sched: introduce avg_wakeup
[linux-2.6/mini2440.git] / kernel / sched.c
blob86f5a063f0b929ab351eadfcdf7a762f473f8e8d
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
127 #ifdef CONFIG_SMP
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
149 #endif
151 static inline int rt_policy(int policy)
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 return 1;
155 return 0;
158 static inline int task_has_rt_policy(struct task_struct *p)
160 return rt_policy(p->policy);
164 * This is the priority-queue data structure of the RT scheduling class:
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
179 static struct rt_bandwidth def_rt_bandwidth;
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
195 if (!overrun)
196 break;
198 idle = do_sched_rt_period_timer(rt_b, overrun);
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
204 static
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
210 spin_lock_init(&rt_b->rt_runtime_lock);
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
217 static inline int rt_bandwidth_enabled(void)
219 return sysctl_sched_rt_runtime >= 0;
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
224 ktime_t now;
226 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
227 return;
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
242 spin_unlock(&rt_b->rt_runtime_lock);
245 #ifdef CONFIG_RT_GROUP_SCHED
246 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
248 hrtimer_cancel(&rt_b->rt_period_timer);
250 #endif
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
256 static DEFINE_MUTEX(sched_domains_mutex);
258 #ifdef CONFIG_GROUP_SCHED
260 #include <linux/cgroup.h>
262 struct cfs_rq;
264 static LIST_HEAD(task_groups);
266 /* task group related information */
267 struct task_group {
268 #ifdef CONFIG_CGROUP_SCHED
269 struct cgroup_subsys_state css;
270 #endif
272 #ifdef CONFIG_USER_SCHED
273 uid_t uid;
274 #endif
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
282 #endif
284 #ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
288 struct rt_bandwidth rt_bandwidth;
289 #endif
291 struct rcu_head rcu;
292 struct list_head list;
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
299 #ifdef CONFIG_USER_SCHED
301 /* Helper function to pass uid information to create_sched_user() */
302 void set_tg_uid(struct user_struct *user)
304 user->tg->uid = user->uid;
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
312 struct task_group root_task_group;
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 /* Default task group's sched entity on each cpu */
316 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317 /* Default task group's cfs_rq on each cpu */
318 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
319 #endif /* CONFIG_FAIR_GROUP_SCHED */
321 #ifdef CONFIG_RT_GROUP_SCHED
322 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
324 #endif /* CONFIG_RT_GROUP_SCHED */
325 #else /* !CONFIG_USER_SCHED */
326 #define root_task_group init_task_group
327 #endif /* CONFIG_USER_SCHED */
329 /* task_group_lock serializes add/remove of task groups and also changes to
330 * a task group's cpu shares.
332 static DEFINE_SPINLOCK(task_group_lock);
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 #ifdef CONFIG_USER_SCHED
336 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
337 #else /* !CONFIG_USER_SCHED */
338 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
339 #endif /* CONFIG_USER_SCHED */
342 * A weight of 0 or 1 can cause arithmetics problems.
343 * A weight of a cfs_rq is the sum of weights of which entities
344 * are queued on this cfs_rq, so a weight of a entity should not be
345 * too large, so as the shares value of a task group.
346 * (The default weight is 1024 - so there's no practical
347 * limitation from this.)
349 #define MIN_SHARES 2
350 #define MAX_SHARES (1UL << 18)
352 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
353 #endif
355 /* Default task group.
356 * Every task in system belong to this group at bootup.
358 struct task_group init_task_group;
360 /* return group to which a task belongs */
361 static inline struct task_group *task_group(struct task_struct *p)
363 struct task_group *tg;
365 #ifdef CONFIG_USER_SCHED
366 rcu_read_lock();
367 tg = __task_cred(p)->user->tg;
368 rcu_read_unlock();
369 #elif defined(CONFIG_CGROUP_SCHED)
370 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
371 struct task_group, css);
372 #else
373 tg = &init_task_group;
374 #endif
375 return tg;
378 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
379 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
381 #ifdef CONFIG_FAIR_GROUP_SCHED
382 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
383 p->se.parent = task_group(p)->se[cpu];
384 #endif
386 #ifdef CONFIG_RT_GROUP_SCHED
387 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
388 p->rt.parent = task_group(p)->rt_se[cpu];
389 #endif
392 #else
394 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
395 static inline struct task_group *task_group(struct task_struct *p)
397 return NULL;
400 #endif /* CONFIG_GROUP_SCHED */
402 /* CFS-related fields in a runqueue */
403 struct cfs_rq {
404 struct load_weight load;
405 unsigned long nr_running;
407 u64 exec_clock;
408 u64 min_vruntime;
410 struct rb_root tasks_timeline;
411 struct rb_node *rb_leftmost;
413 struct list_head tasks;
414 struct list_head *balance_iterator;
417 * 'curr' points to currently running entity on this cfs_rq.
418 * It is set to NULL otherwise (i.e when none are currently running).
420 struct sched_entity *curr, *next, *last;
422 unsigned int nr_spread_over;
424 #ifdef CONFIG_FAIR_GROUP_SCHED
425 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
428 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
429 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
430 * (like users, containers etc.)
432 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
433 * list is used during load balance.
435 struct list_head leaf_cfs_rq_list;
436 struct task_group *tg; /* group that "owns" this runqueue */
438 #ifdef CONFIG_SMP
440 * the part of load.weight contributed by tasks
442 unsigned long task_weight;
445 * h_load = weight * f(tg)
447 * Where f(tg) is the recursive weight fraction assigned to
448 * this group.
450 unsigned long h_load;
453 * this cpu's part of tg->shares
455 unsigned long shares;
458 * load.weight at the time we set shares
460 unsigned long rq_weight;
461 #endif
462 #endif
465 /* Real-Time classes' related field in a runqueue: */
466 struct rt_rq {
467 struct rt_prio_array active;
468 unsigned long rt_nr_running;
469 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
470 int highest_prio; /* highest queued rt task prio */
471 #endif
472 #ifdef CONFIG_SMP
473 unsigned long rt_nr_migratory;
474 int overloaded;
475 #endif
476 int rt_throttled;
477 u64 rt_time;
478 u64 rt_runtime;
479 /* Nests inside the rq lock: */
480 spinlock_t rt_runtime_lock;
482 #ifdef CONFIG_RT_GROUP_SCHED
483 unsigned long rt_nr_boosted;
485 struct rq *rq;
486 struct list_head leaf_rt_rq_list;
487 struct task_group *tg;
488 struct sched_rt_entity *rt_se;
489 #endif
492 #ifdef CONFIG_SMP
495 * We add the notion of a root-domain which will be used to define per-domain
496 * variables. Each exclusive cpuset essentially defines an island domain by
497 * fully partitioning the member cpus from any other cpuset. Whenever a new
498 * exclusive cpuset is created, we also create and attach a new root-domain
499 * object.
502 struct root_domain {
503 atomic_t refcount;
504 cpumask_var_t span;
505 cpumask_var_t online;
508 * The "RT overload" flag: it gets set if a CPU has more than
509 * one runnable RT task.
511 cpumask_var_t rto_mask;
512 atomic_t rto_count;
513 #ifdef CONFIG_SMP
514 struct cpupri cpupri;
515 #endif
516 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
518 * Preferred wake up cpu nominated by sched_mc balance that will be
519 * used when most cpus are idle in the system indicating overall very
520 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
522 unsigned int sched_mc_preferred_wakeup_cpu;
523 #endif
527 * By default the system creates a single root-domain with all cpus as
528 * members (mimicking the global state we have today).
530 static struct root_domain def_root_domain;
532 #endif
535 * This is the main, per-CPU runqueue data structure.
537 * Locking rule: those places that want to lock multiple runqueues
538 * (such as the load balancing or the thread migration code), lock
539 * acquire operations must be ordered by ascending &runqueue.
541 struct rq {
542 /* runqueue lock: */
543 spinlock_t lock;
546 * nr_running and cpu_load should be in the same cacheline because
547 * remote CPUs use both these fields when doing load calculation.
549 unsigned long nr_running;
550 #define CPU_LOAD_IDX_MAX 5
551 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
552 unsigned char idle_at_tick;
553 #ifdef CONFIG_NO_HZ
554 unsigned long last_tick_seen;
555 unsigned char in_nohz_recently;
556 #endif
557 /* capture load from *all* tasks on this cpu: */
558 struct load_weight load;
559 unsigned long nr_load_updates;
560 u64 nr_switches;
562 struct cfs_rq cfs;
563 struct rt_rq rt;
565 #ifdef CONFIG_FAIR_GROUP_SCHED
566 /* list of leaf cfs_rq on this cpu: */
567 struct list_head leaf_cfs_rq_list;
568 #endif
569 #ifdef CONFIG_RT_GROUP_SCHED
570 struct list_head leaf_rt_rq_list;
571 #endif
574 * This is part of a global counter where only the total sum
575 * over all CPUs matters. A task can increase this counter on
576 * one CPU and if it got migrated afterwards it may decrease
577 * it on another CPU. Always updated under the runqueue lock:
579 unsigned long nr_uninterruptible;
581 struct task_struct *curr, *idle;
582 unsigned long next_balance;
583 struct mm_struct *prev_mm;
585 u64 clock;
587 atomic_t nr_iowait;
589 #ifdef CONFIG_SMP
590 struct root_domain *rd;
591 struct sched_domain *sd;
593 /* For active balancing */
594 int active_balance;
595 int push_cpu;
596 /* cpu of this runqueue: */
597 int cpu;
598 int online;
600 unsigned long avg_load_per_task;
602 struct task_struct *migration_thread;
603 struct list_head migration_queue;
604 #endif
606 #ifdef CONFIG_SCHED_HRTICK
607 #ifdef CONFIG_SMP
608 int hrtick_csd_pending;
609 struct call_single_data hrtick_csd;
610 #endif
611 struct hrtimer hrtick_timer;
612 #endif
614 #ifdef CONFIG_SCHEDSTATS
615 /* latency stats */
616 struct sched_info rq_sched_info;
617 unsigned long long rq_cpu_time;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
620 /* sys_sched_yield() stats */
621 unsigned int yld_exp_empty;
622 unsigned int yld_act_empty;
623 unsigned int yld_both_empty;
624 unsigned int yld_count;
626 /* schedule() stats */
627 unsigned int sched_switch;
628 unsigned int sched_count;
629 unsigned int sched_goidle;
631 /* try_to_wake_up() stats */
632 unsigned int ttwu_count;
633 unsigned int ttwu_local;
635 /* BKL stats */
636 unsigned int bkl_count;
637 #endif
640 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
642 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
644 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
647 static inline int cpu_of(struct rq *rq)
649 #ifdef CONFIG_SMP
650 return rq->cpu;
651 #else
652 return 0;
653 #endif
657 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
658 * See detach_destroy_domains: synchronize_sched for details.
660 * The domain tree of any CPU may only be accessed from within
661 * preempt-disabled sections.
663 #define for_each_domain(cpu, __sd) \
664 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
666 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
667 #define this_rq() (&__get_cpu_var(runqueues))
668 #define task_rq(p) cpu_rq(task_cpu(p))
669 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
671 static inline void update_rq_clock(struct rq *rq)
673 rq->clock = sched_clock_cpu(cpu_of(rq));
677 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
679 #ifdef CONFIG_SCHED_DEBUG
680 # define const_debug __read_mostly
681 #else
682 # define const_debug static const
683 #endif
686 * runqueue_is_locked
688 * Returns true if the current cpu runqueue is locked.
689 * This interface allows printk to be called with the runqueue lock
690 * held and know whether or not it is OK to wake up the klogd.
692 int runqueue_is_locked(void)
694 int cpu = get_cpu();
695 struct rq *rq = cpu_rq(cpu);
696 int ret;
698 ret = spin_is_locked(&rq->lock);
699 put_cpu();
700 return ret;
704 * Debugging: various feature bits
707 #define SCHED_FEAT(name, enabled) \
708 __SCHED_FEAT_##name ,
710 enum {
711 #include "sched_features.h"
714 #undef SCHED_FEAT
716 #define SCHED_FEAT(name, enabled) \
717 (1UL << __SCHED_FEAT_##name) * enabled |
719 const_debug unsigned int sysctl_sched_features =
720 #include "sched_features.h"
723 #undef SCHED_FEAT
725 #ifdef CONFIG_SCHED_DEBUG
726 #define SCHED_FEAT(name, enabled) \
727 #name ,
729 static __read_mostly char *sched_feat_names[] = {
730 #include "sched_features.h"
731 NULL
734 #undef SCHED_FEAT
736 static int sched_feat_show(struct seq_file *m, void *v)
738 int i;
740 for (i = 0; sched_feat_names[i]; i++) {
741 if (!(sysctl_sched_features & (1UL << i)))
742 seq_puts(m, "NO_");
743 seq_printf(m, "%s ", sched_feat_names[i]);
745 seq_puts(m, "\n");
747 return 0;
750 static ssize_t
751 sched_feat_write(struct file *filp, const char __user *ubuf,
752 size_t cnt, loff_t *ppos)
754 char buf[64];
755 char *cmp = buf;
756 int neg = 0;
757 int i;
759 if (cnt > 63)
760 cnt = 63;
762 if (copy_from_user(&buf, ubuf, cnt))
763 return -EFAULT;
765 buf[cnt] = 0;
767 if (strncmp(buf, "NO_", 3) == 0) {
768 neg = 1;
769 cmp += 3;
772 for (i = 0; sched_feat_names[i]; i++) {
773 int len = strlen(sched_feat_names[i]);
775 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
776 if (neg)
777 sysctl_sched_features &= ~(1UL << i);
778 else
779 sysctl_sched_features |= (1UL << i);
780 break;
784 if (!sched_feat_names[i])
785 return -EINVAL;
787 filp->f_pos += cnt;
789 return cnt;
792 static int sched_feat_open(struct inode *inode, struct file *filp)
794 return single_open(filp, sched_feat_show, NULL);
797 static struct file_operations sched_feat_fops = {
798 .open = sched_feat_open,
799 .write = sched_feat_write,
800 .read = seq_read,
801 .llseek = seq_lseek,
802 .release = single_release,
805 static __init int sched_init_debug(void)
807 debugfs_create_file("sched_features", 0644, NULL, NULL,
808 &sched_feat_fops);
810 return 0;
812 late_initcall(sched_init_debug);
814 #endif
816 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
819 * Number of tasks to iterate in a single balance run.
820 * Limited because this is done with IRQs disabled.
822 const_debug unsigned int sysctl_sched_nr_migrate = 32;
825 * ratelimit for updating the group shares.
826 * default: 0.25ms
828 unsigned int sysctl_sched_shares_ratelimit = 250000;
831 * Inject some fuzzyness into changing the per-cpu group shares
832 * this avoids remote rq-locks at the expense of fairness.
833 * default: 4
835 unsigned int sysctl_sched_shares_thresh = 4;
838 * period over which we measure -rt task cpu usage in us.
839 * default: 1s
841 unsigned int sysctl_sched_rt_period = 1000000;
843 static __read_mostly int scheduler_running;
846 * part of the period that we allow rt tasks to run in us.
847 * default: 0.95s
849 int sysctl_sched_rt_runtime = 950000;
851 static inline u64 global_rt_period(void)
853 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
856 static inline u64 global_rt_runtime(void)
858 if (sysctl_sched_rt_runtime < 0)
859 return RUNTIME_INF;
861 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
864 #ifndef prepare_arch_switch
865 # define prepare_arch_switch(next) do { } while (0)
866 #endif
867 #ifndef finish_arch_switch
868 # define finish_arch_switch(prev) do { } while (0)
869 #endif
871 static inline int task_current(struct rq *rq, struct task_struct *p)
873 return rq->curr == p;
876 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
877 static inline int task_running(struct rq *rq, struct task_struct *p)
879 return task_current(rq, p);
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
886 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
888 #ifdef CONFIG_DEBUG_SPINLOCK
889 /* this is a valid case when another task releases the spinlock */
890 rq->lock.owner = current;
891 #endif
893 * If we are tracking spinlock dependencies then we have to
894 * fix up the runqueue lock - which gets 'carried over' from
895 * prev into current:
897 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
899 spin_unlock_irq(&rq->lock);
902 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
903 static inline int task_running(struct rq *rq, struct task_struct *p)
905 #ifdef CONFIG_SMP
906 return p->oncpu;
907 #else
908 return task_current(rq, p);
909 #endif
912 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
914 #ifdef CONFIG_SMP
916 * We can optimise this out completely for !SMP, because the
917 * SMP rebalancing from interrupt is the only thing that cares
918 * here.
920 next->oncpu = 1;
921 #endif
922 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 spin_unlock_irq(&rq->lock);
924 #else
925 spin_unlock(&rq->lock);
926 #endif
929 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
931 #ifdef CONFIG_SMP
933 * After ->oncpu is cleared, the task can be moved to a different CPU.
934 * We must ensure this doesn't happen until the switch is completely
935 * finished.
937 smp_wmb();
938 prev->oncpu = 0;
939 #endif
940 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 local_irq_enable();
942 #endif
944 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
947 * __task_rq_lock - lock the runqueue a given task resides on.
948 * Must be called interrupts disabled.
950 static inline struct rq *__task_rq_lock(struct task_struct *p)
951 __acquires(rq->lock)
953 for (;;) {
954 struct rq *rq = task_rq(p);
955 spin_lock(&rq->lock);
956 if (likely(rq == task_rq(p)))
957 return rq;
958 spin_unlock(&rq->lock);
963 * task_rq_lock - lock the runqueue a given task resides on and disable
964 * interrupts. Note the ordering: we can safely lookup the task_rq without
965 * explicitly disabling preemption.
967 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
968 __acquires(rq->lock)
970 struct rq *rq;
972 for (;;) {
973 local_irq_save(*flags);
974 rq = task_rq(p);
975 spin_lock(&rq->lock);
976 if (likely(rq == task_rq(p)))
977 return rq;
978 spin_unlock_irqrestore(&rq->lock, *flags);
982 void task_rq_unlock_wait(struct task_struct *p)
984 struct rq *rq = task_rq(p);
986 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
987 spin_unlock_wait(&rq->lock);
990 static void __task_rq_unlock(struct rq *rq)
991 __releases(rq->lock)
993 spin_unlock(&rq->lock);
996 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
997 __releases(rq->lock)
999 spin_unlock_irqrestore(&rq->lock, *flags);
1003 * this_rq_lock - lock this runqueue and disable interrupts.
1005 static struct rq *this_rq_lock(void)
1006 __acquires(rq->lock)
1008 struct rq *rq;
1010 local_irq_disable();
1011 rq = this_rq();
1012 spin_lock(&rq->lock);
1014 return rq;
1017 #ifdef CONFIG_SCHED_HRTICK
1019 * Use HR-timers to deliver accurate preemption points.
1021 * Its all a bit involved since we cannot program an hrt while holding the
1022 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1023 * reschedule event.
1025 * When we get rescheduled we reprogram the hrtick_timer outside of the
1026 * rq->lock.
1030 * Use hrtick when:
1031 * - enabled by features
1032 * - hrtimer is actually high res
1034 static inline int hrtick_enabled(struct rq *rq)
1036 if (!sched_feat(HRTICK))
1037 return 0;
1038 if (!cpu_active(cpu_of(rq)))
1039 return 0;
1040 return hrtimer_is_hres_active(&rq->hrtick_timer);
1043 static void hrtick_clear(struct rq *rq)
1045 if (hrtimer_active(&rq->hrtick_timer))
1046 hrtimer_cancel(&rq->hrtick_timer);
1050 * High-resolution timer tick.
1051 * Runs from hardirq context with interrupts disabled.
1053 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1055 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1057 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1059 spin_lock(&rq->lock);
1060 update_rq_clock(rq);
1061 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1062 spin_unlock(&rq->lock);
1064 return HRTIMER_NORESTART;
1067 #ifdef CONFIG_SMP
1069 * called from hardirq (IPI) context
1071 static void __hrtick_start(void *arg)
1073 struct rq *rq = arg;
1075 spin_lock(&rq->lock);
1076 hrtimer_restart(&rq->hrtick_timer);
1077 rq->hrtick_csd_pending = 0;
1078 spin_unlock(&rq->lock);
1082 * Called to set the hrtick timer state.
1084 * called with rq->lock held and irqs disabled
1086 static void hrtick_start(struct rq *rq, u64 delay)
1088 struct hrtimer *timer = &rq->hrtick_timer;
1089 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1091 hrtimer_set_expires(timer, time);
1093 if (rq == this_rq()) {
1094 hrtimer_restart(timer);
1095 } else if (!rq->hrtick_csd_pending) {
1096 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1097 rq->hrtick_csd_pending = 1;
1101 static int
1102 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1104 int cpu = (int)(long)hcpu;
1106 switch (action) {
1107 case CPU_UP_CANCELED:
1108 case CPU_UP_CANCELED_FROZEN:
1109 case CPU_DOWN_PREPARE:
1110 case CPU_DOWN_PREPARE_FROZEN:
1111 case CPU_DEAD:
1112 case CPU_DEAD_FROZEN:
1113 hrtick_clear(cpu_rq(cpu));
1114 return NOTIFY_OK;
1117 return NOTIFY_DONE;
1120 static __init void init_hrtick(void)
1122 hotcpu_notifier(hotplug_hrtick, 0);
1124 #else
1126 * Called to set the hrtick timer state.
1128 * called with rq->lock held and irqs disabled
1130 static void hrtick_start(struct rq *rq, u64 delay)
1132 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1135 static inline void init_hrtick(void)
1138 #endif /* CONFIG_SMP */
1140 static void init_rq_hrtick(struct rq *rq)
1142 #ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148 #endif
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
1153 #else /* CONFIG_SCHED_HRTICK */
1154 static inline void hrtick_clear(struct rq *rq)
1158 static inline void init_rq_hrtick(struct rq *rq)
1162 static inline void init_hrtick(void)
1165 #endif /* CONFIG_SCHED_HRTICK */
1168 * resched_task - mark a task 'to be rescheduled now'.
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1174 #ifdef CONFIG_SMP
1176 #ifndef tsk_is_polling
1177 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178 #endif
1180 static void resched_task(struct task_struct *p)
1182 int cpu;
1184 assert_spin_locked(&task_rq(p)->lock);
1186 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1187 return;
1189 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1201 static void resched_cpu(int cpu)
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1206 if (!spin_trylock_irqsave(&rq->lock, flags))
1207 return;
1208 resched_task(cpu_curr(cpu));
1209 spin_unlock_irqrestore(&rq->lock, flags);
1212 #ifdef CONFIG_NO_HZ
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1223 void wake_up_idle_cpu(int cpu)
1225 struct rq *rq = cpu_rq(cpu);
1227 if (cpu == smp_processor_id())
1228 return;
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1237 if (rq->curr != rq->idle)
1238 return;
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1245 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1252 #endif /* CONFIG_NO_HZ */
1254 #else /* !CONFIG_SMP */
1255 static void resched_task(struct task_struct *p)
1257 assert_spin_locked(&task_rq(p)->lock);
1258 set_tsk_need_resched(p);
1260 #endif /* CONFIG_SMP */
1262 #if BITS_PER_LONG == 32
1263 # define WMULT_CONST (~0UL)
1264 #else
1265 # define WMULT_CONST (1UL << 32)
1266 #endif
1268 #define WMULT_SHIFT 32
1271 * Shift right and round:
1273 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1276 * delta *= weight / lw
1278 static unsigned long
1279 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1280 struct load_weight *lw)
1282 u64 tmp;
1284 if (!lw->inv_weight) {
1285 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1286 lw->inv_weight = 1;
1287 else
1288 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1289 / (lw->weight+1);
1292 tmp = (u64)delta_exec * weight;
1294 * Check whether we'd overflow the 64-bit multiplication:
1296 if (unlikely(tmp > WMULT_CONST))
1297 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1298 WMULT_SHIFT/2);
1299 else
1300 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1302 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1305 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1307 lw->weight += inc;
1308 lw->inv_weight = 0;
1311 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1313 lw->weight -= dec;
1314 lw->inv_weight = 0;
1318 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1319 * of tasks with abnormal "nice" values across CPUs the contribution that
1320 * each task makes to its run queue's load is weighted according to its
1321 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1322 * scaled version of the new time slice allocation that they receive on time
1323 * slice expiry etc.
1326 #define WEIGHT_IDLEPRIO 2
1327 #define WMULT_IDLEPRIO (1 << 31)
1330 * Nice levels are multiplicative, with a gentle 10% change for every
1331 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1332 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1333 * that remained on nice 0.
1335 * The "10% effect" is relative and cumulative: from _any_ nice level,
1336 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1337 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1338 * If a task goes up by ~10% and another task goes down by ~10% then
1339 * the relative distance between them is ~25%.)
1341 static const int prio_to_weight[40] = {
1342 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1343 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1344 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1345 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1346 /* 0 */ 1024, 820, 655, 526, 423,
1347 /* 5 */ 335, 272, 215, 172, 137,
1348 /* 10 */ 110, 87, 70, 56, 45,
1349 /* 15 */ 36, 29, 23, 18, 15,
1353 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1355 * In cases where the weight does not change often, we can use the
1356 * precalculated inverse to speed up arithmetics by turning divisions
1357 * into multiplications:
1359 static const u32 prio_to_wmult[40] = {
1360 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1361 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1362 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1363 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1364 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1365 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1366 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1367 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1370 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1373 * runqueue iterator, to support SMP load-balancing between different
1374 * scheduling classes, without having to expose their internal data
1375 * structures to the load-balancing proper:
1377 struct rq_iterator {
1378 void *arg;
1379 struct task_struct *(*start)(void *);
1380 struct task_struct *(*next)(void *);
1383 #ifdef CONFIG_SMP
1384 static unsigned long
1385 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1386 unsigned long max_load_move, struct sched_domain *sd,
1387 enum cpu_idle_type idle, int *all_pinned,
1388 int *this_best_prio, struct rq_iterator *iterator);
1390 static int
1391 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1392 struct sched_domain *sd, enum cpu_idle_type idle,
1393 struct rq_iterator *iterator);
1394 #endif
1396 #ifdef CONFIG_CGROUP_CPUACCT
1397 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1398 #else
1399 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1400 #endif
1402 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1404 update_load_add(&rq->load, load);
1407 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1409 update_load_sub(&rq->load, load);
1412 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1413 typedef int (*tg_visitor)(struct task_group *, void *);
1416 * Iterate the full tree, calling @down when first entering a node and @up when
1417 * leaving it for the final time.
1419 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1421 struct task_group *parent, *child;
1422 int ret;
1424 rcu_read_lock();
1425 parent = &root_task_group;
1426 down:
1427 ret = (*down)(parent, data);
1428 if (ret)
1429 goto out_unlock;
1430 list_for_each_entry_rcu(child, &parent->children, siblings) {
1431 parent = child;
1432 goto down;
1435 continue;
1437 ret = (*up)(parent, data);
1438 if (ret)
1439 goto out_unlock;
1441 child = parent;
1442 parent = parent->parent;
1443 if (parent)
1444 goto up;
1445 out_unlock:
1446 rcu_read_unlock();
1448 return ret;
1451 static int tg_nop(struct task_group *tg, void *data)
1453 return 0;
1455 #endif
1457 #ifdef CONFIG_SMP
1458 static unsigned long source_load(int cpu, int type);
1459 static unsigned long target_load(int cpu, int type);
1460 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1462 static unsigned long cpu_avg_load_per_task(int cpu)
1464 struct rq *rq = cpu_rq(cpu);
1465 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1467 if (nr_running)
1468 rq->avg_load_per_task = rq->load.weight / nr_running;
1469 else
1470 rq->avg_load_per_task = 0;
1472 return rq->avg_load_per_task;
1475 #ifdef CONFIG_FAIR_GROUP_SCHED
1477 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1480 * Calculate and set the cpu's group shares.
1482 static void
1483 update_group_shares_cpu(struct task_group *tg, int cpu,
1484 unsigned long sd_shares, unsigned long sd_rq_weight)
1486 unsigned long shares;
1487 unsigned long rq_weight;
1489 if (!tg->se[cpu])
1490 return;
1492 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1495 * \Sum shares * rq_weight
1496 * shares = -----------------------
1497 * \Sum rq_weight
1500 shares = (sd_shares * rq_weight) / sd_rq_weight;
1501 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1503 if (abs(shares - tg->se[cpu]->load.weight) >
1504 sysctl_sched_shares_thresh) {
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long flags;
1508 spin_lock_irqsave(&rq->lock, flags);
1509 tg->cfs_rq[cpu]->shares = shares;
1511 __set_se_shares(tg->se[cpu], shares);
1512 spin_unlock_irqrestore(&rq->lock, flags);
1517 * Re-compute the task group their per cpu shares over the given domain.
1518 * This needs to be done in a bottom-up fashion because the rq weight of a
1519 * parent group depends on the shares of its child groups.
1521 static int tg_shares_up(struct task_group *tg, void *data)
1523 unsigned long weight, rq_weight = 0;
1524 unsigned long shares = 0;
1525 struct sched_domain *sd = data;
1526 int i;
1528 for_each_cpu(i, sched_domain_span(sd)) {
1530 * If there are currently no tasks on the cpu pretend there
1531 * is one of average load so that when a new task gets to
1532 * run here it will not get delayed by group starvation.
1534 weight = tg->cfs_rq[i]->load.weight;
1535 if (!weight)
1536 weight = NICE_0_LOAD;
1538 tg->cfs_rq[i]->rq_weight = weight;
1539 rq_weight += weight;
1540 shares += tg->cfs_rq[i]->shares;
1543 if ((!shares && rq_weight) || shares > tg->shares)
1544 shares = tg->shares;
1546 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1547 shares = tg->shares;
1549 for_each_cpu(i, sched_domain_span(sd))
1550 update_group_shares_cpu(tg, i, shares, rq_weight);
1552 return 0;
1556 * Compute the cpu's hierarchical load factor for each task group.
1557 * This needs to be done in a top-down fashion because the load of a child
1558 * group is a fraction of its parents load.
1560 static int tg_load_down(struct task_group *tg, void *data)
1562 unsigned long load;
1563 long cpu = (long)data;
1565 if (!tg->parent) {
1566 load = cpu_rq(cpu)->load.weight;
1567 } else {
1568 load = tg->parent->cfs_rq[cpu]->h_load;
1569 load *= tg->cfs_rq[cpu]->shares;
1570 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1573 tg->cfs_rq[cpu]->h_load = load;
1575 return 0;
1578 static void update_shares(struct sched_domain *sd)
1580 u64 now = cpu_clock(raw_smp_processor_id());
1581 s64 elapsed = now - sd->last_update;
1583 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1584 sd->last_update = now;
1585 walk_tg_tree(tg_nop, tg_shares_up, sd);
1589 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1591 spin_unlock(&rq->lock);
1592 update_shares(sd);
1593 spin_lock(&rq->lock);
1596 static void update_h_load(long cpu)
1598 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1601 #else
1603 static inline void update_shares(struct sched_domain *sd)
1607 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1611 #endif
1614 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1616 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1617 __releases(this_rq->lock)
1618 __acquires(busiest->lock)
1619 __acquires(this_rq->lock)
1621 int ret = 0;
1623 if (unlikely(!irqs_disabled())) {
1624 /* printk() doesn't work good under rq->lock */
1625 spin_unlock(&this_rq->lock);
1626 BUG_ON(1);
1628 if (unlikely(!spin_trylock(&busiest->lock))) {
1629 if (busiest < this_rq) {
1630 spin_unlock(&this_rq->lock);
1631 spin_lock(&busiest->lock);
1632 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1633 ret = 1;
1634 } else
1635 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1637 return ret;
1640 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(busiest->lock)
1643 spin_unlock(&busiest->lock);
1644 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1646 #endif
1648 #ifdef CONFIG_FAIR_GROUP_SCHED
1649 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1651 #ifdef CONFIG_SMP
1652 cfs_rq->shares = shares;
1653 #endif
1655 #endif
1657 #include "sched_stats.h"
1658 #include "sched_idletask.c"
1659 #include "sched_fair.c"
1660 #include "sched_rt.c"
1661 #ifdef CONFIG_SCHED_DEBUG
1662 # include "sched_debug.c"
1663 #endif
1665 #define sched_class_highest (&rt_sched_class)
1666 #define for_each_class(class) \
1667 for (class = sched_class_highest; class; class = class->next)
1669 static void inc_nr_running(struct rq *rq)
1671 rq->nr_running++;
1674 static void dec_nr_running(struct rq *rq)
1676 rq->nr_running--;
1679 static void set_load_weight(struct task_struct *p)
1681 if (task_has_rt_policy(p)) {
1682 p->se.load.weight = prio_to_weight[0] * 2;
1683 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1684 return;
1688 * SCHED_IDLE tasks get minimal weight:
1690 if (p->policy == SCHED_IDLE) {
1691 p->se.load.weight = WEIGHT_IDLEPRIO;
1692 p->se.load.inv_weight = WMULT_IDLEPRIO;
1693 return;
1696 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1697 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1700 static void update_avg(u64 *avg, u64 sample)
1702 s64 diff = sample - *avg;
1703 *avg += diff >> 3;
1706 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1708 if (wakeup)
1709 p->se.start_runtime = p->se.sum_exec_runtime;
1711 sched_info_queued(p);
1712 p->sched_class->enqueue_task(rq, p, wakeup);
1713 p->se.on_rq = 1;
1716 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1718 if (sleep) {
1719 if (p->se.last_wakeup) {
1720 update_avg(&p->se.avg_overlap,
1721 p->se.sum_exec_runtime - p->se.last_wakeup);
1722 p->se.last_wakeup = 0;
1723 } else {
1724 update_avg(&p->se.avg_wakeup,
1725 sysctl_sched_wakeup_granularity);
1729 sched_info_dequeued(p);
1730 p->sched_class->dequeue_task(rq, p, sleep);
1731 p->se.on_rq = 0;
1735 * __normal_prio - return the priority that is based on the static prio
1737 static inline int __normal_prio(struct task_struct *p)
1739 return p->static_prio;
1743 * Calculate the expected normal priority: i.e. priority
1744 * without taking RT-inheritance into account. Might be
1745 * boosted by interactivity modifiers. Changes upon fork,
1746 * setprio syscalls, and whenever the interactivity
1747 * estimator recalculates.
1749 static inline int normal_prio(struct task_struct *p)
1751 int prio;
1753 if (task_has_rt_policy(p))
1754 prio = MAX_RT_PRIO-1 - p->rt_priority;
1755 else
1756 prio = __normal_prio(p);
1757 return prio;
1761 * Calculate the current priority, i.e. the priority
1762 * taken into account by the scheduler. This value might
1763 * be boosted by RT tasks, or might be boosted by
1764 * interactivity modifiers. Will be RT if the task got
1765 * RT-boosted. If not then it returns p->normal_prio.
1767 static int effective_prio(struct task_struct *p)
1769 p->normal_prio = normal_prio(p);
1771 * If we are RT tasks or we were boosted to RT priority,
1772 * keep the priority unchanged. Otherwise, update priority
1773 * to the normal priority:
1775 if (!rt_prio(p->prio))
1776 return p->normal_prio;
1777 return p->prio;
1781 * activate_task - move a task to the runqueue.
1783 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1785 if (task_contributes_to_load(p))
1786 rq->nr_uninterruptible--;
1788 enqueue_task(rq, p, wakeup);
1789 inc_nr_running(rq);
1793 * deactivate_task - remove a task from the runqueue.
1795 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1797 if (task_contributes_to_load(p))
1798 rq->nr_uninterruptible++;
1800 dequeue_task(rq, p, sleep);
1801 dec_nr_running(rq);
1805 * task_curr - is this task currently executing on a CPU?
1806 * @p: the task in question.
1808 inline int task_curr(const struct task_struct *p)
1810 return cpu_curr(task_cpu(p)) == p;
1813 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1815 set_task_rq(p, cpu);
1816 #ifdef CONFIG_SMP
1818 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1819 * successfuly executed on another CPU. We must ensure that updates of
1820 * per-task data have been completed by this moment.
1822 smp_wmb();
1823 task_thread_info(p)->cpu = cpu;
1824 #endif
1827 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1828 const struct sched_class *prev_class,
1829 int oldprio, int running)
1831 if (prev_class != p->sched_class) {
1832 if (prev_class->switched_from)
1833 prev_class->switched_from(rq, p, running);
1834 p->sched_class->switched_to(rq, p, running);
1835 } else
1836 p->sched_class->prio_changed(rq, p, oldprio, running);
1839 #ifdef CONFIG_SMP
1841 /* Used instead of source_load when we know the type == 0 */
1842 static unsigned long weighted_cpuload(const int cpu)
1844 return cpu_rq(cpu)->load.weight;
1848 * Is this task likely cache-hot:
1850 static int
1851 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1853 s64 delta;
1856 * Buddy candidates are cache hot:
1858 if (sched_feat(CACHE_HOT_BUDDY) &&
1859 (&p->se == cfs_rq_of(&p->se)->next ||
1860 &p->se == cfs_rq_of(&p->se)->last))
1861 return 1;
1863 if (p->sched_class != &fair_sched_class)
1864 return 0;
1866 if (sysctl_sched_migration_cost == -1)
1867 return 1;
1868 if (sysctl_sched_migration_cost == 0)
1869 return 0;
1871 delta = now - p->se.exec_start;
1873 return delta < (s64)sysctl_sched_migration_cost;
1877 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1879 int old_cpu = task_cpu(p);
1880 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1881 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1882 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1883 u64 clock_offset;
1885 clock_offset = old_rq->clock - new_rq->clock;
1887 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1889 #ifdef CONFIG_SCHEDSTATS
1890 if (p->se.wait_start)
1891 p->se.wait_start -= clock_offset;
1892 if (p->se.sleep_start)
1893 p->se.sleep_start -= clock_offset;
1894 if (p->se.block_start)
1895 p->se.block_start -= clock_offset;
1896 if (old_cpu != new_cpu) {
1897 schedstat_inc(p, se.nr_migrations);
1898 if (task_hot(p, old_rq->clock, NULL))
1899 schedstat_inc(p, se.nr_forced2_migrations);
1901 #endif
1902 p->se.vruntime -= old_cfsrq->min_vruntime -
1903 new_cfsrq->min_vruntime;
1905 __set_task_cpu(p, new_cpu);
1908 struct migration_req {
1909 struct list_head list;
1911 struct task_struct *task;
1912 int dest_cpu;
1914 struct completion done;
1918 * The task's runqueue lock must be held.
1919 * Returns true if you have to wait for migration thread.
1921 static int
1922 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1924 struct rq *rq = task_rq(p);
1927 * If the task is not on a runqueue (and not running), then
1928 * it is sufficient to simply update the task's cpu field.
1930 if (!p->se.on_rq && !task_running(rq, p)) {
1931 set_task_cpu(p, dest_cpu);
1932 return 0;
1935 init_completion(&req->done);
1936 req->task = p;
1937 req->dest_cpu = dest_cpu;
1938 list_add(&req->list, &rq->migration_queue);
1940 return 1;
1944 * wait_task_inactive - wait for a thread to unschedule.
1946 * If @match_state is nonzero, it's the @p->state value just checked and
1947 * not expected to change. If it changes, i.e. @p might have woken up,
1948 * then return zero. When we succeed in waiting for @p to be off its CPU,
1949 * we return a positive number (its total switch count). If a second call
1950 * a short while later returns the same number, the caller can be sure that
1951 * @p has remained unscheduled the whole time.
1953 * The caller must ensure that the task *will* unschedule sometime soon,
1954 * else this function might spin for a *long* time. This function can't
1955 * be called with interrupts off, or it may introduce deadlock with
1956 * smp_call_function() if an IPI is sent by the same process we are
1957 * waiting to become inactive.
1959 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1961 unsigned long flags;
1962 int running, on_rq;
1963 unsigned long ncsw;
1964 struct rq *rq;
1966 for (;;) {
1968 * We do the initial early heuristics without holding
1969 * any task-queue locks at all. We'll only try to get
1970 * the runqueue lock when things look like they will
1971 * work out!
1973 rq = task_rq(p);
1976 * If the task is actively running on another CPU
1977 * still, just relax and busy-wait without holding
1978 * any locks.
1980 * NOTE! Since we don't hold any locks, it's not
1981 * even sure that "rq" stays as the right runqueue!
1982 * But we don't care, since "task_running()" will
1983 * return false if the runqueue has changed and p
1984 * is actually now running somewhere else!
1986 while (task_running(rq, p)) {
1987 if (match_state && unlikely(p->state != match_state))
1988 return 0;
1989 cpu_relax();
1993 * Ok, time to look more closely! We need the rq
1994 * lock now, to be *sure*. If we're wrong, we'll
1995 * just go back and repeat.
1997 rq = task_rq_lock(p, &flags);
1998 trace_sched_wait_task(rq, p);
1999 running = task_running(rq, p);
2000 on_rq = p->se.on_rq;
2001 ncsw = 0;
2002 if (!match_state || p->state == match_state)
2003 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2004 task_rq_unlock(rq, &flags);
2007 * If it changed from the expected state, bail out now.
2009 if (unlikely(!ncsw))
2010 break;
2013 * Was it really running after all now that we
2014 * checked with the proper locks actually held?
2016 * Oops. Go back and try again..
2018 if (unlikely(running)) {
2019 cpu_relax();
2020 continue;
2024 * It's not enough that it's not actively running,
2025 * it must be off the runqueue _entirely_, and not
2026 * preempted!
2028 * So if it wa still runnable (but just not actively
2029 * running right now), it's preempted, and we should
2030 * yield - it could be a while.
2032 if (unlikely(on_rq)) {
2033 schedule_timeout_uninterruptible(1);
2034 continue;
2038 * Ahh, all good. It wasn't running, and it wasn't
2039 * runnable, which means that it will never become
2040 * running in the future either. We're all done!
2042 break;
2045 return ncsw;
2048 /***
2049 * kick_process - kick a running thread to enter/exit the kernel
2050 * @p: the to-be-kicked thread
2052 * Cause a process which is running on another CPU to enter
2053 * kernel-mode, without any delay. (to get signals handled.)
2055 * NOTE: this function doesnt have to take the runqueue lock,
2056 * because all it wants to ensure is that the remote task enters
2057 * the kernel. If the IPI races and the task has been migrated
2058 * to another CPU then no harm is done and the purpose has been
2059 * achieved as well.
2061 void kick_process(struct task_struct *p)
2063 int cpu;
2065 preempt_disable();
2066 cpu = task_cpu(p);
2067 if ((cpu != smp_processor_id()) && task_curr(p))
2068 smp_send_reschedule(cpu);
2069 preempt_enable();
2073 * Return a low guess at the load of a migration-source cpu weighted
2074 * according to the scheduling class and "nice" value.
2076 * We want to under-estimate the load of migration sources, to
2077 * balance conservatively.
2079 static unsigned long source_load(int cpu, int type)
2081 struct rq *rq = cpu_rq(cpu);
2082 unsigned long total = weighted_cpuload(cpu);
2084 if (type == 0 || !sched_feat(LB_BIAS))
2085 return total;
2087 return min(rq->cpu_load[type-1], total);
2091 * Return a high guess at the load of a migration-target cpu weighted
2092 * according to the scheduling class and "nice" value.
2094 static unsigned long target_load(int cpu, int type)
2096 struct rq *rq = cpu_rq(cpu);
2097 unsigned long total = weighted_cpuload(cpu);
2099 if (type == 0 || !sched_feat(LB_BIAS))
2100 return total;
2102 return max(rq->cpu_load[type-1], total);
2106 * find_idlest_group finds and returns the least busy CPU group within the
2107 * domain.
2109 static struct sched_group *
2110 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2112 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2113 unsigned long min_load = ULONG_MAX, this_load = 0;
2114 int load_idx = sd->forkexec_idx;
2115 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2117 do {
2118 unsigned long load, avg_load;
2119 int local_group;
2120 int i;
2122 /* Skip over this group if it has no CPUs allowed */
2123 if (!cpumask_intersects(sched_group_cpus(group),
2124 &p->cpus_allowed))
2125 continue;
2127 local_group = cpumask_test_cpu(this_cpu,
2128 sched_group_cpus(group));
2130 /* Tally up the load of all CPUs in the group */
2131 avg_load = 0;
2133 for_each_cpu(i, sched_group_cpus(group)) {
2134 /* Bias balancing toward cpus of our domain */
2135 if (local_group)
2136 load = source_load(i, load_idx);
2137 else
2138 load = target_load(i, load_idx);
2140 avg_load += load;
2143 /* Adjust by relative CPU power of the group */
2144 avg_load = sg_div_cpu_power(group,
2145 avg_load * SCHED_LOAD_SCALE);
2147 if (local_group) {
2148 this_load = avg_load;
2149 this = group;
2150 } else if (avg_load < min_load) {
2151 min_load = avg_load;
2152 idlest = group;
2154 } while (group = group->next, group != sd->groups);
2156 if (!idlest || 100*this_load < imbalance*min_load)
2157 return NULL;
2158 return idlest;
2162 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2164 static int
2165 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2167 unsigned long load, min_load = ULONG_MAX;
2168 int idlest = -1;
2169 int i;
2171 /* Traverse only the allowed CPUs */
2172 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2173 load = weighted_cpuload(i);
2175 if (load < min_load || (load == min_load && i == this_cpu)) {
2176 min_load = load;
2177 idlest = i;
2181 return idlest;
2185 * sched_balance_self: balance the current task (running on cpu) in domains
2186 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2187 * SD_BALANCE_EXEC.
2189 * Balance, ie. select the least loaded group.
2191 * Returns the target CPU number, or the same CPU if no balancing is needed.
2193 * preempt must be disabled.
2195 static int sched_balance_self(int cpu, int flag)
2197 struct task_struct *t = current;
2198 struct sched_domain *tmp, *sd = NULL;
2200 for_each_domain(cpu, tmp) {
2202 * If power savings logic is enabled for a domain, stop there.
2204 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2205 break;
2206 if (tmp->flags & flag)
2207 sd = tmp;
2210 if (sd)
2211 update_shares(sd);
2213 while (sd) {
2214 struct sched_group *group;
2215 int new_cpu, weight;
2217 if (!(sd->flags & flag)) {
2218 sd = sd->child;
2219 continue;
2222 group = find_idlest_group(sd, t, cpu);
2223 if (!group) {
2224 sd = sd->child;
2225 continue;
2228 new_cpu = find_idlest_cpu(group, t, cpu);
2229 if (new_cpu == -1 || new_cpu == cpu) {
2230 /* Now try balancing at a lower domain level of cpu */
2231 sd = sd->child;
2232 continue;
2235 /* Now try balancing at a lower domain level of new_cpu */
2236 cpu = new_cpu;
2237 weight = cpumask_weight(sched_domain_span(sd));
2238 sd = NULL;
2239 for_each_domain(cpu, tmp) {
2240 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2241 break;
2242 if (tmp->flags & flag)
2243 sd = tmp;
2245 /* while loop will break here if sd == NULL */
2248 return cpu;
2251 #endif /* CONFIG_SMP */
2253 /***
2254 * try_to_wake_up - wake up a thread
2255 * @p: the to-be-woken-up thread
2256 * @state: the mask of task states that can be woken
2257 * @sync: do a synchronous wakeup?
2259 * Put it on the run-queue if it's not already there. The "current"
2260 * thread is always on the run-queue (except when the actual
2261 * re-schedule is in progress), and as such you're allowed to do
2262 * the simpler "current->state = TASK_RUNNING" to mark yourself
2263 * runnable without the overhead of this.
2265 * returns failure only if the task is already active.
2267 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2269 int cpu, orig_cpu, this_cpu, success = 0;
2270 unsigned long flags;
2271 long old_state;
2272 struct rq *rq;
2274 if (!sched_feat(SYNC_WAKEUPS))
2275 sync = 0;
2277 #ifdef CONFIG_SMP
2278 if (sched_feat(LB_WAKEUP_UPDATE)) {
2279 struct sched_domain *sd;
2281 this_cpu = raw_smp_processor_id();
2282 cpu = task_cpu(p);
2284 for_each_domain(this_cpu, sd) {
2285 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2286 update_shares(sd);
2287 break;
2291 #endif
2293 smp_wmb();
2294 rq = task_rq_lock(p, &flags);
2295 update_rq_clock(rq);
2296 old_state = p->state;
2297 if (!(old_state & state))
2298 goto out;
2300 if (p->se.on_rq)
2301 goto out_running;
2303 cpu = task_cpu(p);
2304 orig_cpu = cpu;
2305 this_cpu = smp_processor_id();
2307 #ifdef CONFIG_SMP
2308 if (unlikely(task_running(rq, p)))
2309 goto out_activate;
2311 cpu = p->sched_class->select_task_rq(p, sync);
2312 if (cpu != orig_cpu) {
2313 set_task_cpu(p, cpu);
2314 task_rq_unlock(rq, &flags);
2315 /* might preempt at this point */
2316 rq = task_rq_lock(p, &flags);
2317 old_state = p->state;
2318 if (!(old_state & state))
2319 goto out;
2320 if (p->se.on_rq)
2321 goto out_running;
2323 this_cpu = smp_processor_id();
2324 cpu = task_cpu(p);
2327 #ifdef CONFIG_SCHEDSTATS
2328 schedstat_inc(rq, ttwu_count);
2329 if (cpu == this_cpu)
2330 schedstat_inc(rq, ttwu_local);
2331 else {
2332 struct sched_domain *sd;
2333 for_each_domain(this_cpu, sd) {
2334 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2335 schedstat_inc(sd, ttwu_wake_remote);
2336 break;
2340 #endif /* CONFIG_SCHEDSTATS */
2342 out_activate:
2343 #endif /* CONFIG_SMP */
2344 schedstat_inc(p, se.nr_wakeups);
2345 if (sync)
2346 schedstat_inc(p, se.nr_wakeups_sync);
2347 if (orig_cpu != cpu)
2348 schedstat_inc(p, se.nr_wakeups_migrate);
2349 if (cpu == this_cpu)
2350 schedstat_inc(p, se.nr_wakeups_local);
2351 else
2352 schedstat_inc(p, se.nr_wakeups_remote);
2353 activate_task(rq, p, 1);
2354 success = 1;
2357 * Only attribute actual wakeups done by this task.
2359 if (!in_interrupt()) {
2360 struct sched_entity *se = &current->se;
2361 u64 sample = se->sum_exec_runtime;
2363 if (se->last_wakeup)
2364 sample -= se->last_wakeup;
2365 else
2366 sample -= se->start_runtime;
2367 update_avg(&se->avg_wakeup, sample);
2369 se->last_wakeup = se->sum_exec_runtime;
2372 out_running:
2373 trace_sched_wakeup(rq, p, success);
2374 check_preempt_curr(rq, p, sync);
2376 p->state = TASK_RUNNING;
2377 #ifdef CONFIG_SMP
2378 if (p->sched_class->task_wake_up)
2379 p->sched_class->task_wake_up(rq, p);
2380 #endif
2381 out:
2382 task_rq_unlock(rq, &flags);
2384 return success;
2387 int wake_up_process(struct task_struct *p)
2389 return try_to_wake_up(p, TASK_ALL, 0);
2391 EXPORT_SYMBOL(wake_up_process);
2393 int wake_up_state(struct task_struct *p, unsigned int state)
2395 return try_to_wake_up(p, state, 0);
2399 * Perform scheduler related setup for a newly forked process p.
2400 * p is forked by current.
2402 * __sched_fork() is basic setup used by init_idle() too:
2404 static void __sched_fork(struct task_struct *p)
2406 p->se.exec_start = 0;
2407 p->se.sum_exec_runtime = 0;
2408 p->se.prev_sum_exec_runtime = 0;
2409 p->se.last_wakeup = 0;
2410 p->se.avg_overlap = 0;
2411 p->se.start_runtime = 0;
2412 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2414 #ifdef CONFIG_SCHEDSTATS
2415 p->se.wait_start = 0;
2416 p->se.sum_sleep_runtime = 0;
2417 p->se.sleep_start = 0;
2418 p->se.block_start = 0;
2419 p->se.sleep_max = 0;
2420 p->se.block_max = 0;
2421 p->se.exec_max = 0;
2422 p->se.slice_max = 0;
2423 p->se.wait_max = 0;
2424 #endif
2426 INIT_LIST_HEAD(&p->rt.run_list);
2427 p->se.on_rq = 0;
2428 INIT_LIST_HEAD(&p->se.group_node);
2430 #ifdef CONFIG_PREEMPT_NOTIFIERS
2431 INIT_HLIST_HEAD(&p->preempt_notifiers);
2432 #endif
2435 * We mark the process as running here, but have not actually
2436 * inserted it onto the runqueue yet. This guarantees that
2437 * nobody will actually run it, and a signal or other external
2438 * event cannot wake it up and insert it on the runqueue either.
2440 p->state = TASK_RUNNING;
2444 * fork()/clone()-time setup:
2446 void sched_fork(struct task_struct *p, int clone_flags)
2448 int cpu = get_cpu();
2450 __sched_fork(p);
2452 #ifdef CONFIG_SMP
2453 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2454 #endif
2455 set_task_cpu(p, cpu);
2458 * Make sure we do not leak PI boosting priority to the child:
2460 p->prio = current->normal_prio;
2461 if (!rt_prio(p->prio))
2462 p->sched_class = &fair_sched_class;
2464 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2465 if (likely(sched_info_on()))
2466 memset(&p->sched_info, 0, sizeof(p->sched_info));
2467 #endif
2468 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2469 p->oncpu = 0;
2470 #endif
2471 #ifdef CONFIG_PREEMPT
2472 /* Want to start with kernel preemption disabled. */
2473 task_thread_info(p)->preempt_count = 1;
2474 #endif
2475 put_cpu();
2479 * wake_up_new_task - wake up a newly created task for the first time.
2481 * This function will do some initial scheduler statistics housekeeping
2482 * that must be done for every newly created context, then puts the task
2483 * on the runqueue and wakes it.
2485 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2487 unsigned long flags;
2488 struct rq *rq;
2490 rq = task_rq_lock(p, &flags);
2491 BUG_ON(p->state != TASK_RUNNING);
2492 update_rq_clock(rq);
2494 p->prio = effective_prio(p);
2496 if (!p->sched_class->task_new || !current->se.on_rq) {
2497 activate_task(rq, p, 0);
2498 } else {
2500 * Let the scheduling class do new task startup
2501 * management (if any):
2503 p->sched_class->task_new(rq, p);
2504 inc_nr_running(rq);
2506 trace_sched_wakeup_new(rq, p, 1);
2507 check_preempt_curr(rq, p, 0);
2508 #ifdef CONFIG_SMP
2509 if (p->sched_class->task_wake_up)
2510 p->sched_class->task_wake_up(rq, p);
2511 #endif
2512 task_rq_unlock(rq, &flags);
2515 #ifdef CONFIG_PREEMPT_NOTIFIERS
2518 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2519 * @notifier: notifier struct to register
2521 void preempt_notifier_register(struct preempt_notifier *notifier)
2523 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2525 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2528 * preempt_notifier_unregister - no longer interested in preemption notifications
2529 * @notifier: notifier struct to unregister
2531 * This is safe to call from within a preemption notifier.
2533 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2535 hlist_del(&notifier->link);
2537 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2539 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2541 struct preempt_notifier *notifier;
2542 struct hlist_node *node;
2544 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2545 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2548 static void
2549 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2550 struct task_struct *next)
2552 struct preempt_notifier *notifier;
2553 struct hlist_node *node;
2555 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2556 notifier->ops->sched_out(notifier, next);
2559 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2561 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2565 static void
2566 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2567 struct task_struct *next)
2571 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2574 * prepare_task_switch - prepare to switch tasks
2575 * @rq: the runqueue preparing to switch
2576 * @prev: the current task that is being switched out
2577 * @next: the task we are going to switch to.
2579 * This is called with the rq lock held and interrupts off. It must
2580 * be paired with a subsequent finish_task_switch after the context
2581 * switch.
2583 * prepare_task_switch sets up locking and calls architecture specific
2584 * hooks.
2586 static inline void
2587 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2588 struct task_struct *next)
2590 fire_sched_out_preempt_notifiers(prev, next);
2591 prepare_lock_switch(rq, next);
2592 prepare_arch_switch(next);
2596 * finish_task_switch - clean up after a task-switch
2597 * @rq: runqueue associated with task-switch
2598 * @prev: the thread we just switched away from.
2600 * finish_task_switch must be called after the context switch, paired
2601 * with a prepare_task_switch call before the context switch.
2602 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2603 * and do any other architecture-specific cleanup actions.
2605 * Note that we may have delayed dropping an mm in context_switch(). If
2606 * so, we finish that here outside of the runqueue lock. (Doing it
2607 * with the lock held can cause deadlocks; see schedule() for
2608 * details.)
2610 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2611 __releases(rq->lock)
2613 struct mm_struct *mm = rq->prev_mm;
2614 long prev_state;
2616 rq->prev_mm = NULL;
2619 * A task struct has one reference for the use as "current".
2620 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2621 * schedule one last time. The schedule call will never return, and
2622 * the scheduled task must drop that reference.
2623 * The test for TASK_DEAD must occur while the runqueue locks are
2624 * still held, otherwise prev could be scheduled on another cpu, die
2625 * there before we look at prev->state, and then the reference would
2626 * be dropped twice.
2627 * Manfred Spraul <manfred@colorfullife.com>
2629 prev_state = prev->state;
2630 finish_arch_switch(prev);
2631 finish_lock_switch(rq, prev);
2632 #ifdef CONFIG_SMP
2633 if (current->sched_class->post_schedule)
2634 current->sched_class->post_schedule(rq);
2635 #endif
2637 fire_sched_in_preempt_notifiers(current);
2638 if (mm)
2639 mmdrop(mm);
2640 if (unlikely(prev_state == TASK_DEAD)) {
2642 * Remove function-return probe instances associated with this
2643 * task and put them back on the free list.
2645 kprobe_flush_task(prev);
2646 put_task_struct(prev);
2651 * schedule_tail - first thing a freshly forked thread must call.
2652 * @prev: the thread we just switched away from.
2654 asmlinkage void schedule_tail(struct task_struct *prev)
2655 __releases(rq->lock)
2657 struct rq *rq = this_rq();
2659 finish_task_switch(rq, prev);
2660 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2661 /* In this case, finish_task_switch does not reenable preemption */
2662 preempt_enable();
2663 #endif
2664 if (current->set_child_tid)
2665 put_user(task_pid_vnr(current), current->set_child_tid);
2669 * context_switch - switch to the new MM and the new
2670 * thread's register state.
2672 static inline void
2673 context_switch(struct rq *rq, struct task_struct *prev,
2674 struct task_struct *next)
2676 struct mm_struct *mm, *oldmm;
2678 prepare_task_switch(rq, prev, next);
2679 trace_sched_switch(rq, prev, next);
2680 mm = next->mm;
2681 oldmm = prev->active_mm;
2683 * For paravirt, this is coupled with an exit in switch_to to
2684 * combine the page table reload and the switch backend into
2685 * one hypercall.
2687 arch_enter_lazy_cpu_mode();
2689 if (unlikely(!mm)) {
2690 next->active_mm = oldmm;
2691 atomic_inc(&oldmm->mm_count);
2692 enter_lazy_tlb(oldmm, next);
2693 } else
2694 switch_mm(oldmm, mm, next);
2696 if (unlikely(!prev->mm)) {
2697 prev->active_mm = NULL;
2698 rq->prev_mm = oldmm;
2701 * Since the runqueue lock will be released by the next
2702 * task (which is an invalid locking op but in the case
2703 * of the scheduler it's an obvious special-case), so we
2704 * do an early lockdep release here:
2706 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2707 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2708 #endif
2710 /* Here we just switch the register state and the stack. */
2711 switch_to(prev, next, prev);
2713 barrier();
2715 * this_rq must be evaluated again because prev may have moved
2716 * CPUs since it called schedule(), thus the 'rq' on its stack
2717 * frame will be invalid.
2719 finish_task_switch(this_rq(), prev);
2723 * nr_running, nr_uninterruptible and nr_context_switches:
2725 * externally visible scheduler statistics: current number of runnable
2726 * threads, current number of uninterruptible-sleeping threads, total
2727 * number of context switches performed since bootup.
2729 unsigned long nr_running(void)
2731 unsigned long i, sum = 0;
2733 for_each_online_cpu(i)
2734 sum += cpu_rq(i)->nr_running;
2736 return sum;
2739 unsigned long nr_uninterruptible(void)
2741 unsigned long i, sum = 0;
2743 for_each_possible_cpu(i)
2744 sum += cpu_rq(i)->nr_uninterruptible;
2747 * Since we read the counters lockless, it might be slightly
2748 * inaccurate. Do not allow it to go below zero though:
2750 if (unlikely((long)sum < 0))
2751 sum = 0;
2753 return sum;
2756 unsigned long long nr_context_switches(void)
2758 int i;
2759 unsigned long long sum = 0;
2761 for_each_possible_cpu(i)
2762 sum += cpu_rq(i)->nr_switches;
2764 return sum;
2767 unsigned long nr_iowait(void)
2769 unsigned long i, sum = 0;
2771 for_each_possible_cpu(i)
2772 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2774 return sum;
2777 unsigned long nr_active(void)
2779 unsigned long i, running = 0, uninterruptible = 0;
2781 for_each_online_cpu(i) {
2782 running += cpu_rq(i)->nr_running;
2783 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2786 if (unlikely((long)uninterruptible < 0))
2787 uninterruptible = 0;
2789 return running + uninterruptible;
2793 * Update rq->cpu_load[] statistics. This function is usually called every
2794 * scheduler tick (TICK_NSEC).
2796 static void update_cpu_load(struct rq *this_rq)
2798 unsigned long this_load = this_rq->load.weight;
2799 int i, scale;
2801 this_rq->nr_load_updates++;
2803 /* Update our load: */
2804 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2805 unsigned long old_load, new_load;
2807 /* scale is effectively 1 << i now, and >> i divides by scale */
2809 old_load = this_rq->cpu_load[i];
2810 new_load = this_load;
2812 * Round up the averaging division if load is increasing. This
2813 * prevents us from getting stuck on 9 if the load is 10, for
2814 * example.
2816 if (new_load > old_load)
2817 new_load += scale-1;
2818 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2822 #ifdef CONFIG_SMP
2825 * double_rq_lock - safely lock two runqueues
2827 * Note this does not disable interrupts like task_rq_lock,
2828 * you need to do so manually before calling.
2830 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2831 __acquires(rq1->lock)
2832 __acquires(rq2->lock)
2834 BUG_ON(!irqs_disabled());
2835 if (rq1 == rq2) {
2836 spin_lock(&rq1->lock);
2837 __acquire(rq2->lock); /* Fake it out ;) */
2838 } else {
2839 if (rq1 < rq2) {
2840 spin_lock(&rq1->lock);
2841 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2842 } else {
2843 spin_lock(&rq2->lock);
2844 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2847 update_rq_clock(rq1);
2848 update_rq_clock(rq2);
2852 * double_rq_unlock - safely unlock two runqueues
2854 * Note this does not restore interrupts like task_rq_unlock,
2855 * you need to do so manually after calling.
2857 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2858 __releases(rq1->lock)
2859 __releases(rq2->lock)
2861 spin_unlock(&rq1->lock);
2862 if (rq1 != rq2)
2863 spin_unlock(&rq2->lock);
2864 else
2865 __release(rq2->lock);
2869 * If dest_cpu is allowed for this process, migrate the task to it.
2870 * This is accomplished by forcing the cpu_allowed mask to only
2871 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2872 * the cpu_allowed mask is restored.
2874 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2876 struct migration_req req;
2877 unsigned long flags;
2878 struct rq *rq;
2880 rq = task_rq_lock(p, &flags);
2881 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2882 || unlikely(!cpu_active(dest_cpu)))
2883 goto out;
2885 /* force the process onto the specified CPU */
2886 if (migrate_task(p, dest_cpu, &req)) {
2887 /* Need to wait for migration thread (might exit: take ref). */
2888 struct task_struct *mt = rq->migration_thread;
2890 get_task_struct(mt);
2891 task_rq_unlock(rq, &flags);
2892 wake_up_process(mt);
2893 put_task_struct(mt);
2894 wait_for_completion(&req.done);
2896 return;
2898 out:
2899 task_rq_unlock(rq, &flags);
2903 * sched_exec - execve() is a valuable balancing opportunity, because at
2904 * this point the task has the smallest effective memory and cache footprint.
2906 void sched_exec(void)
2908 int new_cpu, this_cpu = get_cpu();
2909 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2910 put_cpu();
2911 if (new_cpu != this_cpu)
2912 sched_migrate_task(current, new_cpu);
2916 * pull_task - move a task from a remote runqueue to the local runqueue.
2917 * Both runqueues must be locked.
2919 static void pull_task(struct rq *src_rq, struct task_struct *p,
2920 struct rq *this_rq, int this_cpu)
2922 deactivate_task(src_rq, p, 0);
2923 set_task_cpu(p, this_cpu);
2924 activate_task(this_rq, p, 0);
2926 * Note that idle threads have a prio of MAX_PRIO, for this test
2927 * to be always true for them.
2929 check_preempt_curr(this_rq, p, 0);
2933 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2935 static
2936 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2937 struct sched_domain *sd, enum cpu_idle_type idle,
2938 int *all_pinned)
2941 * We do not migrate tasks that are:
2942 * 1) running (obviously), or
2943 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2944 * 3) are cache-hot on their current CPU.
2946 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2947 schedstat_inc(p, se.nr_failed_migrations_affine);
2948 return 0;
2950 *all_pinned = 0;
2952 if (task_running(rq, p)) {
2953 schedstat_inc(p, se.nr_failed_migrations_running);
2954 return 0;
2958 * Aggressive migration if:
2959 * 1) task is cache cold, or
2960 * 2) too many balance attempts have failed.
2963 if (!task_hot(p, rq->clock, sd) ||
2964 sd->nr_balance_failed > sd->cache_nice_tries) {
2965 #ifdef CONFIG_SCHEDSTATS
2966 if (task_hot(p, rq->clock, sd)) {
2967 schedstat_inc(sd, lb_hot_gained[idle]);
2968 schedstat_inc(p, se.nr_forced_migrations);
2970 #endif
2971 return 1;
2974 if (task_hot(p, rq->clock, sd)) {
2975 schedstat_inc(p, se.nr_failed_migrations_hot);
2976 return 0;
2978 return 1;
2981 static unsigned long
2982 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2983 unsigned long max_load_move, struct sched_domain *sd,
2984 enum cpu_idle_type idle, int *all_pinned,
2985 int *this_best_prio, struct rq_iterator *iterator)
2987 int loops = 0, pulled = 0, pinned = 0;
2988 struct task_struct *p;
2989 long rem_load_move = max_load_move;
2991 if (max_load_move == 0)
2992 goto out;
2994 pinned = 1;
2997 * Start the load-balancing iterator:
2999 p = iterator->start(iterator->arg);
3000 next:
3001 if (!p || loops++ > sysctl_sched_nr_migrate)
3002 goto out;
3004 if ((p->se.load.weight >> 1) > rem_load_move ||
3005 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3006 p = iterator->next(iterator->arg);
3007 goto next;
3010 pull_task(busiest, p, this_rq, this_cpu);
3011 pulled++;
3012 rem_load_move -= p->se.load.weight;
3015 * We only want to steal up to the prescribed amount of weighted load.
3017 if (rem_load_move > 0) {
3018 if (p->prio < *this_best_prio)
3019 *this_best_prio = p->prio;
3020 p = iterator->next(iterator->arg);
3021 goto next;
3023 out:
3025 * Right now, this is one of only two places pull_task() is called,
3026 * so we can safely collect pull_task() stats here rather than
3027 * inside pull_task().
3029 schedstat_add(sd, lb_gained[idle], pulled);
3031 if (all_pinned)
3032 *all_pinned = pinned;
3034 return max_load_move - rem_load_move;
3038 * move_tasks tries to move up to max_load_move weighted load from busiest to
3039 * this_rq, as part of a balancing operation within domain "sd".
3040 * Returns 1 if successful and 0 otherwise.
3042 * Called with both runqueues locked.
3044 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3045 unsigned long max_load_move,
3046 struct sched_domain *sd, enum cpu_idle_type idle,
3047 int *all_pinned)
3049 const struct sched_class *class = sched_class_highest;
3050 unsigned long total_load_moved = 0;
3051 int this_best_prio = this_rq->curr->prio;
3053 do {
3054 total_load_moved +=
3055 class->load_balance(this_rq, this_cpu, busiest,
3056 max_load_move - total_load_moved,
3057 sd, idle, all_pinned, &this_best_prio);
3058 class = class->next;
3060 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3061 break;
3063 } while (class && max_load_move > total_load_moved);
3065 return total_load_moved > 0;
3068 static int
3069 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3070 struct sched_domain *sd, enum cpu_idle_type idle,
3071 struct rq_iterator *iterator)
3073 struct task_struct *p = iterator->start(iterator->arg);
3074 int pinned = 0;
3076 while (p) {
3077 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3078 pull_task(busiest, p, this_rq, this_cpu);
3080 * Right now, this is only the second place pull_task()
3081 * is called, so we can safely collect pull_task()
3082 * stats here rather than inside pull_task().
3084 schedstat_inc(sd, lb_gained[idle]);
3086 return 1;
3088 p = iterator->next(iterator->arg);
3091 return 0;
3095 * move_one_task tries to move exactly one task from busiest to this_rq, as
3096 * part of active balancing operations within "domain".
3097 * Returns 1 if successful and 0 otherwise.
3099 * Called with both runqueues locked.
3101 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3102 struct sched_domain *sd, enum cpu_idle_type idle)
3104 const struct sched_class *class;
3106 for (class = sched_class_highest; class; class = class->next)
3107 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3108 return 1;
3110 return 0;
3114 * find_busiest_group finds and returns the busiest CPU group within the
3115 * domain. It calculates and returns the amount of weighted load which
3116 * should be moved to restore balance via the imbalance parameter.
3118 static struct sched_group *
3119 find_busiest_group(struct sched_domain *sd, int this_cpu,
3120 unsigned long *imbalance, enum cpu_idle_type idle,
3121 int *sd_idle, const struct cpumask *cpus, int *balance)
3123 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3124 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3125 unsigned long max_pull;
3126 unsigned long busiest_load_per_task, busiest_nr_running;
3127 unsigned long this_load_per_task, this_nr_running;
3128 int load_idx, group_imb = 0;
3129 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3130 int power_savings_balance = 1;
3131 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3132 unsigned long min_nr_running = ULONG_MAX;
3133 struct sched_group *group_min = NULL, *group_leader = NULL;
3134 #endif
3136 max_load = this_load = total_load = total_pwr = 0;
3137 busiest_load_per_task = busiest_nr_running = 0;
3138 this_load_per_task = this_nr_running = 0;
3140 if (idle == CPU_NOT_IDLE)
3141 load_idx = sd->busy_idx;
3142 else if (idle == CPU_NEWLY_IDLE)
3143 load_idx = sd->newidle_idx;
3144 else
3145 load_idx = sd->idle_idx;
3147 do {
3148 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3149 int local_group;
3150 int i;
3151 int __group_imb = 0;
3152 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3153 unsigned long sum_nr_running, sum_weighted_load;
3154 unsigned long sum_avg_load_per_task;
3155 unsigned long avg_load_per_task;
3157 local_group = cpumask_test_cpu(this_cpu,
3158 sched_group_cpus(group));
3160 if (local_group)
3161 balance_cpu = cpumask_first(sched_group_cpus(group));
3163 /* Tally up the load of all CPUs in the group */
3164 sum_weighted_load = sum_nr_running = avg_load = 0;
3165 sum_avg_load_per_task = avg_load_per_task = 0;
3167 max_cpu_load = 0;
3168 min_cpu_load = ~0UL;
3170 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3171 struct rq *rq = cpu_rq(i);
3173 if (*sd_idle && rq->nr_running)
3174 *sd_idle = 0;
3176 /* Bias balancing toward cpus of our domain */
3177 if (local_group) {
3178 if (idle_cpu(i) && !first_idle_cpu) {
3179 first_idle_cpu = 1;
3180 balance_cpu = i;
3183 load = target_load(i, load_idx);
3184 } else {
3185 load = source_load(i, load_idx);
3186 if (load > max_cpu_load)
3187 max_cpu_load = load;
3188 if (min_cpu_load > load)
3189 min_cpu_load = load;
3192 avg_load += load;
3193 sum_nr_running += rq->nr_running;
3194 sum_weighted_load += weighted_cpuload(i);
3196 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3200 * First idle cpu or the first cpu(busiest) in this sched group
3201 * is eligible for doing load balancing at this and above
3202 * domains. In the newly idle case, we will allow all the cpu's
3203 * to do the newly idle load balance.
3205 if (idle != CPU_NEWLY_IDLE && local_group &&
3206 balance_cpu != this_cpu && balance) {
3207 *balance = 0;
3208 goto ret;
3211 total_load += avg_load;
3212 total_pwr += group->__cpu_power;
3214 /* Adjust by relative CPU power of the group */
3215 avg_load = sg_div_cpu_power(group,
3216 avg_load * SCHED_LOAD_SCALE);
3220 * Consider the group unbalanced when the imbalance is larger
3221 * than the average weight of two tasks.
3223 * APZ: with cgroup the avg task weight can vary wildly and
3224 * might not be a suitable number - should we keep a
3225 * normalized nr_running number somewhere that negates
3226 * the hierarchy?
3228 avg_load_per_task = sg_div_cpu_power(group,
3229 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3231 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3232 __group_imb = 1;
3234 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3236 if (local_group) {
3237 this_load = avg_load;
3238 this = group;
3239 this_nr_running = sum_nr_running;
3240 this_load_per_task = sum_weighted_load;
3241 } else if (avg_load > max_load &&
3242 (sum_nr_running > group_capacity || __group_imb)) {
3243 max_load = avg_load;
3244 busiest = group;
3245 busiest_nr_running = sum_nr_running;
3246 busiest_load_per_task = sum_weighted_load;
3247 group_imb = __group_imb;
3250 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3252 * Busy processors will not participate in power savings
3253 * balance.
3255 if (idle == CPU_NOT_IDLE ||
3256 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3257 goto group_next;
3260 * If the local group is idle or completely loaded
3261 * no need to do power savings balance at this domain
3263 if (local_group && (this_nr_running >= group_capacity ||
3264 !this_nr_running))
3265 power_savings_balance = 0;
3268 * If a group is already running at full capacity or idle,
3269 * don't include that group in power savings calculations
3271 if (!power_savings_balance || sum_nr_running >= group_capacity
3272 || !sum_nr_running)
3273 goto group_next;
3276 * Calculate the group which has the least non-idle load.
3277 * This is the group from where we need to pick up the load
3278 * for saving power
3280 if ((sum_nr_running < min_nr_running) ||
3281 (sum_nr_running == min_nr_running &&
3282 cpumask_first(sched_group_cpus(group)) >
3283 cpumask_first(sched_group_cpus(group_min)))) {
3284 group_min = group;
3285 min_nr_running = sum_nr_running;
3286 min_load_per_task = sum_weighted_load /
3287 sum_nr_running;
3291 * Calculate the group which is almost near its
3292 * capacity but still has some space to pick up some load
3293 * from other group and save more power
3295 if (sum_nr_running <= group_capacity - 1) {
3296 if (sum_nr_running > leader_nr_running ||
3297 (sum_nr_running == leader_nr_running &&
3298 cpumask_first(sched_group_cpus(group)) <
3299 cpumask_first(sched_group_cpus(group_leader)))) {
3300 group_leader = group;
3301 leader_nr_running = sum_nr_running;
3304 group_next:
3305 #endif
3306 group = group->next;
3307 } while (group != sd->groups);
3309 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3310 goto out_balanced;
3312 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3314 if (this_load >= avg_load ||
3315 100*max_load <= sd->imbalance_pct*this_load)
3316 goto out_balanced;
3318 busiest_load_per_task /= busiest_nr_running;
3319 if (group_imb)
3320 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3323 * We're trying to get all the cpus to the average_load, so we don't
3324 * want to push ourselves above the average load, nor do we wish to
3325 * reduce the max loaded cpu below the average load, as either of these
3326 * actions would just result in more rebalancing later, and ping-pong
3327 * tasks around. Thus we look for the minimum possible imbalance.
3328 * Negative imbalances (*we* are more loaded than anyone else) will
3329 * be counted as no imbalance for these purposes -- we can't fix that
3330 * by pulling tasks to us. Be careful of negative numbers as they'll
3331 * appear as very large values with unsigned longs.
3333 if (max_load <= busiest_load_per_task)
3334 goto out_balanced;
3337 * In the presence of smp nice balancing, certain scenarios can have
3338 * max load less than avg load(as we skip the groups at or below
3339 * its cpu_power, while calculating max_load..)
3341 if (max_load < avg_load) {
3342 *imbalance = 0;
3343 goto small_imbalance;
3346 /* Don't want to pull so many tasks that a group would go idle */
3347 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3349 /* How much load to actually move to equalise the imbalance */
3350 *imbalance = min(max_pull * busiest->__cpu_power,
3351 (avg_load - this_load) * this->__cpu_power)
3352 / SCHED_LOAD_SCALE;
3355 * if *imbalance is less than the average load per runnable task
3356 * there is no gaurantee that any tasks will be moved so we'll have
3357 * a think about bumping its value to force at least one task to be
3358 * moved
3360 if (*imbalance < busiest_load_per_task) {
3361 unsigned long tmp, pwr_now, pwr_move;
3362 unsigned int imbn;
3364 small_imbalance:
3365 pwr_move = pwr_now = 0;
3366 imbn = 2;
3367 if (this_nr_running) {
3368 this_load_per_task /= this_nr_running;
3369 if (busiest_load_per_task > this_load_per_task)
3370 imbn = 1;
3371 } else
3372 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3374 if (max_load - this_load + busiest_load_per_task >=
3375 busiest_load_per_task * imbn) {
3376 *imbalance = busiest_load_per_task;
3377 return busiest;
3381 * OK, we don't have enough imbalance to justify moving tasks,
3382 * however we may be able to increase total CPU power used by
3383 * moving them.
3386 pwr_now += busiest->__cpu_power *
3387 min(busiest_load_per_task, max_load);
3388 pwr_now += this->__cpu_power *
3389 min(this_load_per_task, this_load);
3390 pwr_now /= SCHED_LOAD_SCALE;
3392 /* Amount of load we'd subtract */
3393 tmp = sg_div_cpu_power(busiest,
3394 busiest_load_per_task * SCHED_LOAD_SCALE);
3395 if (max_load > tmp)
3396 pwr_move += busiest->__cpu_power *
3397 min(busiest_load_per_task, max_load - tmp);
3399 /* Amount of load we'd add */
3400 if (max_load * busiest->__cpu_power <
3401 busiest_load_per_task * SCHED_LOAD_SCALE)
3402 tmp = sg_div_cpu_power(this,
3403 max_load * busiest->__cpu_power);
3404 else
3405 tmp = sg_div_cpu_power(this,
3406 busiest_load_per_task * SCHED_LOAD_SCALE);
3407 pwr_move += this->__cpu_power *
3408 min(this_load_per_task, this_load + tmp);
3409 pwr_move /= SCHED_LOAD_SCALE;
3411 /* Move if we gain throughput */
3412 if (pwr_move > pwr_now)
3413 *imbalance = busiest_load_per_task;
3416 return busiest;
3418 out_balanced:
3419 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3420 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3421 goto ret;
3423 if (this == group_leader && group_leader != group_min) {
3424 *imbalance = min_load_per_task;
3425 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3426 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3427 cpumask_first(sched_group_cpus(group_leader));
3429 return group_min;
3431 #endif
3432 ret:
3433 *imbalance = 0;
3434 return NULL;
3438 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3440 static struct rq *
3441 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3442 unsigned long imbalance, const struct cpumask *cpus)
3444 struct rq *busiest = NULL, *rq;
3445 unsigned long max_load = 0;
3446 int i;
3448 for_each_cpu(i, sched_group_cpus(group)) {
3449 unsigned long wl;
3451 if (!cpumask_test_cpu(i, cpus))
3452 continue;
3454 rq = cpu_rq(i);
3455 wl = weighted_cpuload(i);
3457 if (rq->nr_running == 1 && wl > imbalance)
3458 continue;
3460 if (wl > max_load) {
3461 max_load = wl;
3462 busiest = rq;
3466 return busiest;
3470 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3471 * so long as it is large enough.
3473 #define MAX_PINNED_INTERVAL 512
3476 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3477 * tasks if there is an imbalance.
3479 static int load_balance(int this_cpu, struct rq *this_rq,
3480 struct sched_domain *sd, enum cpu_idle_type idle,
3481 int *balance, struct cpumask *cpus)
3483 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3484 struct sched_group *group;
3485 unsigned long imbalance;
3486 struct rq *busiest;
3487 unsigned long flags;
3489 cpumask_setall(cpus);
3492 * When power savings policy is enabled for the parent domain, idle
3493 * sibling can pick up load irrespective of busy siblings. In this case,
3494 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3495 * portraying it as CPU_NOT_IDLE.
3497 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3498 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3499 sd_idle = 1;
3501 schedstat_inc(sd, lb_count[idle]);
3503 redo:
3504 update_shares(sd);
3505 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3506 cpus, balance);
3508 if (*balance == 0)
3509 goto out_balanced;
3511 if (!group) {
3512 schedstat_inc(sd, lb_nobusyg[idle]);
3513 goto out_balanced;
3516 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3517 if (!busiest) {
3518 schedstat_inc(sd, lb_nobusyq[idle]);
3519 goto out_balanced;
3522 BUG_ON(busiest == this_rq);
3524 schedstat_add(sd, lb_imbalance[idle], imbalance);
3526 ld_moved = 0;
3527 if (busiest->nr_running > 1) {
3529 * Attempt to move tasks. If find_busiest_group has found
3530 * an imbalance but busiest->nr_running <= 1, the group is
3531 * still unbalanced. ld_moved simply stays zero, so it is
3532 * correctly treated as an imbalance.
3534 local_irq_save(flags);
3535 double_rq_lock(this_rq, busiest);
3536 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3537 imbalance, sd, idle, &all_pinned);
3538 double_rq_unlock(this_rq, busiest);
3539 local_irq_restore(flags);
3542 * some other cpu did the load balance for us.
3544 if (ld_moved && this_cpu != smp_processor_id())
3545 resched_cpu(this_cpu);
3547 /* All tasks on this runqueue were pinned by CPU affinity */
3548 if (unlikely(all_pinned)) {
3549 cpumask_clear_cpu(cpu_of(busiest), cpus);
3550 if (!cpumask_empty(cpus))
3551 goto redo;
3552 goto out_balanced;
3556 if (!ld_moved) {
3557 schedstat_inc(sd, lb_failed[idle]);
3558 sd->nr_balance_failed++;
3560 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3562 spin_lock_irqsave(&busiest->lock, flags);
3564 /* don't kick the migration_thread, if the curr
3565 * task on busiest cpu can't be moved to this_cpu
3567 if (!cpumask_test_cpu(this_cpu,
3568 &busiest->curr->cpus_allowed)) {
3569 spin_unlock_irqrestore(&busiest->lock, flags);
3570 all_pinned = 1;
3571 goto out_one_pinned;
3574 if (!busiest->active_balance) {
3575 busiest->active_balance = 1;
3576 busiest->push_cpu = this_cpu;
3577 active_balance = 1;
3579 spin_unlock_irqrestore(&busiest->lock, flags);
3580 if (active_balance)
3581 wake_up_process(busiest->migration_thread);
3584 * We've kicked active balancing, reset the failure
3585 * counter.
3587 sd->nr_balance_failed = sd->cache_nice_tries+1;
3589 } else
3590 sd->nr_balance_failed = 0;
3592 if (likely(!active_balance)) {
3593 /* We were unbalanced, so reset the balancing interval */
3594 sd->balance_interval = sd->min_interval;
3595 } else {
3597 * If we've begun active balancing, start to back off. This
3598 * case may not be covered by the all_pinned logic if there
3599 * is only 1 task on the busy runqueue (because we don't call
3600 * move_tasks).
3602 if (sd->balance_interval < sd->max_interval)
3603 sd->balance_interval *= 2;
3606 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3607 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3608 ld_moved = -1;
3610 goto out;
3612 out_balanced:
3613 schedstat_inc(sd, lb_balanced[idle]);
3615 sd->nr_balance_failed = 0;
3617 out_one_pinned:
3618 /* tune up the balancing interval */
3619 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3620 (sd->balance_interval < sd->max_interval))
3621 sd->balance_interval *= 2;
3623 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3624 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3625 ld_moved = -1;
3626 else
3627 ld_moved = 0;
3628 out:
3629 if (ld_moved)
3630 update_shares(sd);
3631 return ld_moved;
3635 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3636 * tasks if there is an imbalance.
3638 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3639 * this_rq is locked.
3641 static int
3642 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3643 struct cpumask *cpus)
3645 struct sched_group *group;
3646 struct rq *busiest = NULL;
3647 unsigned long imbalance;
3648 int ld_moved = 0;
3649 int sd_idle = 0;
3650 int all_pinned = 0;
3652 cpumask_setall(cpus);
3655 * When power savings policy is enabled for the parent domain, idle
3656 * sibling can pick up load irrespective of busy siblings. In this case,
3657 * let the state of idle sibling percolate up as IDLE, instead of
3658 * portraying it as CPU_NOT_IDLE.
3660 if (sd->flags & SD_SHARE_CPUPOWER &&
3661 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3662 sd_idle = 1;
3664 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3665 redo:
3666 update_shares_locked(this_rq, sd);
3667 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3668 &sd_idle, cpus, NULL);
3669 if (!group) {
3670 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3671 goto out_balanced;
3674 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3675 if (!busiest) {
3676 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3677 goto out_balanced;
3680 BUG_ON(busiest == this_rq);
3682 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3684 ld_moved = 0;
3685 if (busiest->nr_running > 1) {
3686 /* Attempt to move tasks */
3687 double_lock_balance(this_rq, busiest);
3688 /* this_rq->clock is already updated */
3689 update_rq_clock(busiest);
3690 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3691 imbalance, sd, CPU_NEWLY_IDLE,
3692 &all_pinned);
3693 double_unlock_balance(this_rq, busiest);
3695 if (unlikely(all_pinned)) {
3696 cpumask_clear_cpu(cpu_of(busiest), cpus);
3697 if (!cpumask_empty(cpus))
3698 goto redo;
3702 if (!ld_moved) {
3703 int active_balance = 0;
3705 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3706 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3707 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3708 return -1;
3710 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3711 return -1;
3713 if (sd->nr_balance_failed++ < 2)
3714 return -1;
3717 * The only task running in a non-idle cpu can be moved to this
3718 * cpu in an attempt to completely freeup the other CPU
3719 * package. The same method used to move task in load_balance()
3720 * have been extended for load_balance_newidle() to speedup
3721 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3723 * The package power saving logic comes from
3724 * find_busiest_group(). If there are no imbalance, then
3725 * f_b_g() will return NULL. However when sched_mc={1,2} then
3726 * f_b_g() will select a group from which a running task may be
3727 * pulled to this cpu in order to make the other package idle.
3728 * If there is no opportunity to make a package idle and if
3729 * there are no imbalance, then f_b_g() will return NULL and no
3730 * action will be taken in load_balance_newidle().
3732 * Under normal task pull operation due to imbalance, there
3733 * will be more than one task in the source run queue and
3734 * move_tasks() will succeed. ld_moved will be true and this
3735 * active balance code will not be triggered.
3738 /* Lock busiest in correct order while this_rq is held */
3739 double_lock_balance(this_rq, busiest);
3742 * don't kick the migration_thread, if the curr
3743 * task on busiest cpu can't be moved to this_cpu
3745 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3746 double_unlock_balance(this_rq, busiest);
3747 all_pinned = 1;
3748 return ld_moved;
3751 if (!busiest->active_balance) {
3752 busiest->active_balance = 1;
3753 busiest->push_cpu = this_cpu;
3754 active_balance = 1;
3757 double_unlock_balance(this_rq, busiest);
3759 * Should not call ttwu while holding a rq->lock
3761 spin_unlock(&this_rq->lock);
3762 if (active_balance)
3763 wake_up_process(busiest->migration_thread);
3764 spin_lock(&this_rq->lock);
3766 } else
3767 sd->nr_balance_failed = 0;
3769 update_shares_locked(this_rq, sd);
3770 return ld_moved;
3772 out_balanced:
3773 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3774 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3775 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3776 return -1;
3777 sd->nr_balance_failed = 0;
3779 return 0;
3783 * idle_balance is called by schedule() if this_cpu is about to become
3784 * idle. Attempts to pull tasks from other CPUs.
3786 static void idle_balance(int this_cpu, struct rq *this_rq)
3788 struct sched_domain *sd;
3789 int pulled_task = 0;
3790 unsigned long next_balance = jiffies + HZ;
3791 cpumask_var_t tmpmask;
3793 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3794 return;
3796 for_each_domain(this_cpu, sd) {
3797 unsigned long interval;
3799 if (!(sd->flags & SD_LOAD_BALANCE))
3800 continue;
3802 if (sd->flags & SD_BALANCE_NEWIDLE)
3803 /* If we've pulled tasks over stop searching: */
3804 pulled_task = load_balance_newidle(this_cpu, this_rq,
3805 sd, tmpmask);
3807 interval = msecs_to_jiffies(sd->balance_interval);
3808 if (time_after(next_balance, sd->last_balance + interval))
3809 next_balance = sd->last_balance + interval;
3810 if (pulled_task)
3811 break;
3813 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3815 * We are going idle. next_balance may be set based on
3816 * a busy processor. So reset next_balance.
3818 this_rq->next_balance = next_balance;
3820 free_cpumask_var(tmpmask);
3824 * active_load_balance is run by migration threads. It pushes running tasks
3825 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3826 * running on each physical CPU where possible, and avoids physical /
3827 * logical imbalances.
3829 * Called with busiest_rq locked.
3831 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3833 int target_cpu = busiest_rq->push_cpu;
3834 struct sched_domain *sd;
3835 struct rq *target_rq;
3837 /* Is there any task to move? */
3838 if (busiest_rq->nr_running <= 1)
3839 return;
3841 target_rq = cpu_rq(target_cpu);
3844 * This condition is "impossible", if it occurs
3845 * we need to fix it. Originally reported by
3846 * Bjorn Helgaas on a 128-cpu setup.
3848 BUG_ON(busiest_rq == target_rq);
3850 /* move a task from busiest_rq to target_rq */
3851 double_lock_balance(busiest_rq, target_rq);
3852 update_rq_clock(busiest_rq);
3853 update_rq_clock(target_rq);
3855 /* Search for an sd spanning us and the target CPU. */
3856 for_each_domain(target_cpu, sd) {
3857 if ((sd->flags & SD_LOAD_BALANCE) &&
3858 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3859 break;
3862 if (likely(sd)) {
3863 schedstat_inc(sd, alb_count);
3865 if (move_one_task(target_rq, target_cpu, busiest_rq,
3866 sd, CPU_IDLE))
3867 schedstat_inc(sd, alb_pushed);
3868 else
3869 schedstat_inc(sd, alb_failed);
3871 double_unlock_balance(busiest_rq, target_rq);
3874 #ifdef CONFIG_NO_HZ
3875 static struct {
3876 atomic_t load_balancer;
3877 cpumask_var_t cpu_mask;
3878 } nohz ____cacheline_aligned = {
3879 .load_balancer = ATOMIC_INIT(-1),
3883 * This routine will try to nominate the ilb (idle load balancing)
3884 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3885 * load balancing on behalf of all those cpus. If all the cpus in the system
3886 * go into this tickless mode, then there will be no ilb owner (as there is
3887 * no need for one) and all the cpus will sleep till the next wakeup event
3888 * arrives...
3890 * For the ilb owner, tick is not stopped. And this tick will be used
3891 * for idle load balancing. ilb owner will still be part of
3892 * nohz.cpu_mask..
3894 * While stopping the tick, this cpu will become the ilb owner if there
3895 * is no other owner. And will be the owner till that cpu becomes busy
3896 * or if all cpus in the system stop their ticks at which point
3897 * there is no need for ilb owner.
3899 * When the ilb owner becomes busy, it nominates another owner, during the
3900 * next busy scheduler_tick()
3902 int select_nohz_load_balancer(int stop_tick)
3904 int cpu = smp_processor_id();
3906 if (stop_tick) {
3907 cpumask_set_cpu(cpu, nohz.cpu_mask);
3908 cpu_rq(cpu)->in_nohz_recently = 1;
3911 * If we are going offline and still the leader, give up!
3913 if (!cpu_active(cpu) &&
3914 atomic_read(&nohz.load_balancer) == cpu) {
3915 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3916 BUG();
3917 return 0;
3920 /* time for ilb owner also to sleep */
3921 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3922 if (atomic_read(&nohz.load_balancer) == cpu)
3923 atomic_set(&nohz.load_balancer, -1);
3924 return 0;
3927 if (atomic_read(&nohz.load_balancer) == -1) {
3928 /* make me the ilb owner */
3929 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3930 return 1;
3931 } else if (atomic_read(&nohz.load_balancer) == cpu)
3932 return 1;
3933 } else {
3934 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3935 return 0;
3937 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3939 if (atomic_read(&nohz.load_balancer) == cpu)
3940 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3941 BUG();
3943 return 0;
3945 #endif
3947 static DEFINE_SPINLOCK(balancing);
3950 * It checks each scheduling domain to see if it is due to be balanced,
3951 * and initiates a balancing operation if so.
3953 * Balancing parameters are set up in arch_init_sched_domains.
3955 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3957 int balance = 1;
3958 struct rq *rq = cpu_rq(cpu);
3959 unsigned long interval;
3960 struct sched_domain *sd;
3961 /* Earliest time when we have to do rebalance again */
3962 unsigned long next_balance = jiffies + 60*HZ;
3963 int update_next_balance = 0;
3964 int need_serialize;
3965 cpumask_var_t tmp;
3967 /* Fails alloc? Rebalancing probably not a priority right now. */
3968 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3969 return;
3971 for_each_domain(cpu, sd) {
3972 if (!(sd->flags & SD_LOAD_BALANCE))
3973 continue;
3975 interval = sd->balance_interval;
3976 if (idle != CPU_IDLE)
3977 interval *= sd->busy_factor;
3979 /* scale ms to jiffies */
3980 interval = msecs_to_jiffies(interval);
3981 if (unlikely(!interval))
3982 interval = 1;
3983 if (interval > HZ*NR_CPUS/10)
3984 interval = HZ*NR_CPUS/10;
3986 need_serialize = sd->flags & SD_SERIALIZE;
3988 if (need_serialize) {
3989 if (!spin_trylock(&balancing))
3990 goto out;
3993 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3994 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
3996 * We've pulled tasks over so either we're no
3997 * longer idle, or one of our SMT siblings is
3998 * not idle.
4000 idle = CPU_NOT_IDLE;
4002 sd->last_balance = jiffies;
4004 if (need_serialize)
4005 spin_unlock(&balancing);
4006 out:
4007 if (time_after(next_balance, sd->last_balance + interval)) {
4008 next_balance = sd->last_balance + interval;
4009 update_next_balance = 1;
4013 * Stop the load balance at this level. There is another
4014 * CPU in our sched group which is doing load balancing more
4015 * actively.
4017 if (!balance)
4018 break;
4022 * next_balance will be updated only when there is a need.
4023 * When the cpu is attached to null domain for ex, it will not be
4024 * updated.
4026 if (likely(update_next_balance))
4027 rq->next_balance = next_balance;
4029 free_cpumask_var(tmp);
4033 * run_rebalance_domains is triggered when needed from the scheduler tick.
4034 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4035 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4037 static void run_rebalance_domains(struct softirq_action *h)
4039 int this_cpu = smp_processor_id();
4040 struct rq *this_rq = cpu_rq(this_cpu);
4041 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4042 CPU_IDLE : CPU_NOT_IDLE;
4044 rebalance_domains(this_cpu, idle);
4046 #ifdef CONFIG_NO_HZ
4048 * If this cpu is the owner for idle load balancing, then do the
4049 * balancing on behalf of the other idle cpus whose ticks are
4050 * stopped.
4052 if (this_rq->idle_at_tick &&
4053 atomic_read(&nohz.load_balancer) == this_cpu) {
4054 struct rq *rq;
4055 int balance_cpu;
4057 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4058 if (balance_cpu == this_cpu)
4059 continue;
4062 * If this cpu gets work to do, stop the load balancing
4063 * work being done for other cpus. Next load
4064 * balancing owner will pick it up.
4066 if (need_resched())
4067 break;
4069 rebalance_domains(balance_cpu, CPU_IDLE);
4071 rq = cpu_rq(balance_cpu);
4072 if (time_after(this_rq->next_balance, rq->next_balance))
4073 this_rq->next_balance = rq->next_balance;
4076 #endif
4080 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4082 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4083 * idle load balancing owner or decide to stop the periodic load balancing,
4084 * if the whole system is idle.
4086 static inline void trigger_load_balance(struct rq *rq, int cpu)
4088 #ifdef CONFIG_NO_HZ
4090 * If we were in the nohz mode recently and busy at the current
4091 * scheduler tick, then check if we need to nominate new idle
4092 * load balancer.
4094 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4095 rq->in_nohz_recently = 0;
4097 if (atomic_read(&nohz.load_balancer) == cpu) {
4098 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4099 atomic_set(&nohz.load_balancer, -1);
4102 if (atomic_read(&nohz.load_balancer) == -1) {
4104 * simple selection for now: Nominate the
4105 * first cpu in the nohz list to be the next
4106 * ilb owner.
4108 * TBD: Traverse the sched domains and nominate
4109 * the nearest cpu in the nohz.cpu_mask.
4111 int ilb = cpumask_first(nohz.cpu_mask);
4113 if (ilb < nr_cpu_ids)
4114 resched_cpu(ilb);
4119 * If this cpu is idle and doing idle load balancing for all the
4120 * cpus with ticks stopped, is it time for that to stop?
4122 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4123 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4124 resched_cpu(cpu);
4125 return;
4129 * If this cpu is idle and the idle load balancing is done by
4130 * someone else, then no need raise the SCHED_SOFTIRQ
4132 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4133 cpumask_test_cpu(cpu, nohz.cpu_mask))
4134 return;
4135 #endif
4136 if (time_after_eq(jiffies, rq->next_balance))
4137 raise_softirq(SCHED_SOFTIRQ);
4140 #else /* CONFIG_SMP */
4143 * on UP we do not need to balance between CPUs:
4145 static inline void idle_balance(int cpu, struct rq *rq)
4149 #endif
4151 DEFINE_PER_CPU(struct kernel_stat, kstat);
4153 EXPORT_PER_CPU_SYMBOL(kstat);
4156 * Return any ns on the sched_clock that have not yet been banked in
4157 * @p in case that task is currently running.
4159 unsigned long long task_delta_exec(struct task_struct *p)
4161 unsigned long flags;
4162 struct rq *rq;
4163 u64 ns = 0;
4165 rq = task_rq_lock(p, &flags);
4167 if (task_current(rq, p)) {
4168 u64 delta_exec;
4170 update_rq_clock(rq);
4171 delta_exec = rq->clock - p->se.exec_start;
4172 if ((s64)delta_exec > 0)
4173 ns = delta_exec;
4176 task_rq_unlock(rq, &flags);
4178 return ns;
4182 * Account user cpu time to a process.
4183 * @p: the process that the cpu time gets accounted to
4184 * @cputime: the cpu time spent in user space since the last update
4185 * @cputime_scaled: cputime scaled by cpu frequency
4187 void account_user_time(struct task_struct *p, cputime_t cputime,
4188 cputime_t cputime_scaled)
4190 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4191 cputime64_t tmp;
4193 /* Add user time to process. */
4194 p->utime = cputime_add(p->utime, cputime);
4195 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4196 account_group_user_time(p, cputime);
4198 /* Add user time to cpustat. */
4199 tmp = cputime_to_cputime64(cputime);
4200 if (TASK_NICE(p) > 0)
4201 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4202 else
4203 cpustat->user = cputime64_add(cpustat->user, tmp);
4204 /* Account for user time used */
4205 acct_update_integrals(p);
4209 * Account guest cpu time to a process.
4210 * @p: the process that the cpu time gets accounted to
4211 * @cputime: the cpu time spent in virtual machine since the last update
4212 * @cputime_scaled: cputime scaled by cpu frequency
4214 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4215 cputime_t cputime_scaled)
4217 cputime64_t tmp;
4218 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4220 tmp = cputime_to_cputime64(cputime);
4222 /* Add guest time to process. */
4223 p->utime = cputime_add(p->utime, cputime);
4224 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4225 account_group_user_time(p, cputime);
4226 p->gtime = cputime_add(p->gtime, cputime);
4228 /* Add guest time to cpustat. */
4229 cpustat->user = cputime64_add(cpustat->user, tmp);
4230 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4234 * Account system cpu time to a process.
4235 * @p: the process that the cpu time gets accounted to
4236 * @hardirq_offset: the offset to subtract from hardirq_count()
4237 * @cputime: the cpu time spent in kernel space since the last update
4238 * @cputime_scaled: cputime scaled by cpu frequency
4240 void account_system_time(struct task_struct *p, int hardirq_offset,
4241 cputime_t cputime, cputime_t cputime_scaled)
4243 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4244 cputime64_t tmp;
4246 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4247 account_guest_time(p, cputime, cputime_scaled);
4248 return;
4251 /* Add system time to process. */
4252 p->stime = cputime_add(p->stime, cputime);
4253 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4254 account_group_system_time(p, cputime);
4256 /* Add system time to cpustat. */
4257 tmp = cputime_to_cputime64(cputime);
4258 if (hardirq_count() - hardirq_offset)
4259 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4260 else if (softirq_count())
4261 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4262 else
4263 cpustat->system = cputime64_add(cpustat->system, tmp);
4265 /* Account for system time used */
4266 acct_update_integrals(p);
4270 * Account for involuntary wait time.
4271 * @steal: the cpu time spent in involuntary wait
4273 void account_steal_time(cputime_t cputime)
4275 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4276 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4278 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4282 * Account for idle time.
4283 * @cputime: the cpu time spent in idle wait
4285 void account_idle_time(cputime_t cputime)
4287 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4288 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4289 struct rq *rq = this_rq();
4291 if (atomic_read(&rq->nr_iowait) > 0)
4292 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4293 else
4294 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4297 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4300 * Account a single tick of cpu time.
4301 * @p: the process that the cpu time gets accounted to
4302 * @user_tick: indicates if the tick is a user or a system tick
4304 void account_process_tick(struct task_struct *p, int user_tick)
4306 cputime_t one_jiffy = jiffies_to_cputime(1);
4307 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4308 struct rq *rq = this_rq();
4310 if (user_tick)
4311 account_user_time(p, one_jiffy, one_jiffy_scaled);
4312 else if (p != rq->idle)
4313 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4314 one_jiffy_scaled);
4315 else
4316 account_idle_time(one_jiffy);
4320 * Account multiple ticks of steal time.
4321 * @p: the process from which the cpu time has been stolen
4322 * @ticks: number of stolen ticks
4324 void account_steal_ticks(unsigned long ticks)
4326 account_steal_time(jiffies_to_cputime(ticks));
4330 * Account multiple ticks of idle time.
4331 * @ticks: number of stolen ticks
4333 void account_idle_ticks(unsigned long ticks)
4335 account_idle_time(jiffies_to_cputime(ticks));
4338 #endif
4341 * Use precise platform statistics if available:
4343 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4344 cputime_t task_utime(struct task_struct *p)
4346 return p->utime;
4349 cputime_t task_stime(struct task_struct *p)
4351 return p->stime;
4353 #else
4354 cputime_t task_utime(struct task_struct *p)
4356 clock_t utime = cputime_to_clock_t(p->utime),
4357 total = utime + cputime_to_clock_t(p->stime);
4358 u64 temp;
4361 * Use CFS's precise accounting:
4363 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4365 if (total) {
4366 temp *= utime;
4367 do_div(temp, total);
4369 utime = (clock_t)temp;
4371 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4372 return p->prev_utime;
4375 cputime_t task_stime(struct task_struct *p)
4377 clock_t stime;
4380 * Use CFS's precise accounting. (we subtract utime from
4381 * the total, to make sure the total observed by userspace
4382 * grows monotonically - apps rely on that):
4384 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4385 cputime_to_clock_t(task_utime(p));
4387 if (stime >= 0)
4388 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4390 return p->prev_stime;
4392 #endif
4394 inline cputime_t task_gtime(struct task_struct *p)
4396 return p->gtime;
4400 * This function gets called by the timer code, with HZ frequency.
4401 * We call it with interrupts disabled.
4403 * It also gets called by the fork code, when changing the parent's
4404 * timeslices.
4406 void scheduler_tick(void)
4408 int cpu = smp_processor_id();
4409 struct rq *rq = cpu_rq(cpu);
4410 struct task_struct *curr = rq->curr;
4412 sched_clock_tick();
4414 spin_lock(&rq->lock);
4415 update_rq_clock(rq);
4416 update_cpu_load(rq);
4417 curr->sched_class->task_tick(rq, curr, 0);
4418 spin_unlock(&rq->lock);
4420 #ifdef CONFIG_SMP
4421 rq->idle_at_tick = idle_cpu(cpu);
4422 trigger_load_balance(rq, cpu);
4423 #endif
4426 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4427 defined(CONFIG_PREEMPT_TRACER))
4429 static inline unsigned long get_parent_ip(unsigned long addr)
4431 if (in_lock_functions(addr)) {
4432 addr = CALLER_ADDR2;
4433 if (in_lock_functions(addr))
4434 addr = CALLER_ADDR3;
4436 return addr;
4439 void __kprobes add_preempt_count(int val)
4441 #ifdef CONFIG_DEBUG_PREEMPT
4443 * Underflow?
4445 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4446 return;
4447 #endif
4448 preempt_count() += val;
4449 #ifdef CONFIG_DEBUG_PREEMPT
4451 * Spinlock count overflowing soon?
4453 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4454 PREEMPT_MASK - 10);
4455 #endif
4456 if (preempt_count() == val)
4457 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4459 EXPORT_SYMBOL(add_preempt_count);
4461 void __kprobes sub_preempt_count(int val)
4463 #ifdef CONFIG_DEBUG_PREEMPT
4465 * Underflow?
4467 if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
4468 return;
4470 * Is the spinlock portion underflowing?
4472 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4473 !(preempt_count() & PREEMPT_MASK)))
4474 return;
4475 #endif
4477 if (preempt_count() == val)
4478 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4479 preempt_count() -= val;
4481 EXPORT_SYMBOL(sub_preempt_count);
4483 #endif
4486 * Print scheduling while atomic bug:
4488 static noinline void __schedule_bug(struct task_struct *prev)
4490 struct pt_regs *regs = get_irq_regs();
4492 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4493 prev->comm, prev->pid, preempt_count());
4495 debug_show_held_locks(prev);
4496 print_modules();
4497 if (irqs_disabled())
4498 print_irqtrace_events(prev);
4500 if (regs)
4501 show_regs(regs);
4502 else
4503 dump_stack();
4507 * Various schedule()-time debugging checks and statistics:
4509 static inline void schedule_debug(struct task_struct *prev)
4512 * Test if we are atomic. Since do_exit() needs to call into
4513 * schedule() atomically, we ignore that path for now.
4514 * Otherwise, whine if we are scheduling when we should not be.
4516 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4517 __schedule_bug(prev);
4519 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4521 schedstat_inc(this_rq(), sched_count);
4522 #ifdef CONFIG_SCHEDSTATS
4523 if (unlikely(prev->lock_depth >= 0)) {
4524 schedstat_inc(this_rq(), bkl_count);
4525 schedstat_inc(prev, sched_info.bkl_count);
4527 #endif
4531 * Pick up the highest-prio task:
4533 static inline struct task_struct *
4534 pick_next_task(struct rq *rq, struct task_struct *prev)
4536 const struct sched_class *class;
4537 struct task_struct *p;
4540 * Optimization: we know that if all tasks are in
4541 * the fair class we can call that function directly:
4543 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4544 p = fair_sched_class.pick_next_task(rq);
4545 if (likely(p))
4546 return p;
4549 class = sched_class_highest;
4550 for ( ; ; ) {
4551 p = class->pick_next_task(rq);
4552 if (p)
4553 return p;
4555 * Will never be NULL as the idle class always
4556 * returns a non-NULL p:
4558 class = class->next;
4563 * schedule() is the main scheduler function.
4565 asmlinkage void __sched schedule(void)
4567 struct task_struct *prev, *next;
4568 unsigned long *switch_count;
4569 struct rq *rq;
4570 int cpu;
4572 need_resched:
4573 preempt_disable();
4574 cpu = smp_processor_id();
4575 rq = cpu_rq(cpu);
4576 rcu_qsctr_inc(cpu);
4577 prev = rq->curr;
4578 switch_count = &prev->nivcsw;
4580 release_kernel_lock(prev);
4581 need_resched_nonpreemptible:
4583 schedule_debug(prev);
4585 if (sched_feat(HRTICK))
4586 hrtick_clear(rq);
4588 spin_lock_irq(&rq->lock);
4589 update_rq_clock(rq);
4590 clear_tsk_need_resched(prev);
4592 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4593 if (unlikely(signal_pending_state(prev->state, prev)))
4594 prev->state = TASK_RUNNING;
4595 else
4596 deactivate_task(rq, prev, 1);
4597 switch_count = &prev->nvcsw;
4600 #ifdef CONFIG_SMP
4601 if (prev->sched_class->pre_schedule)
4602 prev->sched_class->pre_schedule(rq, prev);
4603 #endif
4605 if (unlikely(!rq->nr_running))
4606 idle_balance(cpu, rq);
4608 prev->sched_class->put_prev_task(rq, prev);
4609 next = pick_next_task(rq, prev);
4611 if (likely(prev != next)) {
4612 sched_info_switch(prev, next);
4614 rq->nr_switches++;
4615 rq->curr = next;
4616 ++*switch_count;
4618 context_switch(rq, prev, next); /* unlocks the rq */
4620 * the context switch might have flipped the stack from under
4621 * us, hence refresh the local variables.
4623 cpu = smp_processor_id();
4624 rq = cpu_rq(cpu);
4625 } else
4626 spin_unlock_irq(&rq->lock);
4628 if (unlikely(reacquire_kernel_lock(current) < 0))
4629 goto need_resched_nonpreemptible;
4631 preempt_enable_no_resched();
4632 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4633 goto need_resched;
4635 EXPORT_SYMBOL(schedule);
4637 #ifdef CONFIG_PREEMPT
4639 * this is the entry point to schedule() from in-kernel preemption
4640 * off of preempt_enable. Kernel preemptions off return from interrupt
4641 * occur there and call schedule directly.
4643 asmlinkage void __sched preempt_schedule(void)
4645 struct thread_info *ti = current_thread_info();
4648 * If there is a non-zero preempt_count or interrupts are disabled,
4649 * we do not want to preempt the current task. Just return..
4651 if (likely(ti->preempt_count || irqs_disabled()))
4652 return;
4654 do {
4655 add_preempt_count(PREEMPT_ACTIVE);
4656 schedule();
4657 sub_preempt_count(PREEMPT_ACTIVE);
4660 * Check again in case we missed a preemption opportunity
4661 * between schedule and now.
4663 barrier();
4664 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4666 EXPORT_SYMBOL(preempt_schedule);
4669 * this is the entry point to schedule() from kernel preemption
4670 * off of irq context.
4671 * Note, that this is called and return with irqs disabled. This will
4672 * protect us against recursive calling from irq.
4674 asmlinkage void __sched preempt_schedule_irq(void)
4676 struct thread_info *ti = current_thread_info();
4678 /* Catch callers which need to be fixed */
4679 BUG_ON(ti->preempt_count || !irqs_disabled());
4681 do {
4682 add_preempt_count(PREEMPT_ACTIVE);
4683 local_irq_enable();
4684 schedule();
4685 local_irq_disable();
4686 sub_preempt_count(PREEMPT_ACTIVE);
4689 * Check again in case we missed a preemption opportunity
4690 * between schedule and now.
4692 barrier();
4693 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4696 #endif /* CONFIG_PREEMPT */
4698 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4699 void *key)
4701 return try_to_wake_up(curr->private, mode, sync);
4703 EXPORT_SYMBOL(default_wake_function);
4706 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4707 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4708 * number) then we wake all the non-exclusive tasks and one exclusive task.
4710 * There are circumstances in which we can try to wake a task which has already
4711 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4712 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4714 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4715 int nr_exclusive, int sync, void *key)
4717 wait_queue_t *curr, *next;
4719 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4720 unsigned flags = curr->flags;
4722 if (curr->func(curr, mode, sync, key) &&
4723 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4724 break;
4729 * __wake_up - wake up threads blocked on a waitqueue.
4730 * @q: the waitqueue
4731 * @mode: which threads
4732 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4733 * @key: is directly passed to the wakeup function
4735 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4736 int nr_exclusive, void *key)
4738 unsigned long flags;
4740 spin_lock_irqsave(&q->lock, flags);
4741 __wake_up_common(q, mode, nr_exclusive, 0, key);
4742 spin_unlock_irqrestore(&q->lock, flags);
4744 EXPORT_SYMBOL(__wake_up);
4747 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4749 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4751 __wake_up_common(q, mode, 1, 0, NULL);
4755 * __wake_up_sync - wake up threads blocked on a waitqueue.
4756 * @q: the waitqueue
4757 * @mode: which threads
4758 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4760 * The sync wakeup differs that the waker knows that it will schedule
4761 * away soon, so while the target thread will be woken up, it will not
4762 * be migrated to another CPU - ie. the two threads are 'synchronized'
4763 * with each other. This can prevent needless bouncing between CPUs.
4765 * On UP it can prevent extra preemption.
4767 void
4768 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4770 unsigned long flags;
4771 int sync = 1;
4773 if (unlikely(!q))
4774 return;
4776 if (unlikely(!nr_exclusive))
4777 sync = 0;
4779 spin_lock_irqsave(&q->lock, flags);
4780 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4781 spin_unlock_irqrestore(&q->lock, flags);
4783 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4786 * complete: - signals a single thread waiting on this completion
4787 * @x: holds the state of this particular completion
4789 * This will wake up a single thread waiting on this completion. Threads will be
4790 * awakened in the same order in which they were queued.
4792 * See also complete_all(), wait_for_completion() and related routines.
4794 void complete(struct completion *x)
4796 unsigned long flags;
4798 spin_lock_irqsave(&x->wait.lock, flags);
4799 x->done++;
4800 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4801 spin_unlock_irqrestore(&x->wait.lock, flags);
4803 EXPORT_SYMBOL(complete);
4806 * complete_all: - signals all threads waiting on this completion
4807 * @x: holds the state of this particular completion
4809 * This will wake up all threads waiting on this particular completion event.
4811 void complete_all(struct completion *x)
4813 unsigned long flags;
4815 spin_lock_irqsave(&x->wait.lock, flags);
4816 x->done += UINT_MAX/2;
4817 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4818 spin_unlock_irqrestore(&x->wait.lock, flags);
4820 EXPORT_SYMBOL(complete_all);
4822 static inline long __sched
4823 do_wait_for_common(struct completion *x, long timeout, int state)
4825 if (!x->done) {
4826 DECLARE_WAITQUEUE(wait, current);
4828 wait.flags |= WQ_FLAG_EXCLUSIVE;
4829 __add_wait_queue_tail(&x->wait, &wait);
4830 do {
4831 if (signal_pending_state(state, current)) {
4832 timeout = -ERESTARTSYS;
4833 break;
4835 __set_current_state(state);
4836 spin_unlock_irq(&x->wait.lock);
4837 timeout = schedule_timeout(timeout);
4838 spin_lock_irq(&x->wait.lock);
4839 } while (!x->done && timeout);
4840 __remove_wait_queue(&x->wait, &wait);
4841 if (!x->done)
4842 return timeout;
4844 x->done--;
4845 return timeout ?: 1;
4848 static long __sched
4849 wait_for_common(struct completion *x, long timeout, int state)
4851 might_sleep();
4853 spin_lock_irq(&x->wait.lock);
4854 timeout = do_wait_for_common(x, timeout, state);
4855 spin_unlock_irq(&x->wait.lock);
4856 return timeout;
4860 * wait_for_completion: - waits for completion of a task
4861 * @x: holds the state of this particular completion
4863 * This waits to be signaled for completion of a specific task. It is NOT
4864 * interruptible and there is no timeout.
4866 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4867 * and interrupt capability. Also see complete().
4869 void __sched wait_for_completion(struct completion *x)
4871 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4873 EXPORT_SYMBOL(wait_for_completion);
4876 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4877 * @x: holds the state of this particular completion
4878 * @timeout: timeout value in jiffies
4880 * This waits for either a completion of a specific task to be signaled or for a
4881 * specified timeout to expire. The timeout is in jiffies. It is not
4882 * interruptible.
4884 unsigned long __sched
4885 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4887 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4889 EXPORT_SYMBOL(wait_for_completion_timeout);
4892 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4893 * @x: holds the state of this particular completion
4895 * This waits for completion of a specific task to be signaled. It is
4896 * interruptible.
4898 int __sched wait_for_completion_interruptible(struct completion *x)
4900 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4901 if (t == -ERESTARTSYS)
4902 return t;
4903 return 0;
4905 EXPORT_SYMBOL(wait_for_completion_interruptible);
4908 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4909 * @x: holds the state of this particular completion
4910 * @timeout: timeout value in jiffies
4912 * This waits for either a completion of a specific task to be signaled or for a
4913 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4915 unsigned long __sched
4916 wait_for_completion_interruptible_timeout(struct completion *x,
4917 unsigned long timeout)
4919 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4921 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4924 * wait_for_completion_killable: - waits for completion of a task (killable)
4925 * @x: holds the state of this particular completion
4927 * This waits to be signaled for completion of a specific task. It can be
4928 * interrupted by a kill signal.
4930 int __sched wait_for_completion_killable(struct completion *x)
4932 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4933 if (t == -ERESTARTSYS)
4934 return t;
4935 return 0;
4937 EXPORT_SYMBOL(wait_for_completion_killable);
4940 * try_wait_for_completion - try to decrement a completion without blocking
4941 * @x: completion structure
4943 * Returns: 0 if a decrement cannot be done without blocking
4944 * 1 if a decrement succeeded.
4946 * If a completion is being used as a counting completion,
4947 * attempt to decrement the counter without blocking. This
4948 * enables us to avoid waiting if the resource the completion
4949 * is protecting is not available.
4951 bool try_wait_for_completion(struct completion *x)
4953 int ret = 1;
4955 spin_lock_irq(&x->wait.lock);
4956 if (!x->done)
4957 ret = 0;
4958 else
4959 x->done--;
4960 spin_unlock_irq(&x->wait.lock);
4961 return ret;
4963 EXPORT_SYMBOL(try_wait_for_completion);
4966 * completion_done - Test to see if a completion has any waiters
4967 * @x: completion structure
4969 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4970 * 1 if there are no waiters.
4973 bool completion_done(struct completion *x)
4975 int ret = 1;
4977 spin_lock_irq(&x->wait.lock);
4978 if (!x->done)
4979 ret = 0;
4980 spin_unlock_irq(&x->wait.lock);
4981 return ret;
4983 EXPORT_SYMBOL(completion_done);
4985 static long __sched
4986 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4988 unsigned long flags;
4989 wait_queue_t wait;
4991 init_waitqueue_entry(&wait, current);
4993 __set_current_state(state);
4995 spin_lock_irqsave(&q->lock, flags);
4996 __add_wait_queue(q, &wait);
4997 spin_unlock(&q->lock);
4998 timeout = schedule_timeout(timeout);
4999 spin_lock_irq(&q->lock);
5000 __remove_wait_queue(q, &wait);
5001 spin_unlock_irqrestore(&q->lock, flags);
5003 return timeout;
5006 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5008 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5010 EXPORT_SYMBOL(interruptible_sleep_on);
5012 long __sched
5013 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5015 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5017 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5019 void __sched sleep_on(wait_queue_head_t *q)
5021 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5023 EXPORT_SYMBOL(sleep_on);
5025 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5027 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5029 EXPORT_SYMBOL(sleep_on_timeout);
5031 #ifdef CONFIG_RT_MUTEXES
5034 * rt_mutex_setprio - set the current priority of a task
5035 * @p: task
5036 * @prio: prio value (kernel-internal form)
5038 * This function changes the 'effective' priority of a task. It does
5039 * not touch ->normal_prio like __setscheduler().
5041 * Used by the rt_mutex code to implement priority inheritance logic.
5043 void rt_mutex_setprio(struct task_struct *p, int prio)
5045 unsigned long flags;
5046 int oldprio, on_rq, running;
5047 struct rq *rq;
5048 const struct sched_class *prev_class = p->sched_class;
5050 BUG_ON(prio < 0 || prio > MAX_PRIO);
5052 rq = task_rq_lock(p, &flags);
5053 update_rq_clock(rq);
5055 oldprio = p->prio;
5056 on_rq = p->se.on_rq;
5057 running = task_current(rq, p);
5058 if (on_rq)
5059 dequeue_task(rq, p, 0);
5060 if (running)
5061 p->sched_class->put_prev_task(rq, p);
5063 if (rt_prio(prio))
5064 p->sched_class = &rt_sched_class;
5065 else
5066 p->sched_class = &fair_sched_class;
5068 p->prio = prio;
5070 if (running)
5071 p->sched_class->set_curr_task(rq);
5072 if (on_rq) {
5073 enqueue_task(rq, p, 0);
5075 check_class_changed(rq, p, prev_class, oldprio, running);
5077 task_rq_unlock(rq, &flags);
5080 #endif
5082 void set_user_nice(struct task_struct *p, long nice)
5084 int old_prio, delta, on_rq;
5085 unsigned long flags;
5086 struct rq *rq;
5088 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5089 return;
5091 * We have to be careful, if called from sys_setpriority(),
5092 * the task might be in the middle of scheduling on another CPU.
5094 rq = task_rq_lock(p, &flags);
5095 update_rq_clock(rq);
5097 * The RT priorities are set via sched_setscheduler(), but we still
5098 * allow the 'normal' nice value to be set - but as expected
5099 * it wont have any effect on scheduling until the task is
5100 * SCHED_FIFO/SCHED_RR:
5102 if (task_has_rt_policy(p)) {
5103 p->static_prio = NICE_TO_PRIO(nice);
5104 goto out_unlock;
5106 on_rq = p->se.on_rq;
5107 if (on_rq)
5108 dequeue_task(rq, p, 0);
5110 p->static_prio = NICE_TO_PRIO(nice);
5111 set_load_weight(p);
5112 old_prio = p->prio;
5113 p->prio = effective_prio(p);
5114 delta = p->prio - old_prio;
5116 if (on_rq) {
5117 enqueue_task(rq, p, 0);
5119 * If the task increased its priority or is running and
5120 * lowered its priority, then reschedule its CPU:
5122 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5123 resched_task(rq->curr);
5125 out_unlock:
5126 task_rq_unlock(rq, &flags);
5128 EXPORT_SYMBOL(set_user_nice);
5131 * can_nice - check if a task can reduce its nice value
5132 * @p: task
5133 * @nice: nice value
5135 int can_nice(const struct task_struct *p, const int nice)
5137 /* convert nice value [19,-20] to rlimit style value [1,40] */
5138 int nice_rlim = 20 - nice;
5140 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5141 capable(CAP_SYS_NICE));
5144 #ifdef __ARCH_WANT_SYS_NICE
5147 * sys_nice - change the priority of the current process.
5148 * @increment: priority increment
5150 * sys_setpriority is a more generic, but much slower function that
5151 * does similar things.
5153 asmlinkage long sys_nice(int increment)
5155 long nice, retval;
5158 * Setpriority might change our priority at the same moment.
5159 * We don't have to worry. Conceptually one call occurs first
5160 * and we have a single winner.
5162 if (increment < -40)
5163 increment = -40;
5164 if (increment > 40)
5165 increment = 40;
5167 nice = PRIO_TO_NICE(current->static_prio) + increment;
5168 if (nice < -20)
5169 nice = -20;
5170 if (nice > 19)
5171 nice = 19;
5173 if (increment < 0 && !can_nice(current, nice))
5174 return -EPERM;
5176 retval = security_task_setnice(current, nice);
5177 if (retval)
5178 return retval;
5180 set_user_nice(current, nice);
5181 return 0;
5184 #endif
5187 * task_prio - return the priority value of a given task.
5188 * @p: the task in question.
5190 * This is the priority value as seen by users in /proc.
5191 * RT tasks are offset by -200. Normal tasks are centered
5192 * around 0, value goes from -16 to +15.
5194 int task_prio(const struct task_struct *p)
5196 return p->prio - MAX_RT_PRIO;
5200 * task_nice - return the nice value of a given task.
5201 * @p: the task in question.
5203 int task_nice(const struct task_struct *p)
5205 return TASK_NICE(p);
5207 EXPORT_SYMBOL(task_nice);
5210 * idle_cpu - is a given cpu idle currently?
5211 * @cpu: the processor in question.
5213 int idle_cpu(int cpu)
5215 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5219 * idle_task - return the idle task for a given cpu.
5220 * @cpu: the processor in question.
5222 struct task_struct *idle_task(int cpu)
5224 return cpu_rq(cpu)->idle;
5228 * find_process_by_pid - find a process with a matching PID value.
5229 * @pid: the pid in question.
5231 static struct task_struct *find_process_by_pid(pid_t pid)
5233 return pid ? find_task_by_vpid(pid) : current;
5236 /* Actually do priority change: must hold rq lock. */
5237 static void
5238 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5240 BUG_ON(p->se.on_rq);
5242 p->policy = policy;
5243 switch (p->policy) {
5244 case SCHED_NORMAL:
5245 case SCHED_BATCH:
5246 case SCHED_IDLE:
5247 p->sched_class = &fair_sched_class;
5248 break;
5249 case SCHED_FIFO:
5250 case SCHED_RR:
5251 p->sched_class = &rt_sched_class;
5252 break;
5255 p->rt_priority = prio;
5256 p->normal_prio = normal_prio(p);
5257 /* we are holding p->pi_lock already */
5258 p->prio = rt_mutex_getprio(p);
5259 set_load_weight(p);
5263 * check the target process has a UID that matches the current process's
5265 static bool check_same_owner(struct task_struct *p)
5267 const struct cred *cred = current_cred(), *pcred;
5268 bool match;
5270 rcu_read_lock();
5271 pcred = __task_cred(p);
5272 match = (cred->euid == pcred->euid ||
5273 cred->euid == pcred->uid);
5274 rcu_read_unlock();
5275 return match;
5278 static int __sched_setscheduler(struct task_struct *p, int policy,
5279 struct sched_param *param, bool user)
5281 int retval, oldprio, oldpolicy = -1, on_rq, running;
5282 unsigned long flags;
5283 const struct sched_class *prev_class = p->sched_class;
5284 struct rq *rq;
5286 /* may grab non-irq protected spin_locks */
5287 BUG_ON(in_interrupt());
5288 recheck:
5289 /* double check policy once rq lock held */
5290 if (policy < 0)
5291 policy = oldpolicy = p->policy;
5292 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5293 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5294 policy != SCHED_IDLE)
5295 return -EINVAL;
5297 * Valid priorities for SCHED_FIFO and SCHED_RR are
5298 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5299 * SCHED_BATCH and SCHED_IDLE is 0.
5301 if (param->sched_priority < 0 ||
5302 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5303 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5304 return -EINVAL;
5305 if (rt_policy(policy) != (param->sched_priority != 0))
5306 return -EINVAL;
5309 * Allow unprivileged RT tasks to decrease priority:
5311 if (user && !capable(CAP_SYS_NICE)) {
5312 if (rt_policy(policy)) {
5313 unsigned long rlim_rtprio;
5315 if (!lock_task_sighand(p, &flags))
5316 return -ESRCH;
5317 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5318 unlock_task_sighand(p, &flags);
5320 /* can't set/change the rt policy */
5321 if (policy != p->policy && !rlim_rtprio)
5322 return -EPERM;
5324 /* can't increase priority */
5325 if (param->sched_priority > p->rt_priority &&
5326 param->sched_priority > rlim_rtprio)
5327 return -EPERM;
5330 * Like positive nice levels, dont allow tasks to
5331 * move out of SCHED_IDLE either:
5333 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5334 return -EPERM;
5336 /* can't change other user's priorities */
5337 if (!check_same_owner(p))
5338 return -EPERM;
5341 if (user) {
5342 #ifdef CONFIG_RT_GROUP_SCHED
5344 * Do not allow realtime tasks into groups that have no runtime
5345 * assigned.
5347 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5348 task_group(p)->rt_bandwidth.rt_runtime == 0)
5349 return -EPERM;
5350 #endif
5352 retval = security_task_setscheduler(p, policy, param);
5353 if (retval)
5354 return retval;
5358 * make sure no PI-waiters arrive (or leave) while we are
5359 * changing the priority of the task:
5361 spin_lock_irqsave(&p->pi_lock, flags);
5363 * To be able to change p->policy safely, the apropriate
5364 * runqueue lock must be held.
5366 rq = __task_rq_lock(p);
5367 /* recheck policy now with rq lock held */
5368 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5369 policy = oldpolicy = -1;
5370 __task_rq_unlock(rq);
5371 spin_unlock_irqrestore(&p->pi_lock, flags);
5372 goto recheck;
5374 update_rq_clock(rq);
5375 on_rq = p->se.on_rq;
5376 running = task_current(rq, p);
5377 if (on_rq)
5378 deactivate_task(rq, p, 0);
5379 if (running)
5380 p->sched_class->put_prev_task(rq, p);
5382 oldprio = p->prio;
5383 __setscheduler(rq, p, policy, param->sched_priority);
5385 if (running)
5386 p->sched_class->set_curr_task(rq);
5387 if (on_rq) {
5388 activate_task(rq, p, 0);
5390 check_class_changed(rq, p, prev_class, oldprio, running);
5392 __task_rq_unlock(rq);
5393 spin_unlock_irqrestore(&p->pi_lock, flags);
5395 rt_mutex_adjust_pi(p);
5397 return 0;
5401 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5402 * @p: the task in question.
5403 * @policy: new policy.
5404 * @param: structure containing the new RT priority.
5406 * NOTE that the task may be already dead.
5408 int sched_setscheduler(struct task_struct *p, int policy,
5409 struct sched_param *param)
5411 return __sched_setscheduler(p, policy, param, true);
5413 EXPORT_SYMBOL_GPL(sched_setscheduler);
5416 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5417 * @p: the task in question.
5418 * @policy: new policy.
5419 * @param: structure containing the new RT priority.
5421 * Just like sched_setscheduler, only don't bother checking if the
5422 * current context has permission. For example, this is needed in
5423 * stop_machine(): we create temporary high priority worker threads,
5424 * but our caller might not have that capability.
5426 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5427 struct sched_param *param)
5429 return __sched_setscheduler(p, policy, param, false);
5432 static int
5433 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5435 struct sched_param lparam;
5436 struct task_struct *p;
5437 int retval;
5439 if (!param || pid < 0)
5440 return -EINVAL;
5441 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5442 return -EFAULT;
5444 rcu_read_lock();
5445 retval = -ESRCH;
5446 p = find_process_by_pid(pid);
5447 if (p != NULL)
5448 retval = sched_setscheduler(p, policy, &lparam);
5449 rcu_read_unlock();
5451 return retval;
5455 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5456 * @pid: the pid in question.
5457 * @policy: new policy.
5458 * @param: structure containing the new RT priority.
5460 asmlinkage long
5461 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5463 /* negative values for policy are not valid */
5464 if (policy < 0)
5465 return -EINVAL;
5467 return do_sched_setscheduler(pid, policy, param);
5471 * sys_sched_setparam - set/change the RT priority of a thread
5472 * @pid: the pid in question.
5473 * @param: structure containing the new RT priority.
5475 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5477 return do_sched_setscheduler(pid, -1, param);
5481 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5482 * @pid: the pid in question.
5484 asmlinkage long sys_sched_getscheduler(pid_t pid)
5486 struct task_struct *p;
5487 int retval;
5489 if (pid < 0)
5490 return -EINVAL;
5492 retval = -ESRCH;
5493 read_lock(&tasklist_lock);
5494 p = find_process_by_pid(pid);
5495 if (p) {
5496 retval = security_task_getscheduler(p);
5497 if (!retval)
5498 retval = p->policy;
5500 read_unlock(&tasklist_lock);
5501 return retval;
5505 * sys_sched_getscheduler - get the RT priority of a thread
5506 * @pid: the pid in question.
5507 * @param: structure containing the RT priority.
5509 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5511 struct sched_param lp;
5512 struct task_struct *p;
5513 int retval;
5515 if (!param || pid < 0)
5516 return -EINVAL;
5518 read_lock(&tasklist_lock);
5519 p = find_process_by_pid(pid);
5520 retval = -ESRCH;
5521 if (!p)
5522 goto out_unlock;
5524 retval = security_task_getscheduler(p);
5525 if (retval)
5526 goto out_unlock;
5528 lp.sched_priority = p->rt_priority;
5529 read_unlock(&tasklist_lock);
5532 * This one might sleep, we cannot do it with a spinlock held ...
5534 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5536 return retval;
5538 out_unlock:
5539 read_unlock(&tasklist_lock);
5540 return retval;
5543 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5545 cpumask_var_t cpus_allowed, new_mask;
5546 struct task_struct *p;
5547 int retval;
5549 get_online_cpus();
5550 read_lock(&tasklist_lock);
5552 p = find_process_by_pid(pid);
5553 if (!p) {
5554 read_unlock(&tasklist_lock);
5555 put_online_cpus();
5556 return -ESRCH;
5560 * It is not safe to call set_cpus_allowed with the
5561 * tasklist_lock held. We will bump the task_struct's
5562 * usage count and then drop tasklist_lock.
5564 get_task_struct(p);
5565 read_unlock(&tasklist_lock);
5567 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5568 retval = -ENOMEM;
5569 goto out_put_task;
5571 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5572 retval = -ENOMEM;
5573 goto out_free_cpus_allowed;
5575 retval = -EPERM;
5576 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5577 goto out_unlock;
5579 retval = security_task_setscheduler(p, 0, NULL);
5580 if (retval)
5581 goto out_unlock;
5583 cpuset_cpus_allowed(p, cpus_allowed);
5584 cpumask_and(new_mask, in_mask, cpus_allowed);
5585 again:
5586 retval = set_cpus_allowed_ptr(p, new_mask);
5588 if (!retval) {
5589 cpuset_cpus_allowed(p, cpus_allowed);
5590 if (!cpumask_subset(new_mask, cpus_allowed)) {
5592 * We must have raced with a concurrent cpuset
5593 * update. Just reset the cpus_allowed to the
5594 * cpuset's cpus_allowed
5596 cpumask_copy(new_mask, cpus_allowed);
5597 goto again;
5600 out_unlock:
5601 free_cpumask_var(new_mask);
5602 out_free_cpus_allowed:
5603 free_cpumask_var(cpus_allowed);
5604 out_put_task:
5605 put_task_struct(p);
5606 put_online_cpus();
5607 return retval;
5610 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5611 struct cpumask *new_mask)
5613 if (len < cpumask_size())
5614 cpumask_clear(new_mask);
5615 else if (len > cpumask_size())
5616 len = cpumask_size();
5618 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5622 * sys_sched_setaffinity - set the cpu affinity of a process
5623 * @pid: pid of the process
5624 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5625 * @user_mask_ptr: user-space pointer to the new cpu mask
5627 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5628 unsigned long __user *user_mask_ptr)
5630 cpumask_var_t new_mask;
5631 int retval;
5633 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5634 return -ENOMEM;
5636 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5637 if (retval == 0)
5638 retval = sched_setaffinity(pid, new_mask);
5639 free_cpumask_var(new_mask);
5640 return retval;
5643 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5645 struct task_struct *p;
5646 int retval;
5648 get_online_cpus();
5649 read_lock(&tasklist_lock);
5651 retval = -ESRCH;
5652 p = find_process_by_pid(pid);
5653 if (!p)
5654 goto out_unlock;
5656 retval = security_task_getscheduler(p);
5657 if (retval)
5658 goto out_unlock;
5660 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5662 out_unlock:
5663 read_unlock(&tasklist_lock);
5664 put_online_cpus();
5666 return retval;
5670 * sys_sched_getaffinity - get the cpu affinity of a process
5671 * @pid: pid of the process
5672 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5673 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5675 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5676 unsigned long __user *user_mask_ptr)
5678 int ret;
5679 cpumask_var_t mask;
5681 if (len < cpumask_size())
5682 return -EINVAL;
5684 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5685 return -ENOMEM;
5687 ret = sched_getaffinity(pid, mask);
5688 if (ret == 0) {
5689 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5690 ret = -EFAULT;
5691 else
5692 ret = cpumask_size();
5694 free_cpumask_var(mask);
5696 return ret;
5700 * sys_sched_yield - yield the current processor to other threads.
5702 * This function yields the current CPU to other tasks. If there are no
5703 * other threads running on this CPU then this function will return.
5705 asmlinkage long sys_sched_yield(void)
5707 struct rq *rq = this_rq_lock();
5709 schedstat_inc(rq, yld_count);
5710 current->sched_class->yield_task(rq);
5713 * Since we are going to call schedule() anyway, there's
5714 * no need to preempt or enable interrupts:
5716 __release(rq->lock);
5717 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5718 _raw_spin_unlock(&rq->lock);
5719 preempt_enable_no_resched();
5721 schedule();
5723 return 0;
5726 static void __cond_resched(void)
5728 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5729 __might_sleep(__FILE__, __LINE__);
5730 #endif
5732 * The BKS might be reacquired before we have dropped
5733 * PREEMPT_ACTIVE, which could trigger a second
5734 * cond_resched() call.
5736 do {
5737 add_preempt_count(PREEMPT_ACTIVE);
5738 schedule();
5739 sub_preempt_count(PREEMPT_ACTIVE);
5740 } while (need_resched());
5743 int __sched _cond_resched(void)
5745 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5746 system_state == SYSTEM_RUNNING) {
5747 __cond_resched();
5748 return 1;
5750 return 0;
5752 EXPORT_SYMBOL(_cond_resched);
5755 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5756 * call schedule, and on return reacquire the lock.
5758 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5759 * operations here to prevent schedule() from being called twice (once via
5760 * spin_unlock(), once by hand).
5762 int cond_resched_lock(spinlock_t *lock)
5764 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5765 int ret = 0;
5767 if (spin_needbreak(lock) || resched) {
5768 spin_unlock(lock);
5769 if (resched && need_resched())
5770 __cond_resched();
5771 else
5772 cpu_relax();
5773 ret = 1;
5774 spin_lock(lock);
5776 return ret;
5778 EXPORT_SYMBOL(cond_resched_lock);
5780 int __sched cond_resched_softirq(void)
5782 BUG_ON(!in_softirq());
5784 if (need_resched() && system_state == SYSTEM_RUNNING) {
5785 local_bh_enable();
5786 __cond_resched();
5787 local_bh_disable();
5788 return 1;
5790 return 0;
5792 EXPORT_SYMBOL(cond_resched_softirq);
5795 * yield - yield the current processor to other threads.
5797 * This is a shortcut for kernel-space yielding - it marks the
5798 * thread runnable and calls sys_sched_yield().
5800 void __sched yield(void)
5802 set_current_state(TASK_RUNNING);
5803 sys_sched_yield();
5805 EXPORT_SYMBOL(yield);
5808 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5809 * that process accounting knows that this is a task in IO wait state.
5811 * But don't do that if it is a deliberate, throttling IO wait (this task
5812 * has set its backing_dev_info: the queue against which it should throttle)
5814 void __sched io_schedule(void)
5816 struct rq *rq = &__raw_get_cpu_var(runqueues);
5818 delayacct_blkio_start();
5819 atomic_inc(&rq->nr_iowait);
5820 schedule();
5821 atomic_dec(&rq->nr_iowait);
5822 delayacct_blkio_end();
5824 EXPORT_SYMBOL(io_schedule);
5826 long __sched io_schedule_timeout(long timeout)
5828 struct rq *rq = &__raw_get_cpu_var(runqueues);
5829 long ret;
5831 delayacct_blkio_start();
5832 atomic_inc(&rq->nr_iowait);
5833 ret = schedule_timeout(timeout);
5834 atomic_dec(&rq->nr_iowait);
5835 delayacct_blkio_end();
5836 return ret;
5840 * sys_sched_get_priority_max - return maximum RT priority.
5841 * @policy: scheduling class.
5843 * this syscall returns the maximum rt_priority that can be used
5844 * by a given scheduling class.
5846 asmlinkage long sys_sched_get_priority_max(int policy)
5848 int ret = -EINVAL;
5850 switch (policy) {
5851 case SCHED_FIFO:
5852 case SCHED_RR:
5853 ret = MAX_USER_RT_PRIO-1;
5854 break;
5855 case SCHED_NORMAL:
5856 case SCHED_BATCH:
5857 case SCHED_IDLE:
5858 ret = 0;
5859 break;
5861 return ret;
5865 * sys_sched_get_priority_min - return minimum RT priority.
5866 * @policy: scheduling class.
5868 * this syscall returns the minimum rt_priority that can be used
5869 * by a given scheduling class.
5871 asmlinkage long sys_sched_get_priority_min(int policy)
5873 int ret = -EINVAL;
5875 switch (policy) {
5876 case SCHED_FIFO:
5877 case SCHED_RR:
5878 ret = 1;
5879 break;
5880 case SCHED_NORMAL:
5881 case SCHED_BATCH:
5882 case SCHED_IDLE:
5883 ret = 0;
5885 return ret;
5889 * sys_sched_rr_get_interval - return the default timeslice of a process.
5890 * @pid: pid of the process.
5891 * @interval: userspace pointer to the timeslice value.
5893 * this syscall writes the default timeslice value of a given process
5894 * into the user-space timespec buffer. A value of '0' means infinity.
5896 asmlinkage
5897 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5899 struct task_struct *p;
5900 unsigned int time_slice;
5901 int retval;
5902 struct timespec t;
5904 if (pid < 0)
5905 return -EINVAL;
5907 retval = -ESRCH;
5908 read_lock(&tasklist_lock);
5909 p = find_process_by_pid(pid);
5910 if (!p)
5911 goto out_unlock;
5913 retval = security_task_getscheduler(p);
5914 if (retval)
5915 goto out_unlock;
5918 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5919 * tasks that are on an otherwise idle runqueue:
5921 time_slice = 0;
5922 if (p->policy == SCHED_RR) {
5923 time_slice = DEF_TIMESLICE;
5924 } else if (p->policy != SCHED_FIFO) {
5925 struct sched_entity *se = &p->se;
5926 unsigned long flags;
5927 struct rq *rq;
5929 rq = task_rq_lock(p, &flags);
5930 if (rq->cfs.load.weight)
5931 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5932 task_rq_unlock(rq, &flags);
5934 read_unlock(&tasklist_lock);
5935 jiffies_to_timespec(time_slice, &t);
5936 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5937 return retval;
5939 out_unlock:
5940 read_unlock(&tasklist_lock);
5941 return retval;
5944 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5946 void sched_show_task(struct task_struct *p)
5948 unsigned long free = 0;
5949 unsigned state;
5951 state = p->state ? __ffs(p->state) + 1 : 0;
5952 printk(KERN_INFO "%-13.13s %c", p->comm,
5953 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5954 #if BITS_PER_LONG == 32
5955 if (state == TASK_RUNNING)
5956 printk(KERN_CONT " running ");
5957 else
5958 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5959 #else
5960 if (state == TASK_RUNNING)
5961 printk(KERN_CONT " running task ");
5962 else
5963 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5964 #endif
5965 #ifdef CONFIG_DEBUG_STACK_USAGE
5967 unsigned long *n = end_of_stack(p);
5968 while (!*n)
5969 n++;
5970 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5972 #endif
5973 printk(KERN_CONT "%5lu %5d %6d\n", free,
5974 task_pid_nr(p), task_pid_nr(p->real_parent));
5976 show_stack(p, NULL);
5979 void show_state_filter(unsigned long state_filter)
5981 struct task_struct *g, *p;
5983 #if BITS_PER_LONG == 32
5984 printk(KERN_INFO
5985 " task PC stack pid father\n");
5986 #else
5987 printk(KERN_INFO
5988 " task PC stack pid father\n");
5989 #endif
5990 read_lock(&tasklist_lock);
5991 do_each_thread(g, p) {
5993 * reset the NMI-timeout, listing all files on a slow
5994 * console might take alot of time:
5996 touch_nmi_watchdog();
5997 if (!state_filter || (p->state & state_filter))
5998 sched_show_task(p);
5999 } while_each_thread(g, p);
6001 touch_all_softlockup_watchdogs();
6003 #ifdef CONFIG_SCHED_DEBUG
6004 sysrq_sched_debug_show();
6005 #endif
6006 read_unlock(&tasklist_lock);
6008 * Only show locks if all tasks are dumped:
6010 if (state_filter == -1)
6011 debug_show_all_locks();
6014 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6016 idle->sched_class = &idle_sched_class;
6020 * init_idle - set up an idle thread for a given CPU
6021 * @idle: task in question
6022 * @cpu: cpu the idle task belongs to
6024 * NOTE: this function does not set the idle thread's NEED_RESCHED
6025 * flag, to make booting more robust.
6027 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6029 struct rq *rq = cpu_rq(cpu);
6030 unsigned long flags;
6032 spin_lock_irqsave(&rq->lock, flags);
6034 __sched_fork(idle);
6035 idle->se.exec_start = sched_clock();
6037 idle->prio = idle->normal_prio = MAX_PRIO;
6038 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6039 __set_task_cpu(idle, cpu);
6041 rq->curr = rq->idle = idle;
6042 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6043 idle->oncpu = 1;
6044 #endif
6045 spin_unlock_irqrestore(&rq->lock, flags);
6047 /* Set the preempt count _outside_ the spinlocks! */
6048 #if defined(CONFIG_PREEMPT)
6049 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6050 #else
6051 task_thread_info(idle)->preempt_count = 0;
6052 #endif
6054 * The idle tasks have their own, simple scheduling class:
6056 idle->sched_class = &idle_sched_class;
6057 ftrace_graph_init_task(idle);
6061 * In a system that switches off the HZ timer nohz_cpu_mask
6062 * indicates which cpus entered this state. This is used
6063 * in the rcu update to wait only for active cpus. For system
6064 * which do not switch off the HZ timer nohz_cpu_mask should
6065 * always be CPU_BITS_NONE.
6067 cpumask_var_t nohz_cpu_mask;
6070 * Increase the granularity value when there are more CPUs,
6071 * because with more CPUs the 'effective latency' as visible
6072 * to users decreases. But the relationship is not linear,
6073 * so pick a second-best guess by going with the log2 of the
6074 * number of CPUs.
6076 * This idea comes from the SD scheduler of Con Kolivas:
6078 static inline void sched_init_granularity(void)
6080 unsigned int factor = 1 + ilog2(num_online_cpus());
6081 const unsigned long limit = 200000000;
6083 sysctl_sched_min_granularity *= factor;
6084 if (sysctl_sched_min_granularity > limit)
6085 sysctl_sched_min_granularity = limit;
6087 sysctl_sched_latency *= factor;
6088 if (sysctl_sched_latency > limit)
6089 sysctl_sched_latency = limit;
6091 sysctl_sched_wakeup_granularity *= factor;
6093 sysctl_sched_shares_ratelimit *= factor;
6096 #ifdef CONFIG_SMP
6098 * This is how migration works:
6100 * 1) we queue a struct migration_req structure in the source CPU's
6101 * runqueue and wake up that CPU's migration thread.
6102 * 2) we down() the locked semaphore => thread blocks.
6103 * 3) migration thread wakes up (implicitly it forces the migrated
6104 * thread off the CPU)
6105 * 4) it gets the migration request and checks whether the migrated
6106 * task is still in the wrong runqueue.
6107 * 5) if it's in the wrong runqueue then the migration thread removes
6108 * it and puts it into the right queue.
6109 * 6) migration thread up()s the semaphore.
6110 * 7) we wake up and the migration is done.
6114 * Change a given task's CPU affinity. Migrate the thread to a
6115 * proper CPU and schedule it away if the CPU it's executing on
6116 * is removed from the allowed bitmask.
6118 * NOTE: the caller must have a valid reference to the task, the
6119 * task must not exit() & deallocate itself prematurely. The
6120 * call is not atomic; no spinlocks may be held.
6122 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6124 struct migration_req req;
6125 unsigned long flags;
6126 struct rq *rq;
6127 int ret = 0;
6129 rq = task_rq_lock(p, &flags);
6130 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6131 ret = -EINVAL;
6132 goto out;
6135 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6136 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6137 ret = -EINVAL;
6138 goto out;
6141 if (p->sched_class->set_cpus_allowed)
6142 p->sched_class->set_cpus_allowed(p, new_mask);
6143 else {
6144 cpumask_copy(&p->cpus_allowed, new_mask);
6145 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6148 /* Can the task run on the task's current CPU? If so, we're done */
6149 if (cpumask_test_cpu(task_cpu(p), new_mask))
6150 goto out;
6152 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6153 /* Need help from migration thread: drop lock and wait. */
6154 task_rq_unlock(rq, &flags);
6155 wake_up_process(rq->migration_thread);
6156 wait_for_completion(&req.done);
6157 tlb_migrate_finish(p->mm);
6158 return 0;
6160 out:
6161 task_rq_unlock(rq, &flags);
6163 return ret;
6165 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6168 * Move (not current) task off this cpu, onto dest cpu. We're doing
6169 * this because either it can't run here any more (set_cpus_allowed()
6170 * away from this CPU, or CPU going down), or because we're
6171 * attempting to rebalance this task on exec (sched_exec).
6173 * So we race with normal scheduler movements, but that's OK, as long
6174 * as the task is no longer on this CPU.
6176 * Returns non-zero if task was successfully migrated.
6178 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6180 struct rq *rq_dest, *rq_src;
6181 int ret = 0, on_rq;
6183 if (unlikely(!cpu_active(dest_cpu)))
6184 return ret;
6186 rq_src = cpu_rq(src_cpu);
6187 rq_dest = cpu_rq(dest_cpu);
6189 double_rq_lock(rq_src, rq_dest);
6190 /* Already moved. */
6191 if (task_cpu(p) != src_cpu)
6192 goto done;
6193 /* Affinity changed (again). */
6194 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6195 goto fail;
6197 on_rq = p->se.on_rq;
6198 if (on_rq)
6199 deactivate_task(rq_src, p, 0);
6201 set_task_cpu(p, dest_cpu);
6202 if (on_rq) {
6203 activate_task(rq_dest, p, 0);
6204 check_preempt_curr(rq_dest, p, 0);
6206 done:
6207 ret = 1;
6208 fail:
6209 double_rq_unlock(rq_src, rq_dest);
6210 return ret;
6214 * migration_thread - this is a highprio system thread that performs
6215 * thread migration by bumping thread off CPU then 'pushing' onto
6216 * another runqueue.
6218 static int migration_thread(void *data)
6220 int cpu = (long)data;
6221 struct rq *rq;
6223 rq = cpu_rq(cpu);
6224 BUG_ON(rq->migration_thread != current);
6226 set_current_state(TASK_INTERRUPTIBLE);
6227 while (!kthread_should_stop()) {
6228 struct migration_req *req;
6229 struct list_head *head;
6231 spin_lock_irq(&rq->lock);
6233 if (cpu_is_offline(cpu)) {
6234 spin_unlock_irq(&rq->lock);
6235 goto wait_to_die;
6238 if (rq->active_balance) {
6239 active_load_balance(rq, cpu);
6240 rq->active_balance = 0;
6243 head = &rq->migration_queue;
6245 if (list_empty(head)) {
6246 spin_unlock_irq(&rq->lock);
6247 schedule();
6248 set_current_state(TASK_INTERRUPTIBLE);
6249 continue;
6251 req = list_entry(head->next, struct migration_req, list);
6252 list_del_init(head->next);
6254 spin_unlock(&rq->lock);
6255 __migrate_task(req->task, cpu, req->dest_cpu);
6256 local_irq_enable();
6258 complete(&req->done);
6260 __set_current_state(TASK_RUNNING);
6261 return 0;
6263 wait_to_die:
6264 /* Wait for kthread_stop */
6265 set_current_state(TASK_INTERRUPTIBLE);
6266 while (!kthread_should_stop()) {
6267 schedule();
6268 set_current_state(TASK_INTERRUPTIBLE);
6270 __set_current_state(TASK_RUNNING);
6271 return 0;
6274 #ifdef CONFIG_HOTPLUG_CPU
6276 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6278 int ret;
6280 local_irq_disable();
6281 ret = __migrate_task(p, src_cpu, dest_cpu);
6282 local_irq_enable();
6283 return ret;
6287 * Figure out where task on dead CPU should go, use force if necessary.
6289 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6291 int dest_cpu;
6292 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6294 again:
6295 /* Look for allowed, online CPU in same node. */
6296 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6297 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6298 goto move;
6300 /* Any allowed, online CPU? */
6301 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6302 if (dest_cpu < nr_cpu_ids)
6303 goto move;
6305 /* No more Mr. Nice Guy. */
6306 if (dest_cpu >= nr_cpu_ids) {
6307 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6308 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6311 * Don't tell them about moving exiting tasks or
6312 * kernel threads (both mm NULL), since they never
6313 * leave kernel.
6315 if (p->mm && printk_ratelimit()) {
6316 printk(KERN_INFO "process %d (%s) no "
6317 "longer affine to cpu%d\n",
6318 task_pid_nr(p), p->comm, dead_cpu);
6322 move:
6323 /* It can have affinity changed while we were choosing. */
6324 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6325 goto again;
6329 * While a dead CPU has no uninterruptible tasks queued at this point,
6330 * it might still have a nonzero ->nr_uninterruptible counter, because
6331 * for performance reasons the counter is not stricly tracking tasks to
6332 * their home CPUs. So we just add the counter to another CPU's counter,
6333 * to keep the global sum constant after CPU-down:
6335 static void migrate_nr_uninterruptible(struct rq *rq_src)
6337 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6338 unsigned long flags;
6340 local_irq_save(flags);
6341 double_rq_lock(rq_src, rq_dest);
6342 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6343 rq_src->nr_uninterruptible = 0;
6344 double_rq_unlock(rq_src, rq_dest);
6345 local_irq_restore(flags);
6348 /* Run through task list and migrate tasks from the dead cpu. */
6349 static void migrate_live_tasks(int src_cpu)
6351 struct task_struct *p, *t;
6353 read_lock(&tasklist_lock);
6355 do_each_thread(t, p) {
6356 if (p == current)
6357 continue;
6359 if (task_cpu(p) == src_cpu)
6360 move_task_off_dead_cpu(src_cpu, p);
6361 } while_each_thread(t, p);
6363 read_unlock(&tasklist_lock);
6367 * Schedules idle task to be the next runnable task on current CPU.
6368 * It does so by boosting its priority to highest possible.
6369 * Used by CPU offline code.
6371 void sched_idle_next(void)
6373 int this_cpu = smp_processor_id();
6374 struct rq *rq = cpu_rq(this_cpu);
6375 struct task_struct *p = rq->idle;
6376 unsigned long flags;
6378 /* cpu has to be offline */
6379 BUG_ON(cpu_online(this_cpu));
6382 * Strictly not necessary since rest of the CPUs are stopped by now
6383 * and interrupts disabled on the current cpu.
6385 spin_lock_irqsave(&rq->lock, flags);
6387 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6389 update_rq_clock(rq);
6390 activate_task(rq, p, 0);
6392 spin_unlock_irqrestore(&rq->lock, flags);
6396 * Ensures that the idle task is using init_mm right before its cpu goes
6397 * offline.
6399 void idle_task_exit(void)
6401 struct mm_struct *mm = current->active_mm;
6403 BUG_ON(cpu_online(smp_processor_id()));
6405 if (mm != &init_mm)
6406 switch_mm(mm, &init_mm, current);
6407 mmdrop(mm);
6410 /* called under rq->lock with disabled interrupts */
6411 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6413 struct rq *rq = cpu_rq(dead_cpu);
6415 /* Must be exiting, otherwise would be on tasklist. */
6416 BUG_ON(!p->exit_state);
6418 /* Cannot have done final schedule yet: would have vanished. */
6419 BUG_ON(p->state == TASK_DEAD);
6421 get_task_struct(p);
6424 * Drop lock around migration; if someone else moves it,
6425 * that's OK. No task can be added to this CPU, so iteration is
6426 * fine.
6428 spin_unlock_irq(&rq->lock);
6429 move_task_off_dead_cpu(dead_cpu, p);
6430 spin_lock_irq(&rq->lock);
6432 put_task_struct(p);
6435 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6436 static void migrate_dead_tasks(unsigned int dead_cpu)
6438 struct rq *rq = cpu_rq(dead_cpu);
6439 struct task_struct *next;
6441 for ( ; ; ) {
6442 if (!rq->nr_running)
6443 break;
6444 update_rq_clock(rq);
6445 next = pick_next_task(rq, rq->curr);
6446 if (!next)
6447 break;
6448 next->sched_class->put_prev_task(rq, next);
6449 migrate_dead(dead_cpu, next);
6453 #endif /* CONFIG_HOTPLUG_CPU */
6455 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6457 static struct ctl_table sd_ctl_dir[] = {
6459 .procname = "sched_domain",
6460 .mode = 0555,
6462 {0, },
6465 static struct ctl_table sd_ctl_root[] = {
6467 .ctl_name = CTL_KERN,
6468 .procname = "kernel",
6469 .mode = 0555,
6470 .child = sd_ctl_dir,
6472 {0, },
6475 static struct ctl_table *sd_alloc_ctl_entry(int n)
6477 struct ctl_table *entry =
6478 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6480 return entry;
6483 static void sd_free_ctl_entry(struct ctl_table **tablep)
6485 struct ctl_table *entry;
6488 * In the intermediate directories, both the child directory and
6489 * procname are dynamically allocated and could fail but the mode
6490 * will always be set. In the lowest directory the names are
6491 * static strings and all have proc handlers.
6493 for (entry = *tablep; entry->mode; entry++) {
6494 if (entry->child)
6495 sd_free_ctl_entry(&entry->child);
6496 if (entry->proc_handler == NULL)
6497 kfree(entry->procname);
6500 kfree(*tablep);
6501 *tablep = NULL;
6504 static void
6505 set_table_entry(struct ctl_table *entry,
6506 const char *procname, void *data, int maxlen,
6507 mode_t mode, proc_handler *proc_handler)
6509 entry->procname = procname;
6510 entry->data = data;
6511 entry->maxlen = maxlen;
6512 entry->mode = mode;
6513 entry->proc_handler = proc_handler;
6516 static struct ctl_table *
6517 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6519 struct ctl_table *table = sd_alloc_ctl_entry(13);
6521 if (table == NULL)
6522 return NULL;
6524 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6525 sizeof(long), 0644, proc_doulongvec_minmax);
6526 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6527 sizeof(long), 0644, proc_doulongvec_minmax);
6528 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6529 sizeof(int), 0644, proc_dointvec_minmax);
6530 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6531 sizeof(int), 0644, proc_dointvec_minmax);
6532 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6533 sizeof(int), 0644, proc_dointvec_minmax);
6534 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6535 sizeof(int), 0644, proc_dointvec_minmax);
6536 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6537 sizeof(int), 0644, proc_dointvec_minmax);
6538 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6539 sizeof(int), 0644, proc_dointvec_minmax);
6540 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6541 sizeof(int), 0644, proc_dointvec_minmax);
6542 set_table_entry(&table[9], "cache_nice_tries",
6543 &sd->cache_nice_tries,
6544 sizeof(int), 0644, proc_dointvec_minmax);
6545 set_table_entry(&table[10], "flags", &sd->flags,
6546 sizeof(int), 0644, proc_dointvec_minmax);
6547 set_table_entry(&table[11], "name", sd->name,
6548 CORENAME_MAX_SIZE, 0444, proc_dostring);
6549 /* &table[12] is terminator */
6551 return table;
6554 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6556 struct ctl_table *entry, *table;
6557 struct sched_domain *sd;
6558 int domain_num = 0, i;
6559 char buf[32];
6561 for_each_domain(cpu, sd)
6562 domain_num++;
6563 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6564 if (table == NULL)
6565 return NULL;
6567 i = 0;
6568 for_each_domain(cpu, sd) {
6569 snprintf(buf, 32, "domain%d", i);
6570 entry->procname = kstrdup(buf, GFP_KERNEL);
6571 entry->mode = 0555;
6572 entry->child = sd_alloc_ctl_domain_table(sd);
6573 entry++;
6574 i++;
6576 return table;
6579 static struct ctl_table_header *sd_sysctl_header;
6580 static void register_sched_domain_sysctl(void)
6582 int i, cpu_num = num_online_cpus();
6583 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6584 char buf[32];
6586 WARN_ON(sd_ctl_dir[0].child);
6587 sd_ctl_dir[0].child = entry;
6589 if (entry == NULL)
6590 return;
6592 for_each_online_cpu(i) {
6593 snprintf(buf, 32, "cpu%d", i);
6594 entry->procname = kstrdup(buf, GFP_KERNEL);
6595 entry->mode = 0555;
6596 entry->child = sd_alloc_ctl_cpu_table(i);
6597 entry++;
6600 WARN_ON(sd_sysctl_header);
6601 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6604 /* may be called multiple times per register */
6605 static void unregister_sched_domain_sysctl(void)
6607 if (sd_sysctl_header)
6608 unregister_sysctl_table(sd_sysctl_header);
6609 sd_sysctl_header = NULL;
6610 if (sd_ctl_dir[0].child)
6611 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6613 #else
6614 static void register_sched_domain_sysctl(void)
6617 static void unregister_sched_domain_sysctl(void)
6620 #endif
6622 static void set_rq_online(struct rq *rq)
6624 if (!rq->online) {
6625 const struct sched_class *class;
6627 cpumask_set_cpu(rq->cpu, rq->rd->online);
6628 rq->online = 1;
6630 for_each_class(class) {
6631 if (class->rq_online)
6632 class->rq_online(rq);
6637 static void set_rq_offline(struct rq *rq)
6639 if (rq->online) {
6640 const struct sched_class *class;
6642 for_each_class(class) {
6643 if (class->rq_offline)
6644 class->rq_offline(rq);
6647 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6648 rq->online = 0;
6653 * migration_call - callback that gets triggered when a CPU is added.
6654 * Here we can start up the necessary migration thread for the new CPU.
6656 static int __cpuinit
6657 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6659 struct task_struct *p;
6660 int cpu = (long)hcpu;
6661 unsigned long flags;
6662 struct rq *rq;
6664 switch (action) {
6666 case CPU_UP_PREPARE:
6667 case CPU_UP_PREPARE_FROZEN:
6668 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6669 if (IS_ERR(p))
6670 return NOTIFY_BAD;
6671 kthread_bind(p, cpu);
6672 /* Must be high prio: stop_machine expects to yield to it. */
6673 rq = task_rq_lock(p, &flags);
6674 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6675 task_rq_unlock(rq, &flags);
6676 cpu_rq(cpu)->migration_thread = p;
6677 break;
6679 case CPU_ONLINE:
6680 case CPU_ONLINE_FROZEN:
6681 /* Strictly unnecessary, as first user will wake it. */
6682 wake_up_process(cpu_rq(cpu)->migration_thread);
6684 /* Update our root-domain */
6685 rq = cpu_rq(cpu);
6686 spin_lock_irqsave(&rq->lock, flags);
6687 if (rq->rd) {
6688 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6690 set_rq_online(rq);
6692 spin_unlock_irqrestore(&rq->lock, flags);
6693 break;
6695 #ifdef CONFIG_HOTPLUG_CPU
6696 case CPU_UP_CANCELED:
6697 case CPU_UP_CANCELED_FROZEN:
6698 if (!cpu_rq(cpu)->migration_thread)
6699 break;
6700 /* Unbind it from offline cpu so it can run. Fall thru. */
6701 kthread_bind(cpu_rq(cpu)->migration_thread,
6702 cpumask_any(cpu_online_mask));
6703 kthread_stop(cpu_rq(cpu)->migration_thread);
6704 cpu_rq(cpu)->migration_thread = NULL;
6705 break;
6707 case CPU_DEAD:
6708 case CPU_DEAD_FROZEN:
6709 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6710 migrate_live_tasks(cpu);
6711 rq = cpu_rq(cpu);
6712 kthread_stop(rq->migration_thread);
6713 rq->migration_thread = NULL;
6714 /* Idle task back to normal (off runqueue, low prio) */
6715 spin_lock_irq(&rq->lock);
6716 update_rq_clock(rq);
6717 deactivate_task(rq, rq->idle, 0);
6718 rq->idle->static_prio = MAX_PRIO;
6719 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6720 rq->idle->sched_class = &idle_sched_class;
6721 migrate_dead_tasks(cpu);
6722 spin_unlock_irq(&rq->lock);
6723 cpuset_unlock();
6724 migrate_nr_uninterruptible(rq);
6725 BUG_ON(rq->nr_running != 0);
6728 * No need to migrate the tasks: it was best-effort if
6729 * they didn't take sched_hotcpu_mutex. Just wake up
6730 * the requestors.
6732 spin_lock_irq(&rq->lock);
6733 while (!list_empty(&rq->migration_queue)) {
6734 struct migration_req *req;
6736 req = list_entry(rq->migration_queue.next,
6737 struct migration_req, list);
6738 list_del_init(&req->list);
6739 spin_unlock_irq(&rq->lock);
6740 complete(&req->done);
6741 spin_lock_irq(&rq->lock);
6743 spin_unlock_irq(&rq->lock);
6744 break;
6746 case CPU_DYING:
6747 case CPU_DYING_FROZEN:
6748 /* Update our root-domain */
6749 rq = cpu_rq(cpu);
6750 spin_lock_irqsave(&rq->lock, flags);
6751 if (rq->rd) {
6752 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6753 set_rq_offline(rq);
6755 spin_unlock_irqrestore(&rq->lock, flags);
6756 break;
6757 #endif
6759 return NOTIFY_OK;
6762 /* Register at highest priority so that task migration (migrate_all_tasks)
6763 * happens before everything else.
6765 static struct notifier_block __cpuinitdata migration_notifier = {
6766 .notifier_call = migration_call,
6767 .priority = 10
6770 static int __init migration_init(void)
6772 void *cpu = (void *)(long)smp_processor_id();
6773 int err;
6775 /* Start one for the boot CPU: */
6776 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6777 BUG_ON(err == NOTIFY_BAD);
6778 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6779 register_cpu_notifier(&migration_notifier);
6781 return err;
6783 early_initcall(migration_init);
6784 #endif
6786 #ifdef CONFIG_SMP
6788 #ifdef CONFIG_SCHED_DEBUG
6790 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6791 struct cpumask *groupmask)
6793 struct sched_group *group = sd->groups;
6794 char str[256];
6796 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6797 cpumask_clear(groupmask);
6799 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6801 if (!(sd->flags & SD_LOAD_BALANCE)) {
6802 printk("does not load-balance\n");
6803 if (sd->parent)
6804 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6805 " has parent");
6806 return -1;
6809 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6811 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6812 printk(KERN_ERR "ERROR: domain->span does not contain "
6813 "CPU%d\n", cpu);
6815 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6816 printk(KERN_ERR "ERROR: domain->groups does not contain"
6817 " CPU%d\n", cpu);
6820 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6821 do {
6822 if (!group) {
6823 printk("\n");
6824 printk(KERN_ERR "ERROR: group is NULL\n");
6825 break;
6828 if (!group->__cpu_power) {
6829 printk(KERN_CONT "\n");
6830 printk(KERN_ERR "ERROR: domain->cpu_power not "
6831 "set\n");
6832 break;
6835 if (!cpumask_weight(sched_group_cpus(group))) {
6836 printk(KERN_CONT "\n");
6837 printk(KERN_ERR "ERROR: empty group\n");
6838 break;
6841 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6842 printk(KERN_CONT "\n");
6843 printk(KERN_ERR "ERROR: repeated CPUs\n");
6844 break;
6847 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6849 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6850 printk(KERN_CONT " %s", str);
6852 group = group->next;
6853 } while (group != sd->groups);
6854 printk(KERN_CONT "\n");
6856 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6857 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6859 if (sd->parent &&
6860 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6861 printk(KERN_ERR "ERROR: parent span is not a superset "
6862 "of domain->span\n");
6863 return 0;
6866 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6868 cpumask_var_t groupmask;
6869 int level = 0;
6871 if (!sd) {
6872 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6873 return;
6876 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6878 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6879 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6880 return;
6883 for (;;) {
6884 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6885 break;
6886 level++;
6887 sd = sd->parent;
6888 if (!sd)
6889 break;
6891 free_cpumask_var(groupmask);
6893 #else /* !CONFIG_SCHED_DEBUG */
6894 # define sched_domain_debug(sd, cpu) do { } while (0)
6895 #endif /* CONFIG_SCHED_DEBUG */
6897 static int sd_degenerate(struct sched_domain *sd)
6899 if (cpumask_weight(sched_domain_span(sd)) == 1)
6900 return 1;
6902 /* Following flags need at least 2 groups */
6903 if (sd->flags & (SD_LOAD_BALANCE |
6904 SD_BALANCE_NEWIDLE |
6905 SD_BALANCE_FORK |
6906 SD_BALANCE_EXEC |
6907 SD_SHARE_CPUPOWER |
6908 SD_SHARE_PKG_RESOURCES)) {
6909 if (sd->groups != sd->groups->next)
6910 return 0;
6913 /* Following flags don't use groups */
6914 if (sd->flags & (SD_WAKE_IDLE |
6915 SD_WAKE_AFFINE |
6916 SD_WAKE_BALANCE))
6917 return 0;
6919 return 1;
6922 static int
6923 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6925 unsigned long cflags = sd->flags, pflags = parent->flags;
6927 if (sd_degenerate(parent))
6928 return 1;
6930 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6931 return 0;
6933 /* Does parent contain flags not in child? */
6934 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6935 if (cflags & SD_WAKE_AFFINE)
6936 pflags &= ~SD_WAKE_BALANCE;
6937 /* Flags needing groups don't count if only 1 group in parent */
6938 if (parent->groups == parent->groups->next) {
6939 pflags &= ~(SD_LOAD_BALANCE |
6940 SD_BALANCE_NEWIDLE |
6941 SD_BALANCE_FORK |
6942 SD_BALANCE_EXEC |
6943 SD_SHARE_CPUPOWER |
6944 SD_SHARE_PKG_RESOURCES);
6945 if (nr_node_ids == 1)
6946 pflags &= ~SD_SERIALIZE;
6948 if (~cflags & pflags)
6949 return 0;
6951 return 1;
6954 static void free_rootdomain(struct root_domain *rd)
6956 cpupri_cleanup(&rd->cpupri);
6958 free_cpumask_var(rd->rto_mask);
6959 free_cpumask_var(rd->online);
6960 free_cpumask_var(rd->span);
6961 kfree(rd);
6964 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6966 unsigned long flags;
6968 spin_lock_irqsave(&rq->lock, flags);
6970 if (rq->rd) {
6971 struct root_domain *old_rd = rq->rd;
6973 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6974 set_rq_offline(rq);
6976 cpumask_clear_cpu(rq->cpu, old_rd->span);
6978 if (atomic_dec_and_test(&old_rd->refcount))
6979 free_rootdomain(old_rd);
6982 atomic_inc(&rd->refcount);
6983 rq->rd = rd;
6985 cpumask_set_cpu(rq->cpu, rd->span);
6986 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
6987 set_rq_online(rq);
6989 spin_unlock_irqrestore(&rq->lock, flags);
6992 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
6994 memset(rd, 0, sizeof(*rd));
6996 if (bootmem) {
6997 alloc_bootmem_cpumask_var(&def_root_domain.span);
6998 alloc_bootmem_cpumask_var(&def_root_domain.online);
6999 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7000 cpupri_init(&rd->cpupri, true);
7001 return 0;
7004 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7005 goto out;
7006 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7007 goto free_span;
7008 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7009 goto free_online;
7011 if (cpupri_init(&rd->cpupri, false) != 0)
7012 goto free_rto_mask;
7013 return 0;
7015 free_rto_mask:
7016 free_cpumask_var(rd->rto_mask);
7017 free_online:
7018 free_cpumask_var(rd->online);
7019 free_span:
7020 free_cpumask_var(rd->span);
7021 out:
7022 return -ENOMEM;
7025 static void init_defrootdomain(void)
7027 init_rootdomain(&def_root_domain, true);
7029 atomic_set(&def_root_domain.refcount, 1);
7032 static struct root_domain *alloc_rootdomain(void)
7034 struct root_domain *rd;
7036 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7037 if (!rd)
7038 return NULL;
7040 if (init_rootdomain(rd, false) != 0) {
7041 kfree(rd);
7042 return NULL;
7045 return rd;
7049 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7050 * hold the hotplug lock.
7052 static void
7053 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7055 struct rq *rq = cpu_rq(cpu);
7056 struct sched_domain *tmp;
7058 /* Remove the sched domains which do not contribute to scheduling. */
7059 for (tmp = sd; tmp; ) {
7060 struct sched_domain *parent = tmp->parent;
7061 if (!parent)
7062 break;
7064 if (sd_parent_degenerate(tmp, parent)) {
7065 tmp->parent = parent->parent;
7066 if (parent->parent)
7067 parent->parent->child = tmp;
7068 } else
7069 tmp = tmp->parent;
7072 if (sd && sd_degenerate(sd)) {
7073 sd = sd->parent;
7074 if (sd)
7075 sd->child = NULL;
7078 sched_domain_debug(sd, cpu);
7080 rq_attach_root(rq, rd);
7081 rcu_assign_pointer(rq->sd, sd);
7084 /* cpus with isolated domains */
7085 static cpumask_var_t cpu_isolated_map;
7087 /* Setup the mask of cpus configured for isolated domains */
7088 static int __init isolated_cpu_setup(char *str)
7090 cpulist_parse(str, cpu_isolated_map);
7091 return 1;
7094 __setup("isolcpus=", isolated_cpu_setup);
7097 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7098 * to a function which identifies what group(along with sched group) a CPU
7099 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7100 * (due to the fact that we keep track of groups covered with a struct cpumask).
7102 * init_sched_build_groups will build a circular linked list of the groups
7103 * covered by the given span, and will set each group's ->cpumask correctly,
7104 * and ->cpu_power to 0.
7106 static void
7107 init_sched_build_groups(const struct cpumask *span,
7108 const struct cpumask *cpu_map,
7109 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7110 struct sched_group **sg,
7111 struct cpumask *tmpmask),
7112 struct cpumask *covered, struct cpumask *tmpmask)
7114 struct sched_group *first = NULL, *last = NULL;
7115 int i;
7117 cpumask_clear(covered);
7119 for_each_cpu(i, span) {
7120 struct sched_group *sg;
7121 int group = group_fn(i, cpu_map, &sg, tmpmask);
7122 int j;
7124 if (cpumask_test_cpu(i, covered))
7125 continue;
7127 cpumask_clear(sched_group_cpus(sg));
7128 sg->__cpu_power = 0;
7130 for_each_cpu(j, span) {
7131 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7132 continue;
7134 cpumask_set_cpu(j, covered);
7135 cpumask_set_cpu(j, sched_group_cpus(sg));
7137 if (!first)
7138 first = sg;
7139 if (last)
7140 last->next = sg;
7141 last = sg;
7143 last->next = first;
7146 #define SD_NODES_PER_DOMAIN 16
7148 #ifdef CONFIG_NUMA
7151 * find_next_best_node - find the next node to include in a sched_domain
7152 * @node: node whose sched_domain we're building
7153 * @used_nodes: nodes already in the sched_domain
7155 * Find the next node to include in a given scheduling domain. Simply
7156 * finds the closest node not already in the @used_nodes map.
7158 * Should use nodemask_t.
7160 static int find_next_best_node(int node, nodemask_t *used_nodes)
7162 int i, n, val, min_val, best_node = 0;
7164 min_val = INT_MAX;
7166 for (i = 0; i < nr_node_ids; i++) {
7167 /* Start at @node */
7168 n = (node + i) % nr_node_ids;
7170 if (!nr_cpus_node(n))
7171 continue;
7173 /* Skip already used nodes */
7174 if (node_isset(n, *used_nodes))
7175 continue;
7177 /* Simple min distance search */
7178 val = node_distance(node, n);
7180 if (val < min_val) {
7181 min_val = val;
7182 best_node = n;
7186 node_set(best_node, *used_nodes);
7187 return best_node;
7191 * sched_domain_node_span - get a cpumask for a node's sched_domain
7192 * @node: node whose cpumask we're constructing
7193 * @span: resulting cpumask
7195 * Given a node, construct a good cpumask for its sched_domain to span. It
7196 * should be one that prevents unnecessary balancing, but also spreads tasks
7197 * out optimally.
7199 static void sched_domain_node_span(int node, struct cpumask *span)
7201 nodemask_t used_nodes;
7202 int i;
7204 cpumask_clear(span);
7205 nodes_clear(used_nodes);
7207 cpumask_or(span, span, cpumask_of_node(node));
7208 node_set(node, used_nodes);
7210 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7211 int next_node = find_next_best_node(node, &used_nodes);
7213 cpumask_or(span, span, cpumask_of_node(next_node));
7216 #endif /* CONFIG_NUMA */
7218 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7221 * The cpus mask in sched_group and sched_domain hangs off the end.
7222 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7223 * for nr_cpu_ids < CONFIG_NR_CPUS.
7225 struct static_sched_group {
7226 struct sched_group sg;
7227 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7230 struct static_sched_domain {
7231 struct sched_domain sd;
7232 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7236 * SMT sched-domains:
7238 #ifdef CONFIG_SCHED_SMT
7239 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7240 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7242 static int
7243 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7244 struct sched_group **sg, struct cpumask *unused)
7246 if (sg)
7247 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7248 return cpu;
7250 #endif /* CONFIG_SCHED_SMT */
7253 * multi-core sched-domains:
7255 #ifdef CONFIG_SCHED_MC
7256 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7257 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7258 #endif /* CONFIG_SCHED_MC */
7260 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7261 static int
7262 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7263 struct sched_group **sg, struct cpumask *mask)
7265 int group;
7267 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7268 group = cpumask_first(mask);
7269 if (sg)
7270 *sg = &per_cpu(sched_group_core, group).sg;
7271 return group;
7273 #elif defined(CONFIG_SCHED_MC)
7274 static int
7275 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7276 struct sched_group **sg, struct cpumask *unused)
7278 if (sg)
7279 *sg = &per_cpu(sched_group_core, cpu).sg;
7280 return cpu;
7282 #endif
7284 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7285 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7287 static int
7288 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7289 struct sched_group **sg, struct cpumask *mask)
7291 int group;
7292 #ifdef CONFIG_SCHED_MC
7293 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7294 group = cpumask_first(mask);
7295 #elif defined(CONFIG_SCHED_SMT)
7296 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7297 group = cpumask_first(mask);
7298 #else
7299 group = cpu;
7300 #endif
7301 if (sg)
7302 *sg = &per_cpu(sched_group_phys, group).sg;
7303 return group;
7306 #ifdef CONFIG_NUMA
7308 * The init_sched_build_groups can't handle what we want to do with node
7309 * groups, so roll our own. Now each node has its own list of groups which
7310 * gets dynamically allocated.
7312 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7313 static struct sched_group ***sched_group_nodes_bycpu;
7315 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7316 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7318 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7319 struct sched_group **sg,
7320 struct cpumask *nodemask)
7322 int group;
7324 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7325 group = cpumask_first(nodemask);
7327 if (sg)
7328 *sg = &per_cpu(sched_group_allnodes, group).sg;
7329 return group;
7332 static void init_numa_sched_groups_power(struct sched_group *group_head)
7334 struct sched_group *sg = group_head;
7335 int j;
7337 if (!sg)
7338 return;
7339 do {
7340 for_each_cpu(j, sched_group_cpus(sg)) {
7341 struct sched_domain *sd;
7343 sd = &per_cpu(phys_domains, j).sd;
7344 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7346 * Only add "power" once for each
7347 * physical package.
7349 continue;
7352 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7354 sg = sg->next;
7355 } while (sg != group_head);
7357 #endif /* CONFIG_NUMA */
7359 #ifdef CONFIG_NUMA
7360 /* Free memory allocated for various sched_group structures */
7361 static void free_sched_groups(const struct cpumask *cpu_map,
7362 struct cpumask *nodemask)
7364 int cpu, i;
7366 for_each_cpu(cpu, cpu_map) {
7367 struct sched_group **sched_group_nodes
7368 = sched_group_nodes_bycpu[cpu];
7370 if (!sched_group_nodes)
7371 continue;
7373 for (i = 0; i < nr_node_ids; i++) {
7374 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7376 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7377 if (cpumask_empty(nodemask))
7378 continue;
7380 if (sg == NULL)
7381 continue;
7382 sg = sg->next;
7383 next_sg:
7384 oldsg = sg;
7385 sg = sg->next;
7386 kfree(oldsg);
7387 if (oldsg != sched_group_nodes[i])
7388 goto next_sg;
7390 kfree(sched_group_nodes);
7391 sched_group_nodes_bycpu[cpu] = NULL;
7394 #else /* !CONFIG_NUMA */
7395 static void free_sched_groups(const struct cpumask *cpu_map,
7396 struct cpumask *nodemask)
7399 #endif /* CONFIG_NUMA */
7402 * Initialize sched groups cpu_power.
7404 * cpu_power indicates the capacity of sched group, which is used while
7405 * distributing the load between different sched groups in a sched domain.
7406 * Typically cpu_power for all the groups in a sched domain will be same unless
7407 * there are asymmetries in the topology. If there are asymmetries, group
7408 * having more cpu_power will pickup more load compared to the group having
7409 * less cpu_power.
7411 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7412 * the maximum number of tasks a group can handle in the presence of other idle
7413 * or lightly loaded groups in the same sched domain.
7415 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7417 struct sched_domain *child;
7418 struct sched_group *group;
7420 WARN_ON(!sd || !sd->groups);
7422 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7423 return;
7425 child = sd->child;
7427 sd->groups->__cpu_power = 0;
7430 * For perf policy, if the groups in child domain share resources
7431 * (for example cores sharing some portions of the cache hierarchy
7432 * or SMT), then set this domain groups cpu_power such that each group
7433 * can handle only one task, when there are other idle groups in the
7434 * same sched domain.
7436 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7437 (child->flags &
7438 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7439 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7440 return;
7444 * add cpu_power of each child group to this groups cpu_power
7446 group = child->groups;
7447 do {
7448 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7449 group = group->next;
7450 } while (group != child->groups);
7454 * Initializers for schedule domains
7455 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7458 #ifdef CONFIG_SCHED_DEBUG
7459 # define SD_INIT_NAME(sd, type) sd->name = #type
7460 #else
7461 # define SD_INIT_NAME(sd, type) do { } while (0)
7462 #endif
7464 #define SD_INIT(sd, type) sd_init_##type(sd)
7466 #define SD_INIT_FUNC(type) \
7467 static noinline void sd_init_##type(struct sched_domain *sd) \
7469 memset(sd, 0, sizeof(*sd)); \
7470 *sd = SD_##type##_INIT; \
7471 sd->level = SD_LV_##type; \
7472 SD_INIT_NAME(sd, type); \
7475 SD_INIT_FUNC(CPU)
7476 #ifdef CONFIG_NUMA
7477 SD_INIT_FUNC(ALLNODES)
7478 SD_INIT_FUNC(NODE)
7479 #endif
7480 #ifdef CONFIG_SCHED_SMT
7481 SD_INIT_FUNC(SIBLING)
7482 #endif
7483 #ifdef CONFIG_SCHED_MC
7484 SD_INIT_FUNC(MC)
7485 #endif
7487 static int default_relax_domain_level = -1;
7489 static int __init setup_relax_domain_level(char *str)
7491 unsigned long val;
7493 val = simple_strtoul(str, NULL, 0);
7494 if (val < SD_LV_MAX)
7495 default_relax_domain_level = val;
7497 return 1;
7499 __setup("relax_domain_level=", setup_relax_domain_level);
7501 static void set_domain_attribute(struct sched_domain *sd,
7502 struct sched_domain_attr *attr)
7504 int request;
7506 if (!attr || attr->relax_domain_level < 0) {
7507 if (default_relax_domain_level < 0)
7508 return;
7509 else
7510 request = default_relax_domain_level;
7511 } else
7512 request = attr->relax_domain_level;
7513 if (request < sd->level) {
7514 /* turn off idle balance on this domain */
7515 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7516 } else {
7517 /* turn on idle balance on this domain */
7518 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7523 * Build sched domains for a given set of cpus and attach the sched domains
7524 * to the individual cpus
7526 static int __build_sched_domains(const struct cpumask *cpu_map,
7527 struct sched_domain_attr *attr)
7529 int i, err = -ENOMEM;
7530 struct root_domain *rd;
7531 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7532 tmpmask;
7533 #ifdef CONFIG_NUMA
7534 cpumask_var_t domainspan, covered, notcovered;
7535 struct sched_group **sched_group_nodes = NULL;
7536 int sd_allnodes = 0;
7538 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7539 goto out;
7540 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7541 goto free_domainspan;
7542 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7543 goto free_covered;
7544 #endif
7546 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7547 goto free_notcovered;
7548 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7549 goto free_nodemask;
7550 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7551 goto free_this_sibling_map;
7552 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7553 goto free_this_core_map;
7554 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7555 goto free_send_covered;
7557 #ifdef CONFIG_NUMA
7559 * Allocate the per-node list of sched groups
7561 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7562 GFP_KERNEL);
7563 if (!sched_group_nodes) {
7564 printk(KERN_WARNING "Can not alloc sched group node list\n");
7565 goto free_tmpmask;
7567 #endif
7569 rd = alloc_rootdomain();
7570 if (!rd) {
7571 printk(KERN_WARNING "Cannot alloc root domain\n");
7572 goto free_sched_groups;
7575 #ifdef CONFIG_NUMA
7576 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7577 #endif
7580 * Set up domains for cpus specified by the cpu_map.
7582 for_each_cpu(i, cpu_map) {
7583 struct sched_domain *sd = NULL, *p;
7585 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
7587 #ifdef CONFIG_NUMA
7588 if (cpumask_weight(cpu_map) >
7589 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7590 sd = &per_cpu(allnodes_domains, i).sd;
7591 SD_INIT(sd, ALLNODES);
7592 set_domain_attribute(sd, attr);
7593 cpumask_copy(sched_domain_span(sd), cpu_map);
7594 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7595 p = sd;
7596 sd_allnodes = 1;
7597 } else
7598 p = NULL;
7600 sd = &per_cpu(node_domains, i).sd;
7601 SD_INIT(sd, NODE);
7602 set_domain_attribute(sd, attr);
7603 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7604 sd->parent = p;
7605 if (p)
7606 p->child = sd;
7607 cpumask_and(sched_domain_span(sd),
7608 sched_domain_span(sd), cpu_map);
7609 #endif
7611 p = sd;
7612 sd = &per_cpu(phys_domains, i).sd;
7613 SD_INIT(sd, CPU);
7614 set_domain_attribute(sd, attr);
7615 cpumask_copy(sched_domain_span(sd), nodemask);
7616 sd->parent = p;
7617 if (p)
7618 p->child = sd;
7619 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7621 #ifdef CONFIG_SCHED_MC
7622 p = sd;
7623 sd = &per_cpu(core_domains, i).sd;
7624 SD_INIT(sd, MC);
7625 set_domain_attribute(sd, attr);
7626 cpumask_and(sched_domain_span(sd), cpu_map,
7627 cpu_coregroup_mask(i));
7628 sd->parent = p;
7629 p->child = sd;
7630 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7631 #endif
7633 #ifdef CONFIG_SCHED_SMT
7634 p = sd;
7635 sd = &per_cpu(cpu_domains, i).sd;
7636 SD_INIT(sd, SIBLING);
7637 set_domain_attribute(sd, attr);
7638 cpumask_and(sched_domain_span(sd),
7639 &per_cpu(cpu_sibling_map, i), cpu_map);
7640 sd->parent = p;
7641 p->child = sd;
7642 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7643 #endif
7646 #ifdef CONFIG_SCHED_SMT
7647 /* Set up CPU (sibling) groups */
7648 for_each_cpu(i, cpu_map) {
7649 cpumask_and(this_sibling_map,
7650 &per_cpu(cpu_sibling_map, i), cpu_map);
7651 if (i != cpumask_first(this_sibling_map))
7652 continue;
7654 init_sched_build_groups(this_sibling_map, cpu_map,
7655 &cpu_to_cpu_group,
7656 send_covered, tmpmask);
7658 #endif
7660 #ifdef CONFIG_SCHED_MC
7661 /* Set up multi-core groups */
7662 for_each_cpu(i, cpu_map) {
7663 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7664 if (i != cpumask_first(this_core_map))
7665 continue;
7667 init_sched_build_groups(this_core_map, cpu_map,
7668 &cpu_to_core_group,
7669 send_covered, tmpmask);
7671 #endif
7673 /* Set up physical groups */
7674 for (i = 0; i < nr_node_ids; i++) {
7675 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7676 if (cpumask_empty(nodemask))
7677 continue;
7679 init_sched_build_groups(nodemask, cpu_map,
7680 &cpu_to_phys_group,
7681 send_covered, tmpmask);
7684 #ifdef CONFIG_NUMA
7685 /* Set up node groups */
7686 if (sd_allnodes) {
7687 init_sched_build_groups(cpu_map, cpu_map,
7688 &cpu_to_allnodes_group,
7689 send_covered, tmpmask);
7692 for (i = 0; i < nr_node_ids; i++) {
7693 /* Set up node groups */
7694 struct sched_group *sg, *prev;
7695 int j;
7697 cpumask_clear(covered);
7698 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7699 if (cpumask_empty(nodemask)) {
7700 sched_group_nodes[i] = NULL;
7701 continue;
7704 sched_domain_node_span(i, domainspan);
7705 cpumask_and(domainspan, domainspan, cpu_map);
7707 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7708 GFP_KERNEL, i);
7709 if (!sg) {
7710 printk(KERN_WARNING "Can not alloc domain group for "
7711 "node %d\n", i);
7712 goto error;
7714 sched_group_nodes[i] = sg;
7715 for_each_cpu(j, nodemask) {
7716 struct sched_domain *sd;
7718 sd = &per_cpu(node_domains, j).sd;
7719 sd->groups = sg;
7721 sg->__cpu_power = 0;
7722 cpumask_copy(sched_group_cpus(sg), nodemask);
7723 sg->next = sg;
7724 cpumask_or(covered, covered, nodemask);
7725 prev = sg;
7727 for (j = 0; j < nr_node_ids; j++) {
7728 int n = (i + j) % nr_node_ids;
7730 cpumask_complement(notcovered, covered);
7731 cpumask_and(tmpmask, notcovered, cpu_map);
7732 cpumask_and(tmpmask, tmpmask, domainspan);
7733 if (cpumask_empty(tmpmask))
7734 break;
7736 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7737 if (cpumask_empty(tmpmask))
7738 continue;
7740 sg = kmalloc_node(sizeof(struct sched_group) +
7741 cpumask_size(),
7742 GFP_KERNEL, i);
7743 if (!sg) {
7744 printk(KERN_WARNING
7745 "Can not alloc domain group for node %d\n", j);
7746 goto error;
7748 sg->__cpu_power = 0;
7749 cpumask_copy(sched_group_cpus(sg), tmpmask);
7750 sg->next = prev->next;
7751 cpumask_or(covered, covered, tmpmask);
7752 prev->next = sg;
7753 prev = sg;
7756 #endif
7758 /* Calculate CPU power for physical packages and nodes */
7759 #ifdef CONFIG_SCHED_SMT
7760 for_each_cpu(i, cpu_map) {
7761 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
7763 init_sched_groups_power(i, sd);
7765 #endif
7766 #ifdef CONFIG_SCHED_MC
7767 for_each_cpu(i, cpu_map) {
7768 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
7770 init_sched_groups_power(i, sd);
7772 #endif
7774 for_each_cpu(i, cpu_map) {
7775 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
7777 init_sched_groups_power(i, sd);
7780 #ifdef CONFIG_NUMA
7781 for (i = 0; i < nr_node_ids; i++)
7782 init_numa_sched_groups_power(sched_group_nodes[i]);
7784 if (sd_allnodes) {
7785 struct sched_group *sg;
7787 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7788 tmpmask);
7789 init_numa_sched_groups_power(sg);
7791 #endif
7793 /* Attach the domains */
7794 for_each_cpu(i, cpu_map) {
7795 struct sched_domain *sd;
7796 #ifdef CONFIG_SCHED_SMT
7797 sd = &per_cpu(cpu_domains, i).sd;
7798 #elif defined(CONFIG_SCHED_MC)
7799 sd = &per_cpu(core_domains, i).sd;
7800 #else
7801 sd = &per_cpu(phys_domains, i).sd;
7802 #endif
7803 cpu_attach_domain(sd, rd, i);
7806 err = 0;
7808 free_tmpmask:
7809 free_cpumask_var(tmpmask);
7810 free_send_covered:
7811 free_cpumask_var(send_covered);
7812 free_this_core_map:
7813 free_cpumask_var(this_core_map);
7814 free_this_sibling_map:
7815 free_cpumask_var(this_sibling_map);
7816 free_nodemask:
7817 free_cpumask_var(nodemask);
7818 free_notcovered:
7819 #ifdef CONFIG_NUMA
7820 free_cpumask_var(notcovered);
7821 free_covered:
7822 free_cpumask_var(covered);
7823 free_domainspan:
7824 free_cpumask_var(domainspan);
7825 out:
7826 #endif
7827 return err;
7829 free_sched_groups:
7830 #ifdef CONFIG_NUMA
7831 kfree(sched_group_nodes);
7832 #endif
7833 goto free_tmpmask;
7835 #ifdef CONFIG_NUMA
7836 error:
7837 free_sched_groups(cpu_map, tmpmask);
7838 free_rootdomain(rd);
7839 goto free_tmpmask;
7840 #endif
7843 static int build_sched_domains(const struct cpumask *cpu_map)
7845 return __build_sched_domains(cpu_map, NULL);
7848 static struct cpumask *doms_cur; /* current sched domains */
7849 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7850 static struct sched_domain_attr *dattr_cur;
7851 /* attribues of custom domains in 'doms_cur' */
7854 * Special case: If a kmalloc of a doms_cur partition (array of
7855 * cpumask) fails, then fallback to a single sched domain,
7856 * as determined by the single cpumask fallback_doms.
7858 static cpumask_var_t fallback_doms;
7861 * arch_update_cpu_topology lets virtualized architectures update the
7862 * cpu core maps. It is supposed to return 1 if the topology changed
7863 * or 0 if it stayed the same.
7865 int __attribute__((weak)) arch_update_cpu_topology(void)
7867 return 0;
7871 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7872 * For now this just excludes isolated cpus, but could be used to
7873 * exclude other special cases in the future.
7875 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7877 int err;
7879 arch_update_cpu_topology();
7880 ndoms_cur = 1;
7881 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
7882 if (!doms_cur)
7883 doms_cur = fallback_doms;
7884 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7885 dattr_cur = NULL;
7886 err = build_sched_domains(doms_cur);
7887 register_sched_domain_sysctl();
7889 return err;
7892 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7893 struct cpumask *tmpmask)
7895 free_sched_groups(cpu_map, tmpmask);
7899 * Detach sched domains from a group of cpus specified in cpu_map
7900 * These cpus will now be attached to the NULL domain
7902 static void detach_destroy_domains(const struct cpumask *cpu_map)
7904 /* Save because hotplug lock held. */
7905 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7906 int i;
7908 for_each_cpu(i, cpu_map)
7909 cpu_attach_domain(NULL, &def_root_domain, i);
7910 synchronize_sched();
7911 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7914 /* handle null as "default" */
7915 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7916 struct sched_domain_attr *new, int idx_new)
7918 struct sched_domain_attr tmp;
7920 /* fast path */
7921 if (!new && !cur)
7922 return 1;
7924 tmp = SD_ATTR_INIT;
7925 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7926 new ? (new + idx_new) : &tmp,
7927 sizeof(struct sched_domain_attr));
7931 * Partition sched domains as specified by the 'ndoms_new'
7932 * cpumasks in the array doms_new[] of cpumasks. This compares
7933 * doms_new[] to the current sched domain partitioning, doms_cur[].
7934 * It destroys each deleted domain and builds each new domain.
7936 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7937 * The masks don't intersect (don't overlap.) We should setup one
7938 * sched domain for each mask. CPUs not in any of the cpumasks will
7939 * not be load balanced. If the same cpumask appears both in the
7940 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7941 * it as it is.
7943 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7944 * ownership of it and will kfree it when done with it. If the caller
7945 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7946 * ndoms_new == 1, and partition_sched_domains() will fallback to
7947 * the single partition 'fallback_doms', it also forces the domains
7948 * to be rebuilt.
7950 * If doms_new == NULL it will be replaced with cpu_online_mask.
7951 * ndoms_new == 0 is a special case for destroying existing domains,
7952 * and it will not create the default domain.
7954 * Call with hotplug lock held
7956 /* FIXME: Change to struct cpumask *doms_new[] */
7957 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
7958 struct sched_domain_attr *dattr_new)
7960 int i, j, n;
7961 int new_topology;
7963 mutex_lock(&sched_domains_mutex);
7965 /* always unregister in case we don't destroy any domains */
7966 unregister_sched_domain_sysctl();
7968 /* Let architecture update cpu core mappings. */
7969 new_topology = arch_update_cpu_topology();
7971 n = doms_new ? ndoms_new : 0;
7973 /* Destroy deleted domains */
7974 for (i = 0; i < ndoms_cur; i++) {
7975 for (j = 0; j < n && !new_topology; j++) {
7976 if (cpumask_equal(&doms_cur[i], &doms_new[j])
7977 && dattrs_equal(dattr_cur, i, dattr_new, j))
7978 goto match1;
7980 /* no match - a current sched domain not in new doms_new[] */
7981 detach_destroy_domains(doms_cur + i);
7982 match1:
7986 if (doms_new == NULL) {
7987 ndoms_cur = 0;
7988 doms_new = fallback_doms;
7989 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
7990 WARN_ON_ONCE(dattr_new);
7993 /* Build new domains */
7994 for (i = 0; i < ndoms_new; i++) {
7995 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7996 if (cpumask_equal(&doms_new[i], &doms_cur[j])
7997 && dattrs_equal(dattr_new, i, dattr_cur, j))
7998 goto match2;
8000 /* no match - add a new doms_new */
8001 __build_sched_domains(doms_new + i,
8002 dattr_new ? dattr_new + i : NULL);
8003 match2:
8007 /* Remember the new sched domains */
8008 if (doms_cur != fallback_doms)
8009 kfree(doms_cur);
8010 kfree(dattr_cur); /* kfree(NULL) is safe */
8011 doms_cur = doms_new;
8012 dattr_cur = dattr_new;
8013 ndoms_cur = ndoms_new;
8015 register_sched_domain_sysctl();
8017 mutex_unlock(&sched_domains_mutex);
8020 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8021 static void arch_reinit_sched_domains(void)
8023 get_online_cpus();
8025 /* Destroy domains first to force the rebuild */
8026 partition_sched_domains(0, NULL, NULL);
8028 rebuild_sched_domains();
8029 put_online_cpus();
8032 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8034 unsigned int level = 0;
8036 if (sscanf(buf, "%u", &level) != 1)
8037 return -EINVAL;
8040 * level is always be positive so don't check for
8041 * level < POWERSAVINGS_BALANCE_NONE which is 0
8042 * What happens on 0 or 1 byte write,
8043 * need to check for count as well?
8046 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8047 return -EINVAL;
8049 if (smt)
8050 sched_smt_power_savings = level;
8051 else
8052 sched_mc_power_savings = level;
8054 arch_reinit_sched_domains();
8056 return count;
8059 #ifdef CONFIG_SCHED_MC
8060 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8061 char *page)
8063 return sprintf(page, "%u\n", sched_mc_power_savings);
8065 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8066 const char *buf, size_t count)
8068 return sched_power_savings_store(buf, count, 0);
8070 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8071 sched_mc_power_savings_show,
8072 sched_mc_power_savings_store);
8073 #endif
8075 #ifdef CONFIG_SCHED_SMT
8076 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8077 char *page)
8079 return sprintf(page, "%u\n", sched_smt_power_savings);
8081 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8082 const char *buf, size_t count)
8084 return sched_power_savings_store(buf, count, 1);
8086 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8087 sched_smt_power_savings_show,
8088 sched_smt_power_savings_store);
8089 #endif
8091 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8093 int err = 0;
8095 #ifdef CONFIG_SCHED_SMT
8096 if (smt_capable())
8097 err = sysfs_create_file(&cls->kset.kobj,
8098 &attr_sched_smt_power_savings.attr);
8099 #endif
8100 #ifdef CONFIG_SCHED_MC
8101 if (!err && mc_capable())
8102 err = sysfs_create_file(&cls->kset.kobj,
8103 &attr_sched_mc_power_savings.attr);
8104 #endif
8105 return err;
8107 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8109 #ifndef CONFIG_CPUSETS
8111 * Add online and remove offline CPUs from the scheduler domains.
8112 * When cpusets are enabled they take over this function.
8114 static int update_sched_domains(struct notifier_block *nfb,
8115 unsigned long action, void *hcpu)
8117 switch (action) {
8118 case CPU_ONLINE:
8119 case CPU_ONLINE_FROZEN:
8120 case CPU_DEAD:
8121 case CPU_DEAD_FROZEN:
8122 partition_sched_domains(1, NULL, NULL);
8123 return NOTIFY_OK;
8125 default:
8126 return NOTIFY_DONE;
8129 #endif
8131 static int update_runtime(struct notifier_block *nfb,
8132 unsigned long action, void *hcpu)
8134 int cpu = (int)(long)hcpu;
8136 switch (action) {
8137 case CPU_DOWN_PREPARE:
8138 case CPU_DOWN_PREPARE_FROZEN:
8139 disable_runtime(cpu_rq(cpu));
8140 return NOTIFY_OK;
8142 case CPU_DOWN_FAILED:
8143 case CPU_DOWN_FAILED_FROZEN:
8144 case CPU_ONLINE:
8145 case CPU_ONLINE_FROZEN:
8146 enable_runtime(cpu_rq(cpu));
8147 return NOTIFY_OK;
8149 default:
8150 return NOTIFY_DONE;
8154 void __init sched_init_smp(void)
8156 cpumask_var_t non_isolated_cpus;
8158 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8160 #if defined(CONFIG_NUMA)
8161 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8162 GFP_KERNEL);
8163 BUG_ON(sched_group_nodes_bycpu == NULL);
8164 #endif
8165 get_online_cpus();
8166 mutex_lock(&sched_domains_mutex);
8167 arch_init_sched_domains(cpu_online_mask);
8168 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8169 if (cpumask_empty(non_isolated_cpus))
8170 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8171 mutex_unlock(&sched_domains_mutex);
8172 put_online_cpus();
8174 #ifndef CONFIG_CPUSETS
8175 /* XXX: Theoretical race here - CPU may be hotplugged now */
8176 hotcpu_notifier(update_sched_domains, 0);
8177 #endif
8179 /* RT runtime code needs to handle some hotplug events */
8180 hotcpu_notifier(update_runtime, 0);
8182 init_hrtick();
8184 /* Move init over to a non-isolated CPU */
8185 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8186 BUG();
8187 sched_init_granularity();
8188 free_cpumask_var(non_isolated_cpus);
8190 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8191 init_sched_rt_class();
8193 #else
8194 void __init sched_init_smp(void)
8196 sched_init_granularity();
8198 #endif /* CONFIG_SMP */
8200 int in_sched_functions(unsigned long addr)
8202 return in_lock_functions(addr) ||
8203 (addr >= (unsigned long)__sched_text_start
8204 && addr < (unsigned long)__sched_text_end);
8207 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8209 cfs_rq->tasks_timeline = RB_ROOT;
8210 INIT_LIST_HEAD(&cfs_rq->tasks);
8211 #ifdef CONFIG_FAIR_GROUP_SCHED
8212 cfs_rq->rq = rq;
8213 #endif
8214 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8217 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8219 struct rt_prio_array *array;
8220 int i;
8222 array = &rt_rq->active;
8223 for (i = 0; i < MAX_RT_PRIO; i++) {
8224 INIT_LIST_HEAD(array->queue + i);
8225 __clear_bit(i, array->bitmap);
8227 /* delimiter for bitsearch: */
8228 __set_bit(MAX_RT_PRIO, array->bitmap);
8230 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8231 rt_rq->highest_prio = MAX_RT_PRIO;
8232 #endif
8233 #ifdef CONFIG_SMP
8234 rt_rq->rt_nr_migratory = 0;
8235 rt_rq->overloaded = 0;
8236 #endif
8238 rt_rq->rt_time = 0;
8239 rt_rq->rt_throttled = 0;
8240 rt_rq->rt_runtime = 0;
8241 spin_lock_init(&rt_rq->rt_runtime_lock);
8243 #ifdef CONFIG_RT_GROUP_SCHED
8244 rt_rq->rt_nr_boosted = 0;
8245 rt_rq->rq = rq;
8246 #endif
8249 #ifdef CONFIG_FAIR_GROUP_SCHED
8250 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8251 struct sched_entity *se, int cpu, int add,
8252 struct sched_entity *parent)
8254 struct rq *rq = cpu_rq(cpu);
8255 tg->cfs_rq[cpu] = cfs_rq;
8256 init_cfs_rq(cfs_rq, rq);
8257 cfs_rq->tg = tg;
8258 if (add)
8259 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8261 tg->se[cpu] = se;
8262 /* se could be NULL for init_task_group */
8263 if (!se)
8264 return;
8266 if (!parent)
8267 se->cfs_rq = &rq->cfs;
8268 else
8269 se->cfs_rq = parent->my_q;
8271 se->my_q = cfs_rq;
8272 se->load.weight = tg->shares;
8273 se->load.inv_weight = 0;
8274 se->parent = parent;
8276 #endif
8278 #ifdef CONFIG_RT_GROUP_SCHED
8279 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8280 struct sched_rt_entity *rt_se, int cpu, int add,
8281 struct sched_rt_entity *parent)
8283 struct rq *rq = cpu_rq(cpu);
8285 tg->rt_rq[cpu] = rt_rq;
8286 init_rt_rq(rt_rq, rq);
8287 rt_rq->tg = tg;
8288 rt_rq->rt_se = rt_se;
8289 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8290 if (add)
8291 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8293 tg->rt_se[cpu] = rt_se;
8294 if (!rt_se)
8295 return;
8297 if (!parent)
8298 rt_se->rt_rq = &rq->rt;
8299 else
8300 rt_se->rt_rq = parent->my_q;
8302 rt_se->my_q = rt_rq;
8303 rt_se->parent = parent;
8304 INIT_LIST_HEAD(&rt_se->run_list);
8306 #endif
8308 void __init sched_init(void)
8310 int i, j;
8311 unsigned long alloc_size = 0, ptr;
8313 #ifdef CONFIG_FAIR_GROUP_SCHED
8314 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8315 #endif
8316 #ifdef CONFIG_RT_GROUP_SCHED
8317 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8318 #endif
8319 #ifdef CONFIG_USER_SCHED
8320 alloc_size *= 2;
8321 #endif
8323 * As sched_init() is called before page_alloc is setup,
8324 * we use alloc_bootmem().
8326 if (alloc_size) {
8327 ptr = (unsigned long)alloc_bootmem(alloc_size);
8329 #ifdef CONFIG_FAIR_GROUP_SCHED
8330 init_task_group.se = (struct sched_entity **)ptr;
8331 ptr += nr_cpu_ids * sizeof(void **);
8333 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8334 ptr += nr_cpu_ids * sizeof(void **);
8336 #ifdef CONFIG_USER_SCHED
8337 root_task_group.se = (struct sched_entity **)ptr;
8338 ptr += nr_cpu_ids * sizeof(void **);
8340 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8341 ptr += nr_cpu_ids * sizeof(void **);
8342 #endif /* CONFIG_USER_SCHED */
8343 #endif /* CONFIG_FAIR_GROUP_SCHED */
8344 #ifdef CONFIG_RT_GROUP_SCHED
8345 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8346 ptr += nr_cpu_ids * sizeof(void **);
8348 init_task_group.rt_rq = (struct rt_rq **)ptr;
8349 ptr += nr_cpu_ids * sizeof(void **);
8351 #ifdef CONFIG_USER_SCHED
8352 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8353 ptr += nr_cpu_ids * sizeof(void **);
8355 root_task_group.rt_rq = (struct rt_rq **)ptr;
8356 ptr += nr_cpu_ids * sizeof(void **);
8357 #endif /* CONFIG_USER_SCHED */
8358 #endif /* CONFIG_RT_GROUP_SCHED */
8361 #ifdef CONFIG_SMP
8362 init_defrootdomain();
8363 #endif
8365 init_rt_bandwidth(&def_rt_bandwidth,
8366 global_rt_period(), global_rt_runtime());
8368 #ifdef CONFIG_RT_GROUP_SCHED
8369 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8370 global_rt_period(), global_rt_runtime());
8371 #ifdef CONFIG_USER_SCHED
8372 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8373 global_rt_period(), RUNTIME_INF);
8374 #endif /* CONFIG_USER_SCHED */
8375 #endif /* CONFIG_RT_GROUP_SCHED */
8377 #ifdef CONFIG_GROUP_SCHED
8378 list_add(&init_task_group.list, &task_groups);
8379 INIT_LIST_HEAD(&init_task_group.children);
8381 #ifdef CONFIG_USER_SCHED
8382 INIT_LIST_HEAD(&root_task_group.children);
8383 init_task_group.parent = &root_task_group;
8384 list_add(&init_task_group.siblings, &root_task_group.children);
8385 #endif /* CONFIG_USER_SCHED */
8386 #endif /* CONFIG_GROUP_SCHED */
8388 for_each_possible_cpu(i) {
8389 struct rq *rq;
8391 rq = cpu_rq(i);
8392 spin_lock_init(&rq->lock);
8393 rq->nr_running = 0;
8394 init_cfs_rq(&rq->cfs, rq);
8395 init_rt_rq(&rq->rt, rq);
8396 #ifdef CONFIG_FAIR_GROUP_SCHED
8397 init_task_group.shares = init_task_group_load;
8398 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8399 #ifdef CONFIG_CGROUP_SCHED
8401 * How much cpu bandwidth does init_task_group get?
8403 * In case of task-groups formed thr' the cgroup filesystem, it
8404 * gets 100% of the cpu resources in the system. This overall
8405 * system cpu resource is divided among the tasks of
8406 * init_task_group and its child task-groups in a fair manner,
8407 * based on each entity's (task or task-group's) weight
8408 * (se->load.weight).
8410 * In other words, if init_task_group has 10 tasks of weight
8411 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8412 * then A0's share of the cpu resource is:
8414 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8416 * We achieve this by letting init_task_group's tasks sit
8417 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8419 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8420 #elif defined CONFIG_USER_SCHED
8421 root_task_group.shares = NICE_0_LOAD;
8422 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8424 * In case of task-groups formed thr' the user id of tasks,
8425 * init_task_group represents tasks belonging to root user.
8426 * Hence it forms a sibling of all subsequent groups formed.
8427 * In this case, init_task_group gets only a fraction of overall
8428 * system cpu resource, based on the weight assigned to root
8429 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8430 * by letting tasks of init_task_group sit in a separate cfs_rq
8431 * (init_cfs_rq) and having one entity represent this group of
8432 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8434 init_tg_cfs_entry(&init_task_group,
8435 &per_cpu(init_cfs_rq, i),
8436 &per_cpu(init_sched_entity, i), i, 1,
8437 root_task_group.se[i]);
8439 #endif
8440 #endif /* CONFIG_FAIR_GROUP_SCHED */
8442 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8443 #ifdef CONFIG_RT_GROUP_SCHED
8444 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8445 #ifdef CONFIG_CGROUP_SCHED
8446 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8447 #elif defined CONFIG_USER_SCHED
8448 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8449 init_tg_rt_entry(&init_task_group,
8450 &per_cpu(init_rt_rq, i),
8451 &per_cpu(init_sched_rt_entity, i), i, 1,
8452 root_task_group.rt_se[i]);
8453 #endif
8454 #endif
8456 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8457 rq->cpu_load[j] = 0;
8458 #ifdef CONFIG_SMP
8459 rq->sd = NULL;
8460 rq->rd = NULL;
8461 rq->active_balance = 0;
8462 rq->next_balance = jiffies;
8463 rq->push_cpu = 0;
8464 rq->cpu = i;
8465 rq->online = 0;
8466 rq->migration_thread = NULL;
8467 INIT_LIST_HEAD(&rq->migration_queue);
8468 rq_attach_root(rq, &def_root_domain);
8469 #endif
8470 init_rq_hrtick(rq);
8471 atomic_set(&rq->nr_iowait, 0);
8474 set_load_weight(&init_task);
8476 #ifdef CONFIG_PREEMPT_NOTIFIERS
8477 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8478 #endif
8480 #ifdef CONFIG_SMP
8481 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8482 #endif
8484 #ifdef CONFIG_RT_MUTEXES
8485 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8486 #endif
8489 * The boot idle thread does lazy MMU switching as well:
8491 atomic_inc(&init_mm.mm_count);
8492 enter_lazy_tlb(&init_mm, current);
8495 * Make us the idle thread. Technically, schedule() should not be
8496 * called from this thread, however somewhere below it might be,
8497 * but because we are the idle thread, we just pick up running again
8498 * when this runqueue becomes "idle".
8500 init_idle(current, smp_processor_id());
8502 * During early bootup we pretend to be a normal task:
8504 current->sched_class = &fair_sched_class;
8506 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8507 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8508 #ifdef CONFIG_SMP
8509 #ifdef CONFIG_NO_HZ
8510 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8511 #endif
8512 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8513 #endif /* SMP */
8515 scheduler_running = 1;
8518 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8519 void __might_sleep(char *file, int line)
8521 #ifdef in_atomic
8522 static unsigned long prev_jiffy; /* ratelimiting */
8524 if ((!in_atomic() && !irqs_disabled()) ||
8525 system_state != SYSTEM_RUNNING || oops_in_progress)
8526 return;
8527 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8528 return;
8529 prev_jiffy = jiffies;
8531 printk(KERN_ERR
8532 "BUG: sleeping function called from invalid context at %s:%d\n",
8533 file, line);
8534 printk(KERN_ERR
8535 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8536 in_atomic(), irqs_disabled(),
8537 current->pid, current->comm);
8539 debug_show_held_locks(current);
8540 if (irqs_disabled())
8541 print_irqtrace_events(current);
8542 dump_stack();
8543 #endif
8545 EXPORT_SYMBOL(__might_sleep);
8546 #endif
8548 #ifdef CONFIG_MAGIC_SYSRQ
8549 static void normalize_task(struct rq *rq, struct task_struct *p)
8551 int on_rq;
8553 update_rq_clock(rq);
8554 on_rq = p->se.on_rq;
8555 if (on_rq)
8556 deactivate_task(rq, p, 0);
8557 __setscheduler(rq, p, SCHED_NORMAL, 0);
8558 if (on_rq) {
8559 activate_task(rq, p, 0);
8560 resched_task(rq->curr);
8564 void normalize_rt_tasks(void)
8566 struct task_struct *g, *p;
8567 unsigned long flags;
8568 struct rq *rq;
8570 read_lock_irqsave(&tasklist_lock, flags);
8571 do_each_thread(g, p) {
8573 * Only normalize user tasks:
8575 if (!p->mm)
8576 continue;
8578 p->se.exec_start = 0;
8579 #ifdef CONFIG_SCHEDSTATS
8580 p->se.wait_start = 0;
8581 p->se.sleep_start = 0;
8582 p->se.block_start = 0;
8583 #endif
8585 if (!rt_task(p)) {
8587 * Renice negative nice level userspace
8588 * tasks back to 0:
8590 if (TASK_NICE(p) < 0 && p->mm)
8591 set_user_nice(p, 0);
8592 continue;
8595 spin_lock(&p->pi_lock);
8596 rq = __task_rq_lock(p);
8598 normalize_task(rq, p);
8600 __task_rq_unlock(rq);
8601 spin_unlock(&p->pi_lock);
8602 } while_each_thread(g, p);
8604 read_unlock_irqrestore(&tasklist_lock, flags);
8607 #endif /* CONFIG_MAGIC_SYSRQ */
8609 #ifdef CONFIG_IA64
8611 * These functions are only useful for the IA64 MCA handling.
8613 * They can only be called when the whole system has been
8614 * stopped - every CPU needs to be quiescent, and no scheduling
8615 * activity can take place. Using them for anything else would
8616 * be a serious bug, and as a result, they aren't even visible
8617 * under any other configuration.
8621 * curr_task - return the current task for a given cpu.
8622 * @cpu: the processor in question.
8624 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8626 struct task_struct *curr_task(int cpu)
8628 return cpu_curr(cpu);
8632 * set_curr_task - set the current task for a given cpu.
8633 * @cpu: the processor in question.
8634 * @p: the task pointer to set.
8636 * Description: This function must only be used when non-maskable interrupts
8637 * are serviced on a separate stack. It allows the architecture to switch the
8638 * notion of the current task on a cpu in a non-blocking manner. This function
8639 * must be called with all CPU's synchronized, and interrupts disabled, the
8640 * and caller must save the original value of the current task (see
8641 * curr_task() above) and restore that value before reenabling interrupts and
8642 * re-starting the system.
8644 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8646 void set_curr_task(int cpu, struct task_struct *p)
8648 cpu_curr(cpu) = p;
8651 #endif
8653 #ifdef CONFIG_FAIR_GROUP_SCHED
8654 static void free_fair_sched_group(struct task_group *tg)
8656 int i;
8658 for_each_possible_cpu(i) {
8659 if (tg->cfs_rq)
8660 kfree(tg->cfs_rq[i]);
8661 if (tg->se)
8662 kfree(tg->se[i]);
8665 kfree(tg->cfs_rq);
8666 kfree(tg->se);
8669 static
8670 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8672 struct cfs_rq *cfs_rq;
8673 struct sched_entity *se;
8674 struct rq *rq;
8675 int i;
8677 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8678 if (!tg->cfs_rq)
8679 goto err;
8680 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8681 if (!tg->se)
8682 goto err;
8684 tg->shares = NICE_0_LOAD;
8686 for_each_possible_cpu(i) {
8687 rq = cpu_rq(i);
8689 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8690 GFP_KERNEL, cpu_to_node(i));
8691 if (!cfs_rq)
8692 goto err;
8694 se = kzalloc_node(sizeof(struct sched_entity),
8695 GFP_KERNEL, cpu_to_node(i));
8696 if (!se)
8697 goto err;
8699 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8702 return 1;
8704 err:
8705 return 0;
8708 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8710 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8711 &cpu_rq(cpu)->leaf_cfs_rq_list);
8714 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8716 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8718 #else /* !CONFG_FAIR_GROUP_SCHED */
8719 static inline void free_fair_sched_group(struct task_group *tg)
8723 static inline
8724 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8726 return 1;
8729 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8733 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8736 #endif /* CONFIG_FAIR_GROUP_SCHED */
8738 #ifdef CONFIG_RT_GROUP_SCHED
8739 static void free_rt_sched_group(struct task_group *tg)
8741 int i;
8743 destroy_rt_bandwidth(&tg->rt_bandwidth);
8745 for_each_possible_cpu(i) {
8746 if (tg->rt_rq)
8747 kfree(tg->rt_rq[i]);
8748 if (tg->rt_se)
8749 kfree(tg->rt_se[i]);
8752 kfree(tg->rt_rq);
8753 kfree(tg->rt_se);
8756 static
8757 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8759 struct rt_rq *rt_rq;
8760 struct sched_rt_entity *rt_se;
8761 struct rq *rq;
8762 int i;
8764 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8765 if (!tg->rt_rq)
8766 goto err;
8767 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8768 if (!tg->rt_se)
8769 goto err;
8771 init_rt_bandwidth(&tg->rt_bandwidth,
8772 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8774 for_each_possible_cpu(i) {
8775 rq = cpu_rq(i);
8777 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8778 GFP_KERNEL, cpu_to_node(i));
8779 if (!rt_rq)
8780 goto err;
8782 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8783 GFP_KERNEL, cpu_to_node(i));
8784 if (!rt_se)
8785 goto err;
8787 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8790 return 1;
8792 err:
8793 return 0;
8796 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8798 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8799 &cpu_rq(cpu)->leaf_rt_rq_list);
8802 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8804 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8806 #else /* !CONFIG_RT_GROUP_SCHED */
8807 static inline void free_rt_sched_group(struct task_group *tg)
8811 static inline
8812 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8814 return 1;
8817 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8821 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8824 #endif /* CONFIG_RT_GROUP_SCHED */
8826 #ifdef CONFIG_GROUP_SCHED
8827 static void free_sched_group(struct task_group *tg)
8829 free_fair_sched_group(tg);
8830 free_rt_sched_group(tg);
8831 kfree(tg);
8834 /* allocate runqueue etc for a new task group */
8835 struct task_group *sched_create_group(struct task_group *parent)
8837 struct task_group *tg;
8838 unsigned long flags;
8839 int i;
8841 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8842 if (!tg)
8843 return ERR_PTR(-ENOMEM);
8845 if (!alloc_fair_sched_group(tg, parent))
8846 goto err;
8848 if (!alloc_rt_sched_group(tg, parent))
8849 goto err;
8851 spin_lock_irqsave(&task_group_lock, flags);
8852 for_each_possible_cpu(i) {
8853 register_fair_sched_group(tg, i);
8854 register_rt_sched_group(tg, i);
8856 list_add_rcu(&tg->list, &task_groups);
8858 WARN_ON(!parent); /* root should already exist */
8860 tg->parent = parent;
8861 INIT_LIST_HEAD(&tg->children);
8862 list_add_rcu(&tg->siblings, &parent->children);
8863 spin_unlock_irqrestore(&task_group_lock, flags);
8865 return tg;
8867 err:
8868 free_sched_group(tg);
8869 return ERR_PTR(-ENOMEM);
8872 /* rcu callback to free various structures associated with a task group */
8873 static void free_sched_group_rcu(struct rcu_head *rhp)
8875 /* now it should be safe to free those cfs_rqs */
8876 free_sched_group(container_of(rhp, struct task_group, rcu));
8879 /* Destroy runqueue etc associated with a task group */
8880 void sched_destroy_group(struct task_group *tg)
8882 unsigned long flags;
8883 int i;
8885 spin_lock_irqsave(&task_group_lock, flags);
8886 for_each_possible_cpu(i) {
8887 unregister_fair_sched_group(tg, i);
8888 unregister_rt_sched_group(tg, i);
8890 list_del_rcu(&tg->list);
8891 list_del_rcu(&tg->siblings);
8892 spin_unlock_irqrestore(&task_group_lock, flags);
8894 /* wait for possible concurrent references to cfs_rqs complete */
8895 call_rcu(&tg->rcu, free_sched_group_rcu);
8898 /* change task's runqueue when it moves between groups.
8899 * The caller of this function should have put the task in its new group
8900 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8901 * reflect its new group.
8903 void sched_move_task(struct task_struct *tsk)
8905 int on_rq, running;
8906 unsigned long flags;
8907 struct rq *rq;
8909 rq = task_rq_lock(tsk, &flags);
8911 update_rq_clock(rq);
8913 running = task_current(rq, tsk);
8914 on_rq = tsk->se.on_rq;
8916 if (on_rq)
8917 dequeue_task(rq, tsk, 0);
8918 if (unlikely(running))
8919 tsk->sched_class->put_prev_task(rq, tsk);
8921 set_task_rq(tsk, task_cpu(tsk));
8923 #ifdef CONFIG_FAIR_GROUP_SCHED
8924 if (tsk->sched_class->moved_group)
8925 tsk->sched_class->moved_group(tsk);
8926 #endif
8928 if (unlikely(running))
8929 tsk->sched_class->set_curr_task(rq);
8930 if (on_rq)
8931 enqueue_task(rq, tsk, 0);
8933 task_rq_unlock(rq, &flags);
8935 #endif /* CONFIG_GROUP_SCHED */
8937 #ifdef CONFIG_FAIR_GROUP_SCHED
8938 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8940 struct cfs_rq *cfs_rq = se->cfs_rq;
8941 int on_rq;
8943 on_rq = se->on_rq;
8944 if (on_rq)
8945 dequeue_entity(cfs_rq, se, 0);
8947 se->load.weight = shares;
8948 se->load.inv_weight = 0;
8950 if (on_rq)
8951 enqueue_entity(cfs_rq, se, 0);
8954 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8956 struct cfs_rq *cfs_rq = se->cfs_rq;
8957 struct rq *rq = cfs_rq->rq;
8958 unsigned long flags;
8960 spin_lock_irqsave(&rq->lock, flags);
8961 __set_se_shares(se, shares);
8962 spin_unlock_irqrestore(&rq->lock, flags);
8965 static DEFINE_MUTEX(shares_mutex);
8967 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8969 int i;
8970 unsigned long flags;
8973 * We can't change the weight of the root cgroup.
8975 if (!tg->se[0])
8976 return -EINVAL;
8978 if (shares < MIN_SHARES)
8979 shares = MIN_SHARES;
8980 else if (shares > MAX_SHARES)
8981 shares = MAX_SHARES;
8983 mutex_lock(&shares_mutex);
8984 if (tg->shares == shares)
8985 goto done;
8987 spin_lock_irqsave(&task_group_lock, flags);
8988 for_each_possible_cpu(i)
8989 unregister_fair_sched_group(tg, i);
8990 list_del_rcu(&tg->siblings);
8991 spin_unlock_irqrestore(&task_group_lock, flags);
8993 /* wait for any ongoing reference to this group to finish */
8994 synchronize_sched();
8997 * Now we are free to modify the group's share on each cpu
8998 * w/o tripping rebalance_share or load_balance_fair.
9000 tg->shares = shares;
9001 for_each_possible_cpu(i) {
9003 * force a rebalance
9005 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9006 set_se_shares(tg->se[i], shares);
9010 * Enable load balance activity on this group, by inserting it back on
9011 * each cpu's rq->leaf_cfs_rq_list.
9013 spin_lock_irqsave(&task_group_lock, flags);
9014 for_each_possible_cpu(i)
9015 register_fair_sched_group(tg, i);
9016 list_add_rcu(&tg->siblings, &tg->parent->children);
9017 spin_unlock_irqrestore(&task_group_lock, flags);
9018 done:
9019 mutex_unlock(&shares_mutex);
9020 return 0;
9023 unsigned long sched_group_shares(struct task_group *tg)
9025 return tg->shares;
9027 #endif
9029 #ifdef CONFIG_RT_GROUP_SCHED
9031 * Ensure that the real time constraints are schedulable.
9033 static DEFINE_MUTEX(rt_constraints_mutex);
9035 static unsigned long to_ratio(u64 period, u64 runtime)
9037 if (runtime == RUNTIME_INF)
9038 return 1ULL << 20;
9040 return div64_u64(runtime << 20, period);
9043 /* Must be called with tasklist_lock held */
9044 static inline int tg_has_rt_tasks(struct task_group *tg)
9046 struct task_struct *g, *p;
9048 do_each_thread(g, p) {
9049 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9050 return 1;
9051 } while_each_thread(g, p);
9053 return 0;
9056 struct rt_schedulable_data {
9057 struct task_group *tg;
9058 u64 rt_period;
9059 u64 rt_runtime;
9062 static int tg_schedulable(struct task_group *tg, void *data)
9064 struct rt_schedulable_data *d = data;
9065 struct task_group *child;
9066 unsigned long total, sum = 0;
9067 u64 period, runtime;
9069 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9070 runtime = tg->rt_bandwidth.rt_runtime;
9072 if (tg == d->tg) {
9073 period = d->rt_period;
9074 runtime = d->rt_runtime;
9078 * Cannot have more runtime than the period.
9080 if (runtime > period && runtime != RUNTIME_INF)
9081 return -EINVAL;
9084 * Ensure we don't starve existing RT tasks.
9086 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9087 return -EBUSY;
9089 total = to_ratio(period, runtime);
9092 * Nobody can have more than the global setting allows.
9094 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9095 return -EINVAL;
9098 * The sum of our children's runtime should not exceed our own.
9100 list_for_each_entry_rcu(child, &tg->children, siblings) {
9101 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9102 runtime = child->rt_bandwidth.rt_runtime;
9104 if (child == d->tg) {
9105 period = d->rt_period;
9106 runtime = d->rt_runtime;
9109 sum += to_ratio(period, runtime);
9112 if (sum > total)
9113 return -EINVAL;
9115 return 0;
9118 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9120 struct rt_schedulable_data data = {
9121 .tg = tg,
9122 .rt_period = period,
9123 .rt_runtime = runtime,
9126 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9129 static int tg_set_bandwidth(struct task_group *tg,
9130 u64 rt_period, u64 rt_runtime)
9132 int i, err = 0;
9134 mutex_lock(&rt_constraints_mutex);
9135 read_lock(&tasklist_lock);
9136 err = __rt_schedulable(tg, rt_period, rt_runtime);
9137 if (err)
9138 goto unlock;
9140 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9141 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9142 tg->rt_bandwidth.rt_runtime = rt_runtime;
9144 for_each_possible_cpu(i) {
9145 struct rt_rq *rt_rq = tg->rt_rq[i];
9147 spin_lock(&rt_rq->rt_runtime_lock);
9148 rt_rq->rt_runtime = rt_runtime;
9149 spin_unlock(&rt_rq->rt_runtime_lock);
9151 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9152 unlock:
9153 read_unlock(&tasklist_lock);
9154 mutex_unlock(&rt_constraints_mutex);
9156 return err;
9159 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9161 u64 rt_runtime, rt_period;
9163 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9164 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9165 if (rt_runtime_us < 0)
9166 rt_runtime = RUNTIME_INF;
9168 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9171 long sched_group_rt_runtime(struct task_group *tg)
9173 u64 rt_runtime_us;
9175 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9176 return -1;
9178 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9179 do_div(rt_runtime_us, NSEC_PER_USEC);
9180 return rt_runtime_us;
9183 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9185 u64 rt_runtime, rt_period;
9187 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9188 rt_runtime = tg->rt_bandwidth.rt_runtime;
9190 if (rt_period == 0)
9191 return -EINVAL;
9193 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9196 long sched_group_rt_period(struct task_group *tg)
9198 u64 rt_period_us;
9200 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9201 do_div(rt_period_us, NSEC_PER_USEC);
9202 return rt_period_us;
9205 static int sched_rt_global_constraints(void)
9207 u64 runtime, period;
9208 int ret = 0;
9210 if (sysctl_sched_rt_period <= 0)
9211 return -EINVAL;
9213 runtime = global_rt_runtime();
9214 period = global_rt_period();
9217 * Sanity check on the sysctl variables.
9219 if (runtime > period && runtime != RUNTIME_INF)
9220 return -EINVAL;
9222 mutex_lock(&rt_constraints_mutex);
9223 read_lock(&tasklist_lock);
9224 ret = __rt_schedulable(NULL, 0, 0);
9225 read_unlock(&tasklist_lock);
9226 mutex_unlock(&rt_constraints_mutex);
9228 return ret;
9230 #else /* !CONFIG_RT_GROUP_SCHED */
9231 static int sched_rt_global_constraints(void)
9233 unsigned long flags;
9234 int i;
9236 if (sysctl_sched_rt_period <= 0)
9237 return -EINVAL;
9239 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9240 for_each_possible_cpu(i) {
9241 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9243 spin_lock(&rt_rq->rt_runtime_lock);
9244 rt_rq->rt_runtime = global_rt_runtime();
9245 spin_unlock(&rt_rq->rt_runtime_lock);
9247 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9249 return 0;
9251 #endif /* CONFIG_RT_GROUP_SCHED */
9253 int sched_rt_handler(struct ctl_table *table, int write,
9254 struct file *filp, void __user *buffer, size_t *lenp,
9255 loff_t *ppos)
9257 int ret;
9258 int old_period, old_runtime;
9259 static DEFINE_MUTEX(mutex);
9261 mutex_lock(&mutex);
9262 old_period = sysctl_sched_rt_period;
9263 old_runtime = sysctl_sched_rt_runtime;
9265 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9267 if (!ret && write) {
9268 ret = sched_rt_global_constraints();
9269 if (ret) {
9270 sysctl_sched_rt_period = old_period;
9271 sysctl_sched_rt_runtime = old_runtime;
9272 } else {
9273 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9274 def_rt_bandwidth.rt_period =
9275 ns_to_ktime(global_rt_period());
9278 mutex_unlock(&mutex);
9280 return ret;
9283 #ifdef CONFIG_CGROUP_SCHED
9285 /* return corresponding task_group object of a cgroup */
9286 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9288 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9289 struct task_group, css);
9292 static struct cgroup_subsys_state *
9293 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9295 struct task_group *tg, *parent;
9297 if (!cgrp->parent) {
9298 /* This is early initialization for the top cgroup */
9299 return &init_task_group.css;
9302 parent = cgroup_tg(cgrp->parent);
9303 tg = sched_create_group(parent);
9304 if (IS_ERR(tg))
9305 return ERR_PTR(-ENOMEM);
9307 return &tg->css;
9310 static void
9311 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9313 struct task_group *tg = cgroup_tg(cgrp);
9315 sched_destroy_group(tg);
9318 static int
9319 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9320 struct task_struct *tsk)
9322 #ifdef CONFIG_RT_GROUP_SCHED
9323 /* Don't accept realtime tasks when there is no way for them to run */
9324 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9325 return -EINVAL;
9326 #else
9327 /* We don't support RT-tasks being in separate groups */
9328 if (tsk->sched_class != &fair_sched_class)
9329 return -EINVAL;
9330 #endif
9332 return 0;
9335 static void
9336 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9337 struct cgroup *old_cont, struct task_struct *tsk)
9339 sched_move_task(tsk);
9342 #ifdef CONFIG_FAIR_GROUP_SCHED
9343 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9344 u64 shareval)
9346 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9349 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9351 struct task_group *tg = cgroup_tg(cgrp);
9353 return (u64) tg->shares;
9355 #endif /* CONFIG_FAIR_GROUP_SCHED */
9357 #ifdef CONFIG_RT_GROUP_SCHED
9358 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9359 s64 val)
9361 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9364 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9366 return sched_group_rt_runtime(cgroup_tg(cgrp));
9369 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9370 u64 rt_period_us)
9372 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9375 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9377 return sched_group_rt_period(cgroup_tg(cgrp));
9379 #endif /* CONFIG_RT_GROUP_SCHED */
9381 static struct cftype cpu_files[] = {
9382 #ifdef CONFIG_FAIR_GROUP_SCHED
9384 .name = "shares",
9385 .read_u64 = cpu_shares_read_u64,
9386 .write_u64 = cpu_shares_write_u64,
9388 #endif
9389 #ifdef CONFIG_RT_GROUP_SCHED
9391 .name = "rt_runtime_us",
9392 .read_s64 = cpu_rt_runtime_read,
9393 .write_s64 = cpu_rt_runtime_write,
9396 .name = "rt_period_us",
9397 .read_u64 = cpu_rt_period_read_uint,
9398 .write_u64 = cpu_rt_period_write_uint,
9400 #endif
9403 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9405 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9408 struct cgroup_subsys cpu_cgroup_subsys = {
9409 .name = "cpu",
9410 .create = cpu_cgroup_create,
9411 .destroy = cpu_cgroup_destroy,
9412 .can_attach = cpu_cgroup_can_attach,
9413 .attach = cpu_cgroup_attach,
9414 .populate = cpu_cgroup_populate,
9415 .subsys_id = cpu_cgroup_subsys_id,
9416 .early_init = 1,
9419 #endif /* CONFIG_CGROUP_SCHED */
9421 #ifdef CONFIG_CGROUP_CPUACCT
9424 * CPU accounting code for task groups.
9426 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9427 * (balbir@in.ibm.com).
9430 /* track cpu usage of a group of tasks and its child groups */
9431 struct cpuacct {
9432 struct cgroup_subsys_state css;
9433 /* cpuusage holds pointer to a u64-type object on every cpu */
9434 u64 *cpuusage;
9435 struct cpuacct *parent;
9438 struct cgroup_subsys cpuacct_subsys;
9440 /* return cpu accounting group corresponding to this container */
9441 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9443 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9444 struct cpuacct, css);
9447 /* return cpu accounting group to which this task belongs */
9448 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9450 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9451 struct cpuacct, css);
9454 /* create a new cpu accounting group */
9455 static struct cgroup_subsys_state *cpuacct_create(
9456 struct cgroup_subsys *ss, struct cgroup *cgrp)
9458 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9460 if (!ca)
9461 return ERR_PTR(-ENOMEM);
9463 ca->cpuusage = alloc_percpu(u64);
9464 if (!ca->cpuusage) {
9465 kfree(ca);
9466 return ERR_PTR(-ENOMEM);
9469 if (cgrp->parent)
9470 ca->parent = cgroup_ca(cgrp->parent);
9472 return &ca->css;
9475 /* destroy an existing cpu accounting group */
9476 static void
9477 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9479 struct cpuacct *ca = cgroup_ca(cgrp);
9481 free_percpu(ca->cpuusage);
9482 kfree(ca);
9485 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9487 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9488 u64 data;
9490 #ifndef CONFIG_64BIT
9492 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9494 spin_lock_irq(&cpu_rq(cpu)->lock);
9495 data = *cpuusage;
9496 spin_unlock_irq(&cpu_rq(cpu)->lock);
9497 #else
9498 data = *cpuusage;
9499 #endif
9501 return data;
9504 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9506 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9508 #ifndef CONFIG_64BIT
9510 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9512 spin_lock_irq(&cpu_rq(cpu)->lock);
9513 *cpuusage = val;
9514 spin_unlock_irq(&cpu_rq(cpu)->lock);
9515 #else
9516 *cpuusage = val;
9517 #endif
9520 /* return total cpu usage (in nanoseconds) of a group */
9521 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9523 struct cpuacct *ca = cgroup_ca(cgrp);
9524 u64 totalcpuusage = 0;
9525 int i;
9527 for_each_present_cpu(i)
9528 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9530 return totalcpuusage;
9533 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9534 u64 reset)
9536 struct cpuacct *ca = cgroup_ca(cgrp);
9537 int err = 0;
9538 int i;
9540 if (reset) {
9541 err = -EINVAL;
9542 goto out;
9545 for_each_present_cpu(i)
9546 cpuacct_cpuusage_write(ca, i, 0);
9548 out:
9549 return err;
9552 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9553 struct seq_file *m)
9555 struct cpuacct *ca = cgroup_ca(cgroup);
9556 u64 percpu;
9557 int i;
9559 for_each_present_cpu(i) {
9560 percpu = cpuacct_cpuusage_read(ca, i);
9561 seq_printf(m, "%llu ", (unsigned long long) percpu);
9563 seq_printf(m, "\n");
9564 return 0;
9567 static struct cftype files[] = {
9569 .name = "usage",
9570 .read_u64 = cpuusage_read,
9571 .write_u64 = cpuusage_write,
9574 .name = "usage_percpu",
9575 .read_seq_string = cpuacct_percpu_seq_read,
9580 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9582 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9586 * charge this task's execution time to its accounting group.
9588 * called with rq->lock held.
9590 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9592 struct cpuacct *ca;
9593 int cpu;
9595 if (!cpuacct_subsys.active)
9596 return;
9598 cpu = task_cpu(tsk);
9599 ca = task_ca(tsk);
9601 for (; ca; ca = ca->parent) {
9602 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9603 *cpuusage += cputime;
9607 struct cgroup_subsys cpuacct_subsys = {
9608 .name = "cpuacct",
9609 .create = cpuacct_create,
9610 .destroy = cpuacct_destroy,
9611 .populate = cpuacct_populate,
9612 .subsys_id = cpuacct_subsys_id,
9614 #endif /* CONFIG_CGROUP_CPUACCT */