_release(newsock
);
1369 err
= sock_attach_fd(newsock
, newfile
);
1373 err
= security_socket_accept(sock
, newsock
);
1377 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
);
1381 if (upeer_sockaddr
) {
1382 if (newsock
->ops
->getname(newsock
, (struct sockaddr
*)address
,
1384 err
= -ECONNABORTED
;
1387 err
= move_addr_to_user(address
, len
, upeer_sockaddr
,
1393 /* File flags are not inherited via accept() unlike another OSes. */
1395 fd_install(newfd
, newfile
);
1398 security_socket_post_accept(sock
, newsock
);
1401 fput_light(sock
->file
, fput_needed
);
1406 put_unused_fd(newfd
);
1411 * Attempt to connect to a socket with the server address. The address
1412 * is in user space so we verify it is OK and move it to kernel space.
1414 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1417 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1418 * other SEQPACKET protocols that take time to connect() as it doesn't
1419 * include the -EINPROGRESS status for such sockets.
1422 asmlinkage
long sys_connect(int fd
, struct sockaddr __user
*uservaddr
,
1425 struct socket
*sock
;
1426 char address
[MAX_SOCK_ADDR
];
1427 int err
, fput_needed
;
1429 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1432 err
= move_addr_to_kernel(uservaddr
, addrlen
, address
);
1437 security_socket_connect(sock
, (struct sockaddr
*)address
, addrlen
);
1441 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)address
, addrlen
,
1442 sock
->file
->f_flags
);
1444 fput_light(sock
->file
, fput_needed
);
1450 * Get the local address ('name') of a socket object. Move the obtained
1451 * name to user space.
1454 asmlinkage
long sys_getsockname(int fd
, struct sockaddr __user
*usockaddr
,
1455 int __user
*usockaddr_len
)
1457 struct socket
*sock
;
1458 char address
[MAX_SOCK_ADDR
];
1459 int len
, err
, fput_needed
;
1461 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1465 err
= security_socket_getsockname(sock
);
1469 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &len
, 0);
1472 err
= move_addr_to_user(address
, len
, usockaddr
, usockaddr_len
);
1475 fput_light(sock
->file
, fput_needed
);
1481 * Get the remote address ('name') of a socket object. Move the obtained
1482 * name to user space.
1485 asmlinkage
long sys_getpeername(int fd
, struct sockaddr __user
*usockaddr
,
1486 int __user
*usockaddr_len
)
1488 struct socket
*sock
;
1489 char address
[MAX_SOCK_ADDR
];
1490 int len
, err
, fput_needed
;
1492 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1494 err
= security_socket_getpeername(sock
);
1496 fput_light(sock
->file
, fput_needed
);
1501 sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &len
,
1504 err
= move_addr_to_user(address
, len
, usockaddr
,
1506 fput_light(sock
->file
, fput_needed
);
1512 * Send a datagram to a given address. We move the address into kernel
1513 * space and check the user space data area is readable before invoking
1517 asmlinkage
long sys_sendto(int fd
, void __user
*buff
, size_t len
,
1518 unsigned flags
, struct sockaddr __user
*addr
,
1521 struct socket
*sock
;
1522 char address
[MAX_SOCK_ADDR
];
1527 struct file
*sock_file
;
1529 sock_file
= fget_light(fd
, &fput_needed
);
1533 sock
= sock_from_file(sock_file
, &err
);
1536 iov
.iov_base
= buff
;
1538 msg
.msg_name
= NULL
;
1541 msg
.msg_control
= NULL
;
1542 msg
.msg_controllen
= 0;
1543 msg
.msg_namelen
= 0;
1545 err
= move_addr_to_kernel(addr
, addr_len
, address
);
1548 msg
.msg_name
= address
;
1549 msg
.msg_namelen
= addr_len
;
1551 if (sock
->file
->f_flags
& O_NONBLOCK
)
1552 flags
|= MSG_DONTWAIT
;
1553 msg
.msg_flags
= flags
;
1554 err
= sock_sendmsg(sock
, &msg
, len
);
1557 fput_light(sock_file
, fput_needed
);
1562 * Send a datagram down a socket.
1565 asmlinkage
long sys_send(int fd
, void __user
*buff
, size_t len
, unsigned flags
)
1567 return sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1571 * Receive a frame from the socket and optionally record the address of the
1572 * sender. We verify the buffers are writable and if needed move the
1573 * sender address from kernel to user space.
1576 asmlinkage
long sys_recvfrom(int fd
, void __user
*ubuf
, size_t size
,
1577 unsigned flags
, struct sockaddr __user
*addr
,
1578 int __user
*addr_len
)
1580 struct socket
*sock
;
1583 char address
[MAX_SOCK_ADDR
];
1585 struct file
*sock_file
;
1588 sock_file
= fget_light(fd
, &fput_needed
);
1592 sock
= sock_from_file(sock_file
, &err
);
1596 msg
.msg_control
= NULL
;
1597 msg
.msg_controllen
= 0;
1601 iov
.iov_base
= ubuf
;
1602 msg
.msg_name
= address
;
1603 msg
.msg_namelen
= MAX_SOCK_ADDR
;
1604 if (sock
->file
->f_flags
& O_NONBLOCK
)
1605 flags
|= MSG_DONTWAIT
;
1606 err
= sock_recvmsg(sock
, &msg
, size
, flags
);
1608 if (err
>= 0 && addr
!= NULL
) {
1609 err2
= move_addr_to_user(address
, msg
.msg_namelen
, addr
, addr_len
);
1614 fput_light(sock_file
, fput_needed
);
1619 * Receive a datagram from a socket.
1622 asmlinkage
long sys_recv(int fd
, void __user
*ubuf
, size_t size
,
1625 return sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1629 * Set a socket option. Because we don't know the option lengths we have
1630 * to pass the user mode parameter for the protocols to sort out.
1633 asmlinkage
long sys_setsockopt(int fd
, int level
, int optname
,
1634 char __user
*optval
, int optlen
)
1636 int err
, fput_needed
;
1637 struct socket
*sock
;
1642 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1644 err
= security_socket_setsockopt(sock
, level
, optname
);
1648 if (level
== SOL_SOCKET
)
1650 sock_setsockopt(sock
, level
, optname
, optval
,
1654 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1657 fput_light(sock
->file
, fput_needed
);
1663 * Get a socket option. Because we don't know the option lengths we have
1664 * to pass a user mode parameter for the protocols to sort out.
1667 asmlinkage
long sys_getsockopt(int fd
, int level
, int optname
,
1668 char __user
*optval
, int __user
*optlen
)
1670 int err
, fput_needed
;
1671 struct socket
*sock
;
1673 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1675 err
= security_socket_getsockopt(sock
, level
, optname
);
1679 if (level
== SOL_SOCKET
)
1681 sock_getsockopt(sock
, level
, optname
, optval
,
1685 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1688 fput_light(sock
->file
, fput_needed
);
1694 * Shutdown a socket.
1697 asmlinkage
long sys_shutdown(int fd
, int how
)
1699 int err
, fput_needed
;
1700 struct socket
*sock
;
1702 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1704 err
= security_socket_shutdown(sock
, how
);
1706 err
= sock
->ops
->shutdown(sock
, how
);
1707 fput_light(sock
->file
, fput_needed
);
1712 /* A couple of helpful macros for getting the address of the 32/64 bit
1713 * fields which are the same type (int / unsigned) on our platforms.
1715 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1716 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1717 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1720 * BSD sendmsg interface
1723 asmlinkage
long sys_sendmsg(int fd
, struct msghdr __user
*msg
, unsigned flags
)
1725 struct compat_msghdr __user
*msg_compat
=
1726 (struct compat_msghdr __user
*)msg
;
1727 struct socket
*sock
;
1728 char address
[MAX_SOCK_ADDR
];
1729 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
1730 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
1731 __attribute__ ((aligned(sizeof(__kernel_size_t
))));
1732 /* 20 is size of ipv6_pktinfo */
1733 unsigned char *ctl_buf
= ctl
;
1734 struct msghdr msg_sys
;
1735 int err
, ctl_len
, iov_size
, total_len
;
1739 if (MSG_CMSG_COMPAT
& flags
) {
1740 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1743 else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1746 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1750 /* do not move before msg_sys is valid */
1752 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1755 /* Check whether to allocate the iovec area */
1757 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1758 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1759 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1764 /* This will also move the address data into kernel space */
1765 if (MSG_CMSG_COMPAT
& flags
) {
1766 err
= verify_compat_iovec(&msg_sys
, iov
, address
, VERIFY_READ
);
1768 err
= verify_iovec(&msg_sys
, iov
, address
, VERIFY_READ
);
1775 if (msg_sys
.msg_controllen
> INT_MAX
)
1777 ctl_len
= msg_sys
.msg_controllen
;
1778 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
1780 cmsghdr_from_user_compat_to_kern(&msg_sys
, sock
->sk
, ctl
,
1784 ctl_buf
= msg_sys
.msg_control
;
1785 ctl_len
= msg_sys
.msg_controllen
;
1786 } else if (ctl_len
) {
1787 if (ctl_len
> sizeof(ctl
)) {
1788 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
1789 if (ctl_buf
== NULL
)
1794 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1795 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1796 * checking falls down on this.
1798 if (copy_from_user(ctl_buf
, (void __user
*)msg_sys
.msg_control
,
1801 msg_sys
.msg_control
= ctl_buf
;
1803 msg_sys
.msg_flags
= flags
;
1805 if (sock
->file
->f_flags
& O_NONBLOCK
)
1806 msg_sys
.msg_flags
|= MSG_DONTWAIT
;
1807 err
= sock_sendmsg(sock
, &msg_sys
, total_len
);
1811 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
1813 if (iov
!= iovstack
)
1814 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1816 fput_light(sock
->file
, fput_needed
);
1822 * BSD recvmsg interface
1825 asmlinkage
long sys_recvmsg(int fd
, struct msghdr __user
*msg
,
1828 struct compat_msghdr __user
*msg_compat
=
1829 (struct compat_msghdr __user
*)msg
;
1830 struct socket
*sock
;
1831 struct iovec iovstack
[UIO_FASTIOV
];
1832 struct iovec
*iov
= iovstack
;
1833 struct msghdr msg_sys
;
1834 unsigned long cmsg_ptr
;
1835 int err
, iov_size
, total_len
, len
;
1838 /* kernel mode address */
1839 char addr
[MAX_SOCK_ADDR
];
1841 /* user mode address pointers */
1842 struct sockaddr __user
*uaddr
;
1843 int __user
*uaddr_len
;
1845 if (MSG_CMSG_COMPAT
& flags
) {
1846 if (get_compat_msghdr(&msg_sys
, msg_compat
))
1849 else if (copy_from_user(&msg_sys
, msg
, sizeof(struct msghdr
)))
1852 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1857 if (msg_sys
.msg_iovlen
> UIO_MAXIOV
)
1860 /* Check whether to allocate the iovec area */
1862 iov_size
= msg_sys
.msg_iovlen
* sizeof(struct iovec
);
1863 if (msg_sys
.msg_iovlen
> UIO_FASTIOV
) {
1864 iov
= sock_kmalloc(sock
->sk
, iov_size
, GFP_KERNEL
);
1870 * Save the user-mode address (verify_iovec will change the
1871 * kernel msghdr to use the kernel address space)
1874 uaddr
= (void __user
*)msg_sys
.msg_name
;
1875 uaddr_len
= COMPAT_NAMELEN(msg
);
1876 if (MSG_CMSG_COMPAT
& flags
) {
1877 err
= verify_compat_iovec(&msg_sys
, iov
, addr
, VERIFY_WRITE
);
1879 err
= verify_iovec(&msg_sys
, iov
, addr
, VERIFY_WRITE
);
1884 cmsg_ptr
= (unsigned long)msg_sys
.msg_control
;
1885 msg_sys
.msg_flags
= 0;
1886 if (MSG_CMSG_COMPAT
& flags
)
1887 msg_sys
.msg_flags
= MSG_CMSG_COMPAT
;
1889 if (sock
->file
->f_flags
& O_NONBLOCK
)
1890 flags
|= MSG_DONTWAIT
;
1891 err
= sock_recvmsg(sock
, &msg_sys
, total_len
, flags
);
1896 if (uaddr
!= NULL
) {
1897 err
= move_addr_to_user(addr
, msg_sys
.msg_namelen
, uaddr
,
1902 err
= __put_user((msg_sys
.msg_flags
& ~MSG_CMSG_COMPAT
),
1906 if (MSG_CMSG_COMPAT
& flags
)
1907 err
= __put_user((unsigned long)msg_sys
.msg_control
- cmsg_ptr
,
1908 &msg_compat
->msg_controllen
);
1910 err
= __put_user((unsigned long)msg_sys
.msg_control
- cmsg_ptr
,
1911 &msg
->msg_controllen
);
1917 if (iov
!= iovstack
)
1918 sock_kfree_s(sock
->sk
, iov
, iov_size
);
1920 fput_light(sock
->file
, fput_needed
);
1925 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1927 /* Argument list sizes for sys_socketcall */
1928 #define AL(x) ((x) * sizeof(unsigned long))
1929 static const unsigned char nargs
[18]={
1930 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1931 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1932 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1938 * System call vectors.
1940 * Argument checking cleaned up. Saved 20% in size.
1941 * This function doesn't need to set the kernel lock because
1942 * it is set by the callees.
1945 asmlinkage
long sys_socketcall(int call
, unsigned long __user
*args
)
1948 unsigned long a0
, a1
;
1951 if (call
< 1 || call
> SYS_RECVMSG
)
1954 /* copy_from_user should be SMP safe. */
1955 if (copy_from_user(a
, args
, nargs
[call
]))
1958 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
1967 err
= sys_socket(a0
, a1
, a
[2]);
1970 err
= sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
1973 err
= sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
1976 err
= sys_listen(a0
, a1
);
1980 sys_accept(a0
, (struct sockaddr __user
*)a1
,
1981 (int __user
*)a
[2]);
1983 case SYS_GETSOCKNAME
:
1985 sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
1986 (int __user
*)a
[2]);
1988 case SYS_GETPEERNAME
:
1990 sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
1991 (int __user
*)a
[2]);
1993 case SYS_SOCKETPAIR
:
1994 err
= sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
1997 err
= sys_send(a0
, (void __user
*)a1
, a
[2], a
[3]);
2000 err
= sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2001 (struct sockaddr __user
*)a
[4], a
[5]);
2004 err
= sys_recv(a0
, (void __user
*)a1
, a
[2], a
[3]);
2007 err
= sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2008 (struct sockaddr __user
*)a
[4],
2009 (int __user
*)a
[5]);
2012 err
= sys_shutdown(a0
, a1
);
2014 case SYS_SETSOCKOPT
:
2015 err
= sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3], a
[4]);
2017 case SYS_GETSOCKOPT
:
2019 sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2020 (int __user
*)a
[4]);
2023 err
= sys_sendmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2026 err
= sys_recvmsg(a0
, (struct msghdr __user
*)a1
, a
[2]);
2035 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2038 * sock_register - add a socket protocol handler
2039 * @ops: description of protocol
2041 * This function is called by a protocol handler that wants to
2042 * advertise its address family, and have it linked into the
2043 * socket interface. The value ops->family coresponds to the
2044 * socket system call protocol family.
2046 int sock_register(const struct net_proto_family
*ops
)
2050 if (ops
->family
>= NPROTO
) {
2051 printk(KERN_CRIT
"protocol %d >= NPROTO(%d)\n", ops
->family
,
2056 spin_lock(&net_family_lock
);
2057 if (net_families
[ops
->family
])
2060 net_families
[ops
->family
] = ops
;
2063 spin_unlock(&net_family_lock
);
2065 printk(KERN_INFO
"NET: Registered protocol family %d\n", ops
->family
);
2070 * sock_unregister - remove a protocol handler
2071 * @family: protocol family to remove
2073 * This function is called by a protocol handler that wants to
2074 * remove its address family, and have it unlinked from the
2075 * new socket creation.
2077 * If protocol handler is a module, then it can use module reference
2078 * counts to protect against new references. If protocol handler is not
2079 * a module then it needs to provide its own protection in
2080 * the ops->create routine.
2082 void sock_unregister(int family
)
2084 BUG_ON(family
< 0 || family
>= NPROTO
);
2086 spin_lock(&net_family_lock
);
2087 net_families
[family
] = NULL
;
2088 spin_unlock(&net_family_lock
);
2092 printk(KERN_INFO
"NET: Unregistered protocol family %d\n", family
);
2095 static int __init
sock_init(void)
2098 * Initialize sock SLAB cache.
2104 * Initialize skbuff SLAB cache
2109 * Initialize the protocols module.
2113 register_filesystem(&sock_fs_type
);
2114 sock_mnt
= kern_mount(&sock_fs_type
);
2116 /* The real protocol initialization is performed in later initcalls.
2119 #ifdef CONFIG_NETFILTER
2126 core_initcall(sock_init
); /* early initcall */
2128 #ifdef CONFIG_PROC_FS
2129 void socket_seq_show(struct seq_file
*seq
)
2134 for_each_possible_cpu(cpu
)
2135 counter
+= per_cpu(sockets_in_use
, cpu
);
2137 /* It can be negative, by the way. 8) */
2141 seq_printf(seq
, "sockets: used %d\n", counter
);
2143 #endif /* CONFIG_PROC_FS */
2145 #ifdef CONFIG_COMPAT
2146 static long compat_sock_ioctl(struct file
*file
, unsigned cmd
,
2149 struct socket
*sock
= file
->private_data
;
2150 int ret
= -ENOIOCTLCMD
;
2152 if (sock
->ops
->compat_ioctl
)
2153 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
2159 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
2161 return sock
->ops
->bind(sock
, addr
, addrlen
);
2164 int kernel_listen(struct socket
*sock
, int backlog
)
2166 return sock
->ops
->listen(sock
, backlog
);
2169 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
2171 struct sock
*sk
= sock
->sk
;
2174 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
2179 err
= sock
->ops
->accept(sock
, *newsock
, flags
);
2181 sock_release(*newsock
);
2185 (*newsock
)->ops
= sock
->ops
;
2191 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
2194 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
2197 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
,
2200 return sock
->ops
->getname(sock
, addr
, addrlen
, 0);
2203 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
,
2206 return sock
->ops
->getname(sock
, addr
, addrlen
, 1);
2209 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
2210 char *optval
, int *optlen
)
2212 mm_segment_t oldfs
= get_fs();
2216 if (level
== SOL_SOCKET
)
2217 err
= sock_getsockopt(sock
, level
, optname
, optval
, optlen
);
2219 err
= sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
2225 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
2226 char *optval
, int optlen
)
2228 mm_segment_t oldfs
= get_fs();
2232 if (level
== SOL_SOCKET
)
2233 err
= sock_setsockopt(sock
, level
, optname
, optval
, optlen
);
2235 err
= sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
2241 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
2242 size_t size
, int flags
)
2244 if (sock
->ops
->sendpage
)
2245 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
2247 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
2250 int kernel_sock_ioctl(struct socket
*sock
, int cmd
, unsigned long arg
)
2252 mm_segment_t oldfs
= get_fs();
2256 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
2262 /* ABI emulation layers need these two */
2263 EXPORT_SYMBOL(move_addr_to_kernel
);
2264 EXPORT_SYMBOL(move_addr_to_user
);
2265 EXPORT_SYMBOL(sock_create
);
2266 EXPORT_SYMBOL(sock_create_kern
);
2267 EXPORT_SYMBOL(sock_create_lite
);
2268 EXPORT_SYMBOL(sock_map_fd
);
2269 EXPORT_SYMBOL(sock_recvmsg
);
2270 EXPORT_SYMBOL(sock_register
);
2271 EXPORT_SYMBOL(sock_release
);
2272 EXPORT_SYMBOL(sock_sendmsg
);
2273 EXPORT_SYMBOL(sock_unregister
);
2274 EXPORT_SYMBOL(sock_wake_async
);
2275 EXPORT_SYMBOL(sockfd_lookup
);
2276 EXPORT_SYMBOL(kernel_sendmsg
);
2277 EXPORT_SYMBOL(kernel_recvmsg
);
2278 EXPORT_SYMBOL(kernel_bind
);
2279 EXPORT_SYMBOL(kernel_listen
);
2280 EXPORT_SYMBOL(kernel_accept
);
2281 EXPORT_SYMBOL(kernel_connect
);
2282 EXPORT_SYMBOL(kernel_getsockname
);
2283 EXPORT_SYMBOL(kernel_getpeername
);
2284 EXPORT_SYMBOL(kernel_getsockopt
);
2285 EXPORT_SYMBOL(kernel_setsockopt
);
2286 EXPORT_SYMBOL(kernel_sendpage
);
2287 EXPORT_SYMBOL(kernel_sock_ioctl
);