ext4: Don't use ext4_dec_count() if not needed
[linux-2.6/mini2440.git] / drivers / firewire / fw-device.c
blobde9066e69adfbeea440d31cec1c0945f337db728
1 /*
2 * Device probing and sysfs code.
4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/module.h>
22 #include <linux/wait.h>
23 #include <linux/errno.h>
24 #include <linux/kthread.h>
25 #include <linux/device.h>
26 #include <linux/delay.h>
27 #include <linux/idr.h>
28 #include <linux/rwsem.h>
29 #include <asm/semaphore.h>
30 #include <asm/system.h>
31 #include <linux/ctype.h>
32 #include "fw-transaction.h"
33 #include "fw-topology.h"
34 #include "fw-device.h"
36 void fw_csr_iterator_init(struct fw_csr_iterator *ci, u32 * p)
38 ci->p = p + 1;
39 ci->end = ci->p + (p[0] >> 16);
41 EXPORT_SYMBOL(fw_csr_iterator_init);
43 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
45 *key = *ci->p >> 24;
46 *value = *ci->p & 0xffffff;
48 return ci->p++ < ci->end;
50 EXPORT_SYMBOL(fw_csr_iterator_next);
52 static int is_fw_unit(struct device *dev);
54 static int match_unit_directory(u32 * directory, const struct fw_device_id *id)
56 struct fw_csr_iterator ci;
57 int key, value, match;
59 match = 0;
60 fw_csr_iterator_init(&ci, directory);
61 while (fw_csr_iterator_next(&ci, &key, &value)) {
62 if (key == CSR_VENDOR && value == id->vendor)
63 match |= FW_MATCH_VENDOR;
64 if (key == CSR_MODEL && value == id->model)
65 match |= FW_MATCH_MODEL;
66 if (key == CSR_SPECIFIER_ID && value == id->specifier_id)
67 match |= FW_MATCH_SPECIFIER_ID;
68 if (key == CSR_VERSION && value == id->version)
69 match |= FW_MATCH_VERSION;
72 return (match & id->match_flags) == id->match_flags;
75 static int fw_unit_match(struct device *dev, struct device_driver *drv)
77 struct fw_unit *unit = fw_unit(dev);
78 struct fw_driver *driver = fw_driver(drv);
79 int i;
81 /* We only allow binding to fw_units. */
82 if (!is_fw_unit(dev))
83 return 0;
85 for (i = 0; driver->id_table[i].match_flags != 0; i++) {
86 if (match_unit_directory(unit->directory, &driver->id_table[i]))
87 return 1;
90 return 0;
93 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
95 struct fw_device *device = fw_device(unit->device.parent);
96 struct fw_csr_iterator ci;
98 int key, value;
99 int vendor = 0;
100 int model = 0;
101 int specifier_id = 0;
102 int version = 0;
104 fw_csr_iterator_init(&ci, &device->config_rom[5]);
105 while (fw_csr_iterator_next(&ci, &key, &value)) {
106 switch (key) {
107 case CSR_VENDOR:
108 vendor = value;
109 break;
110 case CSR_MODEL:
111 model = value;
112 break;
116 fw_csr_iterator_init(&ci, unit->directory);
117 while (fw_csr_iterator_next(&ci, &key, &value)) {
118 switch (key) {
119 case CSR_SPECIFIER_ID:
120 specifier_id = value;
121 break;
122 case CSR_VERSION:
123 version = value;
124 break;
128 return snprintf(buffer, buffer_size,
129 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
130 vendor, model, specifier_id, version);
133 static int
134 fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
136 struct fw_unit *unit = fw_unit(dev);
137 char modalias[64];
139 get_modalias(unit, modalias, sizeof(modalias));
141 if (add_uevent_var(env, "MODALIAS=%s", modalias))
142 return -ENOMEM;
144 return 0;
147 struct bus_type fw_bus_type = {
148 .name = "firewire",
149 .match = fw_unit_match,
151 EXPORT_SYMBOL(fw_bus_type);
153 struct fw_device *fw_device_get(struct fw_device *device)
155 get_device(&device->device);
157 return device;
160 void fw_device_put(struct fw_device *device)
162 put_device(&device->device);
165 static void fw_device_release(struct device *dev)
167 struct fw_device *device = fw_device(dev);
168 unsigned long flags;
171 * Take the card lock so we don't set this to NULL while a
172 * FW_NODE_UPDATED callback is being handled.
174 spin_lock_irqsave(&device->card->lock, flags);
175 device->node->data = NULL;
176 spin_unlock_irqrestore(&device->card->lock, flags);
178 fw_node_put(device->node);
179 fw_card_put(device->card);
180 kfree(device->config_rom);
181 kfree(device);
184 int fw_device_enable_phys_dma(struct fw_device *device)
186 int generation = device->generation;
188 /* device->node_id, accessed below, must not be older than generation */
189 smp_rmb();
191 return device->card->driver->enable_phys_dma(device->card,
192 device->node_id,
193 generation);
195 EXPORT_SYMBOL(fw_device_enable_phys_dma);
197 struct config_rom_attribute {
198 struct device_attribute attr;
199 u32 key;
202 static ssize_t
203 show_immediate(struct device *dev, struct device_attribute *dattr, char *buf)
205 struct config_rom_attribute *attr =
206 container_of(dattr, struct config_rom_attribute, attr);
207 struct fw_csr_iterator ci;
208 u32 *dir;
209 int key, value;
211 if (is_fw_unit(dev))
212 dir = fw_unit(dev)->directory;
213 else
214 dir = fw_device(dev)->config_rom + 5;
216 fw_csr_iterator_init(&ci, dir);
217 while (fw_csr_iterator_next(&ci, &key, &value))
218 if (attr->key == key)
219 return snprintf(buf, buf ? PAGE_SIZE : 0,
220 "0x%06x\n", value);
222 return -ENOENT;
225 #define IMMEDIATE_ATTR(name, key) \
226 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
228 static ssize_t
229 show_text_leaf(struct device *dev, struct device_attribute *dattr, char *buf)
231 struct config_rom_attribute *attr =
232 container_of(dattr, struct config_rom_attribute, attr);
233 struct fw_csr_iterator ci;
234 u32 *dir, *block = NULL, *p, *end;
235 int length, key, value, last_key = 0;
236 char *b;
238 if (is_fw_unit(dev))
239 dir = fw_unit(dev)->directory;
240 else
241 dir = fw_device(dev)->config_rom + 5;
243 fw_csr_iterator_init(&ci, dir);
244 while (fw_csr_iterator_next(&ci, &key, &value)) {
245 if (attr->key == last_key &&
246 key == (CSR_DESCRIPTOR | CSR_LEAF))
247 block = ci.p - 1 + value;
248 last_key = key;
251 if (block == NULL)
252 return -ENOENT;
254 length = min(block[0] >> 16, 256U);
255 if (length < 3)
256 return -ENOENT;
258 if (block[1] != 0 || block[2] != 0)
259 /* Unknown encoding. */
260 return -ENOENT;
262 if (buf == NULL)
263 return length * 4;
265 b = buf;
266 end = &block[length + 1];
267 for (p = &block[3]; p < end; p++, b += 4)
268 * (u32 *) b = (__force u32) __cpu_to_be32(*p);
270 /* Strip trailing whitespace and add newline. */
271 while (b--, (isspace(*b) || *b == '\0') && b > buf);
272 strcpy(b + 1, "\n");
274 return b + 2 - buf;
277 #define TEXT_LEAF_ATTR(name, key) \
278 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
280 static struct config_rom_attribute config_rom_attributes[] = {
281 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
282 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
283 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
284 IMMEDIATE_ATTR(version, CSR_VERSION),
285 IMMEDIATE_ATTR(model, CSR_MODEL),
286 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
287 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
288 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
291 static void
292 init_fw_attribute_group(struct device *dev,
293 struct device_attribute *attrs,
294 struct fw_attribute_group *group)
296 struct device_attribute *attr;
297 int i, j;
299 for (j = 0; attrs[j].attr.name != NULL; j++)
300 group->attrs[j] = &attrs[j].attr;
302 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
303 attr = &config_rom_attributes[i].attr;
304 if (attr->show(dev, attr, NULL) < 0)
305 continue;
306 group->attrs[j++] = &attr->attr;
309 BUG_ON(j >= ARRAY_SIZE(group->attrs));
310 group->attrs[j++] = NULL;
311 group->groups[0] = &group->group;
312 group->groups[1] = NULL;
313 group->group.attrs = group->attrs;
314 dev->groups = group->groups;
317 static ssize_t
318 modalias_show(struct device *dev,
319 struct device_attribute *attr, char *buf)
321 struct fw_unit *unit = fw_unit(dev);
322 int length;
324 length = get_modalias(unit, buf, PAGE_SIZE);
325 strcpy(buf + length, "\n");
327 return length + 1;
330 static ssize_t
331 rom_index_show(struct device *dev,
332 struct device_attribute *attr, char *buf)
334 struct fw_device *device = fw_device(dev->parent);
335 struct fw_unit *unit = fw_unit(dev);
337 return snprintf(buf, PAGE_SIZE, "%d\n",
338 (int)(unit->directory - device->config_rom));
341 static struct device_attribute fw_unit_attributes[] = {
342 __ATTR_RO(modalias),
343 __ATTR_RO(rom_index),
344 __ATTR_NULL,
347 static ssize_t
348 config_rom_show(struct device *dev, struct device_attribute *attr, char *buf)
350 struct fw_device *device = fw_device(dev);
352 memcpy(buf, device->config_rom, device->config_rom_length * 4);
354 return device->config_rom_length * 4;
357 static ssize_t
358 guid_show(struct device *dev, struct device_attribute *attr, char *buf)
360 struct fw_device *device = fw_device(dev);
361 u64 guid;
363 guid = ((u64)device->config_rom[3] << 32) | device->config_rom[4];
365 return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
366 (unsigned long long)guid);
369 static struct device_attribute fw_device_attributes[] = {
370 __ATTR_RO(config_rom),
371 __ATTR_RO(guid),
372 __ATTR_NULL,
375 struct read_quadlet_callback_data {
376 struct completion done;
377 int rcode;
378 u32 data;
381 static void
382 complete_transaction(struct fw_card *card, int rcode,
383 void *payload, size_t length, void *data)
385 struct read_quadlet_callback_data *callback_data = data;
387 if (rcode == RCODE_COMPLETE)
388 callback_data->data = be32_to_cpu(*(__be32 *)payload);
389 callback_data->rcode = rcode;
390 complete(&callback_data->done);
393 static int
394 read_rom(struct fw_device *device, int generation, int index, u32 *data)
396 struct read_quadlet_callback_data callback_data;
397 struct fw_transaction t;
398 u64 offset;
400 /* device->node_id, accessed below, must not be older than generation */
401 smp_rmb();
403 init_completion(&callback_data.done);
405 offset = 0xfffff0000400ULL + index * 4;
406 fw_send_request(device->card, &t, TCODE_READ_QUADLET_REQUEST,
407 device->node_id, generation, device->max_speed,
408 offset, NULL, 4, complete_transaction, &callback_data);
410 wait_for_completion(&callback_data.done);
412 *data = callback_data.data;
414 return callback_data.rcode;
418 * Read the bus info block, perform a speed probe, and read all of the rest of
419 * the config ROM. We do all this with a cached bus generation. If the bus
420 * generation changes under us, read_bus_info_block will fail and get retried.
421 * It's better to start all over in this case because the node from which we
422 * are reading the ROM may have changed the ROM during the reset.
424 static int read_bus_info_block(struct fw_device *device, int generation)
426 static u32 rom[256];
427 u32 stack[16], sp, key;
428 int i, end, length;
430 device->max_speed = SCODE_100;
432 /* First read the bus info block. */
433 for (i = 0; i < 5; i++) {
434 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
435 return -1;
437 * As per IEEE1212 7.2, during power-up, devices can
438 * reply with a 0 for the first quadlet of the config
439 * rom to indicate that they are booting (for example,
440 * if the firmware is on the disk of a external
441 * harddisk). In that case we just fail, and the
442 * retry mechanism will try again later.
444 if (i == 0 && rom[i] == 0)
445 return -1;
448 device->max_speed = device->node->max_speed;
451 * Determine the speed of
452 * - devices with link speed less than PHY speed,
453 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
454 * - all devices if there are 1394b repeaters.
455 * Note, we cannot use the bus info block's link_spd as starting point
456 * because some buggy firmwares set it lower than necessary and because
457 * 1394-1995 nodes do not have the field.
459 if ((rom[2] & 0x7) < device->max_speed ||
460 device->max_speed == SCODE_BETA ||
461 device->card->beta_repeaters_present) {
462 u32 dummy;
464 /* for S1600 and S3200 */
465 if (device->max_speed == SCODE_BETA)
466 device->max_speed = device->card->link_speed;
468 while (device->max_speed > SCODE_100) {
469 if (read_rom(device, generation, 0, &dummy) ==
470 RCODE_COMPLETE)
471 break;
472 device->max_speed--;
477 * Now parse the config rom. The config rom is a recursive
478 * directory structure so we parse it using a stack of
479 * references to the blocks that make up the structure. We
480 * push a reference to the root directory on the stack to
481 * start things off.
483 length = i;
484 sp = 0;
485 stack[sp++] = 0xc0000005;
486 while (sp > 0) {
488 * Pop the next block reference of the stack. The
489 * lower 24 bits is the offset into the config rom,
490 * the upper 8 bits are the type of the reference the
491 * block.
493 key = stack[--sp];
494 i = key & 0xffffff;
495 if (i >= ARRAY_SIZE(rom))
497 * The reference points outside the standard
498 * config rom area, something's fishy.
500 return -1;
502 /* Read header quadlet for the block to get the length. */
503 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
504 return -1;
505 end = i + (rom[i] >> 16) + 1;
506 i++;
507 if (end > ARRAY_SIZE(rom))
509 * This block extends outside standard config
510 * area (and the array we're reading it
511 * into). That's broken, so ignore this
512 * device.
514 return -1;
517 * Now read in the block. If this is a directory
518 * block, check the entries as we read them to see if
519 * it references another block, and push it in that case.
521 while (i < end) {
522 if (read_rom(device, generation, i, &rom[i]) !=
523 RCODE_COMPLETE)
524 return -1;
525 if ((key >> 30) == 3 && (rom[i] >> 30) > 1 &&
526 sp < ARRAY_SIZE(stack))
527 stack[sp++] = i + rom[i];
528 i++;
530 if (length < i)
531 length = i;
534 device->config_rom = kmalloc(length * 4, GFP_KERNEL);
535 if (device->config_rom == NULL)
536 return -1;
537 memcpy(device->config_rom, rom, length * 4);
538 device->config_rom_length = length;
540 return 0;
543 static void fw_unit_release(struct device *dev)
545 struct fw_unit *unit = fw_unit(dev);
547 kfree(unit);
550 static struct device_type fw_unit_type = {
551 .uevent = fw_unit_uevent,
552 .release = fw_unit_release,
555 static int is_fw_unit(struct device *dev)
557 return dev->type == &fw_unit_type;
560 static void create_units(struct fw_device *device)
562 struct fw_csr_iterator ci;
563 struct fw_unit *unit;
564 int key, value, i;
566 i = 0;
567 fw_csr_iterator_init(&ci, &device->config_rom[5]);
568 while (fw_csr_iterator_next(&ci, &key, &value)) {
569 if (key != (CSR_UNIT | CSR_DIRECTORY))
570 continue;
573 * Get the address of the unit directory and try to
574 * match the drivers id_tables against it.
576 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
577 if (unit == NULL) {
578 fw_error("failed to allocate memory for unit\n");
579 continue;
582 unit->directory = ci.p + value - 1;
583 unit->device.bus = &fw_bus_type;
584 unit->device.type = &fw_unit_type;
585 unit->device.parent = &device->device;
586 snprintf(unit->device.bus_id, sizeof(unit->device.bus_id),
587 "%s.%d", device->device.bus_id, i++);
589 init_fw_attribute_group(&unit->device,
590 fw_unit_attributes,
591 &unit->attribute_group);
592 if (device_register(&unit->device) < 0)
593 goto skip_unit;
595 continue;
597 skip_unit:
598 kfree(unit);
602 static int shutdown_unit(struct device *device, void *data)
604 device_unregister(device);
606 return 0;
609 static DECLARE_RWSEM(idr_rwsem);
610 static DEFINE_IDR(fw_device_idr);
611 int fw_cdev_major;
613 struct fw_device *fw_device_from_devt(dev_t devt)
615 struct fw_device *device;
617 down_read(&idr_rwsem);
618 device = idr_find(&fw_device_idr, MINOR(devt));
619 up_read(&idr_rwsem);
621 return device;
624 static void fw_device_shutdown(struct work_struct *work)
626 struct fw_device *device =
627 container_of(work, struct fw_device, work.work);
628 int minor = MINOR(device->device.devt);
630 down_write(&idr_rwsem);
631 idr_remove(&fw_device_idr, minor);
632 up_write(&idr_rwsem);
634 fw_device_cdev_remove(device);
635 device_for_each_child(&device->device, NULL, shutdown_unit);
636 device_unregister(&device->device);
639 static struct device_type fw_device_type = {
640 .release = fw_device_release,
644 * These defines control the retry behavior for reading the config
645 * rom. It shouldn't be necessary to tweak these; if the device
646 * doesn't respond to a config rom read within 10 seconds, it's not
647 * going to respond at all. As for the initial delay, a lot of
648 * devices will be able to respond within half a second after bus
649 * reset. On the other hand, it's not really worth being more
650 * aggressive than that, since it scales pretty well; if 10 devices
651 * are plugged in, they're all getting read within one second.
654 #define MAX_RETRIES 10
655 #define RETRY_DELAY (3 * HZ)
656 #define INITIAL_DELAY (HZ / 2)
658 static void fw_device_init(struct work_struct *work)
660 struct fw_device *device =
661 container_of(work, struct fw_device, work.work);
662 int minor, err;
665 * All failure paths here set node->data to NULL, so that we
666 * don't try to do device_for_each_child() on a kfree()'d
667 * device.
670 if (read_bus_info_block(device, device->generation) < 0) {
671 if (device->config_rom_retries < MAX_RETRIES) {
672 device->config_rom_retries++;
673 schedule_delayed_work(&device->work, RETRY_DELAY);
674 } else {
675 fw_notify("giving up on config rom for node id %x\n",
676 device->node_id);
677 if (device->node == device->card->root_node)
678 schedule_delayed_work(&device->card->work, 0);
679 fw_device_release(&device->device);
681 return;
684 err = -ENOMEM;
685 down_write(&idr_rwsem);
686 if (idr_pre_get(&fw_device_idr, GFP_KERNEL))
687 err = idr_get_new(&fw_device_idr, device, &minor);
688 up_write(&idr_rwsem);
689 if (err < 0)
690 goto error;
692 device->device.bus = &fw_bus_type;
693 device->device.type = &fw_device_type;
694 device->device.parent = device->card->device;
695 device->device.devt = MKDEV(fw_cdev_major, minor);
696 snprintf(device->device.bus_id, sizeof(device->device.bus_id),
697 "fw%d", minor);
699 init_fw_attribute_group(&device->device,
700 fw_device_attributes,
701 &device->attribute_group);
702 if (device_add(&device->device)) {
703 fw_error("Failed to add device.\n");
704 goto error_with_cdev;
707 create_units(device);
710 * Transition the device to running state. If it got pulled
711 * out from under us while we did the intialization work, we
712 * have to shut down the device again here. Normally, though,
713 * fw_node_event will be responsible for shutting it down when
714 * necessary. We have to use the atomic cmpxchg here to avoid
715 * racing with the FW_NODE_DESTROYED case in
716 * fw_node_event().
718 if (atomic_cmpxchg(&device->state,
719 FW_DEVICE_INITIALIZING,
720 FW_DEVICE_RUNNING) == FW_DEVICE_SHUTDOWN)
721 fw_device_shutdown(&device->work.work);
722 else
723 fw_notify("created new fw device %s "
724 "(%d config rom retries, S%d00)\n",
725 device->device.bus_id, device->config_rom_retries,
726 1 << device->max_speed);
729 * Reschedule the IRM work if we just finished reading the
730 * root node config rom. If this races with a bus reset we
731 * just end up running the IRM work a couple of extra times -
732 * pretty harmless.
734 if (device->node == device->card->root_node)
735 schedule_delayed_work(&device->card->work, 0);
737 return;
739 error_with_cdev:
740 down_write(&idr_rwsem);
741 idr_remove(&fw_device_idr, minor);
742 up_write(&idr_rwsem);
743 error:
744 put_device(&device->device);
747 static int update_unit(struct device *dev, void *data)
749 struct fw_unit *unit = fw_unit(dev);
750 struct fw_driver *driver = (struct fw_driver *)dev->driver;
752 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
753 down(&dev->sem);
754 driver->update(unit);
755 up(&dev->sem);
758 return 0;
761 static void fw_device_update(struct work_struct *work)
763 struct fw_device *device =
764 container_of(work, struct fw_device, work.work);
766 fw_device_cdev_update(device);
767 device_for_each_child(&device->device, NULL, update_unit);
770 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
772 struct fw_device *device;
774 switch (event) {
775 case FW_NODE_CREATED:
776 case FW_NODE_LINK_ON:
777 if (!node->link_on)
778 break;
780 device = kzalloc(sizeof(*device), GFP_ATOMIC);
781 if (device == NULL)
782 break;
785 * Do minimal intialization of the device here, the
786 * rest will happen in fw_device_init(). We need the
787 * card and node so we can read the config rom and we
788 * need to do device_initialize() now so
789 * device_for_each_child() in FW_NODE_UPDATED is
790 * doesn't freak out.
792 device_initialize(&device->device);
793 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
794 device->card = fw_card_get(card);
795 device->node = fw_node_get(node);
796 device->node_id = node->node_id;
797 device->generation = card->generation;
798 INIT_LIST_HEAD(&device->client_list);
801 * Set the node data to point back to this device so
802 * FW_NODE_UPDATED callbacks can update the node_id
803 * and generation for the device.
805 node->data = device;
808 * Many devices are slow to respond after bus resets,
809 * especially if they are bus powered and go through
810 * power-up after getting plugged in. We schedule the
811 * first config rom scan half a second after bus reset.
813 INIT_DELAYED_WORK(&device->work, fw_device_init);
814 schedule_delayed_work(&device->work, INITIAL_DELAY);
815 break;
817 case FW_NODE_UPDATED:
818 if (!node->link_on || node->data == NULL)
819 break;
821 device = node->data;
822 device->node_id = node->node_id;
823 smp_wmb(); /* update node_id before generation */
824 device->generation = card->generation;
825 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
826 PREPARE_DELAYED_WORK(&device->work, fw_device_update);
827 schedule_delayed_work(&device->work, 0);
829 break;
831 case FW_NODE_DESTROYED:
832 case FW_NODE_LINK_OFF:
833 if (!node->data)
834 break;
837 * Destroy the device associated with the node. There
838 * are two cases here: either the device is fully
839 * initialized (FW_DEVICE_RUNNING) or we're in the
840 * process of reading its config rom
841 * (FW_DEVICE_INITIALIZING). If it is fully
842 * initialized we can reuse device->work to schedule a
843 * full fw_device_shutdown(). If not, there's work
844 * scheduled to read it's config rom, and we just put
845 * the device in shutdown state to have that code fail
846 * to create the device.
848 device = node->data;
849 if (atomic_xchg(&device->state,
850 FW_DEVICE_SHUTDOWN) == FW_DEVICE_RUNNING) {
851 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
852 schedule_delayed_work(&device->work, 0);
854 break;