1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
40 #include "extent_map.h"
41 #include "heartbeat.h"
44 #include "localalloc.h"
49 #include "buffer_head_io.h"
51 DEFINE_SPINLOCK(trans_inc_lock
);
53 static int ocfs2_force_read_journal(struct inode
*inode
);
54 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
56 static int __ocfs2_recovery_thread(void *arg
);
57 static int ocfs2_commit_cache(struct ocfs2_super
*osb
);
58 static int ocfs2_wait_on_mount(struct ocfs2_super
*osb
);
59 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
61 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
63 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
65 static int ocfs2_commit_thread(void *arg
);
67 static int ocfs2_commit_cache(struct ocfs2_super
*osb
)
72 struct ocfs2_journal
*journal
= NULL
;
76 journal
= osb
->journal
;
78 /* Flush all pending commits and checkpoint the journal. */
79 down_write(&journal
->j_trans_barrier
);
81 if (atomic_read(&journal
->j_num_trans
) == 0) {
82 up_write(&journal
->j_trans_barrier
);
83 mlog(0, "No transactions for me to flush!\n");
87 journal_lock_updates(journal
->j_journal
);
88 status
= journal_flush(journal
->j_journal
);
89 journal_unlock_updates(journal
->j_journal
);
91 up_write(&journal
->j_trans_barrier
);
96 old_id
= ocfs2_inc_trans_id(journal
);
98 flushed
= atomic_read(&journal
->j_num_trans
);
99 atomic_set(&journal
->j_num_trans
, 0);
100 up_write(&journal
->j_trans_barrier
);
102 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
103 journal
->j_trans_id
, flushed
);
105 ocfs2_wake_downconvert_thread(osb
);
106 wake_up(&journal
->j_checkpointed
);
112 /* pass it NULL and it will allocate a new handle object for you. If
113 * you pass it a handle however, it may still return error, in which
114 * case it has free'd the passed handle for you. */
115 handle_t
*ocfs2_start_trans(struct ocfs2_super
*osb
, int max_buffs
)
117 journal_t
*journal
= osb
->journal
->j_journal
;
120 BUG_ON(!osb
|| !osb
->journal
->j_journal
);
122 if (ocfs2_is_hard_readonly(osb
))
123 return ERR_PTR(-EROFS
);
125 BUG_ON(osb
->journal
->j_state
== OCFS2_JOURNAL_FREE
);
126 BUG_ON(max_buffs
<= 0);
128 /* JBD might support this, but our journalling code doesn't yet. */
129 if (journal_current_handle()) {
130 mlog(ML_ERROR
, "Recursive transaction attempted!\n");
134 down_read(&osb
->journal
->j_trans_barrier
);
136 handle
= journal_start(journal
, max_buffs
);
137 if (IS_ERR(handle
)) {
138 up_read(&osb
->journal
->j_trans_barrier
);
140 mlog_errno(PTR_ERR(handle
));
142 if (is_journal_aborted(journal
)) {
143 ocfs2_abort(osb
->sb
, "Detected aborted journal");
144 handle
= ERR_PTR(-EROFS
);
147 if (!ocfs2_mount_local(osb
))
148 atomic_inc(&(osb
->journal
->j_num_trans
));
154 int ocfs2_commit_trans(struct ocfs2_super
*osb
,
158 struct ocfs2_journal
*journal
= osb
->journal
;
162 ret
= journal_stop(handle
);
166 up_read(&journal
->j_trans_barrier
);
172 * 'nblocks' is what you want to add to the current
173 * transaction. extend_trans will either extend the current handle by
174 * nblocks, or commit it and start a new one with nblocks credits.
176 * This might call journal_restart() which will commit dirty buffers
177 * and then restart the transaction. Before calling
178 * ocfs2_extend_trans(), any changed blocks should have been
179 * dirtied. After calling it, all blocks which need to be changed must
180 * go through another set of journal_access/journal_dirty calls.
182 * WARNING: This will not release any semaphores or disk locks taken
183 * during the transaction, so make sure they were taken *before*
184 * start_trans or we'll have ordering deadlocks.
186 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
187 * good because transaction ids haven't yet been recorded on the
188 * cluster locks associated with this handle.
190 int ocfs2_extend_trans(handle_t
*handle
, int nblocks
)
199 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks
);
201 #ifdef OCFS2_DEBUG_FS
204 status
= journal_extend(handle
, nblocks
);
212 mlog(0, "journal_extend failed, trying journal_restart\n");
213 status
= journal_restart(handle
, nblocks
);
227 int ocfs2_journal_access(handle_t
*handle
,
229 struct buffer_head
*bh
,
238 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
239 (unsigned long long)bh
->b_blocknr
, type
,
240 (type
== OCFS2_JOURNAL_ACCESS_CREATE
) ?
241 "OCFS2_JOURNAL_ACCESS_CREATE" :
242 "OCFS2_JOURNAL_ACCESS_WRITE",
245 /* we can safely remove this assertion after testing. */
246 if (!buffer_uptodate(bh
)) {
247 mlog(ML_ERROR
, "giving me a buffer that's not uptodate!\n");
248 mlog(ML_ERROR
, "b_blocknr=%llu\n",
249 (unsigned long long)bh
->b_blocknr
);
253 /* Set the current transaction information on the inode so
254 * that the locking code knows whether it can drop it's locks
255 * on this inode or not. We're protected from the commit
256 * thread updating the current transaction id until
257 * ocfs2_commit_trans() because ocfs2_start_trans() took
258 * j_trans_barrier for us. */
259 ocfs2_set_inode_lock_trans(OCFS2_SB(inode
->i_sb
)->journal
, inode
);
261 mutex_lock(&OCFS2_I(inode
)->ip_io_mutex
);
263 case OCFS2_JOURNAL_ACCESS_CREATE
:
264 case OCFS2_JOURNAL_ACCESS_WRITE
:
265 status
= journal_get_write_access(handle
, bh
);
268 case OCFS2_JOURNAL_ACCESS_UNDO
:
269 status
= journal_get_undo_access(handle
, bh
);
274 mlog(ML_ERROR
, "Uknown access type!\n");
276 mutex_unlock(&OCFS2_I(inode
)->ip_io_mutex
);
279 mlog(ML_ERROR
, "Error %d getting %d access to buffer!\n",
286 int ocfs2_journal_dirty(handle_t
*handle
,
287 struct buffer_head
*bh
)
291 mlog_entry("(bh->b_blocknr=%llu)\n",
292 (unsigned long long)bh
->b_blocknr
);
294 status
= journal_dirty_metadata(handle
, bh
);
296 mlog(ML_ERROR
, "Could not dirty metadata buffer. "
297 "(bh->b_blocknr=%llu)\n",
298 (unsigned long long)bh
->b_blocknr
);
304 int ocfs2_journal_dirty_data(handle_t
*handle
,
305 struct buffer_head
*bh
)
307 int err
= journal_dirty_data(handle
, bh
);
310 /* TODO: When we can handle it, abort the handle and go RO on
316 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD_DEFAULT_MAX_COMMIT_AGE)
318 void ocfs2_set_journal_params(struct ocfs2_super
*osb
)
320 journal_t
*journal
= osb
->journal
->j_journal
;
321 unsigned long commit_interval
= OCFS2_DEFAULT_COMMIT_INTERVAL
;
323 if (osb
->osb_commit_interval
)
324 commit_interval
= osb
->osb_commit_interval
;
326 spin_lock(&journal
->j_state_lock
);
327 journal
->j_commit_interval
= commit_interval
;
328 if (osb
->s_mount_opt
& OCFS2_MOUNT_BARRIER
)
329 journal
->j_flags
|= JFS_BARRIER
;
331 journal
->j_flags
&= ~JFS_BARRIER
;
332 spin_unlock(&journal
->j_state_lock
);
335 int ocfs2_journal_init(struct ocfs2_journal
*journal
, int *dirty
)
338 struct inode
*inode
= NULL
; /* the journal inode */
339 journal_t
*j_journal
= NULL
;
340 struct ocfs2_dinode
*di
= NULL
;
341 struct buffer_head
*bh
= NULL
;
342 struct ocfs2_super
*osb
;
349 osb
= journal
->j_osb
;
351 /* already have the inode for our journal */
352 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
359 if (is_bad_inode(inode
)) {
360 mlog(ML_ERROR
, "access error (bad inode)\n");
367 SET_INODE_JOURNAL(inode
);
368 OCFS2_I(inode
)->ip_open_count
++;
370 /* Skip recovery waits here - journal inode metadata never
371 * changes in a live cluster so it can be considered an
372 * exception to the rule. */
373 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
375 if (status
!= -ERESTARTSYS
)
376 mlog(ML_ERROR
, "Could not get lock on journal!\n");
381 di
= (struct ocfs2_dinode
*)bh
->b_data
;
383 if (inode
->i_size
< OCFS2_MIN_JOURNAL_SIZE
) {
384 mlog(ML_ERROR
, "Journal file size (%lld) is too small!\n",
390 mlog(0, "inode->i_size = %lld\n", inode
->i_size
);
391 mlog(0, "inode->i_blocks = %llu\n",
392 (unsigned long long)inode
->i_blocks
);
393 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode
)->ip_clusters
);
395 /* call the kernels journal init function now */
396 j_journal
= journal_init_inode(inode
);
397 if (j_journal
== NULL
) {
398 mlog(ML_ERROR
, "Linux journal layer error\n");
403 mlog(0, "Returned from journal_init_inode\n");
404 mlog(0, "j_journal->j_maxlen = %u\n", j_journal
->j_maxlen
);
406 *dirty
= (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
407 OCFS2_JOURNAL_DIRTY_FL
);
409 journal
->j_journal
= j_journal
;
410 journal
->j_inode
= inode
;
413 ocfs2_set_journal_params(osb
);
415 journal
->j_state
= OCFS2_JOURNAL_LOADED
;
421 ocfs2_inode_unlock(inode
, 1);
425 OCFS2_I(inode
)->ip_open_count
--;
434 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
439 struct ocfs2_journal
*journal
= osb
->journal
;
440 struct buffer_head
*bh
= journal
->j_bh
;
441 struct ocfs2_dinode
*fe
;
445 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
446 if (!OCFS2_IS_VALID_DINODE(fe
)) {
447 /* This is called from startup/shutdown which will
448 * handle the errors in a specific manner, so no need
449 * to call ocfs2_error() here. */
450 mlog(ML_ERROR
, "Journal dinode %llu has invalid "
452 (unsigned long long)le64_to_cpu(fe
->i_blkno
), 7,
458 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
460 flags
|= OCFS2_JOURNAL_DIRTY_FL
;
462 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
463 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
465 status
= ocfs2_write_block(osb
, bh
, journal
->j_inode
);
475 * If the journal has been kmalloc'd it needs to be freed after this
478 void ocfs2_journal_shutdown(struct ocfs2_super
*osb
)
480 struct ocfs2_journal
*journal
= NULL
;
482 struct inode
*inode
= NULL
;
483 int num_running_trans
= 0;
489 journal
= osb
->journal
;
493 inode
= journal
->j_inode
;
495 if (journal
->j_state
!= OCFS2_JOURNAL_LOADED
)
498 /* need to inc inode use count as journal_destroy will iput. */
502 num_running_trans
= atomic_read(&(osb
->journal
->j_num_trans
));
503 if (num_running_trans
> 0)
504 mlog(0, "Shutting down journal: must wait on %d "
505 "running transactions!\n",
508 /* Do a commit_cache here. It will flush our journal, *and*
509 * release any locks that are still held.
510 * set the SHUTDOWN flag and release the trans lock.
511 * the commit thread will take the trans lock for us below. */
512 journal
->j_state
= OCFS2_JOURNAL_IN_SHUTDOWN
;
514 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
515 * drop the trans_lock (which we want to hold until we
516 * completely destroy the journal. */
517 if (osb
->commit_task
) {
518 /* Wait for the commit thread */
519 mlog(0, "Waiting for ocfs2commit to exit....\n");
520 kthread_stop(osb
->commit_task
);
521 osb
->commit_task
= NULL
;
524 BUG_ON(atomic_read(&(osb
->journal
->j_num_trans
)) != 0);
526 if (ocfs2_mount_local(osb
)) {
527 journal_lock_updates(journal
->j_journal
);
528 status
= journal_flush(journal
->j_journal
);
529 journal_unlock_updates(journal
->j_journal
);
536 * Do not toggle if flush was unsuccessful otherwise
537 * will leave dirty metadata in a "clean" journal
539 status
= ocfs2_journal_toggle_dirty(osb
, 0);
544 /* Shutdown the kernel journal system */
545 journal_destroy(journal
->j_journal
);
547 OCFS2_I(inode
)->ip_open_count
--;
549 /* unlock our journal */
550 ocfs2_inode_unlock(inode
, 1);
552 brelse(journal
->j_bh
);
553 journal
->j_bh
= NULL
;
555 journal
->j_state
= OCFS2_JOURNAL_FREE
;
557 // up_write(&journal->j_trans_barrier);
564 static void ocfs2_clear_journal_error(struct super_block
*sb
,
570 olderr
= journal_errno(journal
);
572 mlog(ML_ERROR
, "File system error %d recorded in "
573 "journal %u.\n", olderr
, slot
);
574 mlog(ML_ERROR
, "File system on device %s needs checking.\n",
577 journal_ack_err(journal
);
578 journal_clear_err(journal
);
582 int ocfs2_journal_load(struct ocfs2_journal
*journal
, int local
)
585 struct ocfs2_super
*osb
;
592 osb
= journal
->j_osb
;
594 status
= journal_load(journal
->j_journal
);
596 mlog(ML_ERROR
, "Failed to load journal!\n");
600 ocfs2_clear_journal_error(osb
->sb
, journal
->j_journal
, osb
->slot_num
);
602 status
= ocfs2_journal_toggle_dirty(osb
, 1);
608 /* Launch the commit thread */
610 osb
->commit_task
= kthread_run(ocfs2_commit_thread
, osb
,
612 if (IS_ERR(osb
->commit_task
)) {
613 status
= PTR_ERR(osb
->commit_task
);
614 osb
->commit_task
= NULL
;
615 mlog(ML_ERROR
, "unable to launch ocfs2commit thread, "
620 osb
->commit_task
= NULL
;
628 /* 'full' flag tells us whether we clear out all blocks or if we just
629 * mark the journal clean */
630 int ocfs2_journal_wipe(struct ocfs2_journal
*journal
, int full
)
638 status
= journal_wipe(journal
->j_journal
, full
);
644 status
= ocfs2_journal_toggle_dirty(journal
->j_osb
, 0);
654 * JBD Might read a cached version of another nodes journal file. We
655 * don't want this as this file changes often and we get no
656 * notification on those changes. The only way to be sure that we've
657 * got the most up to date version of those blocks then is to force
658 * read them off disk. Just searching through the buffer cache won't
659 * work as there may be pages backing this file which are still marked
660 * up to date. We know things can't change on this file underneath us
661 * as we have the lock by now :)
663 static int ocfs2_force_read_journal(struct inode
*inode
)
667 u64 v_blkno
, p_blkno
, p_blocks
, num_blocks
;
668 #define CONCURRENT_JOURNAL_FILL 32ULL
669 struct buffer_head
*bhs
[CONCURRENT_JOURNAL_FILL
];
673 memset(bhs
, 0, sizeof(struct buffer_head
*) * CONCURRENT_JOURNAL_FILL
);
675 num_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, inode
->i_size
);
677 while (v_blkno
< num_blocks
) {
678 status
= ocfs2_extent_map_get_blocks(inode
, v_blkno
,
679 &p_blkno
, &p_blocks
, NULL
);
685 if (p_blocks
> CONCURRENT_JOURNAL_FILL
)
686 p_blocks
= CONCURRENT_JOURNAL_FILL
;
688 /* We are reading journal data which should not
689 * be put in the uptodate cache */
690 status
= ocfs2_read_blocks(OCFS2_SB(inode
->i_sb
),
691 p_blkno
, p_blocks
, bhs
, 0,
698 for(i
= 0; i
< p_blocks
; i
++) {
707 for(i
= 0; i
< CONCURRENT_JOURNAL_FILL
; i
++)
714 struct ocfs2_la_recovery_item
{
715 struct list_head lri_list
;
717 struct ocfs2_dinode
*lri_la_dinode
;
718 struct ocfs2_dinode
*lri_tl_dinode
;
721 /* Does the second half of the recovery process. By this point, the
722 * node is marked clean and can actually be considered recovered,
723 * hence it's no longer in the recovery map, but there's still some
724 * cleanup we can do which shouldn't happen within the recovery thread
725 * as locking in that context becomes very difficult if we are to take
726 * recovering nodes into account.
728 * NOTE: This function can and will sleep on recovery of other nodes
729 * during cluster locking, just like any other ocfs2 process.
731 void ocfs2_complete_recovery(struct work_struct
*work
)
734 struct ocfs2_journal
*journal
=
735 container_of(work
, struct ocfs2_journal
, j_recovery_work
);
736 struct ocfs2_super
*osb
= journal
->j_osb
;
737 struct ocfs2_dinode
*la_dinode
, *tl_dinode
;
738 struct ocfs2_la_recovery_item
*item
, *n
;
739 LIST_HEAD(tmp_la_list
);
743 mlog(0, "completing recovery from keventd\n");
745 spin_lock(&journal
->j_lock
);
746 list_splice_init(&journal
->j_la_cleanups
, &tmp_la_list
);
747 spin_unlock(&journal
->j_lock
);
749 list_for_each_entry_safe(item
, n
, &tmp_la_list
, lri_list
) {
750 list_del_init(&item
->lri_list
);
752 mlog(0, "Complete recovery for slot %d\n", item
->lri_slot
);
754 la_dinode
= item
->lri_la_dinode
;
756 mlog(0, "Clean up local alloc %llu\n",
757 (unsigned long long)le64_to_cpu(la_dinode
->i_blkno
));
759 ret
= ocfs2_complete_local_alloc_recovery(osb
,
767 tl_dinode
= item
->lri_tl_dinode
;
769 mlog(0, "Clean up truncate log %llu\n",
770 (unsigned long long)le64_to_cpu(tl_dinode
->i_blkno
));
772 ret
= ocfs2_complete_truncate_log_recovery(osb
,
780 ret
= ocfs2_recover_orphans(osb
, item
->lri_slot
);
787 mlog(0, "Recovery completion\n");
791 /* NOTE: This function always eats your references to la_dinode and
792 * tl_dinode, either manually on error, or by passing them to
793 * ocfs2_complete_recovery */
794 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
796 struct ocfs2_dinode
*la_dinode
,
797 struct ocfs2_dinode
*tl_dinode
)
799 struct ocfs2_la_recovery_item
*item
;
801 item
= kmalloc(sizeof(struct ocfs2_la_recovery_item
), GFP_NOFS
);
803 /* Though we wish to avoid it, we are in fact safe in
804 * skipping local alloc cleanup as fsck.ocfs2 is more
805 * than capable of reclaiming unused space. */
816 INIT_LIST_HEAD(&item
->lri_list
);
817 item
->lri_la_dinode
= la_dinode
;
818 item
->lri_slot
= slot_num
;
819 item
->lri_tl_dinode
= tl_dinode
;
821 spin_lock(&journal
->j_lock
);
822 list_add_tail(&item
->lri_list
, &journal
->j_la_cleanups
);
823 queue_work(ocfs2_wq
, &journal
->j_recovery_work
);
824 spin_unlock(&journal
->j_lock
);
827 /* Called by the mount code to queue recovery the last part of
828 * recovery for it's own slot. */
829 void ocfs2_complete_mount_recovery(struct ocfs2_super
*osb
)
831 struct ocfs2_journal
*journal
= osb
->journal
;
834 /* No need to queue up our truncate_log as regular
835 * cleanup will catch that. */
836 ocfs2_queue_recovery_completion(journal
,
838 osb
->local_alloc_copy
,
840 ocfs2_schedule_truncate_log_flush(osb
, 0);
842 osb
->local_alloc_copy
= NULL
;
847 static int __ocfs2_recovery_thread(void *arg
)
849 int status
, node_num
;
850 struct ocfs2_super
*osb
= arg
;
854 status
= ocfs2_wait_on_mount(osb
);
860 status
= ocfs2_super_lock(osb
, 1);
866 while(!ocfs2_node_map_is_empty(osb
, &osb
->recovery_map
)) {
867 node_num
= ocfs2_node_map_first_set_bit(osb
,
869 if (node_num
== O2NM_INVALID_NODE_NUM
) {
870 mlog(0, "Out of nodes to recover.\n");
874 status
= ocfs2_recover_node(osb
, node_num
);
877 "Error %d recovering node %d on device (%u,%u)!\n",
879 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
880 mlog(ML_ERROR
, "Volume requires unmount.\n");
884 ocfs2_recovery_map_clear(osb
, node_num
);
886 ocfs2_super_unlock(osb
, 1);
888 /* We always run recovery on our own orphan dir - the dead
889 * node(s) may have disallowd a previos inode delete. Re-processing
890 * is therefore required. */
891 ocfs2_queue_recovery_completion(osb
->journal
, osb
->slot_num
, NULL
,
895 mutex_lock(&osb
->recovery_lock
);
897 !ocfs2_node_map_is_empty(osb
, &osb
->recovery_map
)) {
898 mutex_unlock(&osb
->recovery_lock
);
902 osb
->recovery_thread_task
= NULL
;
903 mb(); /* sync with ocfs2_recovery_thread_running */
904 wake_up(&osb
->recovery_event
);
906 mutex_unlock(&osb
->recovery_lock
);
909 /* no one is callint kthread_stop() for us so the kthread() api
910 * requires that we call do_exit(). And it isn't exported, but
911 * complete_and_exit() seems to be a minimal wrapper around it. */
912 complete_and_exit(NULL
, status
);
916 void ocfs2_recovery_thread(struct ocfs2_super
*osb
, int node_num
)
918 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
919 node_num
, osb
->node_num
);
921 mutex_lock(&osb
->recovery_lock
);
922 if (osb
->disable_recovery
)
925 /* People waiting on recovery will wait on
926 * the recovery map to empty. */
927 if (!ocfs2_recovery_map_set(osb
, node_num
))
928 mlog(0, "node %d already be in recovery.\n", node_num
);
930 mlog(0, "starting recovery thread...\n");
932 if (osb
->recovery_thread_task
)
935 osb
->recovery_thread_task
= kthread_run(__ocfs2_recovery_thread
, osb
,
937 if (IS_ERR(osb
->recovery_thread_task
)) {
938 mlog_errno((int)PTR_ERR(osb
->recovery_thread_task
));
939 osb
->recovery_thread_task
= NULL
;
943 mutex_unlock(&osb
->recovery_lock
);
944 wake_up(&osb
->recovery_event
);
949 /* Does the actual journal replay and marks the journal inode as
950 * clean. Will only replay if the journal inode is marked dirty. */
951 static int ocfs2_replay_journal(struct ocfs2_super
*osb
,
958 struct inode
*inode
= NULL
;
959 struct ocfs2_dinode
*fe
;
960 journal_t
*journal
= NULL
;
961 struct buffer_head
*bh
= NULL
;
963 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
970 if (is_bad_inode(inode
)) {
977 SET_INODE_JOURNAL(inode
);
979 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
981 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status
);
982 if (status
!= -ERESTARTSYS
)
983 mlog(ML_ERROR
, "Could not lock journal!\n");
988 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
990 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
992 if (!(flags
& OCFS2_JOURNAL_DIRTY_FL
)) {
993 mlog(0, "No recovery required for node %d\n", node_num
);
997 mlog(ML_NOTICE
, "Recovering node %d from slot %d on device (%u,%u)\n",
999 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1001 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
);
1003 status
= ocfs2_force_read_journal(inode
);
1009 mlog(0, "calling journal_init_inode\n");
1010 journal
= journal_init_inode(inode
);
1011 if (journal
== NULL
) {
1012 mlog(ML_ERROR
, "Linux journal layer error\n");
1017 status
= journal_load(journal
);
1022 journal_destroy(journal
);
1026 ocfs2_clear_journal_error(osb
->sb
, journal
, slot_num
);
1028 /* wipe the journal */
1029 mlog(0, "flushing the journal.\n");
1030 journal_lock_updates(journal
);
1031 status
= journal_flush(journal
);
1032 journal_unlock_updates(journal
);
1036 /* This will mark the node clean */
1037 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1038 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
1039 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
1041 status
= ocfs2_write_block(osb
, bh
, inode
);
1048 journal_destroy(journal
);
1051 /* drop the lock on this nodes journal */
1053 ocfs2_inode_unlock(inode
, 1);
1066 * Do the most important parts of node recovery:
1067 * - Replay it's journal
1068 * - Stamp a clean local allocator file
1069 * - Stamp a clean truncate log
1070 * - Mark the node clean
1072 * If this function completes without error, a node in OCFS2 can be
1073 * said to have been safely recovered. As a result, failure during the
1074 * second part of a nodes recovery process (local alloc recovery) is
1075 * far less concerning.
1077 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
1082 struct ocfs2_slot_info
*si
= osb
->slot_info
;
1083 struct ocfs2_dinode
*la_copy
= NULL
;
1084 struct ocfs2_dinode
*tl_copy
= NULL
;
1086 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1087 node_num
, osb
->node_num
);
1089 mlog(0, "checking node %d\n", node_num
);
1091 /* Should not ever be called to recover ourselves -- in that
1092 * case we should've called ocfs2_journal_load instead. */
1093 BUG_ON(osb
->node_num
== node_num
);
1095 slot_num
= ocfs2_node_num_to_slot(si
, node_num
);
1096 if (slot_num
== OCFS2_INVALID_SLOT
) {
1098 mlog(0, "no slot for this node, so no recovery required.\n");
1102 mlog(0, "node %d was using slot %d\n", node_num
, slot_num
);
1104 status
= ocfs2_replay_journal(osb
, node_num
, slot_num
);
1110 /* Stamp a clean local alloc file AFTER recovering the journal... */
1111 status
= ocfs2_begin_local_alloc_recovery(osb
, slot_num
, &la_copy
);
1117 /* An error from begin_truncate_log_recovery is not
1118 * serious enough to warrant halting the rest of
1120 status
= ocfs2_begin_truncate_log_recovery(osb
, slot_num
, &tl_copy
);
1124 /* Likewise, this would be a strange but ultimately not so
1125 * harmful place to get an error... */
1126 ocfs2_clear_slot(si
, slot_num
);
1127 status
= ocfs2_update_disk_slots(osb
, si
);
1131 /* This will kfree the memory pointed to by la_copy and tl_copy */
1132 ocfs2_queue_recovery_completion(osb
->journal
, slot_num
, la_copy
,
1142 /* Test node liveness by trylocking his journal. If we get the lock,
1143 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1144 * still alive (we couldn't get the lock) and < 0 on error. */
1145 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
1149 struct inode
*inode
= NULL
;
1151 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1153 if (inode
== NULL
) {
1154 mlog(ML_ERROR
, "access error\n");
1158 if (is_bad_inode(inode
)) {
1159 mlog(ML_ERROR
, "access error (bad inode)\n");
1165 SET_INODE_JOURNAL(inode
);
1167 flags
= OCFS2_META_LOCK_RECOVERY
| OCFS2_META_LOCK_NOQUEUE
;
1168 status
= ocfs2_inode_lock_full(inode
, NULL
, 1, flags
);
1170 if (status
!= -EAGAIN
)
1175 ocfs2_inode_unlock(inode
, 1);
1183 /* Call this underneath ocfs2_super_lock. It also assumes that the
1184 * slot info struct has been updated from disk. */
1185 int ocfs2_mark_dead_nodes(struct ocfs2_super
*osb
)
1187 int status
, i
, node_num
;
1188 struct ocfs2_slot_info
*si
= osb
->slot_info
;
1190 /* This is called with the super block cluster lock, so we
1191 * know that the slot map can't change underneath us. */
1193 spin_lock(&si
->si_lock
);
1194 for(i
= 0; i
< si
->si_num_slots
; i
++) {
1195 if (i
== osb
->slot_num
)
1197 if (ocfs2_is_empty_slot(si
, i
))
1200 node_num
= si
->si_global_node_nums
[i
];
1201 if (ocfs2_node_map_test_bit(osb
, &osb
->recovery_map
, node_num
))
1203 spin_unlock(&si
->si_lock
);
1205 /* Ok, we have a slot occupied by another node which
1206 * is not in the recovery map. We trylock his journal
1207 * file here to test if he's alive. */
1208 status
= ocfs2_trylock_journal(osb
, i
);
1210 /* Since we're called from mount, we know that
1211 * the recovery thread can't race us on
1212 * setting / checking the recovery bits. */
1213 ocfs2_recovery_thread(osb
, node_num
);
1214 } else if ((status
< 0) && (status
!= -EAGAIN
)) {
1219 spin_lock(&si
->si_lock
);
1221 spin_unlock(&si
->si_lock
);
1229 struct ocfs2_orphan_filldir_priv
{
1231 struct ocfs2_super
*osb
;
1234 static int ocfs2_orphan_filldir(void *priv
, const char *name
, int name_len
,
1235 loff_t pos
, u64 ino
, unsigned type
)
1237 struct ocfs2_orphan_filldir_priv
*p
= priv
;
1240 if (name_len
== 1 && !strncmp(".", name
, 1))
1242 if (name_len
== 2 && !strncmp("..", name
, 2))
1245 /* Skip bad inodes so that recovery can continue */
1246 iter
= ocfs2_iget(p
->osb
, ino
,
1247 OCFS2_FI_FLAG_ORPHAN_RECOVERY
, 0);
1251 mlog(0, "queue orphan %llu\n",
1252 (unsigned long long)OCFS2_I(iter
)->ip_blkno
);
1253 /* No locking is required for the next_orphan queue as there
1254 * is only ever a single process doing orphan recovery. */
1255 OCFS2_I(iter
)->ip_next_orphan
= p
->head
;
1261 static int ocfs2_queue_orphans(struct ocfs2_super
*osb
,
1263 struct inode
**head
)
1266 struct inode
*orphan_dir_inode
= NULL
;
1267 struct ocfs2_orphan_filldir_priv priv
;
1273 orphan_dir_inode
= ocfs2_get_system_file_inode(osb
,
1274 ORPHAN_DIR_SYSTEM_INODE
,
1276 if (!orphan_dir_inode
) {
1282 mutex_lock(&orphan_dir_inode
->i_mutex
);
1283 status
= ocfs2_inode_lock(orphan_dir_inode
, NULL
, 0);
1289 status
= ocfs2_dir_foreach(orphan_dir_inode
, &pos
, &priv
,
1290 ocfs2_orphan_filldir
);
1299 ocfs2_inode_unlock(orphan_dir_inode
, 0);
1301 mutex_unlock(&orphan_dir_inode
->i_mutex
);
1302 iput(orphan_dir_inode
);
1306 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super
*osb
,
1311 spin_lock(&osb
->osb_lock
);
1312 ret
= !osb
->osb_orphan_wipes
[slot
];
1313 spin_unlock(&osb
->osb_lock
);
1317 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super
*osb
,
1320 spin_lock(&osb
->osb_lock
);
1321 /* Mark ourselves such that new processes in delete_inode()
1322 * know to quit early. */
1323 ocfs2_node_map_set_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
1324 while (osb
->osb_orphan_wipes
[slot
]) {
1325 /* If any processes are already in the middle of an
1326 * orphan wipe on this dir, then we need to wait for
1328 spin_unlock(&osb
->osb_lock
);
1329 wait_event_interruptible(osb
->osb_wipe_event
,
1330 ocfs2_orphan_recovery_can_continue(osb
, slot
));
1331 spin_lock(&osb
->osb_lock
);
1333 spin_unlock(&osb
->osb_lock
);
1336 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super
*osb
,
1339 ocfs2_node_map_clear_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
1343 * Orphan recovery. Each mounted node has it's own orphan dir which we
1344 * must run during recovery. Our strategy here is to build a list of
1345 * the inodes in the orphan dir and iget/iput them. The VFS does
1346 * (most) of the rest of the work.
1348 * Orphan recovery can happen at any time, not just mount so we have a
1349 * couple of extra considerations.
1351 * - We grab as many inodes as we can under the orphan dir lock -
1352 * doing iget() outside the orphan dir risks getting a reference on
1354 * - We must be sure not to deadlock with other processes on the
1355 * system wanting to run delete_inode(). This can happen when they go
1356 * to lock the orphan dir and the orphan recovery process attempts to
1357 * iget() inside the orphan dir lock. This can be avoided by
1358 * advertising our state to ocfs2_delete_inode().
1360 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
1364 struct inode
*inode
= NULL
;
1366 struct ocfs2_inode_info
*oi
;
1368 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot
);
1370 ocfs2_mark_recovering_orphan_dir(osb
, slot
);
1371 ret
= ocfs2_queue_orphans(osb
, slot
, &inode
);
1372 ocfs2_clear_recovering_orphan_dir(osb
, slot
);
1374 /* Error here should be noted, but we want to continue with as
1375 * many queued inodes as we've got. */
1380 oi
= OCFS2_I(inode
);
1381 mlog(0, "iput orphan %llu\n", (unsigned long long)oi
->ip_blkno
);
1383 iter
= oi
->ip_next_orphan
;
1385 spin_lock(&oi
->ip_lock
);
1386 /* The remote delete code may have set these on the
1387 * assumption that the other node would wipe them
1388 * successfully. If they are still in the node's
1389 * orphan dir, we need to reset that state. */
1390 oi
->ip_flags
&= ~(OCFS2_INODE_DELETED
|OCFS2_INODE_SKIP_DELETE
);
1392 /* Set the proper information to get us going into
1393 * ocfs2_delete_inode. */
1394 oi
->ip_flags
|= OCFS2_INODE_MAYBE_ORPHANED
;
1395 spin_unlock(&oi
->ip_lock
);
1405 static int ocfs2_wait_on_mount(struct ocfs2_super
*osb
)
1407 /* This check is good because ocfs2 will wait on our recovery
1408 * thread before changing it to something other than MOUNTED
1410 wait_event(osb
->osb_mount_event
,
1411 atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED
||
1412 atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
);
1414 /* If there's an error on mount, then we may never get to the
1415 * MOUNTED flag, but this is set right before
1416 * dismount_volume() so we can trust it. */
1417 if (atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
) {
1418 mlog(0, "mount error, exiting!\n");
1425 static int ocfs2_commit_thread(void *arg
)
1428 struct ocfs2_super
*osb
= arg
;
1429 struct ocfs2_journal
*journal
= osb
->journal
;
1431 /* we can trust j_num_trans here because _should_stop() is only set in
1432 * shutdown and nobody other than ourselves should be able to start
1433 * transactions. committing on shutdown might take a few iterations
1434 * as final transactions put deleted inodes on the list */
1435 while (!(kthread_should_stop() &&
1436 atomic_read(&journal
->j_num_trans
) == 0)) {
1438 wait_event_interruptible(osb
->checkpoint_event
,
1439 atomic_read(&journal
->j_num_trans
)
1440 || kthread_should_stop());
1442 status
= ocfs2_commit_cache(osb
);
1446 if (kthread_should_stop() && atomic_read(&journal
->j_num_trans
)){
1448 "commit_thread: %u transactions pending on "
1450 atomic_read(&journal
->j_num_trans
));
1457 /* Look for a dirty journal without taking any cluster locks. Used for
1458 * hard readonly access to determine whether the file system journals
1459 * require recovery. */
1460 int ocfs2_check_journals_nolocks(struct ocfs2_super
*osb
)
1464 struct buffer_head
*di_bh
;
1465 struct ocfs2_dinode
*di
;
1466 struct inode
*journal
= NULL
;
1468 for(slot
= 0; slot
< osb
->max_slots
; slot
++) {
1469 journal
= ocfs2_get_system_file_inode(osb
,
1470 JOURNAL_SYSTEM_INODE
,
1472 if (!journal
|| is_bad_inode(journal
)) {
1479 ret
= ocfs2_read_block(osb
, OCFS2_I(journal
)->ip_blkno
, &di_bh
,
1486 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
1488 if (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
1489 OCFS2_JOURNAL_DIRTY_FL
)