USB: updates to usb_reset_composite_device()
[linux-2.6/mini2440.git] / drivers / md / raid1.c
blob4a69c416e045c97f24ef4582c9d3b9f83588ba15
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
46 * Number of guaranteed r1bios in case of extreme VM load:
48 #define NR_RAID1_BIOS 256
51 static void unplug_slaves(mddev_t *mddev);
53 static void allow_barrier(conf_t *conf);
54 static void lower_barrier(conf_t *conf);
56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
58 struct pool_info *pi = data;
59 r1bio_t *r1_bio;
60 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
62 /* allocate a r1bio with room for raid_disks entries in the bios array */
63 r1_bio = kzalloc(size, gfp_flags);
64 if (!r1_bio)
65 unplug_slaves(pi->mddev);
67 return r1_bio;
70 static void r1bio_pool_free(void *r1_bio, void *data)
72 kfree(r1_bio);
75 #define RESYNC_BLOCK_SIZE (64*1024)
76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
79 #define RESYNC_WINDOW (2048*1024)
81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
83 struct pool_info *pi = data;
84 struct page *page;
85 r1bio_t *r1_bio;
86 struct bio *bio;
87 int i, j;
89 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
90 if (!r1_bio) {
91 unplug_slaves(pi->mddev);
92 return NULL;
96 * Allocate bios : 1 for reading, n-1 for writing
98 for (j = pi->raid_disks ; j-- ; ) {
99 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
100 if (!bio)
101 goto out_free_bio;
102 r1_bio->bios[j] = bio;
105 * Allocate RESYNC_PAGES data pages and attach them to
106 * the first bio.
107 * If this is a user-requested check/repair, allocate
108 * RESYNC_PAGES for each bio.
110 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
111 j = pi->raid_disks;
112 else
113 j = 1;
114 while(j--) {
115 bio = r1_bio->bios[j];
116 for (i = 0; i < RESYNC_PAGES; i++) {
117 page = alloc_page(gfp_flags);
118 if (unlikely(!page))
119 goto out_free_pages;
121 bio->bi_io_vec[i].bv_page = page;
124 /* If not user-requests, copy the page pointers to all bios */
125 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
126 for (i=0; i<RESYNC_PAGES ; i++)
127 for (j=1; j<pi->raid_disks; j++)
128 r1_bio->bios[j]->bi_io_vec[i].bv_page =
129 r1_bio->bios[0]->bi_io_vec[i].bv_page;
132 r1_bio->master_bio = NULL;
134 return r1_bio;
136 out_free_pages:
137 for (i=0; i < RESYNC_PAGES ; i++)
138 for (j=0 ; j < pi->raid_disks; j++)
139 safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
140 j = -1;
141 out_free_bio:
142 while ( ++j < pi->raid_disks )
143 bio_put(r1_bio->bios[j]);
144 r1bio_pool_free(r1_bio, data);
145 return NULL;
148 static void r1buf_pool_free(void *__r1_bio, void *data)
150 struct pool_info *pi = data;
151 int i,j;
152 r1bio_t *r1bio = __r1_bio;
154 for (i = 0; i < RESYNC_PAGES; i++)
155 for (j = pi->raid_disks; j-- ;) {
156 if (j == 0 ||
157 r1bio->bios[j]->bi_io_vec[i].bv_page !=
158 r1bio->bios[0]->bi_io_vec[i].bv_page)
159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
161 for (i=0 ; i < pi->raid_disks; i++)
162 bio_put(r1bio->bios[i]);
164 r1bio_pool_free(r1bio, data);
167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
169 int i;
171 for (i = 0; i < conf->raid_disks; i++) {
172 struct bio **bio = r1_bio->bios + i;
173 if (*bio && *bio != IO_BLOCKED)
174 bio_put(*bio);
175 *bio = NULL;
179 static void free_r1bio(r1bio_t *r1_bio)
181 conf_t *conf = mddev_to_conf(r1_bio->mddev);
184 * Wake up any possible resync thread that waits for the device
185 * to go idle.
187 allow_barrier(conf);
189 put_all_bios(conf, r1_bio);
190 mempool_free(r1_bio, conf->r1bio_pool);
193 static void put_buf(r1bio_t *r1_bio)
195 conf_t *conf = mddev_to_conf(r1_bio->mddev);
196 int i;
198 for (i=0; i<conf->raid_disks; i++) {
199 struct bio *bio = r1_bio->bios[i];
200 if (bio->bi_end_io)
201 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
204 mempool_free(r1_bio, conf->r1buf_pool);
206 lower_barrier(conf);
209 static void reschedule_retry(r1bio_t *r1_bio)
211 unsigned long flags;
212 mddev_t *mddev = r1_bio->mddev;
213 conf_t *conf = mddev_to_conf(mddev);
215 spin_lock_irqsave(&conf->device_lock, flags);
216 list_add(&r1_bio->retry_list, &conf->retry_list);
217 conf->nr_queued ++;
218 spin_unlock_irqrestore(&conf->device_lock, flags);
220 wake_up(&conf->wait_barrier);
221 md_wakeup_thread(mddev->thread);
225 * raid_end_bio_io() is called when we have finished servicing a mirrored
226 * operation and are ready to return a success/failure code to the buffer
227 * cache layer.
229 static void raid_end_bio_io(r1bio_t *r1_bio)
231 struct bio *bio = r1_bio->master_bio;
233 /* if nobody has done the final endio yet, do it now */
234 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
235 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
236 (bio_data_dir(bio) == WRITE) ? "write" : "read",
237 (unsigned long long) bio->bi_sector,
238 (unsigned long long) bio->bi_sector +
239 (bio->bi_size >> 9) - 1);
241 bio_endio(bio,
242 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
244 free_r1bio(r1_bio);
248 * Update disk head position estimator based on IRQ completion info.
250 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
252 conf_t *conf = mddev_to_conf(r1_bio->mddev);
254 conf->mirrors[disk].head_position =
255 r1_bio->sector + (r1_bio->sectors);
258 static void raid1_end_read_request(struct bio *bio, int error)
260 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
261 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
262 int mirror;
263 conf_t *conf = mddev_to_conf(r1_bio->mddev);
265 mirror = r1_bio->read_disk;
267 * this branch is our 'one mirror IO has finished' event handler:
269 update_head_pos(mirror, r1_bio);
271 if (uptodate)
272 set_bit(R1BIO_Uptodate, &r1_bio->state);
273 else {
274 /* If all other devices have failed, we want to return
275 * the error upwards rather than fail the last device.
276 * Here we redefine "uptodate" to mean "Don't want to retry"
278 unsigned long flags;
279 spin_lock_irqsave(&conf->device_lock, flags);
280 if (r1_bio->mddev->degraded == conf->raid_disks ||
281 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
282 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
283 uptodate = 1;
284 spin_unlock_irqrestore(&conf->device_lock, flags);
287 if (uptodate)
288 raid_end_bio_io(r1_bio);
289 else {
291 * oops, read error:
293 char b[BDEVNAME_SIZE];
294 if (printk_ratelimit())
295 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
296 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
297 reschedule_retry(r1_bio);
300 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
303 static void raid1_end_write_request(struct bio *bio, int error)
305 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
306 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
307 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
308 conf_t *conf = mddev_to_conf(r1_bio->mddev);
309 struct bio *to_put = NULL;
312 for (mirror = 0; mirror < conf->raid_disks; mirror++)
313 if (r1_bio->bios[mirror] == bio)
314 break;
316 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
317 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
318 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
319 r1_bio->mddev->barriers_work = 0;
320 /* Don't rdev_dec_pending in this branch - keep it for the retry */
321 } else {
323 * this branch is our 'one mirror IO has finished' event handler:
325 r1_bio->bios[mirror] = NULL;
326 to_put = bio;
327 if (!uptodate) {
328 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
329 /* an I/O failed, we can't clear the bitmap */
330 set_bit(R1BIO_Degraded, &r1_bio->state);
331 } else
333 * Set R1BIO_Uptodate in our master bio, so that
334 * we will return a good error code for to the higher
335 * levels even if IO on some other mirrored buffer fails.
337 * The 'master' represents the composite IO operation to
338 * user-side. So if something waits for IO, then it will
339 * wait for the 'master' bio.
341 set_bit(R1BIO_Uptodate, &r1_bio->state);
343 update_head_pos(mirror, r1_bio);
345 if (behind) {
346 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
347 atomic_dec(&r1_bio->behind_remaining);
349 /* In behind mode, we ACK the master bio once the I/O has safely
350 * reached all non-writemostly disks. Setting the Returned bit
351 * ensures that this gets done only once -- we don't ever want to
352 * return -EIO here, instead we'll wait */
354 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
355 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
356 /* Maybe we can return now */
357 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
358 struct bio *mbio = r1_bio->master_bio;
359 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
360 (unsigned long long) mbio->bi_sector,
361 (unsigned long long) mbio->bi_sector +
362 (mbio->bi_size >> 9) - 1);
363 bio_endio(mbio, 0);
367 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
371 * Let's see if all mirrored write operations have finished
372 * already.
374 if (atomic_dec_and_test(&r1_bio->remaining)) {
375 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
376 reschedule_retry(r1_bio);
377 else {
378 /* it really is the end of this request */
379 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
380 /* free extra copy of the data pages */
381 int i = bio->bi_vcnt;
382 while (i--)
383 safe_put_page(bio->bi_io_vec[i].bv_page);
385 /* clear the bitmap if all writes complete successfully */
386 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
387 r1_bio->sectors,
388 !test_bit(R1BIO_Degraded, &r1_bio->state),
389 behind);
390 md_write_end(r1_bio->mddev);
391 raid_end_bio_io(r1_bio);
395 if (to_put)
396 bio_put(to_put);
401 * This routine returns the disk from which the requested read should
402 * be done. There is a per-array 'next expected sequential IO' sector
403 * number - if this matches on the next IO then we use the last disk.
404 * There is also a per-disk 'last know head position' sector that is
405 * maintained from IRQ contexts, both the normal and the resync IO
406 * completion handlers update this position correctly. If there is no
407 * perfect sequential match then we pick the disk whose head is closest.
409 * If there are 2 mirrors in the same 2 devices, performance degrades
410 * because position is mirror, not device based.
412 * The rdev for the device selected will have nr_pending incremented.
414 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
416 const unsigned long this_sector = r1_bio->sector;
417 int new_disk = conf->last_used, disk = new_disk;
418 int wonly_disk = -1;
419 const int sectors = r1_bio->sectors;
420 sector_t new_distance, current_distance;
421 mdk_rdev_t *rdev;
423 rcu_read_lock();
425 * Check if we can balance. We can balance on the whole
426 * device if no resync is going on, or below the resync window.
427 * We take the first readable disk when above the resync window.
429 retry:
430 if (conf->mddev->recovery_cp < MaxSector &&
431 (this_sector + sectors >= conf->next_resync)) {
432 /* Choose the first operation device, for consistancy */
433 new_disk = 0;
435 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
436 r1_bio->bios[new_disk] == IO_BLOCKED ||
437 !rdev || !test_bit(In_sync, &rdev->flags)
438 || test_bit(WriteMostly, &rdev->flags);
439 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
441 if (rdev && test_bit(In_sync, &rdev->flags) &&
442 r1_bio->bios[new_disk] != IO_BLOCKED)
443 wonly_disk = new_disk;
445 if (new_disk == conf->raid_disks - 1) {
446 new_disk = wonly_disk;
447 break;
450 goto rb_out;
454 /* make sure the disk is operational */
455 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
456 r1_bio->bios[new_disk] == IO_BLOCKED ||
457 !rdev || !test_bit(In_sync, &rdev->flags) ||
458 test_bit(WriteMostly, &rdev->flags);
459 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
461 if (rdev && test_bit(In_sync, &rdev->flags) &&
462 r1_bio->bios[new_disk] != IO_BLOCKED)
463 wonly_disk = new_disk;
465 if (new_disk <= 0)
466 new_disk = conf->raid_disks;
467 new_disk--;
468 if (new_disk == disk) {
469 new_disk = wonly_disk;
470 break;
474 if (new_disk < 0)
475 goto rb_out;
477 disk = new_disk;
478 /* now disk == new_disk == starting point for search */
481 * Don't change to another disk for sequential reads:
483 if (conf->next_seq_sect == this_sector)
484 goto rb_out;
485 if (this_sector == conf->mirrors[new_disk].head_position)
486 goto rb_out;
488 current_distance = abs(this_sector - conf->mirrors[disk].head_position);
490 /* Find the disk whose head is closest */
492 do {
493 if (disk <= 0)
494 disk = conf->raid_disks;
495 disk--;
497 rdev = rcu_dereference(conf->mirrors[disk].rdev);
499 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
500 !test_bit(In_sync, &rdev->flags) ||
501 test_bit(WriteMostly, &rdev->flags))
502 continue;
504 if (!atomic_read(&rdev->nr_pending)) {
505 new_disk = disk;
506 break;
508 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
509 if (new_distance < current_distance) {
510 current_distance = new_distance;
511 new_disk = disk;
513 } while (disk != conf->last_used);
515 rb_out:
518 if (new_disk >= 0) {
519 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
520 if (!rdev)
521 goto retry;
522 atomic_inc(&rdev->nr_pending);
523 if (!test_bit(In_sync, &rdev->flags)) {
524 /* cannot risk returning a device that failed
525 * before we inc'ed nr_pending
527 rdev_dec_pending(rdev, conf->mddev);
528 goto retry;
530 conf->next_seq_sect = this_sector + sectors;
531 conf->last_used = new_disk;
533 rcu_read_unlock();
535 return new_disk;
538 static void unplug_slaves(mddev_t *mddev)
540 conf_t *conf = mddev_to_conf(mddev);
541 int i;
543 rcu_read_lock();
544 for (i=0; i<mddev->raid_disks; i++) {
545 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
546 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
547 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
549 atomic_inc(&rdev->nr_pending);
550 rcu_read_unlock();
552 blk_unplug(r_queue);
554 rdev_dec_pending(rdev, mddev);
555 rcu_read_lock();
558 rcu_read_unlock();
561 static void raid1_unplug(struct request_queue *q)
563 mddev_t *mddev = q->queuedata;
565 unplug_slaves(mddev);
566 md_wakeup_thread(mddev->thread);
569 static int raid1_congested(void *data, int bits)
571 mddev_t *mddev = data;
572 conf_t *conf = mddev_to_conf(mddev);
573 int i, ret = 0;
575 rcu_read_lock();
576 for (i = 0; i < mddev->raid_disks; i++) {
577 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
578 if (rdev && !test_bit(Faulty, &rdev->flags)) {
579 struct request_queue *q = bdev_get_queue(rdev->bdev);
581 /* Note the '|| 1' - when read_balance prefers
582 * non-congested targets, it can be removed
584 if ((bits & (1<<BDI_write_congested)) || 1)
585 ret |= bdi_congested(&q->backing_dev_info, bits);
586 else
587 ret &= bdi_congested(&q->backing_dev_info, bits);
590 rcu_read_unlock();
591 return ret;
595 /* Barriers....
596 * Sometimes we need to suspend IO while we do something else,
597 * either some resync/recovery, or reconfigure the array.
598 * To do this we raise a 'barrier'.
599 * The 'barrier' is a counter that can be raised multiple times
600 * to count how many activities are happening which preclude
601 * normal IO.
602 * We can only raise the barrier if there is no pending IO.
603 * i.e. if nr_pending == 0.
604 * We choose only to raise the barrier if no-one is waiting for the
605 * barrier to go down. This means that as soon as an IO request
606 * is ready, no other operations which require a barrier will start
607 * until the IO request has had a chance.
609 * So: regular IO calls 'wait_barrier'. When that returns there
610 * is no backgroup IO happening, It must arrange to call
611 * allow_barrier when it has finished its IO.
612 * backgroup IO calls must call raise_barrier. Once that returns
613 * there is no normal IO happeing. It must arrange to call
614 * lower_barrier when the particular background IO completes.
616 #define RESYNC_DEPTH 32
618 static void raise_barrier(conf_t *conf)
620 spin_lock_irq(&conf->resync_lock);
622 /* Wait until no block IO is waiting */
623 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
624 conf->resync_lock,
625 raid1_unplug(conf->mddev->queue));
627 /* block any new IO from starting */
628 conf->barrier++;
630 /* No wait for all pending IO to complete */
631 wait_event_lock_irq(conf->wait_barrier,
632 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
633 conf->resync_lock,
634 raid1_unplug(conf->mddev->queue));
636 spin_unlock_irq(&conf->resync_lock);
639 static void lower_barrier(conf_t *conf)
641 unsigned long flags;
642 spin_lock_irqsave(&conf->resync_lock, flags);
643 conf->barrier--;
644 spin_unlock_irqrestore(&conf->resync_lock, flags);
645 wake_up(&conf->wait_barrier);
648 static void wait_barrier(conf_t *conf)
650 spin_lock_irq(&conf->resync_lock);
651 if (conf->barrier) {
652 conf->nr_waiting++;
653 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
654 conf->resync_lock,
655 raid1_unplug(conf->mddev->queue));
656 conf->nr_waiting--;
658 conf->nr_pending++;
659 spin_unlock_irq(&conf->resync_lock);
662 static void allow_barrier(conf_t *conf)
664 unsigned long flags;
665 spin_lock_irqsave(&conf->resync_lock, flags);
666 conf->nr_pending--;
667 spin_unlock_irqrestore(&conf->resync_lock, flags);
668 wake_up(&conf->wait_barrier);
671 static void freeze_array(conf_t *conf)
673 /* stop syncio and normal IO and wait for everything to
674 * go quite.
675 * We increment barrier and nr_waiting, and then
676 * wait until barrier+nr_pending match nr_queued+2
678 spin_lock_irq(&conf->resync_lock);
679 conf->barrier++;
680 conf->nr_waiting++;
681 wait_event_lock_irq(conf->wait_barrier,
682 conf->barrier+conf->nr_pending == conf->nr_queued+2,
683 conf->resync_lock,
684 raid1_unplug(conf->mddev->queue));
685 spin_unlock_irq(&conf->resync_lock);
687 static void unfreeze_array(conf_t *conf)
689 /* reverse the effect of the freeze */
690 spin_lock_irq(&conf->resync_lock);
691 conf->barrier--;
692 conf->nr_waiting--;
693 wake_up(&conf->wait_barrier);
694 spin_unlock_irq(&conf->resync_lock);
698 /* duplicate the data pages for behind I/O */
699 static struct page **alloc_behind_pages(struct bio *bio)
701 int i;
702 struct bio_vec *bvec;
703 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
704 GFP_NOIO);
705 if (unlikely(!pages))
706 goto do_sync_io;
708 bio_for_each_segment(bvec, bio, i) {
709 pages[i] = alloc_page(GFP_NOIO);
710 if (unlikely(!pages[i]))
711 goto do_sync_io;
712 memcpy(kmap(pages[i]) + bvec->bv_offset,
713 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
714 kunmap(pages[i]);
715 kunmap(bvec->bv_page);
718 return pages;
720 do_sync_io:
721 if (pages)
722 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
723 put_page(pages[i]);
724 kfree(pages);
725 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
726 return NULL;
729 static int make_request(struct request_queue *q, struct bio * bio)
731 mddev_t *mddev = q->queuedata;
732 conf_t *conf = mddev_to_conf(mddev);
733 mirror_info_t *mirror;
734 r1bio_t *r1_bio;
735 struct bio *read_bio;
736 int i, targets = 0, disks;
737 mdk_rdev_t *rdev;
738 struct bitmap *bitmap = mddev->bitmap;
739 unsigned long flags;
740 struct bio_list bl;
741 struct page **behind_pages = NULL;
742 const int rw = bio_data_dir(bio);
743 const int do_sync = bio_sync(bio);
744 int do_barriers;
747 * Register the new request and wait if the reconstruction
748 * thread has put up a bar for new requests.
749 * Continue immediately if no resync is active currently.
750 * We test barriers_work *after* md_write_start as md_write_start
751 * may cause the first superblock write, and that will check out
752 * if barriers work.
755 md_write_start(mddev, bio); /* wait on superblock update early */
757 if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
758 if (rw == WRITE)
759 md_write_end(mddev);
760 bio_endio(bio, -EOPNOTSUPP);
761 return 0;
764 wait_barrier(conf);
766 disk_stat_inc(mddev->gendisk, ios[rw]);
767 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
770 * make_request() can abort the operation when READA is being
771 * used and no empty request is available.
774 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
776 r1_bio->master_bio = bio;
777 r1_bio->sectors = bio->bi_size >> 9;
778 r1_bio->state = 0;
779 r1_bio->mddev = mddev;
780 r1_bio->sector = bio->bi_sector;
782 if (rw == READ) {
784 * read balancing logic:
786 int rdisk = read_balance(conf, r1_bio);
788 if (rdisk < 0) {
789 /* couldn't find anywhere to read from */
790 raid_end_bio_io(r1_bio);
791 return 0;
793 mirror = conf->mirrors + rdisk;
795 r1_bio->read_disk = rdisk;
797 read_bio = bio_clone(bio, GFP_NOIO);
799 r1_bio->bios[rdisk] = read_bio;
801 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
802 read_bio->bi_bdev = mirror->rdev->bdev;
803 read_bio->bi_end_io = raid1_end_read_request;
804 read_bio->bi_rw = READ | do_sync;
805 read_bio->bi_private = r1_bio;
807 generic_make_request(read_bio);
808 return 0;
812 * WRITE:
814 /* first select target devices under spinlock and
815 * inc refcount on their rdev. Record them by setting
816 * bios[x] to bio
818 disks = conf->raid_disks;
819 #if 0
820 { static int first=1;
821 if (first) printk("First Write sector %llu disks %d\n",
822 (unsigned long long)r1_bio->sector, disks);
823 first = 0;
825 #endif
826 rcu_read_lock();
827 for (i = 0; i < disks; i++) {
828 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
829 !test_bit(Faulty, &rdev->flags)) {
830 atomic_inc(&rdev->nr_pending);
831 if (test_bit(Faulty, &rdev->flags)) {
832 rdev_dec_pending(rdev, mddev);
833 r1_bio->bios[i] = NULL;
834 } else
835 r1_bio->bios[i] = bio;
836 targets++;
837 } else
838 r1_bio->bios[i] = NULL;
840 rcu_read_unlock();
842 BUG_ON(targets == 0); /* we never fail the last device */
844 if (targets < conf->raid_disks) {
845 /* array is degraded, we will not clear the bitmap
846 * on I/O completion (see raid1_end_write_request) */
847 set_bit(R1BIO_Degraded, &r1_bio->state);
850 /* do behind I/O ? */
851 if (bitmap &&
852 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
853 (behind_pages = alloc_behind_pages(bio)) != NULL)
854 set_bit(R1BIO_BehindIO, &r1_bio->state);
856 atomic_set(&r1_bio->remaining, 0);
857 atomic_set(&r1_bio->behind_remaining, 0);
859 do_barriers = bio_barrier(bio);
860 if (do_barriers)
861 set_bit(R1BIO_Barrier, &r1_bio->state);
863 bio_list_init(&bl);
864 for (i = 0; i < disks; i++) {
865 struct bio *mbio;
866 if (!r1_bio->bios[i])
867 continue;
869 mbio = bio_clone(bio, GFP_NOIO);
870 r1_bio->bios[i] = mbio;
872 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
873 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
874 mbio->bi_end_io = raid1_end_write_request;
875 mbio->bi_rw = WRITE | do_barriers | do_sync;
876 mbio->bi_private = r1_bio;
878 if (behind_pages) {
879 struct bio_vec *bvec;
880 int j;
882 /* Yes, I really want the '__' version so that
883 * we clear any unused pointer in the io_vec, rather
884 * than leave them unchanged. This is important
885 * because when we come to free the pages, we won't
886 * know the originial bi_idx, so we just free
887 * them all
889 __bio_for_each_segment(bvec, mbio, j, 0)
890 bvec->bv_page = behind_pages[j];
891 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
892 atomic_inc(&r1_bio->behind_remaining);
895 atomic_inc(&r1_bio->remaining);
897 bio_list_add(&bl, mbio);
899 kfree(behind_pages); /* the behind pages are attached to the bios now */
901 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
902 test_bit(R1BIO_BehindIO, &r1_bio->state));
903 spin_lock_irqsave(&conf->device_lock, flags);
904 bio_list_merge(&conf->pending_bio_list, &bl);
905 bio_list_init(&bl);
907 blk_plug_device(mddev->queue);
908 spin_unlock_irqrestore(&conf->device_lock, flags);
910 if (do_sync)
911 md_wakeup_thread(mddev->thread);
912 #if 0
913 while ((bio = bio_list_pop(&bl)) != NULL)
914 generic_make_request(bio);
915 #endif
917 return 0;
920 static void status(struct seq_file *seq, mddev_t *mddev)
922 conf_t *conf = mddev_to_conf(mddev);
923 int i;
925 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
926 conf->raid_disks - mddev->degraded);
927 rcu_read_lock();
928 for (i = 0; i < conf->raid_disks; i++) {
929 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
930 seq_printf(seq, "%s",
931 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
933 rcu_read_unlock();
934 seq_printf(seq, "]");
938 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
940 char b[BDEVNAME_SIZE];
941 conf_t *conf = mddev_to_conf(mddev);
944 * If it is not operational, then we have already marked it as dead
945 * else if it is the last working disks, ignore the error, let the
946 * next level up know.
947 * else mark the drive as failed
949 if (test_bit(In_sync, &rdev->flags)
950 && (conf->raid_disks - mddev->degraded) == 1)
952 * Don't fail the drive, act as though we were just a
953 * normal single drive
955 return;
956 if (test_and_clear_bit(In_sync, &rdev->flags)) {
957 unsigned long flags;
958 spin_lock_irqsave(&conf->device_lock, flags);
959 mddev->degraded++;
960 set_bit(Faulty, &rdev->flags);
961 spin_unlock_irqrestore(&conf->device_lock, flags);
963 * if recovery is running, make sure it aborts.
965 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
966 } else
967 set_bit(Faulty, &rdev->flags);
968 set_bit(MD_CHANGE_DEVS, &mddev->flags);
969 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
970 " Operation continuing on %d devices\n",
971 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
974 static void print_conf(conf_t *conf)
976 int i;
978 printk("RAID1 conf printout:\n");
979 if (!conf) {
980 printk("(!conf)\n");
981 return;
983 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
984 conf->raid_disks);
986 rcu_read_lock();
987 for (i = 0; i < conf->raid_disks; i++) {
988 char b[BDEVNAME_SIZE];
989 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
990 if (rdev)
991 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
992 i, !test_bit(In_sync, &rdev->flags),
993 !test_bit(Faulty, &rdev->flags),
994 bdevname(rdev->bdev,b));
996 rcu_read_unlock();
999 static void close_sync(conf_t *conf)
1001 wait_barrier(conf);
1002 allow_barrier(conf);
1004 mempool_destroy(conf->r1buf_pool);
1005 conf->r1buf_pool = NULL;
1008 static int raid1_spare_active(mddev_t *mddev)
1010 int i;
1011 conf_t *conf = mddev->private;
1014 * Find all failed disks within the RAID1 configuration
1015 * and mark them readable.
1016 * Called under mddev lock, so rcu protection not needed.
1018 for (i = 0; i < conf->raid_disks; i++) {
1019 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1020 if (rdev
1021 && !test_bit(Faulty, &rdev->flags)
1022 && !test_and_set_bit(In_sync, &rdev->flags)) {
1023 unsigned long flags;
1024 spin_lock_irqsave(&conf->device_lock, flags);
1025 mddev->degraded--;
1026 spin_unlock_irqrestore(&conf->device_lock, flags);
1030 print_conf(conf);
1031 return 0;
1035 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1037 conf_t *conf = mddev->private;
1038 int found = 0;
1039 int mirror = 0;
1040 mirror_info_t *p;
1042 for (mirror=0; mirror < mddev->raid_disks; mirror++)
1043 if ( !(p=conf->mirrors+mirror)->rdev) {
1045 blk_queue_stack_limits(mddev->queue,
1046 rdev->bdev->bd_disk->queue);
1047 /* as we don't honour merge_bvec_fn, we must never risk
1048 * violating it, so limit ->max_sector to one PAGE, as
1049 * a one page request is never in violation.
1051 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1052 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1053 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1055 p->head_position = 0;
1056 rdev->raid_disk = mirror;
1057 found = 1;
1058 /* As all devices are equivalent, we don't need a full recovery
1059 * if this was recently any drive of the array
1061 if (rdev->saved_raid_disk < 0)
1062 conf->fullsync = 1;
1063 rcu_assign_pointer(p->rdev, rdev);
1064 break;
1067 print_conf(conf);
1068 return found;
1071 static int raid1_remove_disk(mddev_t *mddev, int number)
1073 conf_t *conf = mddev->private;
1074 int err = 0;
1075 mdk_rdev_t *rdev;
1076 mirror_info_t *p = conf->mirrors+ number;
1078 print_conf(conf);
1079 rdev = p->rdev;
1080 if (rdev) {
1081 if (test_bit(In_sync, &rdev->flags) ||
1082 atomic_read(&rdev->nr_pending)) {
1083 err = -EBUSY;
1084 goto abort;
1086 p->rdev = NULL;
1087 synchronize_rcu();
1088 if (atomic_read(&rdev->nr_pending)) {
1089 /* lost the race, try later */
1090 err = -EBUSY;
1091 p->rdev = rdev;
1094 abort:
1096 print_conf(conf);
1097 return err;
1101 static void end_sync_read(struct bio *bio, int error)
1103 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1104 int i;
1106 for (i=r1_bio->mddev->raid_disks; i--; )
1107 if (r1_bio->bios[i] == bio)
1108 break;
1109 BUG_ON(i < 0);
1110 update_head_pos(i, r1_bio);
1112 * we have read a block, now it needs to be re-written,
1113 * or re-read if the read failed.
1114 * We don't do much here, just schedule handling by raid1d
1116 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1117 set_bit(R1BIO_Uptodate, &r1_bio->state);
1119 if (atomic_dec_and_test(&r1_bio->remaining))
1120 reschedule_retry(r1_bio);
1123 static void end_sync_write(struct bio *bio, int error)
1125 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1126 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1127 mddev_t *mddev = r1_bio->mddev;
1128 conf_t *conf = mddev_to_conf(mddev);
1129 int i;
1130 int mirror=0;
1132 for (i = 0; i < conf->raid_disks; i++)
1133 if (r1_bio->bios[i] == bio) {
1134 mirror = i;
1135 break;
1137 if (!uptodate) {
1138 int sync_blocks = 0;
1139 sector_t s = r1_bio->sector;
1140 long sectors_to_go = r1_bio->sectors;
1141 /* make sure these bits doesn't get cleared. */
1142 do {
1143 bitmap_end_sync(mddev->bitmap, s,
1144 &sync_blocks, 1);
1145 s += sync_blocks;
1146 sectors_to_go -= sync_blocks;
1147 } while (sectors_to_go > 0);
1148 md_error(mddev, conf->mirrors[mirror].rdev);
1151 update_head_pos(mirror, r1_bio);
1153 if (atomic_dec_and_test(&r1_bio->remaining)) {
1154 md_done_sync(mddev, r1_bio->sectors, uptodate);
1155 put_buf(r1_bio);
1159 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1161 conf_t *conf = mddev_to_conf(mddev);
1162 int i;
1163 int disks = conf->raid_disks;
1164 struct bio *bio, *wbio;
1166 bio = r1_bio->bios[r1_bio->read_disk];
1169 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1170 /* We have read all readable devices. If we haven't
1171 * got the block, then there is no hope left.
1172 * If we have, then we want to do a comparison
1173 * and skip the write if everything is the same.
1174 * If any blocks failed to read, then we need to
1175 * attempt an over-write
1177 int primary;
1178 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1179 for (i=0; i<mddev->raid_disks; i++)
1180 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1181 md_error(mddev, conf->mirrors[i].rdev);
1183 md_done_sync(mddev, r1_bio->sectors, 1);
1184 put_buf(r1_bio);
1185 return;
1187 for (primary=0; primary<mddev->raid_disks; primary++)
1188 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1189 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1190 r1_bio->bios[primary]->bi_end_io = NULL;
1191 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1192 break;
1194 r1_bio->read_disk = primary;
1195 for (i=0; i<mddev->raid_disks; i++)
1196 if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1197 int j;
1198 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1199 struct bio *pbio = r1_bio->bios[primary];
1200 struct bio *sbio = r1_bio->bios[i];
1202 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1203 for (j = vcnt; j-- ; ) {
1204 struct page *p, *s;
1205 p = pbio->bi_io_vec[j].bv_page;
1206 s = sbio->bi_io_vec[j].bv_page;
1207 if (memcmp(page_address(p),
1208 page_address(s),
1209 PAGE_SIZE))
1210 break;
1212 } else
1213 j = 0;
1214 if (j >= 0)
1215 mddev->resync_mismatches += r1_bio->sectors;
1216 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1217 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1218 sbio->bi_end_io = NULL;
1219 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1220 } else {
1221 /* fixup the bio for reuse */
1222 sbio->bi_vcnt = vcnt;
1223 sbio->bi_size = r1_bio->sectors << 9;
1224 sbio->bi_idx = 0;
1225 sbio->bi_phys_segments = 0;
1226 sbio->bi_hw_segments = 0;
1227 sbio->bi_hw_front_size = 0;
1228 sbio->bi_hw_back_size = 0;
1229 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1230 sbio->bi_flags |= 1 << BIO_UPTODATE;
1231 sbio->bi_next = NULL;
1232 sbio->bi_sector = r1_bio->sector +
1233 conf->mirrors[i].rdev->data_offset;
1234 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1235 for (j = 0; j < vcnt ; j++)
1236 memcpy(page_address(sbio->bi_io_vec[j].bv_page),
1237 page_address(pbio->bi_io_vec[j].bv_page),
1238 PAGE_SIZE);
1243 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1244 /* ouch - failed to read all of that.
1245 * Try some synchronous reads of other devices to get
1246 * good data, much like with normal read errors. Only
1247 * read into the pages we already have so we don't
1248 * need to re-issue the read request.
1249 * We don't need to freeze the array, because being in an
1250 * active sync request, there is no normal IO, and
1251 * no overlapping syncs.
1253 sector_t sect = r1_bio->sector;
1254 int sectors = r1_bio->sectors;
1255 int idx = 0;
1257 while(sectors) {
1258 int s = sectors;
1259 int d = r1_bio->read_disk;
1260 int success = 0;
1261 mdk_rdev_t *rdev;
1263 if (s > (PAGE_SIZE>>9))
1264 s = PAGE_SIZE >> 9;
1265 do {
1266 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1267 /* No rcu protection needed here devices
1268 * can only be removed when no resync is
1269 * active, and resync is currently active
1271 rdev = conf->mirrors[d].rdev;
1272 if (sync_page_io(rdev->bdev,
1273 sect + rdev->data_offset,
1274 s<<9,
1275 bio->bi_io_vec[idx].bv_page,
1276 READ)) {
1277 success = 1;
1278 break;
1281 d++;
1282 if (d == conf->raid_disks)
1283 d = 0;
1284 } while (!success && d != r1_bio->read_disk);
1286 if (success) {
1287 int start = d;
1288 /* write it back and re-read */
1289 set_bit(R1BIO_Uptodate, &r1_bio->state);
1290 while (d != r1_bio->read_disk) {
1291 if (d == 0)
1292 d = conf->raid_disks;
1293 d--;
1294 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1295 continue;
1296 rdev = conf->mirrors[d].rdev;
1297 atomic_add(s, &rdev->corrected_errors);
1298 if (sync_page_io(rdev->bdev,
1299 sect + rdev->data_offset,
1300 s<<9,
1301 bio->bi_io_vec[idx].bv_page,
1302 WRITE) == 0)
1303 md_error(mddev, rdev);
1305 d = start;
1306 while (d != r1_bio->read_disk) {
1307 if (d == 0)
1308 d = conf->raid_disks;
1309 d--;
1310 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1311 continue;
1312 rdev = conf->mirrors[d].rdev;
1313 if (sync_page_io(rdev->bdev,
1314 sect + rdev->data_offset,
1315 s<<9,
1316 bio->bi_io_vec[idx].bv_page,
1317 READ) == 0)
1318 md_error(mddev, rdev);
1320 } else {
1321 char b[BDEVNAME_SIZE];
1322 /* Cannot read from anywhere, array is toast */
1323 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1324 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1325 " for block %llu\n",
1326 bdevname(bio->bi_bdev,b),
1327 (unsigned long long)r1_bio->sector);
1328 md_done_sync(mddev, r1_bio->sectors, 0);
1329 put_buf(r1_bio);
1330 return;
1332 sectors -= s;
1333 sect += s;
1334 idx ++;
1339 * schedule writes
1341 atomic_set(&r1_bio->remaining, 1);
1342 for (i = 0; i < disks ; i++) {
1343 wbio = r1_bio->bios[i];
1344 if (wbio->bi_end_io == NULL ||
1345 (wbio->bi_end_io == end_sync_read &&
1346 (i == r1_bio->read_disk ||
1347 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1348 continue;
1350 wbio->bi_rw = WRITE;
1351 wbio->bi_end_io = end_sync_write;
1352 atomic_inc(&r1_bio->remaining);
1353 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1355 generic_make_request(wbio);
1358 if (atomic_dec_and_test(&r1_bio->remaining)) {
1359 /* if we're here, all write(s) have completed, so clean up */
1360 md_done_sync(mddev, r1_bio->sectors, 1);
1361 put_buf(r1_bio);
1366 * This is a kernel thread which:
1368 * 1. Retries failed read operations on working mirrors.
1369 * 2. Updates the raid superblock when problems encounter.
1370 * 3. Performs writes following reads for array syncronising.
1373 static void fix_read_error(conf_t *conf, int read_disk,
1374 sector_t sect, int sectors)
1376 mddev_t *mddev = conf->mddev;
1377 while(sectors) {
1378 int s = sectors;
1379 int d = read_disk;
1380 int success = 0;
1381 int start;
1382 mdk_rdev_t *rdev;
1384 if (s > (PAGE_SIZE>>9))
1385 s = PAGE_SIZE >> 9;
1387 do {
1388 /* Note: no rcu protection needed here
1389 * as this is synchronous in the raid1d thread
1390 * which is the thread that might remove
1391 * a device. If raid1d ever becomes multi-threaded....
1393 rdev = conf->mirrors[d].rdev;
1394 if (rdev &&
1395 test_bit(In_sync, &rdev->flags) &&
1396 sync_page_io(rdev->bdev,
1397 sect + rdev->data_offset,
1398 s<<9,
1399 conf->tmppage, READ))
1400 success = 1;
1401 else {
1402 d++;
1403 if (d == conf->raid_disks)
1404 d = 0;
1406 } while (!success && d != read_disk);
1408 if (!success) {
1409 /* Cannot read from anywhere -- bye bye array */
1410 md_error(mddev, conf->mirrors[read_disk].rdev);
1411 break;
1413 /* write it back and re-read */
1414 start = d;
1415 while (d != read_disk) {
1416 if (d==0)
1417 d = conf->raid_disks;
1418 d--;
1419 rdev = conf->mirrors[d].rdev;
1420 if (rdev &&
1421 test_bit(In_sync, &rdev->flags)) {
1422 if (sync_page_io(rdev->bdev,
1423 sect + rdev->data_offset,
1424 s<<9, conf->tmppage, WRITE)
1425 == 0)
1426 /* Well, this device is dead */
1427 md_error(mddev, rdev);
1430 d = start;
1431 while (d != read_disk) {
1432 char b[BDEVNAME_SIZE];
1433 if (d==0)
1434 d = conf->raid_disks;
1435 d--;
1436 rdev = conf->mirrors[d].rdev;
1437 if (rdev &&
1438 test_bit(In_sync, &rdev->flags)) {
1439 if (sync_page_io(rdev->bdev,
1440 sect + rdev->data_offset,
1441 s<<9, conf->tmppage, READ)
1442 == 0)
1443 /* Well, this device is dead */
1444 md_error(mddev, rdev);
1445 else {
1446 atomic_add(s, &rdev->corrected_errors);
1447 printk(KERN_INFO
1448 "raid1:%s: read error corrected "
1449 "(%d sectors at %llu on %s)\n",
1450 mdname(mddev), s,
1451 (unsigned long long)(sect +
1452 rdev->data_offset),
1453 bdevname(rdev->bdev, b));
1457 sectors -= s;
1458 sect += s;
1462 static void raid1d(mddev_t *mddev)
1464 r1bio_t *r1_bio;
1465 struct bio *bio;
1466 unsigned long flags;
1467 conf_t *conf = mddev_to_conf(mddev);
1468 struct list_head *head = &conf->retry_list;
1469 int unplug=0;
1470 mdk_rdev_t *rdev;
1472 md_check_recovery(mddev);
1474 for (;;) {
1475 char b[BDEVNAME_SIZE];
1476 spin_lock_irqsave(&conf->device_lock, flags);
1478 if (conf->pending_bio_list.head) {
1479 bio = bio_list_get(&conf->pending_bio_list);
1480 blk_remove_plug(mddev->queue);
1481 spin_unlock_irqrestore(&conf->device_lock, flags);
1482 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1483 bitmap_unplug(mddev->bitmap);
1485 while (bio) { /* submit pending writes */
1486 struct bio *next = bio->bi_next;
1487 bio->bi_next = NULL;
1488 generic_make_request(bio);
1489 bio = next;
1491 unplug = 1;
1493 continue;
1496 if (list_empty(head))
1497 break;
1498 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1499 list_del(head->prev);
1500 conf->nr_queued--;
1501 spin_unlock_irqrestore(&conf->device_lock, flags);
1503 mddev = r1_bio->mddev;
1504 conf = mddev_to_conf(mddev);
1505 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1506 sync_request_write(mddev, r1_bio);
1507 unplug = 1;
1508 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1509 /* some requests in the r1bio were BIO_RW_BARRIER
1510 * requests which failed with -EOPNOTSUPP. Hohumm..
1511 * Better resubmit without the barrier.
1512 * We know which devices to resubmit for, because
1513 * all others have had their bios[] entry cleared.
1514 * We already have a nr_pending reference on these rdevs.
1516 int i;
1517 const int do_sync = bio_sync(r1_bio->master_bio);
1518 clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1519 clear_bit(R1BIO_Barrier, &r1_bio->state);
1520 for (i=0; i < conf->raid_disks; i++)
1521 if (r1_bio->bios[i])
1522 atomic_inc(&r1_bio->remaining);
1523 for (i=0; i < conf->raid_disks; i++)
1524 if (r1_bio->bios[i]) {
1525 struct bio_vec *bvec;
1526 int j;
1528 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1529 /* copy pages from the failed bio, as
1530 * this might be a write-behind device */
1531 __bio_for_each_segment(bvec, bio, j, 0)
1532 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1533 bio_put(r1_bio->bios[i]);
1534 bio->bi_sector = r1_bio->sector +
1535 conf->mirrors[i].rdev->data_offset;
1536 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1537 bio->bi_end_io = raid1_end_write_request;
1538 bio->bi_rw = WRITE | do_sync;
1539 bio->bi_private = r1_bio;
1540 r1_bio->bios[i] = bio;
1541 generic_make_request(bio);
1543 } else {
1544 int disk;
1546 /* we got a read error. Maybe the drive is bad. Maybe just
1547 * the block and we can fix it.
1548 * We freeze all other IO, and try reading the block from
1549 * other devices. When we find one, we re-write
1550 * and check it that fixes the read error.
1551 * This is all done synchronously while the array is
1552 * frozen
1554 if (mddev->ro == 0) {
1555 freeze_array(conf);
1556 fix_read_error(conf, r1_bio->read_disk,
1557 r1_bio->sector,
1558 r1_bio->sectors);
1559 unfreeze_array(conf);
1562 bio = r1_bio->bios[r1_bio->read_disk];
1563 if ((disk=read_balance(conf, r1_bio)) == -1) {
1564 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1565 " read error for block %llu\n",
1566 bdevname(bio->bi_bdev,b),
1567 (unsigned long long)r1_bio->sector);
1568 raid_end_bio_io(r1_bio);
1569 } else {
1570 const int do_sync = bio_sync(r1_bio->master_bio);
1571 r1_bio->bios[r1_bio->read_disk] =
1572 mddev->ro ? IO_BLOCKED : NULL;
1573 r1_bio->read_disk = disk;
1574 bio_put(bio);
1575 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1576 r1_bio->bios[r1_bio->read_disk] = bio;
1577 rdev = conf->mirrors[disk].rdev;
1578 if (printk_ratelimit())
1579 printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1580 " another mirror\n",
1581 bdevname(rdev->bdev,b),
1582 (unsigned long long)r1_bio->sector);
1583 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1584 bio->bi_bdev = rdev->bdev;
1585 bio->bi_end_io = raid1_end_read_request;
1586 bio->bi_rw = READ | do_sync;
1587 bio->bi_private = r1_bio;
1588 unplug = 1;
1589 generic_make_request(bio);
1593 spin_unlock_irqrestore(&conf->device_lock, flags);
1594 if (unplug)
1595 unplug_slaves(mddev);
1599 static int init_resync(conf_t *conf)
1601 int buffs;
1603 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1604 BUG_ON(conf->r1buf_pool);
1605 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1606 conf->poolinfo);
1607 if (!conf->r1buf_pool)
1608 return -ENOMEM;
1609 conf->next_resync = 0;
1610 return 0;
1614 * perform a "sync" on one "block"
1616 * We need to make sure that no normal I/O request - particularly write
1617 * requests - conflict with active sync requests.
1619 * This is achieved by tracking pending requests and a 'barrier' concept
1620 * that can be installed to exclude normal IO requests.
1623 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1625 conf_t *conf = mddev_to_conf(mddev);
1626 r1bio_t *r1_bio;
1627 struct bio *bio;
1628 sector_t max_sector, nr_sectors;
1629 int disk = -1;
1630 int i;
1631 int wonly = -1;
1632 int write_targets = 0, read_targets = 0;
1633 int sync_blocks;
1634 int still_degraded = 0;
1636 if (!conf->r1buf_pool)
1639 printk("sync start - bitmap %p\n", mddev->bitmap);
1641 if (init_resync(conf))
1642 return 0;
1645 max_sector = mddev->size << 1;
1646 if (sector_nr >= max_sector) {
1647 /* If we aborted, we need to abort the
1648 * sync on the 'current' bitmap chunk (there will
1649 * only be one in raid1 resync.
1650 * We can find the current addess in mddev->curr_resync
1652 if (mddev->curr_resync < max_sector) /* aborted */
1653 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1654 &sync_blocks, 1);
1655 else /* completed sync */
1656 conf->fullsync = 0;
1658 bitmap_close_sync(mddev->bitmap);
1659 close_sync(conf);
1660 return 0;
1663 if (mddev->bitmap == NULL &&
1664 mddev->recovery_cp == MaxSector &&
1665 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1666 conf->fullsync == 0) {
1667 *skipped = 1;
1668 return max_sector - sector_nr;
1670 /* before building a request, check if we can skip these blocks..
1671 * This call the bitmap_start_sync doesn't actually record anything
1673 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1674 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1675 /* We can skip this block, and probably several more */
1676 *skipped = 1;
1677 return sync_blocks;
1680 * If there is non-resync activity waiting for a turn,
1681 * and resync is going fast enough,
1682 * then let it though before starting on this new sync request.
1684 if (!go_faster && conf->nr_waiting)
1685 msleep_interruptible(1000);
1687 raise_barrier(conf);
1689 conf->next_resync = sector_nr;
1691 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1692 rcu_read_lock();
1694 * If we get a correctably read error during resync or recovery,
1695 * we might want to read from a different device. So we
1696 * flag all drives that could conceivably be read from for READ,
1697 * and any others (which will be non-In_sync devices) for WRITE.
1698 * If a read fails, we try reading from something else for which READ
1699 * is OK.
1702 r1_bio->mddev = mddev;
1703 r1_bio->sector = sector_nr;
1704 r1_bio->state = 0;
1705 set_bit(R1BIO_IsSync, &r1_bio->state);
1707 for (i=0; i < conf->raid_disks; i++) {
1708 mdk_rdev_t *rdev;
1709 bio = r1_bio->bios[i];
1711 /* take from bio_init */
1712 bio->bi_next = NULL;
1713 bio->bi_flags |= 1 << BIO_UPTODATE;
1714 bio->bi_rw = READ;
1715 bio->bi_vcnt = 0;
1716 bio->bi_idx = 0;
1717 bio->bi_phys_segments = 0;
1718 bio->bi_hw_segments = 0;
1719 bio->bi_size = 0;
1720 bio->bi_end_io = NULL;
1721 bio->bi_private = NULL;
1723 rdev = rcu_dereference(conf->mirrors[i].rdev);
1724 if (rdev == NULL ||
1725 test_bit(Faulty, &rdev->flags)) {
1726 still_degraded = 1;
1727 continue;
1728 } else if (!test_bit(In_sync, &rdev->flags)) {
1729 bio->bi_rw = WRITE;
1730 bio->bi_end_io = end_sync_write;
1731 write_targets ++;
1732 } else {
1733 /* may need to read from here */
1734 bio->bi_rw = READ;
1735 bio->bi_end_io = end_sync_read;
1736 if (test_bit(WriteMostly, &rdev->flags)) {
1737 if (wonly < 0)
1738 wonly = i;
1739 } else {
1740 if (disk < 0)
1741 disk = i;
1743 read_targets++;
1745 atomic_inc(&rdev->nr_pending);
1746 bio->bi_sector = sector_nr + rdev->data_offset;
1747 bio->bi_bdev = rdev->bdev;
1748 bio->bi_private = r1_bio;
1750 rcu_read_unlock();
1751 if (disk < 0)
1752 disk = wonly;
1753 r1_bio->read_disk = disk;
1755 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1756 /* extra read targets are also write targets */
1757 write_targets += read_targets-1;
1759 if (write_targets == 0 || read_targets == 0) {
1760 /* There is nowhere to write, so all non-sync
1761 * drives must be failed - so we are finished
1763 sector_t rv = max_sector - sector_nr;
1764 *skipped = 1;
1765 put_buf(r1_bio);
1766 return rv;
1769 nr_sectors = 0;
1770 sync_blocks = 0;
1771 do {
1772 struct page *page;
1773 int len = PAGE_SIZE;
1774 if (sector_nr + (len>>9) > max_sector)
1775 len = (max_sector - sector_nr) << 9;
1776 if (len == 0)
1777 break;
1778 if (sync_blocks == 0) {
1779 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1780 &sync_blocks, still_degraded) &&
1781 !conf->fullsync &&
1782 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1783 break;
1784 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1785 if (len > (sync_blocks<<9))
1786 len = sync_blocks<<9;
1789 for (i=0 ; i < conf->raid_disks; i++) {
1790 bio = r1_bio->bios[i];
1791 if (bio->bi_end_io) {
1792 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1793 if (bio_add_page(bio, page, len, 0) == 0) {
1794 /* stop here */
1795 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1796 while (i > 0) {
1797 i--;
1798 bio = r1_bio->bios[i];
1799 if (bio->bi_end_io==NULL)
1800 continue;
1801 /* remove last page from this bio */
1802 bio->bi_vcnt--;
1803 bio->bi_size -= len;
1804 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1806 goto bio_full;
1810 nr_sectors += len>>9;
1811 sector_nr += len>>9;
1812 sync_blocks -= (len>>9);
1813 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1814 bio_full:
1815 r1_bio->sectors = nr_sectors;
1817 /* For a user-requested sync, we read all readable devices and do a
1818 * compare
1820 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1821 atomic_set(&r1_bio->remaining, read_targets);
1822 for (i=0; i<conf->raid_disks; i++) {
1823 bio = r1_bio->bios[i];
1824 if (bio->bi_end_io == end_sync_read) {
1825 md_sync_acct(bio->bi_bdev, nr_sectors);
1826 generic_make_request(bio);
1829 } else {
1830 atomic_set(&r1_bio->remaining, 1);
1831 bio = r1_bio->bios[r1_bio->read_disk];
1832 md_sync_acct(bio->bi_bdev, nr_sectors);
1833 generic_make_request(bio);
1836 return nr_sectors;
1839 static int run(mddev_t *mddev)
1841 conf_t *conf;
1842 int i, j, disk_idx;
1843 mirror_info_t *disk;
1844 mdk_rdev_t *rdev;
1845 struct list_head *tmp;
1847 if (mddev->level != 1) {
1848 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1849 mdname(mddev), mddev->level);
1850 goto out;
1852 if (mddev->reshape_position != MaxSector) {
1853 printk("raid1: %s: reshape_position set but not supported\n",
1854 mdname(mddev));
1855 goto out;
1858 * copy the already verified devices into our private RAID1
1859 * bookkeeping area. [whatever we allocate in run(),
1860 * should be freed in stop()]
1862 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1863 mddev->private = conf;
1864 if (!conf)
1865 goto out_no_mem;
1867 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1868 GFP_KERNEL);
1869 if (!conf->mirrors)
1870 goto out_no_mem;
1872 conf->tmppage = alloc_page(GFP_KERNEL);
1873 if (!conf->tmppage)
1874 goto out_no_mem;
1876 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1877 if (!conf->poolinfo)
1878 goto out_no_mem;
1879 conf->poolinfo->mddev = mddev;
1880 conf->poolinfo->raid_disks = mddev->raid_disks;
1881 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1882 r1bio_pool_free,
1883 conf->poolinfo);
1884 if (!conf->r1bio_pool)
1885 goto out_no_mem;
1887 ITERATE_RDEV(mddev, rdev, tmp) {
1888 disk_idx = rdev->raid_disk;
1889 if (disk_idx >= mddev->raid_disks
1890 || disk_idx < 0)
1891 continue;
1892 disk = conf->mirrors + disk_idx;
1894 disk->rdev = rdev;
1896 blk_queue_stack_limits(mddev->queue,
1897 rdev->bdev->bd_disk->queue);
1898 /* as we don't honour merge_bvec_fn, we must never risk
1899 * violating it, so limit ->max_sector to one PAGE, as
1900 * a one page request is never in violation.
1902 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1903 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1904 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1906 disk->head_position = 0;
1908 conf->raid_disks = mddev->raid_disks;
1909 conf->mddev = mddev;
1910 spin_lock_init(&conf->device_lock);
1911 INIT_LIST_HEAD(&conf->retry_list);
1913 spin_lock_init(&conf->resync_lock);
1914 init_waitqueue_head(&conf->wait_barrier);
1916 bio_list_init(&conf->pending_bio_list);
1917 bio_list_init(&conf->flushing_bio_list);
1920 mddev->degraded = 0;
1921 for (i = 0; i < conf->raid_disks; i++) {
1923 disk = conf->mirrors + i;
1925 if (!disk->rdev ||
1926 !test_bit(In_sync, &disk->rdev->flags)) {
1927 disk->head_position = 0;
1928 mddev->degraded++;
1929 if (disk->rdev)
1930 conf->fullsync = 1;
1933 if (mddev->degraded == conf->raid_disks) {
1934 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1935 mdname(mddev));
1936 goto out_free_conf;
1938 if (conf->raid_disks - mddev->degraded == 1)
1939 mddev->recovery_cp = MaxSector;
1942 * find the first working one and use it as a starting point
1943 * to read balancing.
1945 for (j = 0; j < conf->raid_disks &&
1946 (!conf->mirrors[j].rdev ||
1947 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1948 /* nothing */;
1949 conf->last_used = j;
1952 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1953 if (!mddev->thread) {
1954 printk(KERN_ERR
1955 "raid1: couldn't allocate thread for %s\n",
1956 mdname(mddev));
1957 goto out_free_conf;
1960 printk(KERN_INFO
1961 "raid1: raid set %s active with %d out of %d mirrors\n",
1962 mdname(mddev), mddev->raid_disks - mddev->degraded,
1963 mddev->raid_disks);
1965 * Ok, everything is just fine now
1967 mddev->array_size = mddev->size;
1969 mddev->queue->unplug_fn = raid1_unplug;
1970 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
1971 mddev->queue->backing_dev_info.congested_data = mddev;
1973 return 0;
1975 out_no_mem:
1976 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1977 mdname(mddev));
1979 out_free_conf:
1980 if (conf) {
1981 if (conf->r1bio_pool)
1982 mempool_destroy(conf->r1bio_pool);
1983 kfree(conf->mirrors);
1984 safe_put_page(conf->tmppage);
1985 kfree(conf->poolinfo);
1986 kfree(conf);
1987 mddev->private = NULL;
1989 out:
1990 return -EIO;
1993 static int stop(mddev_t *mddev)
1995 conf_t *conf = mddev_to_conf(mddev);
1996 struct bitmap *bitmap = mddev->bitmap;
1997 int behind_wait = 0;
1999 /* wait for behind writes to complete */
2000 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2001 behind_wait++;
2002 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2003 set_current_state(TASK_UNINTERRUPTIBLE);
2004 schedule_timeout(HZ); /* wait a second */
2005 /* need to kick something here to make sure I/O goes? */
2008 md_unregister_thread(mddev->thread);
2009 mddev->thread = NULL;
2010 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2011 if (conf->r1bio_pool)
2012 mempool_destroy(conf->r1bio_pool);
2013 kfree(conf->mirrors);
2014 kfree(conf->poolinfo);
2015 kfree(conf);
2016 mddev->private = NULL;
2017 return 0;
2020 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2022 /* no resync is happening, and there is enough space
2023 * on all devices, so we can resize.
2024 * We need to make sure resync covers any new space.
2025 * If the array is shrinking we should possibly wait until
2026 * any io in the removed space completes, but it hardly seems
2027 * worth it.
2029 mddev->array_size = sectors>>1;
2030 set_capacity(mddev->gendisk, mddev->array_size << 1);
2031 mddev->changed = 1;
2032 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
2033 mddev->recovery_cp = mddev->size << 1;
2034 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2036 mddev->size = mddev->array_size;
2037 mddev->resync_max_sectors = sectors;
2038 return 0;
2041 static int raid1_reshape(mddev_t *mddev)
2043 /* We need to:
2044 * 1/ resize the r1bio_pool
2045 * 2/ resize conf->mirrors
2047 * We allocate a new r1bio_pool if we can.
2048 * Then raise a device barrier and wait until all IO stops.
2049 * Then resize conf->mirrors and swap in the new r1bio pool.
2051 * At the same time, we "pack" the devices so that all the missing
2052 * devices have the higher raid_disk numbers.
2054 mempool_t *newpool, *oldpool;
2055 struct pool_info *newpoolinfo;
2056 mirror_info_t *newmirrors;
2057 conf_t *conf = mddev_to_conf(mddev);
2058 int cnt, raid_disks;
2059 unsigned long flags;
2060 int d, d2;
2062 /* Cannot change chunk_size, layout, or level */
2063 if (mddev->chunk_size != mddev->new_chunk ||
2064 mddev->layout != mddev->new_layout ||
2065 mddev->level != mddev->new_level) {
2066 mddev->new_chunk = mddev->chunk_size;
2067 mddev->new_layout = mddev->layout;
2068 mddev->new_level = mddev->level;
2069 return -EINVAL;
2072 md_allow_write(mddev);
2074 raid_disks = mddev->raid_disks + mddev->delta_disks;
2076 if (raid_disks < conf->raid_disks) {
2077 cnt=0;
2078 for (d= 0; d < conf->raid_disks; d++)
2079 if (conf->mirrors[d].rdev)
2080 cnt++;
2081 if (cnt > raid_disks)
2082 return -EBUSY;
2085 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2086 if (!newpoolinfo)
2087 return -ENOMEM;
2088 newpoolinfo->mddev = mddev;
2089 newpoolinfo->raid_disks = raid_disks;
2091 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2092 r1bio_pool_free, newpoolinfo);
2093 if (!newpool) {
2094 kfree(newpoolinfo);
2095 return -ENOMEM;
2097 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2098 if (!newmirrors) {
2099 kfree(newpoolinfo);
2100 mempool_destroy(newpool);
2101 return -ENOMEM;
2104 raise_barrier(conf);
2106 /* ok, everything is stopped */
2107 oldpool = conf->r1bio_pool;
2108 conf->r1bio_pool = newpool;
2110 for (d = d2 = 0; d < conf->raid_disks; d++) {
2111 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2112 if (rdev && rdev->raid_disk != d2) {
2113 char nm[20];
2114 sprintf(nm, "rd%d", rdev->raid_disk);
2115 sysfs_remove_link(&mddev->kobj, nm);
2116 rdev->raid_disk = d2;
2117 sprintf(nm, "rd%d", rdev->raid_disk);
2118 sysfs_remove_link(&mddev->kobj, nm);
2119 if (sysfs_create_link(&mddev->kobj,
2120 &rdev->kobj, nm))
2121 printk(KERN_WARNING
2122 "md/raid1: cannot register "
2123 "%s for %s\n",
2124 nm, mdname(mddev));
2126 if (rdev)
2127 newmirrors[d2++].rdev = rdev;
2129 kfree(conf->mirrors);
2130 conf->mirrors = newmirrors;
2131 kfree(conf->poolinfo);
2132 conf->poolinfo = newpoolinfo;
2134 spin_lock_irqsave(&conf->device_lock, flags);
2135 mddev->degraded += (raid_disks - conf->raid_disks);
2136 spin_unlock_irqrestore(&conf->device_lock, flags);
2137 conf->raid_disks = mddev->raid_disks = raid_disks;
2138 mddev->delta_disks = 0;
2140 conf->last_used = 0; /* just make sure it is in-range */
2141 lower_barrier(conf);
2143 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2144 md_wakeup_thread(mddev->thread);
2146 mempool_destroy(oldpool);
2147 return 0;
2150 static void raid1_quiesce(mddev_t *mddev, int state)
2152 conf_t *conf = mddev_to_conf(mddev);
2154 switch(state) {
2155 case 1:
2156 raise_barrier(conf);
2157 break;
2158 case 0:
2159 lower_barrier(conf);
2160 break;
2165 static struct mdk_personality raid1_personality =
2167 .name = "raid1",
2168 .level = 1,
2169 .owner = THIS_MODULE,
2170 .make_request = make_request,
2171 .run = run,
2172 .stop = stop,
2173 .status = status,
2174 .error_handler = error,
2175 .hot_add_disk = raid1_add_disk,
2176 .hot_remove_disk= raid1_remove_disk,
2177 .spare_active = raid1_spare_active,
2178 .sync_request = sync_request,
2179 .resize = raid1_resize,
2180 .check_reshape = raid1_reshape,
2181 .quiesce = raid1_quiesce,
2184 static int __init raid_init(void)
2186 return register_md_personality(&raid1_personality);
2189 static void raid_exit(void)
2191 unregister_md_personality(&raid1_personality);
2194 module_init(raid_init);
2195 module_exit(raid_exit);
2196 MODULE_LICENSE("GPL");
2197 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2198 MODULE_ALIAS("md-raid1");
2199 MODULE_ALIAS("md-level-1");