mm: vmalloc improve vmallocinfo
[linux-2.6/mini2440.git] / mm / vmalloc.c
blobb62ea569aa43b8544c3d485fb5a7f3e03ef65af6
1 /*
2 * linux/mm/vmalloc.c
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
27 #include <asm/atomic.h>
28 #include <asm/uaccess.h>
29 #include <asm/tlbflush.h>
32 /*** Page table manipulation functions ***/
34 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
36 pte_t *pte;
38 pte = pte_offset_kernel(pmd, addr);
39 do {
40 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
41 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
42 } while (pte++, addr += PAGE_SIZE, addr != end);
45 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
47 pmd_t *pmd;
48 unsigned long next;
50 pmd = pmd_offset(pud, addr);
51 do {
52 next = pmd_addr_end(addr, end);
53 if (pmd_none_or_clear_bad(pmd))
54 continue;
55 vunmap_pte_range(pmd, addr, next);
56 } while (pmd++, addr = next, addr != end);
59 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
61 pud_t *pud;
62 unsigned long next;
64 pud = pud_offset(pgd, addr);
65 do {
66 next = pud_addr_end(addr, end);
67 if (pud_none_or_clear_bad(pud))
68 continue;
69 vunmap_pmd_range(pud, addr, next);
70 } while (pud++, addr = next, addr != end);
73 static void vunmap_page_range(unsigned long addr, unsigned long end)
75 pgd_t *pgd;
76 unsigned long next;
78 BUG_ON(addr >= end);
79 pgd = pgd_offset_k(addr);
80 do {
81 next = pgd_addr_end(addr, end);
82 if (pgd_none_or_clear_bad(pgd))
83 continue;
84 vunmap_pud_range(pgd, addr, next);
85 } while (pgd++, addr = next, addr != end);
88 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
89 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
91 pte_t *pte;
94 * nr is a running index into the array which helps higher level
95 * callers keep track of where we're up to.
98 pte = pte_alloc_kernel(pmd, addr);
99 if (!pte)
100 return -ENOMEM;
101 do {
102 struct page *page = pages[*nr];
104 if (WARN_ON(!pte_none(*pte)))
105 return -EBUSY;
106 if (WARN_ON(!page))
107 return -ENOMEM;
108 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
109 (*nr)++;
110 } while (pte++, addr += PAGE_SIZE, addr != end);
111 return 0;
114 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
115 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
117 pmd_t *pmd;
118 unsigned long next;
120 pmd = pmd_alloc(&init_mm, pud, addr);
121 if (!pmd)
122 return -ENOMEM;
123 do {
124 next = pmd_addr_end(addr, end);
125 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
126 return -ENOMEM;
127 } while (pmd++, addr = next, addr != end);
128 return 0;
131 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
132 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
134 pud_t *pud;
135 unsigned long next;
137 pud = pud_alloc(&init_mm, pgd, addr);
138 if (!pud)
139 return -ENOMEM;
140 do {
141 next = pud_addr_end(addr, end);
142 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
143 return -ENOMEM;
144 } while (pud++, addr = next, addr != end);
145 return 0;
149 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
150 * will have pfns corresponding to the "pages" array.
152 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
154 static int vmap_page_range(unsigned long start, unsigned long end,
155 pgprot_t prot, struct page **pages)
157 pgd_t *pgd;
158 unsigned long next;
159 unsigned long addr = start;
160 int err = 0;
161 int nr = 0;
163 BUG_ON(addr >= end);
164 pgd = pgd_offset_k(addr);
165 do {
166 next = pgd_addr_end(addr, end);
167 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
168 if (err)
169 break;
170 } while (pgd++, addr = next, addr != end);
171 flush_cache_vmap(start, end);
173 if (unlikely(err))
174 return err;
175 return nr;
178 static inline int is_vmalloc_or_module_addr(const void *x)
181 * ARM, x86-64 and sparc64 put modules in a special place,
182 * and fall back on vmalloc() if that fails. Others
183 * just put it in the vmalloc space.
185 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
186 unsigned long addr = (unsigned long)x;
187 if (addr >= MODULES_VADDR && addr < MODULES_END)
188 return 1;
189 #endif
190 return is_vmalloc_addr(x);
194 * Walk a vmap address to the struct page it maps.
196 struct page *vmalloc_to_page(const void *vmalloc_addr)
198 unsigned long addr = (unsigned long) vmalloc_addr;
199 struct page *page = NULL;
200 pgd_t *pgd = pgd_offset_k(addr);
203 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
204 * architectures that do not vmalloc module space
206 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
208 if (!pgd_none(*pgd)) {
209 pud_t *pud = pud_offset(pgd, addr);
210 if (!pud_none(*pud)) {
211 pmd_t *pmd = pmd_offset(pud, addr);
212 if (!pmd_none(*pmd)) {
213 pte_t *ptep, pte;
215 ptep = pte_offset_map(pmd, addr);
216 pte = *ptep;
217 if (pte_present(pte))
218 page = pte_page(pte);
219 pte_unmap(ptep);
223 return page;
225 EXPORT_SYMBOL(vmalloc_to_page);
228 * Map a vmalloc()-space virtual address to the physical page frame number.
230 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
232 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
234 EXPORT_SYMBOL(vmalloc_to_pfn);
237 /*** Global kva allocator ***/
239 #define VM_LAZY_FREE 0x01
240 #define VM_LAZY_FREEING 0x02
241 #define VM_VM_AREA 0x04
243 struct vmap_area {
244 unsigned long va_start;
245 unsigned long va_end;
246 unsigned long flags;
247 struct rb_node rb_node; /* address sorted rbtree */
248 struct list_head list; /* address sorted list */
249 struct list_head purge_list; /* "lazy purge" list */
250 void *private;
251 struct rcu_head rcu_head;
254 static DEFINE_SPINLOCK(vmap_area_lock);
255 static struct rb_root vmap_area_root = RB_ROOT;
256 static LIST_HEAD(vmap_area_list);
258 static struct vmap_area *__find_vmap_area(unsigned long addr)
260 struct rb_node *n = vmap_area_root.rb_node;
262 while (n) {
263 struct vmap_area *va;
265 va = rb_entry(n, struct vmap_area, rb_node);
266 if (addr < va->va_start)
267 n = n->rb_left;
268 else if (addr > va->va_start)
269 n = n->rb_right;
270 else
271 return va;
274 return NULL;
277 static void __insert_vmap_area(struct vmap_area *va)
279 struct rb_node **p = &vmap_area_root.rb_node;
280 struct rb_node *parent = NULL;
281 struct rb_node *tmp;
283 while (*p) {
284 struct vmap_area *tmp;
286 parent = *p;
287 tmp = rb_entry(parent, struct vmap_area, rb_node);
288 if (va->va_start < tmp->va_end)
289 p = &(*p)->rb_left;
290 else if (va->va_end > tmp->va_start)
291 p = &(*p)->rb_right;
292 else
293 BUG();
296 rb_link_node(&va->rb_node, parent, p);
297 rb_insert_color(&va->rb_node, &vmap_area_root);
299 /* address-sort this list so it is usable like the vmlist */
300 tmp = rb_prev(&va->rb_node);
301 if (tmp) {
302 struct vmap_area *prev;
303 prev = rb_entry(tmp, struct vmap_area, rb_node);
304 list_add_rcu(&va->list, &prev->list);
305 } else
306 list_add_rcu(&va->list, &vmap_area_list);
309 static void purge_vmap_area_lazy(void);
312 * Allocate a region of KVA of the specified size and alignment, within the
313 * vstart and vend.
315 static struct vmap_area *alloc_vmap_area(unsigned long size,
316 unsigned long align,
317 unsigned long vstart, unsigned long vend,
318 int node, gfp_t gfp_mask)
320 struct vmap_area *va;
321 struct rb_node *n;
322 unsigned long addr;
323 int purged = 0;
325 BUG_ON(size & ~PAGE_MASK);
327 va = kmalloc_node(sizeof(struct vmap_area),
328 gfp_mask & GFP_RECLAIM_MASK, node);
329 if (unlikely(!va))
330 return ERR_PTR(-ENOMEM);
332 retry:
333 addr = ALIGN(vstart, align);
335 spin_lock(&vmap_area_lock);
336 /* XXX: could have a last_hole cache */
337 n = vmap_area_root.rb_node;
338 if (n) {
339 struct vmap_area *first = NULL;
341 do {
342 struct vmap_area *tmp;
343 tmp = rb_entry(n, struct vmap_area, rb_node);
344 if (tmp->va_end >= addr) {
345 if (!first && tmp->va_start < addr + size)
346 first = tmp;
347 n = n->rb_left;
348 } else {
349 first = tmp;
350 n = n->rb_right;
352 } while (n);
354 if (!first)
355 goto found;
357 if (first->va_end < addr) {
358 n = rb_next(&first->rb_node);
359 if (n)
360 first = rb_entry(n, struct vmap_area, rb_node);
361 else
362 goto found;
365 while (addr + size > first->va_start && addr + size <= vend) {
366 addr = ALIGN(first->va_end + PAGE_SIZE, align);
368 n = rb_next(&first->rb_node);
369 if (n)
370 first = rb_entry(n, struct vmap_area, rb_node);
371 else
372 goto found;
375 found:
376 if (addr + size > vend) {
377 spin_unlock(&vmap_area_lock);
378 if (!purged) {
379 purge_vmap_area_lazy();
380 purged = 1;
381 goto retry;
383 if (printk_ratelimit())
384 printk(KERN_WARNING
385 "vmap allocation for size %lu failed: "
386 "use vmalloc=<size> to increase size.\n", size);
387 return ERR_PTR(-EBUSY);
390 BUG_ON(addr & (align-1));
392 va->va_start = addr;
393 va->va_end = addr + size;
394 va->flags = 0;
395 __insert_vmap_area(va);
396 spin_unlock(&vmap_area_lock);
398 return va;
401 static void rcu_free_va(struct rcu_head *head)
403 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
405 kfree(va);
408 static void __free_vmap_area(struct vmap_area *va)
410 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
411 rb_erase(&va->rb_node, &vmap_area_root);
412 RB_CLEAR_NODE(&va->rb_node);
413 list_del_rcu(&va->list);
415 call_rcu(&va->rcu_head, rcu_free_va);
419 * Free a region of KVA allocated by alloc_vmap_area
421 static void free_vmap_area(struct vmap_area *va)
423 spin_lock(&vmap_area_lock);
424 __free_vmap_area(va);
425 spin_unlock(&vmap_area_lock);
429 * Clear the pagetable entries of a given vmap_area
431 static void unmap_vmap_area(struct vmap_area *va)
433 vunmap_page_range(va->va_start, va->va_end);
437 * lazy_max_pages is the maximum amount of virtual address space we gather up
438 * before attempting to purge with a TLB flush.
440 * There is a tradeoff here: a larger number will cover more kernel page tables
441 * and take slightly longer to purge, but it will linearly reduce the number of
442 * global TLB flushes that must be performed. It would seem natural to scale
443 * this number up linearly with the number of CPUs (because vmapping activity
444 * could also scale linearly with the number of CPUs), however it is likely
445 * that in practice, workloads might be constrained in other ways that mean
446 * vmap activity will not scale linearly with CPUs. Also, I want to be
447 * conservative and not introduce a big latency on huge systems, so go with
448 * a less aggressive log scale. It will still be an improvement over the old
449 * code, and it will be simple to change the scale factor if we find that it
450 * becomes a problem on bigger systems.
452 static unsigned long lazy_max_pages(void)
454 unsigned int log;
456 log = fls(num_online_cpus());
458 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
461 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
464 * Purges all lazily-freed vmap areas.
466 * If sync is 0 then don't purge if there is already a purge in progress.
467 * If force_flush is 1, then flush kernel TLBs between *start and *end even
468 * if we found no lazy vmap areas to unmap (callers can use this to optimise
469 * their own TLB flushing).
470 * Returns with *start = min(*start, lowest purged address)
471 * *end = max(*end, highest purged address)
473 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
474 int sync, int force_flush)
476 static DEFINE_SPINLOCK(purge_lock);
477 LIST_HEAD(valist);
478 struct vmap_area *va;
479 int nr = 0;
482 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
483 * should not expect such behaviour. This just simplifies locking for
484 * the case that isn't actually used at the moment anyway.
486 if (!sync && !force_flush) {
487 if (!spin_trylock(&purge_lock))
488 return;
489 } else
490 spin_lock(&purge_lock);
492 rcu_read_lock();
493 list_for_each_entry_rcu(va, &vmap_area_list, list) {
494 if (va->flags & VM_LAZY_FREE) {
495 if (va->va_start < *start)
496 *start = va->va_start;
497 if (va->va_end > *end)
498 *end = va->va_end;
499 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
500 unmap_vmap_area(va);
501 list_add_tail(&va->purge_list, &valist);
502 va->flags |= VM_LAZY_FREEING;
503 va->flags &= ~VM_LAZY_FREE;
506 rcu_read_unlock();
508 if (nr) {
509 BUG_ON(nr > atomic_read(&vmap_lazy_nr));
510 atomic_sub(nr, &vmap_lazy_nr);
513 if (nr || force_flush)
514 flush_tlb_kernel_range(*start, *end);
516 if (nr) {
517 spin_lock(&vmap_area_lock);
518 list_for_each_entry(va, &valist, purge_list)
519 __free_vmap_area(va);
520 spin_unlock(&vmap_area_lock);
522 spin_unlock(&purge_lock);
526 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
527 * is already purging.
529 static void try_purge_vmap_area_lazy(void)
531 unsigned long start = ULONG_MAX, end = 0;
533 __purge_vmap_area_lazy(&start, &end, 0, 0);
537 * Kick off a purge of the outstanding lazy areas.
539 static void purge_vmap_area_lazy(void)
541 unsigned long start = ULONG_MAX, end = 0;
543 __purge_vmap_area_lazy(&start, &end, 1, 0);
547 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
548 * called for the correct range previously.
550 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
552 va->flags |= VM_LAZY_FREE;
553 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
554 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
555 try_purge_vmap_area_lazy();
559 * Free and unmap a vmap area
561 static void free_unmap_vmap_area(struct vmap_area *va)
563 flush_cache_vunmap(va->va_start, va->va_end);
564 free_unmap_vmap_area_noflush(va);
567 static struct vmap_area *find_vmap_area(unsigned long addr)
569 struct vmap_area *va;
571 spin_lock(&vmap_area_lock);
572 va = __find_vmap_area(addr);
573 spin_unlock(&vmap_area_lock);
575 return va;
578 static void free_unmap_vmap_area_addr(unsigned long addr)
580 struct vmap_area *va;
582 va = find_vmap_area(addr);
583 BUG_ON(!va);
584 free_unmap_vmap_area(va);
588 /*** Per cpu kva allocator ***/
591 * vmap space is limited especially on 32 bit architectures. Ensure there is
592 * room for at least 16 percpu vmap blocks per CPU.
595 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
596 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
597 * instead (we just need a rough idea)
599 #if BITS_PER_LONG == 32
600 #define VMALLOC_SPACE (128UL*1024*1024)
601 #else
602 #define VMALLOC_SPACE (128UL*1024*1024*1024)
603 #endif
605 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
606 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
607 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
608 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
609 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
610 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
611 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
612 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
613 VMALLOC_PAGES / NR_CPUS / 16))
615 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
617 static bool vmap_initialized __read_mostly = false;
619 struct vmap_block_queue {
620 spinlock_t lock;
621 struct list_head free;
622 struct list_head dirty;
623 unsigned int nr_dirty;
626 struct vmap_block {
627 spinlock_t lock;
628 struct vmap_area *va;
629 struct vmap_block_queue *vbq;
630 unsigned long free, dirty;
631 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
632 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
633 union {
634 struct {
635 struct list_head free_list;
636 struct list_head dirty_list;
638 struct rcu_head rcu_head;
642 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
643 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
646 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
647 * in the free path. Could get rid of this if we change the API to return a
648 * "cookie" from alloc, to be passed to free. But no big deal yet.
650 static DEFINE_SPINLOCK(vmap_block_tree_lock);
651 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
654 * We should probably have a fallback mechanism to allocate virtual memory
655 * out of partially filled vmap blocks. However vmap block sizing should be
656 * fairly reasonable according to the vmalloc size, so it shouldn't be a
657 * big problem.
660 static unsigned long addr_to_vb_idx(unsigned long addr)
662 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
663 addr /= VMAP_BLOCK_SIZE;
664 return addr;
667 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
669 struct vmap_block_queue *vbq;
670 struct vmap_block *vb;
671 struct vmap_area *va;
672 unsigned long vb_idx;
673 int node, err;
675 node = numa_node_id();
677 vb = kmalloc_node(sizeof(struct vmap_block),
678 gfp_mask & GFP_RECLAIM_MASK, node);
679 if (unlikely(!vb))
680 return ERR_PTR(-ENOMEM);
682 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
683 VMALLOC_START, VMALLOC_END,
684 node, gfp_mask);
685 if (unlikely(IS_ERR(va))) {
686 kfree(vb);
687 return ERR_PTR(PTR_ERR(va));
690 err = radix_tree_preload(gfp_mask);
691 if (unlikely(err)) {
692 kfree(vb);
693 free_vmap_area(va);
694 return ERR_PTR(err);
697 spin_lock_init(&vb->lock);
698 vb->va = va;
699 vb->free = VMAP_BBMAP_BITS;
700 vb->dirty = 0;
701 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
702 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
703 INIT_LIST_HEAD(&vb->free_list);
704 INIT_LIST_HEAD(&vb->dirty_list);
706 vb_idx = addr_to_vb_idx(va->va_start);
707 spin_lock(&vmap_block_tree_lock);
708 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
709 spin_unlock(&vmap_block_tree_lock);
710 BUG_ON(err);
711 radix_tree_preload_end();
713 vbq = &get_cpu_var(vmap_block_queue);
714 vb->vbq = vbq;
715 spin_lock(&vbq->lock);
716 list_add(&vb->free_list, &vbq->free);
717 spin_unlock(&vbq->lock);
718 put_cpu_var(vmap_cpu_blocks);
720 return vb;
723 static void rcu_free_vb(struct rcu_head *head)
725 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
727 kfree(vb);
730 static void free_vmap_block(struct vmap_block *vb)
732 struct vmap_block *tmp;
733 unsigned long vb_idx;
735 spin_lock(&vb->vbq->lock);
736 if (!list_empty(&vb->free_list))
737 list_del(&vb->free_list);
738 if (!list_empty(&vb->dirty_list))
739 list_del(&vb->dirty_list);
740 spin_unlock(&vb->vbq->lock);
742 vb_idx = addr_to_vb_idx(vb->va->va_start);
743 spin_lock(&vmap_block_tree_lock);
744 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
745 spin_unlock(&vmap_block_tree_lock);
746 BUG_ON(tmp != vb);
748 free_unmap_vmap_area_noflush(vb->va);
749 call_rcu(&vb->rcu_head, rcu_free_vb);
752 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
754 struct vmap_block_queue *vbq;
755 struct vmap_block *vb;
756 unsigned long addr = 0;
757 unsigned int order;
759 BUG_ON(size & ~PAGE_MASK);
760 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
761 order = get_order(size);
763 again:
764 rcu_read_lock();
765 vbq = &get_cpu_var(vmap_block_queue);
766 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
767 int i;
769 spin_lock(&vb->lock);
770 i = bitmap_find_free_region(vb->alloc_map,
771 VMAP_BBMAP_BITS, order);
773 if (i >= 0) {
774 addr = vb->va->va_start + (i << PAGE_SHIFT);
775 BUG_ON(addr_to_vb_idx(addr) !=
776 addr_to_vb_idx(vb->va->va_start));
777 vb->free -= 1UL << order;
778 if (vb->free == 0) {
779 spin_lock(&vbq->lock);
780 list_del_init(&vb->free_list);
781 spin_unlock(&vbq->lock);
783 spin_unlock(&vb->lock);
784 break;
786 spin_unlock(&vb->lock);
788 put_cpu_var(vmap_cpu_blocks);
789 rcu_read_unlock();
791 if (!addr) {
792 vb = new_vmap_block(gfp_mask);
793 if (IS_ERR(vb))
794 return vb;
795 goto again;
798 return (void *)addr;
801 static void vb_free(const void *addr, unsigned long size)
803 unsigned long offset;
804 unsigned long vb_idx;
805 unsigned int order;
806 struct vmap_block *vb;
808 BUG_ON(size & ~PAGE_MASK);
809 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
811 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
813 order = get_order(size);
815 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
817 vb_idx = addr_to_vb_idx((unsigned long)addr);
818 rcu_read_lock();
819 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
820 rcu_read_unlock();
821 BUG_ON(!vb);
823 spin_lock(&vb->lock);
824 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
825 if (!vb->dirty) {
826 spin_lock(&vb->vbq->lock);
827 list_add(&vb->dirty_list, &vb->vbq->dirty);
828 spin_unlock(&vb->vbq->lock);
830 vb->dirty += 1UL << order;
831 if (vb->dirty == VMAP_BBMAP_BITS) {
832 BUG_ON(vb->free || !list_empty(&vb->free_list));
833 spin_unlock(&vb->lock);
834 free_vmap_block(vb);
835 } else
836 spin_unlock(&vb->lock);
840 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
842 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
843 * to amortize TLB flushing overheads. What this means is that any page you
844 * have now, may, in a former life, have been mapped into kernel virtual
845 * address by the vmap layer and so there might be some CPUs with TLB entries
846 * still referencing that page (additional to the regular 1:1 kernel mapping).
848 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
849 * be sure that none of the pages we have control over will have any aliases
850 * from the vmap layer.
852 void vm_unmap_aliases(void)
854 unsigned long start = ULONG_MAX, end = 0;
855 int cpu;
856 int flush = 0;
858 if (unlikely(!vmap_initialized))
859 return;
861 for_each_possible_cpu(cpu) {
862 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
863 struct vmap_block *vb;
865 rcu_read_lock();
866 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
867 int i;
869 spin_lock(&vb->lock);
870 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
871 while (i < VMAP_BBMAP_BITS) {
872 unsigned long s, e;
873 int j;
874 j = find_next_zero_bit(vb->dirty_map,
875 VMAP_BBMAP_BITS, i);
877 s = vb->va->va_start + (i << PAGE_SHIFT);
878 e = vb->va->va_start + (j << PAGE_SHIFT);
879 vunmap_page_range(s, e);
880 flush = 1;
882 if (s < start)
883 start = s;
884 if (e > end)
885 end = e;
887 i = j;
888 i = find_next_bit(vb->dirty_map,
889 VMAP_BBMAP_BITS, i);
891 spin_unlock(&vb->lock);
893 rcu_read_unlock();
896 __purge_vmap_area_lazy(&start, &end, 1, flush);
898 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
901 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
902 * @mem: the pointer returned by vm_map_ram
903 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
905 void vm_unmap_ram(const void *mem, unsigned int count)
907 unsigned long size = count << PAGE_SHIFT;
908 unsigned long addr = (unsigned long)mem;
910 BUG_ON(!addr);
911 BUG_ON(addr < VMALLOC_START);
912 BUG_ON(addr > VMALLOC_END);
913 BUG_ON(addr & (PAGE_SIZE-1));
915 debug_check_no_locks_freed(mem, size);
917 if (likely(count <= VMAP_MAX_ALLOC))
918 vb_free(mem, size);
919 else
920 free_unmap_vmap_area_addr(addr);
922 EXPORT_SYMBOL(vm_unmap_ram);
925 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
926 * @pages: an array of pointers to the pages to be mapped
927 * @count: number of pages
928 * @node: prefer to allocate data structures on this node
929 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
931 * Returns: a pointer to the address that has been mapped, or %NULL on failure
933 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
935 unsigned long size = count << PAGE_SHIFT;
936 unsigned long addr;
937 void *mem;
939 if (likely(count <= VMAP_MAX_ALLOC)) {
940 mem = vb_alloc(size, GFP_KERNEL);
941 if (IS_ERR(mem))
942 return NULL;
943 addr = (unsigned long)mem;
944 } else {
945 struct vmap_area *va;
946 va = alloc_vmap_area(size, PAGE_SIZE,
947 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
948 if (IS_ERR(va))
949 return NULL;
951 addr = va->va_start;
952 mem = (void *)addr;
954 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
955 vm_unmap_ram(mem, count);
956 return NULL;
958 return mem;
960 EXPORT_SYMBOL(vm_map_ram);
962 void __init vmalloc_init(void)
964 int i;
966 for_each_possible_cpu(i) {
967 struct vmap_block_queue *vbq;
969 vbq = &per_cpu(vmap_block_queue, i);
970 spin_lock_init(&vbq->lock);
971 INIT_LIST_HEAD(&vbq->free);
972 INIT_LIST_HEAD(&vbq->dirty);
973 vbq->nr_dirty = 0;
976 vmap_initialized = true;
979 void unmap_kernel_range(unsigned long addr, unsigned long size)
981 unsigned long end = addr + size;
982 vunmap_page_range(addr, end);
983 flush_tlb_kernel_range(addr, end);
986 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
988 unsigned long addr = (unsigned long)area->addr;
989 unsigned long end = addr + area->size - PAGE_SIZE;
990 int err;
992 err = vmap_page_range(addr, end, prot, *pages);
993 if (err > 0) {
994 *pages += err;
995 err = 0;
998 return err;
1000 EXPORT_SYMBOL_GPL(map_vm_area);
1002 /*** Old vmalloc interfaces ***/
1003 DEFINE_RWLOCK(vmlist_lock);
1004 struct vm_struct *vmlist;
1006 static struct vm_struct *__get_vm_area_node(unsigned long size,
1007 unsigned long flags, unsigned long start, unsigned long end,
1008 int node, gfp_t gfp_mask, void *caller)
1010 static struct vmap_area *va;
1011 struct vm_struct *area;
1012 struct vm_struct *tmp, **p;
1013 unsigned long align = 1;
1015 BUG_ON(in_interrupt());
1016 if (flags & VM_IOREMAP) {
1017 int bit = fls(size);
1019 if (bit > IOREMAP_MAX_ORDER)
1020 bit = IOREMAP_MAX_ORDER;
1021 else if (bit < PAGE_SHIFT)
1022 bit = PAGE_SHIFT;
1024 align = 1ul << bit;
1027 size = PAGE_ALIGN(size);
1028 if (unlikely(!size))
1029 return NULL;
1031 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1032 if (unlikely(!area))
1033 return NULL;
1036 * We always allocate a guard page.
1038 size += PAGE_SIZE;
1040 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1041 if (IS_ERR(va)) {
1042 kfree(area);
1043 return NULL;
1046 area->flags = flags;
1047 area->addr = (void *)va->va_start;
1048 area->size = size;
1049 area->pages = NULL;
1050 area->nr_pages = 0;
1051 area->phys_addr = 0;
1052 area->caller = caller;
1053 va->private = area;
1054 va->flags |= VM_VM_AREA;
1056 write_lock(&vmlist_lock);
1057 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1058 if (tmp->addr >= area->addr)
1059 break;
1061 area->next = *p;
1062 *p = area;
1063 write_unlock(&vmlist_lock);
1065 return area;
1068 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1069 unsigned long start, unsigned long end)
1071 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1072 __builtin_return_address(0));
1074 EXPORT_SYMBOL_GPL(__get_vm_area);
1077 * get_vm_area - reserve a contiguous kernel virtual area
1078 * @size: size of the area
1079 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1081 * Search an area of @size in the kernel virtual mapping area,
1082 * and reserved it for out purposes. Returns the area descriptor
1083 * on success or %NULL on failure.
1085 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1087 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1088 -1, GFP_KERNEL, __builtin_return_address(0));
1091 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1092 void *caller)
1094 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1095 -1, GFP_KERNEL, caller);
1098 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1099 int node, gfp_t gfp_mask)
1101 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
1102 gfp_mask, __builtin_return_address(0));
1105 static struct vm_struct *find_vm_area(const void *addr)
1107 struct vmap_area *va;
1109 va = find_vmap_area((unsigned long)addr);
1110 if (va && va->flags & VM_VM_AREA)
1111 return va->private;
1113 return NULL;
1117 * remove_vm_area - find and remove a continuous kernel virtual area
1118 * @addr: base address
1120 * Search for the kernel VM area starting at @addr, and remove it.
1121 * This function returns the found VM area, but using it is NOT safe
1122 * on SMP machines, except for its size or flags.
1124 struct vm_struct *remove_vm_area(const void *addr)
1126 struct vmap_area *va;
1128 va = find_vmap_area((unsigned long)addr);
1129 if (va && va->flags & VM_VM_AREA) {
1130 struct vm_struct *vm = va->private;
1131 struct vm_struct *tmp, **p;
1132 free_unmap_vmap_area(va);
1133 vm->size -= PAGE_SIZE;
1135 write_lock(&vmlist_lock);
1136 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1138 *p = tmp->next;
1139 write_unlock(&vmlist_lock);
1141 return vm;
1143 return NULL;
1146 static void __vunmap(const void *addr, int deallocate_pages)
1148 struct vm_struct *area;
1150 if (!addr)
1151 return;
1153 if ((PAGE_SIZE-1) & (unsigned long)addr) {
1154 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1155 return;
1158 area = remove_vm_area(addr);
1159 if (unlikely(!area)) {
1160 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1161 addr);
1162 return;
1165 debug_check_no_locks_freed(addr, area->size);
1166 debug_check_no_obj_freed(addr, area->size);
1168 if (deallocate_pages) {
1169 int i;
1171 for (i = 0; i < area->nr_pages; i++) {
1172 struct page *page = area->pages[i];
1174 BUG_ON(!page);
1175 __free_page(page);
1178 if (area->flags & VM_VPAGES)
1179 vfree(area->pages);
1180 else
1181 kfree(area->pages);
1184 kfree(area);
1185 return;
1189 * vfree - release memory allocated by vmalloc()
1190 * @addr: memory base address
1192 * Free the virtually continuous memory area starting at @addr, as
1193 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1194 * NULL, no operation is performed.
1196 * Must not be called in interrupt context.
1198 void vfree(const void *addr)
1200 BUG_ON(in_interrupt());
1201 __vunmap(addr, 1);
1203 EXPORT_SYMBOL(vfree);
1206 * vunmap - release virtual mapping obtained by vmap()
1207 * @addr: memory base address
1209 * Free the virtually contiguous memory area starting at @addr,
1210 * which was created from the page array passed to vmap().
1212 * Must not be called in interrupt context.
1214 void vunmap(const void *addr)
1216 BUG_ON(in_interrupt());
1217 __vunmap(addr, 0);
1219 EXPORT_SYMBOL(vunmap);
1222 * vmap - map an array of pages into virtually contiguous space
1223 * @pages: array of page pointers
1224 * @count: number of pages to map
1225 * @flags: vm_area->flags
1226 * @prot: page protection for the mapping
1228 * Maps @count pages from @pages into contiguous kernel virtual
1229 * space.
1231 void *vmap(struct page **pages, unsigned int count,
1232 unsigned long flags, pgprot_t prot)
1234 struct vm_struct *area;
1236 if (count > num_physpages)
1237 return NULL;
1239 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1240 __builtin_return_address(0));
1241 if (!area)
1242 return NULL;
1244 if (map_vm_area(area, prot, &pages)) {
1245 vunmap(area->addr);
1246 return NULL;
1249 return area->addr;
1251 EXPORT_SYMBOL(vmap);
1253 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1254 int node, void *caller);
1255 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1256 pgprot_t prot, int node, void *caller)
1258 struct page **pages;
1259 unsigned int nr_pages, array_size, i;
1261 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1262 array_size = (nr_pages * sizeof(struct page *));
1264 area->nr_pages = nr_pages;
1265 /* Please note that the recursion is strictly bounded. */
1266 if (array_size > PAGE_SIZE) {
1267 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
1268 PAGE_KERNEL, node, caller);
1269 area->flags |= VM_VPAGES;
1270 } else {
1271 pages = kmalloc_node(array_size,
1272 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1273 node);
1275 area->pages = pages;
1276 area->caller = caller;
1277 if (!area->pages) {
1278 remove_vm_area(area->addr);
1279 kfree(area);
1280 return NULL;
1283 for (i = 0; i < area->nr_pages; i++) {
1284 struct page *page;
1286 if (node < 0)
1287 page = alloc_page(gfp_mask);
1288 else
1289 page = alloc_pages_node(node, gfp_mask, 0);
1291 if (unlikely(!page)) {
1292 /* Successfully allocated i pages, free them in __vunmap() */
1293 area->nr_pages = i;
1294 goto fail;
1296 area->pages[i] = page;
1299 if (map_vm_area(area, prot, &pages))
1300 goto fail;
1301 return area->addr;
1303 fail:
1304 vfree(area->addr);
1305 return NULL;
1308 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1310 return __vmalloc_area_node(area, gfp_mask, prot, -1,
1311 __builtin_return_address(0));
1315 * __vmalloc_node - allocate virtually contiguous memory
1316 * @size: allocation size
1317 * @gfp_mask: flags for the page level allocator
1318 * @prot: protection mask for the allocated pages
1319 * @node: node to use for allocation or -1
1320 * @caller: caller's return address
1322 * Allocate enough pages to cover @size from the page level
1323 * allocator with @gfp_mask flags. Map them into contiguous
1324 * kernel virtual space, using a pagetable protection of @prot.
1326 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1327 int node, void *caller)
1329 struct vm_struct *area;
1331 size = PAGE_ALIGN(size);
1332 if (!size || (size >> PAGE_SHIFT) > num_physpages)
1333 return NULL;
1335 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1336 node, gfp_mask, caller);
1338 if (!area)
1339 return NULL;
1341 return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1344 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1346 return __vmalloc_node(size, gfp_mask, prot, -1,
1347 __builtin_return_address(0));
1349 EXPORT_SYMBOL(__vmalloc);
1352 * vmalloc - allocate virtually contiguous memory
1353 * @size: allocation size
1354 * Allocate enough pages to cover @size from the page level
1355 * allocator and map them into contiguous kernel virtual space.
1357 * For tight control over page level allocator and protection flags
1358 * use __vmalloc() instead.
1360 void *vmalloc(unsigned long size)
1362 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1363 -1, __builtin_return_address(0));
1365 EXPORT_SYMBOL(vmalloc);
1368 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1369 * @size: allocation size
1371 * The resulting memory area is zeroed so it can be mapped to userspace
1372 * without leaking data.
1374 void *vmalloc_user(unsigned long size)
1376 struct vm_struct *area;
1377 void *ret;
1379 ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1380 PAGE_KERNEL, -1, __builtin_return_address(0));
1381 if (ret) {
1382 area = find_vm_area(ret);
1383 area->flags |= VM_USERMAP;
1385 return ret;
1387 EXPORT_SYMBOL(vmalloc_user);
1390 * vmalloc_node - allocate memory on a specific node
1391 * @size: allocation size
1392 * @node: numa node
1394 * Allocate enough pages to cover @size from the page level
1395 * allocator and map them into contiguous kernel virtual space.
1397 * For tight control over page level allocator and protection flags
1398 * use __vmalloc() instead.
1400 void *vmalloc_node(unsigned long size, int node)
1402 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1403 node, __builtin_return_address(0));
1405 EXPORT_SYMBOL(vmalloc_node);
1407 #ifndef PAGE_KERNEL_EXEC
1408 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1409 #endif
1412 * vmalloc_exec - allocate virtually contiguous, executable memory
1413 * @size: allocation size
1415 * Kernel-internal function to allocate enough pages to cover @size
1416 * the page level allocator and map them into contiguous and
1417 * executable kernel virtual space.
1419 * For tight control over page level allocator and protection flags
1420 * use __vmalloc() instead.
1423 void *vmalloc_exec(unsigned long size)
1425 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1426 -1, __builtin_return_address(0));
1429 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1430 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1431 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1432 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1433 #else
1434 #define GFP_VMALLOC32 GFP_KERNEL
1435 #endif
1438 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1439 * @size: allocation size
1441 * Allocate enough 32bit PA addressable pages to cover @size from the
1442 * page level allocator and map them into contiguous kernel virtual space.
1444 void *vmalloc_32(unsigned long size)
1446 return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
1447 -1, __builtin_return_address(0));
1449 EXPORT_SYMBOL(vmalloc_32);
1452 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1453 * @size: allocation size
1455 * The resulting memory area is 32bit addressable and zeroed so it can be
1456 * mapped to userspace without leaking data.
1458 void *vmalloc_32_user(unsigned long size)
1460 struct vm_struct *area;
1461 void *ret;
1463 ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1464 -1, __builtin_return_address(0));
1465 if (ret) {
1466 area = find_vm_area(ret);
1467 area->flags |= VM_USERMAP;
1469 return ret;
1471 EXPORT_SYMBOL(vmalloc_32_user);
1473 long vread(char *buf, char *addr, unsigned long count)
1475 struct vm_struct *tmp;
1476 char *vaddr, *buf_start = buf;
1477 unsigned long n;
1479 /* Don't allow overflow */
1480 if ((unsigned long) addr + count < count)
1481 count = -(unsigned long) addr;
1483 read_lock(&vmlist_lock);
1484 for (tmp = vmlist; tmp; tmp = tmp->next) {
1485 vaddr = (char *) tmp->addr;
1486 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1487 continue;
1488 while (addr < vaddr) {
1489 if (count == 0)
1490 goto finished;
1491 *buf = '\0';
1492 buf++;
1493 addr++;
1494 count--;
1496 n = vaddr + tmp->size - PAGE_SIZE - addr;
1497 do {
1498 if (count == 0)
1499 goto finished;
1500 *buf = *addr;
1501 buf++;
1502 addr++;
1503 count--;
1504 } while (--n > 0);
1506 finished:
1507 read_unlock(&vmlist_lock);
1508 return buf - buf_start;
1511 long vwrite(char *buf, char *addr, unsigned long count)
1513 struct vm_struct *tmp;
1514 char *vaddr, *buf_start = buf;
1515 unsigned long n;
1517 /* Don't allow overflow */
1518 if ((unsigned long) addr + count < count)
1519 count = -(unsigned long) addr;
1521 read_lock(&vmlist_lock);
1522 for (tmp = vmlist; tmp; tmp = tmp->next) {
1523 vaddr = (char *) tmp->addr;
1524 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1525 continue;
1526 while (addr < vaddr) {
1527 if (count == 0)
1528 goto finished;
1529 buf++;
1530 addr++;
1531 count--;
1533 n = vaddr + tmp->size - PAGE_SIZE - addr;
1534 do {
1535 if (count == 0)
1536 goto finished;
1537 *addr = *buf;
1538 buf++;
1539 addr++;
1540 count--;
1541 } while (--n > 0);
1543 finished:
1544 read_unlock(&vmlist_lock);
1545 return buf - buf_start;
1549 * remap_vmalloc_range - map vmalloc pages to userspace
1550 * @vma: vma to cover (map full range of vma)
1551 * @addr: vmalloc memory
1552 * @pgoff: number of pages into addr before first page to map
1554 * Returns: 0 for success, -Exxx on failure
1556 * This function checks that addr is a valid vmalloc'ed area, and
1557 * that it is big enough to cover the vma. Will return failure if
1558 * that criteria isn't met.
1560 * Similar to remap_pfn_range() (see mm/memory.c)
1562 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1563 unsigned long pgoff)
1565 struct vm_struct *area;
1566 unsigned long uaddr = vma->vm_start;
1567 unsigned long usize = vma->vm_end - vma->vm_start;
1569 if ((PAGE_SIZE-1) & (unsigned long)addr)
1570 return -EINVAL;
1572 area = find_vm_area(addr);
1573 if (!area)
1574 return -EINVAL;
1576 if (!(area->flags & VM_USERMAP))
1577 return -EINVAL;
1579 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1580 return -EINVAL;
1582 addr += pgoff << PAGE_SHIFT;
1583 do {
1584 struct page *page = vmalloc_to_page(addr);
1585 int ret;
1587 ret = vm_insert_page(vma, uaddr, page);
1588 if (ret)
1589 return ret;
1591 uaddr += PAGE_SIZE;
1592 addr += PAGE_SIZE;
1593 usize -= PAGE_SIZE;
1594 } while (usize > 0);
1596 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1597 vma->vm_flags |= VM_RESERVED;
1599 return 0;
1601 EXPORT_SYMBOL(remap_vmalloc_range);
1604 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1605 * have one.
1607 void __attribute__((weak)) vmalloc_sync_all(void)
1612 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1614 /* apply_to_page_range() does all the hard work. */
1615 return 0;
1619 * alloc_vm_area - allocate a range of kernel address space
1620 * @size: size of the area
1622 * Returns: NULL on failure, vm_struct on success
1624 * This function reserves a range of kernel address space, and
1625 * allocates pagetables to map that range. No actual mappings
1626 * are created. If the kernel address space is not shared
1627 * between processes, it syncs the pagetable across all
1628 * processes.
1630 struct vm_struct *alloc_vm_area(size_t size)
1632 struct vm_struct *area;
1634 area = get_vm_area_caller(size, VM_IOREMAP,
1635 __builtin_return_address(0));
1636 if (area == NULL)
1637 return NULL;
1640 * This ensures that page tables are constructed for this region
1641 * of kernel virtual address space and mapped into init_mm.
1643 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1644 area->size, f, NULL)) {
1645 free_vm_area(area);
1646 return NULL;
1649 /* Make sure the pagetables are constructed in process kernel
1650 mappings */
1651 vmalloc_sync_all();
1653 return area;
1655 EXPORT_SYMBOL_GPL(alloc_vm_area);
1657 void free_vm_area(struct vm_struct *area)
1659 struct vm_struct *ret;
1660 ret = remove_vm_area(area->addr);
1661 BUG_ON(ret != area);
1662 kfree(area);
1664 EXPORT_SYMBOL_GPL(free_vm_area);
1667 #ifdef CONFIG_PROC_FS
1668 static void *s_start(struct seq_file *m, loff_t *pos)
1670 loff_t n = *pos;
1671 struct vm_struct *v;
1673 read_lock(&vmlist_lock);
1674 v = vmlist;
1675 while (n > 0 && v) {
1676 n--;
1677 v = v->next;
1679 if (!n)
1680 return v;
1682 return NULL;
1686 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1688 struct vm_struct *v = p;
1690 ++*pos;
1691 return v->next;
1694 static void s_stop(struct seq_file *m, void *p)
1696 read_unlock(&vmlist_lock);
1699 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1701 if (NUMA_BUILD) {
1702 unsigned int nr, *counters = m->private;
1704 if (!counters)
1705 return;
1707 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1709 for (nr = 0; nr < v->nr_pages; nr++)
1710 counters[page_to_nid(v->pages[nr])]++;
1712 for_each_node_state(nr, N_HIGH_MEMORY)
1713 if (counters[nr])
1714 seq_printf(m, " N%u=%u", nr, counters[nr]);
1718 static int s_show(struct seq_file *m, void *p)
1720 struct vm_struct *v = p;
1722 seq_printf(m, "0x%p-0x%p %7ld",
1723 v->addr, v->addr + v->size, v->size);
1725 if (v->caller) {
1726 char buff[KSYM_SYMBOL_LEN];
1728 seq_putc(m, ' ');
1729 sprint_symbol(buff, (unsigned long)v->caller);
1730 seq_puts(m, buff);
1733 if (v->nr_pages)
1734 seq_printf(m, " pages=%d", v->nr_pages);
1736 if (v->phys_addr)
1737 seq_printf(m, " phys=%lx", v->phys_addr);
1739 if (v->flags & VM_IOREMAP)
1740 seq_printf(m, " ioremap");
1742 if (v->flags & VM_ALLOC)
1743 seq_printf(m, " vmalloc");
1745 if (v->flags & VM_MAP)
1746 seq_printf(m, " vmap");
1748 if (v->flags & VM_USERMAP)
1749 seq_printf(m, " user");
1751 if (v->flags & VM_VPAGES)
1752 seq_printf(m, " vpages");
1754 show_numa_info(m, v);
1755 seq_putc(m, '\n');
1756 return 0;
1759 static const struct seq_operations vmalloc_op = {
1760 .start = s_start,
1761 .next = s_next,
1762 .stop = s_stop,
1763 .show = s_show,
1766 static int vmalloc_open(struct inode *inode, struct file *file)
1768 unsigned int *ptr = NULL;
1769 int ret;
1771 if (NUMA_BUILD)
1772 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1773 ret = seq_open(file, &vmalloc_op);
1774 if (!ret) {
1775 struct seq_file *m = file->private_data;
1776 m->private = ptr;
1777 } else
1778 kfree(ptr);
1779 return ret;
1782 static const struct file_operations proc_vmalloc_operations = {
1783 .open = vmalloc_open,
1784 .read = seq_read,
1785 .llseek = seq_lseek,
1786 .release = seq_release_private,
1789 static int __init proc_vmalloc_init(void)
1791 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1792 return 0;
1794 module_init(proc_vmalloc_init);
1795 #endif