Merge branch 'for-linus' of git://git.infradead.org/users/eparis/notify
[linux-2.6/mini2440.git] / net / core / sock.c
blobbbb25be7ddfe614432ca8627ba4cbe791f57d569
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
83 * To Fix:
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
127 #include <linux/filter.h>
129 #ifdef CONFIG_INET
130 #include <net/tcp.h>
131 #endif
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
143 * locks is fast):
145 static const char *af_family_key_strings[AF_MAX+1] = {
146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
158 "sk_lock-AF_IEEE802154",
159 "sk_lock-AF_MAX"
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
174 "slock-AF_IEEE802154",
175 "slock-AF_MAX"
177 static const char *af_family_clock_key_strings[AF_MAX+1] = {
178 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
179 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
180 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
181 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
182 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
183 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
184 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
185 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
186 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
187 "clock-27" , "clock-28" , "clock-AF_CAN" ,
188 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
189 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
190 "clock-AF_IEEE802154",
191 "clock-AF_MAX"
195 * sk_callback_lock locking rules are per-address-family,
196 * so split the lock classes by using a per-AF key:
198 static struct lock_class_key af_callback_keys[AF_MAX];
200 /* Take into consideration the size of the struct sk_buff overhead in the
201 * determination of these values, since that is non-constant across
202 * platforms. This makes socket queueing behavior and performance
203 * not depend upon such differences.
205 #define _SK_MEM_PACKETS 256
206 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218 EXPORT_SYMBOL(sysctl_optmem_max);
220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
222 struct timeval tv;
224 if (optlen < sizeof(tv))
225 return -EINVAL;
226 if (copy_from_user(&tv, optval, sizeof(tv)))
227 return -EFAULT;
228 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
229 return -EDOM;
231 if (tv.tv_sec < 0) {
232 static int warned __read_mostly;
234 *timeo_p = 0;
235 if (warned < 10 && net_ratelimit()) {
236 warned++;
237 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238 "tries to set negative timeout\n",
239 current->comm, task_pid_nr(current));
241 return 0;
243 *timeo_p = MAX_SCHEDULE_TIMEOUT;
244 if (tv.tv_sec == 0 && tv.tv_usec == 0)
245 return 0;
246 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
248 return 0;
251 static void sock_warn_obsolete_bsdism(const char *name)
253 static int warned;
254 static char warncomm[TASK_COMM_LEN];
255 if (strcmp(warncomm, current->comm) && warned < 5) {
256 strcpy(warncomm, current->comm);
257 printk(KERN_WARNING "process `%s' is using obsolete "
258 "%s SO_BSDCOMPAT\n", warncomm, name);
259 warned++;
263 static void sock_disable_timestamp(struct sock *sk, int flag)
265 if (sock_flag(sk, flag)) {
266 sock_reset_flag(sk, flag);
267 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269 net_disable_timestamp();
275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
277 int err = 0;
278 int skb_len;
280 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
281 number of warnings when compiling with -W --ANK
283 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
284 (unsigned)sk->sk_rcvbuf) {
285 err = -ENOMEM;
286 goto out;
289 err = sk_filter(sk, skb);
290 if (err)
291 goto out;
293 if (!sk_rmem_schedule(sk, skb->truesize)) {
294 err = -ENOBUFS;
295 goto out;
298 skb->dev = NULL;
299 skb_set_owner_r(skb, sk);
301 /* Cache the SKB length before we tack it onto the receive
302 * queue. Once it is added it no longer belongs to us and
303 * may be freed by other threads of control pulling packets
304 * from the queue.
306 skb_len = skb->len;
308 skb_queue_tail(&sk->sk_receive_queue, skb);
310 if (!sock_flag(sk, SOCK_DEAD))
311 sk->sk_data_ready(sk, skb_len);
312 out:
313 return err;
315 EXPORT_SYMBOL(sock_queue_rcv_skb);
317 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
319 int rc = NET_RX_SUCCESS;
321 if (sk_filter(sk, skb))
322 goto discard_and_relse;
324 skb->dev = NULL;
326 if (nested)
327 bh_lock_sock_nested(sk);
328 else
329 bh_lock_sock(sk);
330 if (!sock_owned_by_user(sk)) {
332 * trylock + unlock semantics:
334 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
336 rc = sk_backlog_rcv(sk, skb);
338 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
339 } else
340 sk_add_backlog(sk, skb);
341 bh_unlock_sock(sk);
342 out:
343 sock_put(sk);
344 return rc;
345 discard_and_relse:
346 kfree_skb(skb);
347 goto out;
349 EXPORT_SYMBOL(sk_receive_skb);
351 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
353 struct dst_entry *dst = sk->sk_dst_cache;
355 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
356 sk->sk_dst_cache = NULL;
357 dst_release(dst);
358 return NULL;
361 return dst;
363 EXPORT_SYMBOL(__sk_dst_check);
365 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
367 struct dst_entry *dst = sk_dst_get(sk);
369 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
370 sk_dst_reset(sk);
371 dst_release(dst);
372 return NULL;
375 return dst;
377 EXPORT_SYMBOL(sk_dst_check);
379 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
381 int ret = -ENOPROTOOPT;
382 #ifdef CONFIG_NETDEVICES
383 struct net *net = sock_net(sk);
384 char devname[IFNAMSIZ];
385 int index;
387 /* Sorry... */
388 ret = -EPERM;
389 if (!capable(CAP_NET_RAW))
390 goto out;
392 ret = -EINVAL;
393 if (optlen < 0)
394 goto out;
396 /* Bind this socket to a particular device like "eth0",
397 * as specified in the passed interface name. If the
398 * name is "" or the option length is zero the socket
399 * is not bound.
401 if (optlen > IFNAMSIZ - 1)
402 optlen = IFNAMSIZ - 1;
403 memset(devname, 0, sizeof(devname));
405 ret = -EFAULT;
406 if (copy_from_user(devname, optval, optlen))
407 goto out;
409 if (devname[0] == '\0') {
410 index = 0;
411 } else {
412 struct net_device *dev = dev_get_by_name(net, devname);
414 ret = -ENODEV;
415 if (!dev)
416 goto out;
418 index = dev->ifindex;
419 dev_put(dev);
422 lock_sock(sk);
423 sk->sk_bound_dev_if = index;
424 sk_dst_reset(sk);
425 release_sock(sk);
427 ret = 0;
429 out:
430 #endif
432 return ret;
435 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
437 if (valbool)
438 sock_set_flag(sk, bit);
439 else
440 sock_reset_flag(sk, bit);
444 * This is meant for all protocols to use and covers goings on
445 * at the socket level. Everything here is generic.
448 int sock_setsockopt(struct socket *sock, int level, int optname,
449 char __user *optval, int optlen)
451 struct sock *sk = sock->sk;
452 int val;
453 int valbool;
454 struct linger ling;
455 int ret = 0;
458 * Options without arguments
461 if (optname == SO_BINDTODEVICE)
462 return sock_bindtodevice(sk, optval, optlen);
464 if (optlen < sizeof(int))
465 return -EINVAL;
467 if (get_user(val, (int __user *)optval))
468 return -EFAULT;
470 valbool = val ? 1 : 0;
472 lock_sock(sk);
474 switch (optname) {
475 case SO_DEBUG:
476 if (val && !capable(CAP_NET_ADMIN))
477 ret = -EACCES;
478 else
479 sock_valbool_flag(sk, SOCK_DBG, valbool);
480 break;
481 case SO_REUSEADDR:
482 sk->sk_reuse = valbool;
483 break;
484 case SO_TYPE:
485 case SO_ERROR:
486 ret = -ENOPROTOOPT;
487 break;
488 case SO_DONTROUTE:
489 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
490 break;
491 case SO_BROADCAST:
492 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
493 break;
494 case SO_SNDBUF:
495 /* Don't error on this BSD doesn't and if you think
496 about it this is right. Otherwise apps have to
497 play 'guess the biggest size' games. RCVBUF/SNDBUF
498 are treated in BSD as hints */
500 if (val > sysctl_wmem_max)
501 val = sysctl_wmem_max;
502 set_sndbuf:
503 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
504 if ((val * 2) < SOCK_MIN_SNDBUF)
505 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
506 else
507 sk->sk_sndbuf = val * 2;
510 * Wake up sending tasks if we
511 * upped the value.
513 sk->sk_write_space(sk);
514 break;
516 case SO_SNDBUFFORCE:
517 if (!capable(CAP_NET_ADMIN)) {
518 ret = -EPERM;
519 break;
521 goto set_sndbuf;
523 case SO_RCVBUF:
524 /* Don't error on this BSD doesn't and if you think
525 about it this is right. Otherwise apps have to
526 play 'guess the biggest size' games. RCVBUF/SNDBUF
527 are treated in BSD as hints */
529 if (val > sysctl_rmem_max)
530 val = sysctl_rmem_max;
531 set_rcvbuf:
532 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
534 * We double it on the way in to account for
535 * "struct sk_buff" etc. overhead. Applications
536 * assume that the SO_RCVBUF setting they make will
537 * allow that much actual data to be received on that
538 * socket.
540 * Applications are unaware that "struct sk_buff" and
541 * other overheads allocate from the receive buffer
542 * during socket buffer allocation.
544 * And after considering the possible alternatives,
545 * returning the value we actually used in getsockopt
546 * is the most desirable behavior.
548 if ((val * 2) < SOCK_MIN_RCVBUF)
549 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
550 else
551 sk->sk_rcvbuf = val * 2;
552 break;
554 case SO_RCVBUFFORCE:
555 if (!capable(CAP_NET_ADMIN)) {
556 ret = -EPERM;
557 break;
559 goto set_rcvbuf;
561 case SO_KEEPALIVE:
562 #ifdef CONFIG_INET
563 if (sk->sk_protocol == IPPROTO_TCP)
564 tcp_set_keepalive(sk, valbool);
565 #endif
566 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
567 break;
569 case SO_OOBINLINE:
570 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
571 break;
573 case SO_NO_CHECK:
574 sk->sk_no_check = valbool;
575 break;
577 case SO_PRIORITY:
578 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
579 sk->sk_priority = val;
580 else
581 ret = -EPERM;
582 break;
584 case SO_LINGER:
585 if (optlen < sizeof(ling)) {
586 ret = -EINVAL; /* 1003.1g */
587 break;
589 if (copy_from_user(&ling, optval, sizeof(ling))) {
590 ret = -EFAULT;
591 break;
593 if (!ling.l_onoff)
594 sock_reset_flag(sk, SOCK_LINGER);
595 else {
596 #if (BITS_PER_LONG == 32)
597 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
598 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
599 else
600 #endif
601 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
602 sock_set_flag(sk, SOCK_LINGER);
604 break;
606 case SO_BSDCOMPAT:
607 sock_warn_obsolete_bsdism("setsockopt");
608 break;
610 case SO_PASSCRED:
611 if (valbool)
612 set_bit(SOCK_PASSCRED, &sock->flags);
613 else
614 clear_bit(SOCK_PASSCRED, &sock->flags);
615 break;
617 case SO_TIMESTAMP:
618 case SO_TIMESTAMPNS:
619 if (valbool) {
620 if (optname == SO_TIMESTAMP)
621 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
622 else
623 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
624 sock_set_flag(sk, SOCK_RCVTSTAMP);
625 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
626 } else {
627 sock_reset_flag(sk, SOCK_RCVTSTAMP);
628 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
630 break;
632 case SO_TIMESTAMPING:
633 if (val & ~SOF_TIMESTAMPING_MASK) {
634 ret = -EINVAL;
635 break;
637 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
638 val & SOF_TIMESTAMPING_TX_HARDWARE);
639 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
640 val & SOF_TIMESTAMPING_TX_SOFTWARE);
641 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
642 val & SOF_TIMESTAMPING_RX_HARDWARE);
643 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
644 sock_enable_timestamp(sk,
645 SOCK_TIMESTAMPING_RX_SOFTWARE);
646 else
647 sock_disable_timestamp(sk,
648 SOCK_TIMESTAMPING_RX_SOFTWARE);
649 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
650 val & SOF_TIMESTAMPING_SOFTWARE);
651 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
652 val & SOF_TIMESTAMPING_SYS_HARDWARE);
653 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
654 val & SOF_TIMESTAMPING_RAW_HARDWARE);
655 break;
657 case SO_RCVLOWAT:
658 if (val < 0)
659 val = INT_MAX;
660 sk->sk_rcvlowat = val ? : 1;
661 break;
663 case SO_RCVTIMEO:
664 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
665 break;
667 case SO_SNDTIMEO:
668 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
669 break;
671 case SO_ATTACH_FILTER:
672 ret = -EINVAL;
673 if (optlen == sizeof(struct sock_fprog)) {
674 struct sock_fprog fprog;
676 ret = -EFAULT;
677 if (copy_from_user(&fprog, optval, sizeof(fprog)))
678 break;
680 ret = sk_attach_filter(&fprog, sk);
682 break;
684 case SO_DETACH_FILTER:
685 ret = sk_detach_filter(sk);
686 break;
688 case SO_PASSSEC:
689 if (valbool)
690 set_bit(SOCK_PASSSEC, &sock->flags);
691 else
692 clear_bit(SOCK_PASSSEC, &sock->flags);
693 break;
694 case SO_MARK:
695 if (!capable(CAP_NET_ADMIN))
696 ret = -EPERM;
697 else
698 sk->sk_mark = val;
699 break;
701 /* We implement the SO_SNDLOWAT etc to
702 not be settable (1003.1g 5.3) */
703 default:
704 ret = -ENOPROTOOPT;
705 break;
707 release_sock(sk);
708 return ret;
710 EXPORT_SYMBOL(sock_setsockopt);
713 int sock_getsockopt(struct socket *sock, int level, int optname,
714 char __user *optval, int __user *optlen)
716 struct sock *sk = sock->sk;
718 union {
719 int val;
720 struct linger ling;
721 struct timeval tm;
722 } v;
724 unsigned int lv = sizeof(int);
725 int len;
727 if (get_user(len, optlen))
728 return -EFAULT;
729 if (len < 0)
730 return -EINVAL;
732 memset(&v, 0, sizeof(v));
734 switch (optname) {
735 case SO_DEBUG:
736 v.val = sock_flag(sk, SOCK_DBG);
737 break;
739 case SO_DONTROUTE:
740 v.val = sock_flag(sk, SOCK_LOCALROUTE);
741 break;
743 case SO_BROADCAST:
744 v.val = !!sock_flag(sk, SOCK_BROADCAST);
745 break;
747 case SO_SNDBUF:
748 v.val = sk->sk_sndbuf;
749 break;
751 case SO_RCVBUF:
752 v.val = sk->sk_rcvbuf;
753 break;
755 case SO_REUSEADDR:
756 v.val = sk->sk_reuse;
757 break;
759 case SO_KEEPALIVE:
760 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
761 break;
763 case SO_TYPE:
764 v.val = sk->sk_type;
765 break;
767 case SO_ERROR:
768 v.val = -sock_error(sk);
769 if (v.val == 0)
770 v.val = xchg(&sk->sk_err_soft, 0);
771 break;
773 case SO_OOBINLINE:
774 v.val = !!sock_flag(sk, SOCK_URGINLINE);
775 break;
777 case SO_NO_CHECK:
778 v.val = sk->sk_no_check;
779 break;
781 case SO_PRIORITY:
782 v.val = sk->sk_priority;
783 break;
785 case SO_LINGER:
786 lv = sizeof(v.ling);
787 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
788 v.ling.l_linger = sk->sk_lingertime / HZ;
789 break;
791 case SO_BSDCOMPAT:
792 sock_warn_obsolete_bsdism("getsockopt");
793 break;
795 case SO_TIMESTAMP:
796 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
797 !sock_flag(sk, SOCK_RCVTSTAMPNS);
798 break;
800 case SO_TIMESTAMPNS:
801 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
802 break;
804 case SO_TIMESTAMPING:
805 v.val = 0;
806 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
807 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
808 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
809 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
810 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
811 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
812 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
813 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
814 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
815 v.val |= SOF_TIMESTAMPING_SOFTWARE;
816 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
817 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
818 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
819 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
820 break;
822 case SO_RCVTIMEO:
823 lv = sizeof(struct timeval);
824 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
825 v.tm.tv_sec = 0;
826 v.tm.tv_usec = 0;
827 } else {
828 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
829 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
831 break;
833 case SO_SNDTIMEO:
834 lv = sizeof(struct timeval);
835 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
836 v.tm.tv_sec = 0;
837 v.tm.tv_usec = 0;
838 } else {
839 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
840 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
842 break;
844 case SO_RCVLOWAT:
845 v.val = sk->sk_rcvlowat;
846 break;
848 case SO_SNDLOWAT:
849 v.val = 1;
850 break;
852 case SO_PASSCRED:
853 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
854 break;
856 case SO_PEERCRED:
857 if (len > sizeof(sk->sk_peercred))
858 len = sizeof(sk->sk_peercred);
859 if (copy_to_user(optval, &sk->sk_peercred, len))
860 return -EFAULT;
861 goto lenout;
863 case SO_PEERNAME:
865 char address[128];
867 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
868 return -ENOTCONN;
869 if (lv < len)
870 return -EINVAL;
871 if (copy_to_user(optval, address, len))
872 return -EFAULT;
873 goto lenout;
876 /* Dubious BSD thing... Probably nobody even uses it, but
877 * the UNIX standard wants it for whatever reason... -DaveM
879 case SO_ACCEPTCONN:
880 v.val = sk->sk_state == TCP_LISTEN;
881 break;
883 case SO_PASSSEC:
884 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
885 break;
887 case SO_PEERSEC:
888 return security_socket_getpeersec_stream(sock, optval, optlen, len);
890 case SO_MARK:
891 v.val = sk->sk_mark;
892 break;
894 default:
895 return -ENOPROTOOPT;
898 if (len > lv)
899 len = lv;
900 if (copy_to_user(optval, &v, len))
901 return -EFAULT;
902 lenout:
903 if (put_user(len, optlen))
904 return -EFAULT;
905 return 0;
909 * Initialize an sk_lock.
911 * (We also register the sk_lock with the lock validator.)
913 static inline void sock_lock_init(struct sock *sk)
915 sock_lock_init_class_and_name(sk,
916 af_family_slock_key_strings[sk->sk_family],
917 af_family_slock_keys + sk->sk_family,
918 af_family_key_strings[sk->sk_family],
919 af_family_keys + sk->sk_family);
923 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
924 * even temporarly, because of RCU lookups. sk_node should also be left as is.
926 static void sock_copy(struct sock *nsk, const struct sock *osk)
928 #ifdef CONFIG_SECURITY_NETWORK
929 void *sptr = nsk->sk_security;
930 #endif
931 BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
932 sizeof(osk->sk_node) + sizeof(osk->sk_refcnt));
933 memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
934 osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
935 #ifdef CONFIG_SECURITY_NETWORK
936 nsk->sk_security = sptr;
937 security_sk_clone(osk, nsk);
938 #endif
941 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
942 int family)
944 struct sock *sk;
945 struct kmem_cache *slab;
947 slab = prot->slab;
948 if (slab != NULL) {
949 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
950 if (!sk)
951 return sk;
952 if (priority & __GFP_ZERO) {
954 * caches using SLAB_DESTROY_BY_RCU should let
955 * sk_node.next un-modified. Special care is taken
956 * when initializing object to zero.
958 if (offsetof(struct sock, sk_node.next) != 0)
959 memset(sk, 0, offsetof(struct sock, sk_node.next));
960 memset(&sk->sk_node.pprev, 0,
961 prot->obj_size - offsetof(struct sock,
962 sk_node.pprev));
965 else
966 sk = kmalloc(prot->obj_size, priority);
968 if (sk != NULL) {
969 kmemcheck_annotate_bitfield(sk, flags);
971 if (security_sk_alloc(sk, family, priority))
972 goto out_free;
974 if (!try_module_get(prot->owner))
975 goto out_free_sec;
978 return sk;
980 out_free_sec:
981 security_sk_free(sk);
982 out_free:
983 if (slab != NULL)
984 kmem_cache_free(slab, sk);
985 else
986 kfree(sk);
987 return NULL;
990 static void sk_prot_free(struct proto *prot, struct sock *sk)
992 struct kmem_cache *slab;
993 struct module *owner;
995 owner = prot->owner;
996 slab = prot->slab;
998 security_sk_free(sk);
999 if (slab != NULL)
1000 kmem_cache_free(slab, sk);
1001 else
1002 kfree(sk);
1003 module_put(owner);
1007 * sk_alloc - All socket objects are allocated here
1008 * @net: the applicable net namespace
1009 * @family: protocol family
1010 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1011 * @prot: struct proto associated with this new sock instance
1013 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1014 struct proto *prot)
1016 struct sock *sk;
1018 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1019 if (sk) {
1020 sk->sk_family = family;
1022 * See comment in struct sock definition to understand
1023 * why we need sk_prot_creator -acme
1025 sk->sk_prot = sk->sk_prot_creator = prot;
1026 sock_lock_init(sk);
1027 sock_net_set(sk, get_net(net));
1030 return sk;
1032 EXPORT_SYMBOL(sk_alloc);
1034 static void __sk_free(struct sock *sk)
1036 struct sk_filter *filter;
1038 if (sk->sk_destruct)
1039 sk->sk_destruct(sk);
1041 filter = rcu_dereference(sk->sk_filter);
1042 if (filter) {
1043 sk_filter_uncharge(sk, filter);
1044 rcu_assign_pointer(sk->sk_filter, NULL);
1047 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1048 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1050 if (atomic_read(&sk->sk_omem_alloc))
1051 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1052 __func__, atomic_read(&sk->sk_omem_alloc));
1054 put_net(sock_net(sk));
1055 sk_prot_free(sk->sk_prot_creator, sk);
1058 void sk_free(struct sock *sk)
1061 * We substract one from sk_wmem_alloc and can know if
1062 * some packets are still in some tx queue.
1063 * If not null, sock_wfree() will call __sk_free(sk) later
1065 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1066 __sk_free(sk);
1068 EXPORT_SYMBOL(sk_free);
1071 * Last sock_put should drop referrence to sk->sk_net. It has already
1072 * been dropped in sk_change_net. Taking referrence to stopping namespace
1073 * is not an option.
1074 * Take referrence to a socket to remove it from hash _alive_ and after that
1075 * destroy it in the context of init_net.
1077 void sk_release_kernel(struct sock *sk)
1079 if (sk == NULL || sk->sk_socket == NULL)
1080 return;
1082 sock_hold(sk);
1083 sock_release(sk->sk_socket);
1084 release_net(sock_net(sk));
1085 sock_net_set(sk, get_net(&init_net));
1086 sock_put(sk);
1088 EXPORT_SYMBOL(sk_release_kernel);
1090 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1092 struct sock *newsk;
1094 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1095 if (newsk != NULL) {
1096 struct sk_filter *filter;
1098 sock_copy(newsk, sk);
1100 /* SANITY */
1101 get_net(sock_net(newsk));
1102 sk_node_init(&newsk->sk_node);
1103 sock_lock_init(newsk);
1104 bh_lock_sock(newsk);
1105 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1107 atomic_set(&newsk->sk_rmem_alloc, 0);
1109 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1111 atomic_set(&newsk->sk_wmem_alloc, 1);
1112 atomic_set(&newsk->sk_omem_alloc, 0);
1113 skb_queue_head_init(&newsk->sk_receive_queue);
1114 skb_queue_head_init(&newsk->sk_write_queue);
1115 #ifdef CONFIG_NET_DMA
1116 skb_queue_head_init(&newsk->sk_async_wait_queue);
1117 #endif
1119 rwlock_init(&newsk->sk_dst_lock);
1120 rwlock_init(&newsk->sk_callback_lock);
1121 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1122 af_callback_keys + newsk->sk_family,
1123 af_family_clock_key_strings[newsk->sk_family]);
1125 newsk->sk_dst_cache = NULL;
1126 newsk->sk_wmem_queued = 0;
1127 newsk->sk_forward_alloc = 0;
1128 newsk->sk_send_head = NULL;
1129 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1131 sock_reset_flag(newsk, SOCK_DONE);
1132 skb_queue_head_init(&newsk->sk_error_queue);
1134 filter = newsk->sk_filter;
1135 if (filter != NULL)
1136 sk_filter_charge(newsk, filter);
1138 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1139 /* It is still raw copy of parent, so invalidate
1140 * destructor and make plain sk_free() */
1141 newsk->sk_destruct = NULL;
1142 sk_free(newsk);
1143 newsk = NULL;
1144 goto out;
1147 newsk->sk_err = 0;
1148 newsk->sk_priority = 0;
1150 * Before updating sk_refcnt, we must commit prior changes to memory
1151 * (Documentation/RCU/rculist_nulls.txt for details)
1153 smp_wmb();
1154 atomic_set(&newsk->sk_refcnt, 2);
1157 * Increment the counter in the same struct proto as the master
1158 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1159 * is the same as sk->sk_prot->socks, as this field was copied
1160 * with memcpy).
1162 * This _changes_ the previous behaviour, where
1163 * tcp_create_openreq_child always was incrementing the
1164 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1165 * to be taken into account in all callers. -acme
1167 sk_refcnt_debug_inc(newsk);
1168 sk_set_socket(newsk, NULL);
1169 newsk->sk_sleep = NULL;
1171 if (newsk->sk_prot->sockets_allocated)
1172 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1174 out:
1175 return newsk;
1177 EXPORT_SYMBOL_GPL(sk_clone);
1179 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1181 __sk_dst_set(sk, dst);
1182 sk->sk_route_caps = dst->dev->features;
1183 if (sk->sk_route_caps & NETIF_F_GSO)
1184 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1185 if (sk_can_gso(sk)) {
1186 if (dst->header_len) {
1187 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1188 } else {
1189 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1190 sk->sk_gso_max_size = dst->dev->gso_max_size;
1194 EXPORT_SYMBOL_GPL(sk_setup_caps);
1196 void __init sk_init(void)
1198 if (num_physpages <= 4096) {
1199 sysctl_wmem_max = 32767;
1200 sysctl_rmem_max = 32767;
1201 sysctl_wmem_default = 32767;
1202 sysctl_rmem_default = 32767;
1203 } else if (num_physpages >= 131072) {
1204 sysctl_wmem_max = 131071;
1205 sysctl_rmem_max = 131071;
1210 * Simple resource managers for sockets.
1215 * Write buffer destructor automatically called from kfree_skb.
1217 void sock_wfree(struct sk_buff *skb)
1219 struct sock *sk = skb->sk;
1220 int res;
1222 /* In case it might be waiting for more memory. */
1223 res = atomic_sub_return(skb->truesize, &sk->sk_wmem_alloc);
1224 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1225 sk->sk_write_space(sk);
1227 * if sk_wmem_alloc reached 0, we are last user and should
1228 * free this sock, as sk_free() call could not do it.
1230 if (res == 0)
1231 __sk_free(sk);
1233 EXPORT_SYMBOL(sock_wfree);
1236 * Read buffer destructor automatically called from kfree_skb.
1238 void sock_rfree(struct sk_buff *skb)
1240 struct sock *sk = skb->sk;
1242 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1243 sk_mem_uncharge(skb->sk, skb->truesize);
1245 EXPORT_SYMBOL(sock_rfree);
1248 int sock_i_uid(struct sock *sk)
1250 int uid;
1252 read_lock(&sk->sk_callback_lock);
1253 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1254 read_unlock(&sk->sk_callback_lock);
1255 return uid;
1257 EXPORT_SYMBOL(sock_i_uid);
1259 unsigned long sock_i_ino(struct sock *sk)
1261 unsigned long ino;
1263 read_lock(&sk->sk_callback_lock);
1264 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1265 read_unlock(&sk->sk_callback_lock);
1266 return ino;
1268 EXPORT_SYMBOL(sock_i_ino);
1271 * Allocate a skb from the socket's send buffer.
1273 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1274 gfp_t priority)
1276 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1277 struct sk_buff *skb = alloc_skb(size, priority);
1278 if (skb) {
1279 skb_set_owner_w(skb, sk);
1280 return skb;
1283 return NULL;
1285 EXPORT_SYMBOL(sock_wmalloc);
1288 * Allocate a skb from the socket's receive buffer.
1290 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1291 gfp_t priority)
1293 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1294 struct sk_buff *skb = alloc_skb(size, priority);
1295 if (skb) {
1296 skb_set_owner_r(skb, sk);
1297 return skb;
1300 return NULL;
1304 * Allocate a memory block from the socket's option memory buffer.
1306 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1308 if ((unsigned)size <= sysctl_optmem_max &&
1309 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1310 void *mem;
1311 /* First do the add, to avoid the race if kmalloc
1312 * might sleep.
1314 atomic_add(size, &sk->sk_omem_alloc);
1315 mem = kmalloc(size, priority);
1316 if (mem)
1317 return mem;
1318 atomic_sub(size, &sk->sk_omem_alloc);
1320 return NULL;
1322 EXPORT_SYMBOL(sock_kmalloc);
1325 * Free an option memory block.
1327 void sock_kfree_s(struct sock *sk, void *mem, int size)
1329 kfree(mem);
1330 atomic_sub(size, &sk->sk_omem_alloc);
1332 EXPORT_SYMBOL(sock_kfree_s);
1334 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1335 I think, these locks should be removed for datagram sockets.
1337 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1339 DEFINE_WAIT(wait);
1341 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1342 for (;;) {
1343 if (!timeo)
1344 break;
1345 if (signal_pending(current))
1346 break;
1347 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1348 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1349 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1350 break;
1351 if (sk->sk_shutdown & SEND_SHUTDOWN)
1352 break;
1353 if (sk->sk_err)
1354 break;
1355 timeo = schedule_timeout(timeo);
1357 finish_wait(sk->sk_sleep, &wait);
1358 return timeo;
1363 * Generic send/receive buffer handlers
1366 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1367 unsigned long data_len, int noblock,
1368 int *errcode)
1370 struct sk_buff *skb;
1371 gfp_t gfp_mask;
1372 long timeo;
1373 int err;
1375 gfp_mask = sk->sk_allocation;
1376 if (gfp_mask & __GFP_WAIT)
1377 gfp_mask |= __GFP_REPEAT;
1379 timeo = sock_sndtimeo(sk, noblock);
1380 while (1) {
1381 err = sock_error(sk);
1382 if (err != 0)
1383 goto failure;
1385 err = -EPIPE;
1386 if (sk->sk_shutdown & SEND_SHUTDOWN)
1387 goto failure;
1389 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1390 skb = alloc_skb(header_len, gfp_mask);
1391 if (skb) {
1392 int npages;
1393 int i;
1395 /* No pages, we're done... */
1396 if (!data_len)
1397 break;
1399 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1400 skb->truesize += data_len;
1401 skb_shinfo(skb)->nr_frags = npages;
1402 for (i = 0; i < npages; i++) {
1403 struct page *page;
1404 skb_frag_t *frag;
1406 page = alloc_pages(sk->sk_allocation, 0);
1407 if (!page) {
1408 err = -ENOBUFS;
1409 skb_shinfo(skb)->nr_frags = i;
1410 kfree_skb(skb);
1411 goto failure;
1414 frag = &skb_shinfo(skb)->frags[i];
1415 frag->page = page;
1416 frag->page_offset = 0;
1417 frag->size = (data_len >= PAGE_SIZE ?
1418 PAGE_SIZE :
1419 data_len);
1420 data_len -= PAGE_SIZE;
1423 /* Full success... */
1424 break;
1426 err = -ENOBUFS;
1427 goto failure;
1429 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1430 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1431 err = -EAGAIN;
1432 if (!timeo)
1433 goto failure;
1434 if (signal_pending(current))
1435 goto interrupted;
1436 timeo = sock_wait_for_wmem(sk, timeo);
1439 skb_set_owner_w(skb, sk);
1440 return skb;
1442 interrupted:
1443 err = sock_intr_errno(timeo);
1444 failure:
1445 *errcode = err;
1446 return NULL;
1448 EXPORT_SYMBOL(sock_alloc_send_pskb);
1450 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1451 int noblock, int *errcode)
1453 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1455 EXPORT_SYMBOL(sock_alloc_send_skb);
1457 static void __lock_sock(struct sock *sk)
1459 DEFINE_WAIT(wait);
1461 for (;;) {
1462 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1463 TASK_UNINTERRUPTIBLE);
1464 spin_unlock_bh(&sk->sk_lock.slock);
1465 schedule();
1466 spin_lock_bh(&sk->sk_lock.slock);
1467 if (!sock_owned_by_user(sk))
1468 break;
1470 finish_wait(&sk->sk_lock.wq, &wait);
1473 static void __release_sock(struct sock *sk)
1475 struct sk_buff *skb = sk->sk_backlog.head;
1477 do {
1478 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1479 bh_unlock_sock(sk);
1481 do {
1482 struct sk_buff *next = skb->next;
1484 skb->next = NULL;
1485 sk_backlog_rcv(sk, skb);
1488 * We are in process context here with softirqs
1489 * disabled, use cond_resched_softirq() to preempt.
1490 * This is safe to do because we've taken the backlog
1491 * queue private:
1493 cond_resched_softirq();
1495 skb = next;
1496 } while (skb != NULL);
1498 bh_lock_sock(sk);
1499 } while ((skb = sk->sk_backlog.head) != NULL);
1503 * sk_wait_data - wait for data to arrive at sk_receive_queue
1504 * @sk: sock to wait on
1505 * @timeo: for how long
1507 * Now socket state including sk->sk_err is changed only under lock,
1508 * hence we may omit checks after joining wait queue.
1509 * We check receive queue before schedule() only as optimization;
1510 * it is very likely that release_sock() added new data.
1512 int sk_wait_data(struct sock *sk, long *timeo)
1514 int rc;
1515 DEFINE_WAIT(wait);
1517 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1518 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1519 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1520 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1521 finish_wait(sk->sk_sleep, &wait);
1522 return rc;
1524 EXPORT_SYMBOL(sk_wait_data);
1527 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1528 * @sk: socket
1529 * @size: memory size to allocate
1530 * @kind: allocation type
1532 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1533 * rmem allocation. This function assumes that protocols which have
1534 * memory_pressure use sk_wmem_queued as write buffer accounting.
1536 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1538 struct proto *prot = sk->sk_prot;
1539 int amt = sk_mem_pages(size);
1540 int allocated;
1542 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1543 allocated = atomic_add_return(amt, prot->memory_allocated);
1545 /* Under limit. */
1546 if (allocated <= prot->sysctl_mem[0]) {
1547 if (prot->memory_pressure && *prot->memory_pressure)
1548 *prot->memory_pressure = 0;
1549 return 1;
1552 /* Under pressure. */
1553 if (allocated > prot->sysctl_mem[1])
1554 if (prot->enter_memory_pressure)
1555 prot->enter_memory_pressure(sk);
1557 /* Over hard limit. */
1558 if (allocated > prot->sysctl_mem[2])
1559 goto suppress_allocation;
1561 /* guarantee minimum buffer size under pressure */
1562 if (kind == SK_MEM_RECV) {
1563 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1564 return 1;
1565 } else { /* SK_MEM_SEND */
1566 if (sk->sk_type == SOCK_STREAM) {
1567 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1568 return 1;
1569 } else if (atomic_read(&sk->sk_wmem_alloc) <
1570 prot->sysctl_wmem[0])
1571 return 1;
1574 if (prot->memory_pressure) {
1575 int alloc;
1577 if (!*prot->memory_pressure)
1578 return 1;
1579 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1580 if (prot->sysctl_mem[2] > alloc *
1581 sk_mem_pages(sk->sk_wmem_queued +
1582 atomic_read(&sk->sk_rmem_alloc) +
1583 sk->sk_forward_alloc))
1584 return 1;
1587 suppress_allocation:
1589 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1590 sk_stream_moderate_sndbuf(sk);
1592 /* Fail only if socket is _under_ its sndbuf.
1593 * In this case we cannot block, so that we have to fail.
1595 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1596 return 1;
1599 /* Alas. Undo changes. */
1600 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1601 atomic_sub(amt, prot->memory_allocated);
1602 return 0;
1604 EXPORT_SYMBOL(__sk_mem_schedule);
1607 * __sk_reclaim - reclaim memory_allocated
1608 * @sk: socket
1610 void __sk_mem_reclaim(struct sock *sk)
1612 struct proto *prot = sk->sk_prot;
1614 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1615 prot->memory_allocated);
1616 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1618 if (prot->memory_pressure && *prot->memory_pressure &&
1619 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1620 *prot->memory_pressure = 0;
1622 EXPORT_SYMBOL(__sk_mem_reclaim);
1626 * Set of default routines for initialising struct proto_ops when
1627 * the protocol does not support a particular function. In certain
1628 * cases where it makes no sense for a protocol to have a "do nothing"
1629 * function, some default processing is provided.
1632 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1634 return -EOPNOTSUPP;
1636 EXPORT_SYMBOL(sock_no_bind);
1638 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1639 int len, int flags)
1641 return -EOPNOTSUPP;
1643 EXPORT_SYMBOL(sock_no_connect);
1645 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1647 return -EOPNOTSUPP;
1649 EXPORT_SYMBOL(sock_no_socketpair);
1651 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1653 return -EOPNOTSUPP;
1655 EXPORT_SYMBOL(sock_no_accept);
1657 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1658 int *len, int peer)
1660 return -EOPNOTSUPP;
1662 EXPORT_SYMBOL(sock_no_getname);
1664 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1666 return 0;
1668 EXPORT_SYMBOL(sock_no_poll);
1670 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1672 return -EOPNOTSUPP;
1674 EXPORT_SYMBOL(sock_no_ioctl);
1676 int sock_no_listen(struct socket *sock, int backlog)
1678 return -EOPNOTSUPP;
1680 EXPORT_SYMBOL(sock_no_listen);
1682 int sock_no_shutdown(struct socket *sock, int how)
1684 return -EOPNOTSUPP;
1686 EXPORT_SYMBOL(sock_no_shutdown);
1688 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1689 char __user *optval, int optlen)
1691 return -EOPNOTSUPP;
1693 EXPORT_SYMBOL(sock_no_setsockopt);
1695 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1696 char __user *optval, int __user *optlen)
1698 return -EOPNOTSUPP;
1700 EXPORT_SYMBOL(sock_no_getsockopt);
1702 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1703 size_t len)
1705 return -EOPNOTSUPP;
1707 EXPORT_SYMBOL(sock_no_sendmsg);
1709 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1710 size_t len, int flags)
1712 return -EOPNOTSUPP;
1714 EXPORT_SYMBOL(sock_no_recvmsg);
1716 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1718 /* Mirror missing mmap method error code */
1719 return -ENODEV;
1721 EXPORT_SYMBOL(sock_no_mmap);
1723 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1725 ssize_t res;
1726 struct msghdr msg = {.msg_flags = flags};
1727 struct kvec iov;
1728 char *kaddr = kmap(page);
1729 iov.iov_base = kaddr + offset;
1730 iov.iov_len = size;
1731 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1732 kunmap(page);
1733 return res;
1735 EXPORT_SYMBOL(sock_no_sendpage);
1738 * Default Socket Callbacks
1741 static void sock_def_wakeup(struct sock *sk)
1743 read_lock(&sk->sk_callback_lock);
1744 if (sk_has_sleeper(sk))
1745 wake_up_interruptible_all(sk->sk_sleep);
1746 read_unlock(&sk->sk_callback_lock);
1749 static void sock_def_error_report(struct sock *sk)
1751 read_lock(&sk->sk_callback_lock);
1752 if (sk_has_sleeper(sk))
1753 wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1754 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1755 read_unlock(&sk->sk_callback_lock);
1758 static void sock_def_readable(struct sock *sk, int len)
1760 read_lock(&sk->sk_callback_lock);
1761 if (sk_has_sleeper(sk))
1762 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1763 POLLRDNORM | POLLRDBAND);
1764 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1765 read_unlock(&sk->sk_callback_lock);
1768 static void sock_def_write_space(struct sock *sk)
1770 read_lock(&sk->sk_callback_lock);
1772 /* Do not wake up a writer until he can make "significant"
1773 * progress. --DaveM
1775 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1776 if (sk_has_sleeper(sk))
1777 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1778 POLLWRNORM | POLLWRBAND);
1780 /* Should agree with poll, otherwise some programs break */
1781 if (sock_writeable(sk))
1782 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1785 read_unlock(&sk->sk_callback_lock);
1788 static void sock_def_destruct(struct sock *sk)
1790 kfree(sk->sk_protinfo);
1793 void sk_send_sigurg(struct sock *sk)
1795 if (sk->sk_socket && sk->sk_socket->file)
1796 if (send_sigurg(&sk->sk_socket->file->f_owner))
1797 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1799 EXPORT_SYMBOL(sk_send_sigurg);
1801 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1802 unsigned long expires)
1804 if (!mod_timer(timer, expires))
1805 sock_hold(sk);
1807 EXPORT_SYMBOL(sk_reset_timer);
1809 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1811 if (timer_pending(timer) && del_timer(timer))
1812 __sock_put(sk);
1814 EXPORT_SYMBOL(sk_stop_timer);
1816 void sock_init_data(struct socket *sock, struct sock *sk)
1818 skb_queue_head_init(&sk->sk_receive_queue);
1819 skb_queue_head_init(&sk->sk_write_queue);
1820 skb_queue_head_init(&sk->sk_error_queue);
1821 #ifdef CONFIG_NET_DMA
1822 skb_queue_head_init(&sk->sk_async_wait_queue);
1823 #endif
1825 sk->sk_send_head = NULL;
1827 init_timer(&sk->sk_timer);
1829 sk->sk_allocation = GFP_KERNEL;
1830 sk->sk_rcvbuf = sysctl_rmem_default;
1831 sk->sk_sndbuf = sysctl_wmem_default;
1832 sk->sk_state = TCP_CLOSE;
1833 sk_set_socket(sk, sock);
1835 sock_set_flag(sk, SOCK_ZAPPED);
1837 if (sock) {
1838 sk->sk_type = sock->type;
1839 sk->sk_sleep = &sock->wait;
1840 sock->sk = sk;
1841 } else
1842 sk->sk_sleep = NULL;
1844 rwlock_init(&sk->sk_dst_lock);
1845 rwlock_init(&sk->sk_callback_lock);
1846 lockdep_set_class_and_name(&sk->sk_callback_lock,
1847 af_callback_keys + sk->sk_family,
1848 af_family_clock_key_strings[sk->sk_family]);
1850 sk->sk_state_change = sock_def_wakeup;
1851 sk->sk_data_ready = sock_def_readable;
1852 sk->sk_write_space = sock_def_write_space;
1853 sk->sk_error_report = sock_def_error_report;
1854 sk->sk_destruct = sock_def_destruct;
1856 sk->sk_sndmsg_page = NULL;
1857 sk->sk_sndmsg_off = 0;
1859 sk->sk_peercred.pid = 0;
1860 sk->sk_peercred.uid = -1;
1861 sk->sk_peercred.gid = -1;
1862 sk->sk_write_pending = 0;
1863 sk->sk_rcvlowat = 1;
1864 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1865 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1867 sk->sk_stamp = ktime_set(-1L, 0);
1870 * Before updating sk_refcnt, we must commit prior changes to memory
1871 * (Documentation/RCU/rculist_nulls.txt for details)
1873 smp_wmb();
1874 atomic_set(&sk->sk_refcnt, 1);
1875 atomic_set(&sk->sk_wmem_alloc, 1);
1876 atomic_set(&sk->sk_drops, 0);
1878 EXPORT_SYMBOL(sock_init_data);
1880 void lock_sock_nested(struct sock *sk, int subclass)
1882 might_sleep();
1883 spin_lock_bh(&sk->sk_lock.slock);
1884 if (sk->sk_lock.owned)
1885 __lock_sock(sk);
1886 sk->sk_lock.owned = 1;
1887 spin_unlock(&sk->sk_lock.slock);
1889 * The sk_lock has mutex_lock() semantics here:
1891 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1892 local_bh_enable();
1894 EXPORT_SYMBOL(lock_sock_nested);
1896 void release_sock(struct sock *sk)
1899 * The sk_lock has mutex_unlock() semantics:
1901 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1903 spin_lock_bh(&sk->sk_lock.slock);
1904 if (sk->sk_backlog.tail)
1905 __release_sock(sk);
1906 sk->sk_lock.owned = 0;
1907 if (waitqueue_active(&sk->sk_lock.wq))
1908 wake_up(&sk->sk_lock.wq);
1909 spin_unlock_bh(&sk->sk_lock.slock);
1911 EXPORT_SYMBOL(release_sock);
1913 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1915 struct timeval tv;
1916 if (!sock_flag(sk, SOCK_TIMESTAMP))
1917 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1918 tv = ktime_to_timeval(sk->sk_stamp);
1919 if (tv.tv_sec == -1)
1920 return -ENOENT;
1921 if (tv.tv_sec == 0) {
1922 sk->sk_stamp = ktime_get_real();
1923 tv = ktime_to_timeval(sk->sk_stamp);
1925 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1927 EXPORT_SYMBOL(sock_get_timestamp);
1929 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1931 struct timespec ts;
1932 if (!sock_flag(sk, SOCK_TIMESTAMP))
1933 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1934 ts = ktime_to_timespec(sk->sk_stamp);
1935 if (ts.tv_sec == -1)
1936 return -ENOENT;
1937 if (ts.tv_sec == 0) {
1938 sk->sk_stamp = ktime_get_real();
1939 ts = ktime_to_timespec(sk->sk_stamp);
1941 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1943 EXPORT_SYMBOL(sock_get_timestampns);
1945 void sock_enable_timestamp(struct sock *sk, int flag)
1947 if (!sock_flag(sk, flag)) {
1948 sock_set_flag(sk, flag);
1950 * we just set one of the two flags which require net
1951 * time stamping, but time stamping might have been on
1952 * already because of the other one
1954 if (!sock_flag(sk,
1955 flag == SOCK_TIMESTAMP ?
1956 SOCK_TIMESTAMPING_RX_SOFTWARE :
1957 SOCK_TIMESTAMP))
1958 net_enable_timestamp();
1963 * Get a socket option on an socket.
1965 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1966 * asynchronous errors should be reported by getsockopt. We assume
1967 * this means if you specify SO_ERROR (otherwise whats the point of it).
1969 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1970 char __user *optval, int __user *optlen)
1972 struct sock *sk = sock->sk;
1974 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1976 EXPORT_SYMBOL(sock_common_getsockopt);
1978 #ifdef CONFIG_COMPAT
1979 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1980 char __user *optval, int __user *optlen)
1982 struct sock *sk = sock->sk;
1984 if (sk->sk_prot->compat_getsockopt != NULL)
1985 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1986 optval, optlen);
1987 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1989 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1990 #endif
1992 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1993 struct msghdr *msg, size_t size, int flags)
1995 struct sock *sk = sock->sk;
1996 int addr_len = 0;
1997 int err;
1999 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2000 flags & ~MSG_DONTWAIT, &addr_len);
2001 if (err >= 0)
2002 msg->msg_namelen = addr_len;
2003 return err;
2005 EXPORT_SYMBOL(sock_common_recvmsg);
2008 * Set socket options on an inet socket.
2010 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2011 char __user *optval, int optlen)
2013 struct sock *sk = sock->sk;
2015 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2017 EXPORT_SYMBOL(sock_common_setsockopt);
2019 #ifdef CONFIG_COMPAT
2020 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2021 char __user *optval, int optlen)
2023 struct sock *sk = sock->sk;
2025 if (sk->sk_prot->compat_setsockopt != NULL)
2026 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2027 optval, optlen);
2028 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2030 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2031 #endif
2033 void sk_common_release(struct sock *sk)
2035 if (sk->sk_prot->destroy)
2036 sk->sk_prot->destroy(sk);
2039 * Observation: when sock_common_release is called, processes have
2040 * no access to socket. But net still has.
2041 * Step one, detach it from networking:
2043 * A. Remove from hash tables.
2046 sk->sk_prot->unhash(sk);
2049 * In this point socket cannot receive new packets, but it is possible
2050 * that some packets are in flight because some CPU runs receiver and
2051 * did hash table lookup before we unhashed socket. They will achieve
2052 * receive queue and will be purged by socket destructor.
2054 * Also we still have packets pending on receive queue and probably,
2055 * our own packets waiting in device queues. sock_destroy will drain
2056 * receive queue, but transmitted packets will delay socket destruction
2057 * until the last reference will be released.
2060 sock_orphan(sk);
2062 xfrm_sk_free_policy(sk);
2064 sk_refcnt_debug_release(sk);
2065 sock_put(sk);
2067 EXPORT_SYMBOL(sk_common_release);
2069 static DEFINE_RWLOCK(proto_list_lock);
2070 static LIST_HEAD(proto_list);
2072 #ifdef CONFIG_PROC_FS
2073 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2074 struct prot_inuse {
2075 int val[PROTO_INUSE_NR];
2078 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2080 #ifdef CONFIG_NET_NS
2081 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2083 int cpu = smp_processor_id();
2084 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2086 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2088 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2090 int cpu, idx = prot->inuse_idx;
2091 int res = 0;
2093 for_each_possible_cpu(cpu)
2094 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2096 return res >= 0 ? res : 0;
2098 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2100 static int sock_inuse_init_net(struct net *net)
2102 net->core.inuse = alloc_percpu(struct prot_inuse);
2103 return net->core.inuse ? 0 : -ENOMEM;
2106 static void sock_inuse_exit_net(struct net *net)
2108 free_percpu(net->core.inuse);
2111 static struct pernet_operations net_inuse_ops = {
2112 .init = sock_inuse_init_net,
2113 .exit = sock_inuse_exit_net,
2116 static __init int net_inuse_init(void)
2118 if (register_pernet_subsys(&net_inuse_ops))
2119 panic("Cannot initialize net inuse counters");
2121 return 0;
2124 core_initcall(net_inuse_init);
2125 #else
2126 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2128 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2130 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2132 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2134 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2136 int cpu, idx = prot->inuse_idx;
2137 int res = 0;
2139 for_each_possible_cpu(cpu)
2140 res += per_cpu(prot_inuse, cpu).val[idx];
2142 return res >= 0 ? res : 0;
2144 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2145 #endif
2147 static void assign_proto_idx(struct proto *prot)
2149 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2151 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2152 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2153 return;
2156 set_bit(prot->inuse_idx, proto_inuse_idx);
2159 static void release_proto_idx(struct proto *prot)
2161 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2162 clear_bit(prot->inuse_idx, proto_inuse_idx);
2164 #else
2165 static inline void assign_proto_idx(struct proto *prot)
2169 static inline void release_proto_idx(struct proto *prot)
2172 #endif
2174 int proto_register(struct proto *prot, int alloc_slab)
2176 if (alloc_slab) {
2177 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2178 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2179 NULL);
2181 if (prot->slab == NULL) {
2182 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2183 prot->name);
2184 goto out;
2187 if (prot->rsk_prot != NULL) {
2188 static const char mask[] = "request_sock_%s";
2190 prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2191 if (prot->rsk_prot->slab_name == NULL)
2192 goto out_free_sock_slab;
2194 sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2195 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2196 prot->rsk_prot->obj_size, 0,
2197 SLAB_HWCACHE_ALIGN, NULL);
2199 if (prot->rsk_prot->slab == NULL) {
2200 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2201 prot->name);
2202 goto out_free_request_sock_slab_name;
2206 if (prot->twsk_prot != NULL) {
2207 static const char mask[] = "tw_sock_%s";
2209 prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2211 if (prot->twsk_prot->twsk_slab_name == NULL)
2212 goto out_free_request_sock_slab;
2214 sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2215 prot->twsk_prot->twsk_slab =
2216 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2217 prot->twsk_prot->twsk_obj_size,
2219 SLAB_HWCACHE_ALIGN |
2220 prot->slab_flags,
2221 NULL);
2222 if (prot->twsk_prot->twsk_slab == NULL)
2223 goto out_free_timewait_sock_slab_name;
2227 write_lock(&proto_list_lock);
2228 list_add(&prot->node, &proto_list);
2229 assign_proto_idx(prot);
2230 write_unlock(&proto_list_lock);
2231 return 0;
2233 out_free_timewait_sock_slab_name:
2234 kfree(prot->twsk_prot->twsk_slab_name);
2235 out_free_request_sock_slab:
2236 if (prot->rsk_prot && prot->rsk_prot->slab) {
2237 kmem_cache_destroy(prot->rsk_prot->slab);
2238 prot->rsk_prot->slab = NULL;
2240 out_free_request_sock_slab_name:
2241 kfree(prot->rsk_prot->slab_name);
2242 out_free_sock_slab:
2243 kmem_cache_destroy(prot->slab);
2244 prot->slab = NULL;
2245 out:
2246 return -ENOBUFS;
2248 EXPORT_SYMBOL(proto_register);
2250 void proto_unregister(struct proto *prot)
2252 write_lock(&proto_list_lock);
2253 release_proto_idx(prot);
2254 list_del(&prot->node);
2255 write_unlock(&proto_list_lock);
2257 if (prot->slab != NULL) {
2258 kmem_cache_destroy(prot->slab);
2259 prot->slab = NULL;
2262 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2263 kmem_cache_destroy(prot->rsk_prot->slab);
2264 kfree(prot->rsk_prot->slab_name);
2265 prot->rsk_prot->slab = NULL;
2268 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2269 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2270 kfree(prot->twsk_prot->twsk_slab_name);
2271 prot->twsk_prot->twsk_slab = NULL;
2274 EXPORT_SYMBOL(proto_unregister);
2276 #ifdef CONFIG_PROC_FS
2277 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2278 __acquires(proto_list_lock)
2280 read_lock(&proto_list_lock);
2281 return seq_list_start_head(&proto_list, *pos);
2284 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2286 return seq_list_next(v, &proto_list, pos);
2289 static void proto_seq_stop(struct seq_file *seq, void *v)
2290 __releases(proto_list_lock)
2292 read_unlock(&proto_list_lock);
2295 static char proto_method_implemented(const void *method)
2297 return method == NULL ? 'n' : 'y';
2300 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2302 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2303 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2304 proto->name,
2305 proto->obj_size,
2306 sock_prot_inuse_get(seq_file_net(seq), proto),
2307 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2308 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2309 proto->max_header,
2310 proto->slab == NULL ? "no" : "yes",
2311 module_name(proto->owner),
2312 proto_method_implemented(proto->close),
2313 proto_method_implemented(proto->connect),
2314 proto_method_implemented(proto->disconnect),
2315 proto_method_implemented(proto->accept),
2316 proto_method_implemented(proto->ioctl),
2317 proto_method_implemented(proto->init),
2318 proto_method_implemented(proto->destroy),
2319 proto_method_implemented(proto->shutdown),
2320 proto_method_implemented(proto->setsockopt),
2321 proto_method_implemented(proto->getsockopt),
2322 proto_method_implemented(proto->sendmsg),
2323 proto_method_implemented(proto->recvmsg),
2324 proto_method_implemented(proto->sendpage),
2325 proto_method_implemented(proto->bind),
2326 proto_method_implemented(proto->backlog_rcv),
2327 proto_method_implemented(proto->hash),
2328 proto_method_implemented(proto->unhash),
2329 proto_method_implemented(proto->get_port),
2330 proto_method_implemented(proto->enter_memory_pressure));
2333 static int proto_seq_show(struct seq_file *seq, void *v)
2335 if (v == &proto_list)
2336 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2337 "protocol",
2338 "size",
2339 "sockets",
2340 "memory",
2341 "press",
2342 "maxhdr",
2343 "slab",
2344 "module",
2345 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2346 else
2347 proto_seq_printf(seq, list_entry(v, struct proto, node));
2348 return 0;
2351 static const struct seq_operations proto_seq_ops = {
2352 .start = proto_seq_start,
2353 .next = proto_seq_next,
2354 .stop = proto_seq_stop,
2355 .show = proto_seq_show,
2358 static int proto_seq_open(struct inode *inode, struct file *file)
2360 return seq_open_net(inode, file, &proto_seq_ops,
2361 sizeof(struct seq_net_private));
2364 static const struct file_operations proto_seq_fops = {
2365 .owner = THIS_MODULE,
2366 .open = proto_seq_open,
2367 .read = seq_read,
2368 .llseek = seq_lseek,
2369 .release = seq_release_net,
2372 static __net_init int proto_init_net(struct net *net)
2374 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2375 return -ENOMEM;
2377 return 0;
2380 static __net_exit void proto_exit_net(struct net *net)
2382 proc_net_remove(net, "protocols");
2386 static __net_initdata struct pernet_operations proto_net_ops = {
2387 .init = proto_init_net,
2388 .exit = proto_exit_net,
2391 static int __init proto_init(void)
2393 return register_pernet_subsys(&proto_net_ops);
2396 subsys_initcall(proto_init);
2398 #endif /* PROC_FS */