Merge branch 'linus' into percpu-cpumask-x86-for-linus-2
[linux-2.6/mini2440.git] / kernel / timer.c
blob9b77fc9a9ac8286074b1784771dac7c0eb2a08e2
1 /*
2 * linux/kernel/timer.c
4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43 #include <asm/div64.h>
44 #include <asm/timex.h>
45 #include <asm/io.h>
47 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
49 EXPORT_SYMBOL(jiffies_64);
52 * per-CPU timer vector definitions:
54 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
55 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
56 #define TVN_SIZE (1 << TVN_BITS)
57 #define TVR_SIZE (1 << TVR_BITS)
58 #define TVN_MASK (TVN_SIZE - 1)
59 #define TVR_MASK (TVR_SIZE - 1)
61 struct tvec {
62 struct list_head vec[TVN_SIZE];
65 struct tvec_root {
66 struct list_head vec[TVR_SIZE];
69 struct tvec_base {
70 spinlock_t lock;
71 struct timer_list *running_timer;
72 unsigned long timer_jiffies;
73 struct tvec_root tv1;
74 struct tvec tv2;
75 struct tvec tv3;
76 struct tvec tv4;
77 struct tvec tv5;
78 } ____cacheline_aligned;
80 struct tvec_base boot_tvec_bases;
81 EXPORT_SYMBOL(boot_tvec_bases);
82 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
85 * Note that all tvec_bases are 2 byte aligned and lower bit of
86 * base in timer_list is guaranteed to be zero. Use the LSB for
87 * the new flag to indicate whether the timer is deferrable
89 #define TBASE_DEFERRABLE_FLAG (0x1)
91 /* Functions below help us manage 'deferrable' flag */
92 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
97 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
102 static inline void timer_set_deferrable(struct timer_list *timer)
104 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
105 TBASE_DEFERRABLE_FLAG));
108 static inline void
109 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
111 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
112 tbase_get_deferrable(timer->base));
115 static unsigned long round_jiffies_common(unsigned long j, int cpu,
116 bool force_up)
118 int rem;
119 unsigned long original = j;
122 * We don't want all cpus firing their timers at once hitting the
123 * same lock or cachelines, so we skew each extra cpu with an extra
124 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
125 * already did this.
126 * The skew is done by adding 3*cpunr, then round, then subtract this
127 * extra offset again.
129 j += cpu * 3;
131 rem = j % HZ;
134 * If the target jiffie is just after a whole second (which can happen
135 * due to delays of the timer irq, long irq off times etc etc) then
136 * we should round down to the whole second, not up. Use 1/4th second
137 * as cutoff for this rounding as an extreme upper bound for this.
138 * But never round down if @force_up is set.
140 if (rem < HZ/4 && !force_up) /* round down */
141 j = j - rem;
142 else /* round up */
143 j = j - rem + HZ;
145 /* now that we have rounded, subtract the extra skew again */
146 j -= cpu * 3;
148 if (j <= jiffies) /* rounding ate our timeout entirely; */
149 return original;
150 return j;
154 * __round_jiffies - function to round jiffies to a full second
155 * @j: the time in (absolute) jiffies that should be rounded
156 * @cpu: the processor number on which the timeout will happen
158 * __round_jiffies() rounds an absolute time in the future (in jiffies)
159 * up or down to (approximately) full seconds. This is useful for timers
160 * for which the exact time they fire does not matter too much, as long as
161 * they fire approximately every X seconds.
163 * By rounding these timers to whole seconds, all such timers will fire
164 * at the same time, rather than at various times spread out. The goal
165 * of this is to have the CPU wake up less, which saves power.
167 * The exact rounding is skewed for each processor to avoid all
168 * processors firing at the exact same time, which could lead
169 * to lock contention or spurious cache line bouncing.
171 * The return value is the rounded version of the @j parameter.
173 unsigned long __round_jiffies(unsigned long j, int cpu)
175 return round_jiffies_common(j, cpu, false);
177 EXPORT_SYMBOL_GPL(__round_jiffies);
180 * __round_jiffies_relative - function to round jiffies to a full second
181 * @j: the time in (relative) jiffies that should be rounded
182 * @cpu: the processor number on which the timeout will happen
184 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
185 * up or down to (approximately) full seconds. This is useful for timers
186 * for which the exact time they fire does not matter too much, as long as
187 * they fire approximately every X seconds.
189 * By rounding these timers to whole seconds, all such timers will fire
190 * at the same time, rather than at various times spread out. The goal
191 * of this is to have the CPU wake up less, which saves power.
193 * The exact rounding is skewed for each processor to avoid all
194 * processors firing at the exact same time, which could lead
195 * to lock contention or spurious cache line bouncing.
197 * The return value is the rounded version of the @j parameter.
199 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
201 unsigned long j0 = jiffies;
203 /* Use j0 because jiffies might change while we run */
204 return round_jiffies_common(j + j0, cpu, false) - j0;
206 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
209 * round_jiffies - function to round jiffies to a full second
210 * @j: the time in (absolute) jiffies that should be rounded
212 * round_jiffies() rounds an absolute time in the future (in jiffies)
213 * up or down to (approximately) full seconds. This is useful for timers
214 * for which the exact time they fire does not matter too much, as long as
215 * they fire approximately every X seconds.
217 * By rounding these timers to whole seconds, all such timers will fire
218 * at the same time, rather than at various times spread out. The goal
219 * of this is to have the CPU wake up less, which saves power.
221 * The return value is the rounded version of the @j parameter.
223 unsigned long round_jiffies(unsigned long j)
225 return round_jiffies_common(j, raw_smp_processor_id(), false);
227 EXPORT_SYMBOL_GPL(round_jiffies);
230 * round_jiffies_relative - function to round jiffies to a full second
231 * @j: the time in (relative) jiffies that should be rounded
233 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
234 * up or down to (approximately) full seconds. This is useful for timers
235 * for which the exact time they fire does not matter too much, as long as
236 * they fire approximately every X seconds.
238 * By rounding these timers to whole seconds, all such timers will fire
239 * at the same time, rather than at various times spread out. The goal
240 * of this is to have the CPU wake up less, which saves power.
242 * The return value is the rounded version of the @j parameter.
244 unsigned long round_jiffies_relative(unsigned long j)
246 return __round_jiffies_relative(j, raw_smp_processor_id());
248 EXPORT_SYMBOL_GPL(round_jiffies_relative);
251 * __round_jiffies_up - function to round jiffies up to a full second
252 * @j: the time in (absolute) jiffies that should be rounded
253 * @cpu: the processor number on which the timeout will happen
255 * This is the same as __round_jiffies() except that it will never
256 * round down. This is useful for timeouts for which the exact time
257 * of firing does not matter too much, as long as they don't fire too
258 * early.
260 unsigned long __round_jiffies_up(unsigned long j, int cpu)
262 return round_jiffies_common(j, cpu, true);
264 EXPORT_SYMBOL_GPL(__round_jiffies_up);
267 * __round_jiffies_up_relative - function to round jiffies up to a full second
268 * @j: the time in (relative) jiffies that should be rounded
269 * @cpu: the processor number on which the timeout will happen
271 * This is the same as __round_jiffies_relative() except that it will never
272 * round down. This is useful for timeouts for which the exact time
273 * of firing does not matter too much, as long as they don't fire too
274 * early.
276 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
278 unsigned long j0 = jiffies;
280 /* Use j0 because jiffies might change while we run */
281 return round_jiffies_common(j + j0, cpu, true) - j0;
283 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
286 * round_jiffies_up - function to round jiffies up to a full second
287 * @j: the time in (absolute) jiffies that should be rounded
289 * This is the same as round_jiffies() except that it will never
290 * round down. This is useful for timeouts for which the exact time
291 * of firing does not matter too much, as long as they don't fire too
292 * early.
294 unsigned long round_jiffies_up(unsigned long j)
296 return round_jiffies_common(j, raw_smp_processor_id(), true);
298 EXPORT_SYMBOL_GPL(round_jiffies_up);
301 * round_jiffies_up_relative - function to round jiffies up to a full second
302 * @j: the time in (relative) jiffies that should be rounded
304 * This is the same as round_jiffies_relative() except that it will never
305 * round down. This is useful for timeouts for which the exact time
306 * of firing does not matter too much, as long as they don't fire too
307 * early.
309 unsigned long round_jiffies_up_relative(unsigned long j)
311 return __round_jiffies_up_relative(j, raw_smp_processor_id());
313 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
316 static inline void set_running_timer(struct tvec_base *base,
317 struct timer_list *timer)
319 #ifdef CONFIG_SMP
320 base->running_timer = timer;
321 #endif
324 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
326 unsigned long expires = timer->expires;
327 unsigned long idx = expires - base->timer_jiffies;
328 struct list_head *vec;
330 if (idx < TVR_SIZE) {
331 int i = expires & TVR_MASK;
332 vec = base->tv1.vec + i;
333 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
334 int i = (expires >> TVR_BITS) & TVN_MASK;
335 vec = base->tv2.vec + i;
336 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
337 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
338 vec = base->tv3.vec + i;
339 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
340 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
341 vec = base->tv4.vec + i;
342 } else if ((signed long) idx < 0) {
344 * Can happen if you add a timer with expires == jiffies,
345 * or you set a timer to go off in the past
347 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
348 } else {
349 int i;
350 /* If the timeout is larger than 0xffffffff on 64-bit
351 * architectures then we use the maximum timeout:
353 if (idx > 0xffffffffUL) {
354 idx = 0xffffffffUL;
355 expires = idx + base->timer_jiffies;
357 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
358 vec = base->tv5.vec + i;
361 * Timers are FIFO:
363 list_add_tail(&timer->entry, vec);
366 #ifdef CONFIG_TIMER_STATS
367 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
369 if (timer->start_site)
370 return;
372 timer->start_site = addr;
373 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
374 timer->start_pid = current->pid;
377 static void timer_stats_account_timer(struct timer_list *timer)
379 unsigned int flag = 0;
381 if (unlikely(tbase_get_deferrable(timer->base)))
382 flag |= TIMER_STATS_FLAG_DEFERRABLE;
384 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
385 timer->function, timer->start_comm, flag);
388 #else
389 static void timer_stats_account_timer(struct timer_list *timer) {}
390 #endif
392 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
394 static struct debug_obj_descr timer_debug_descr;
397 * fixup_init is called when:
398 * - an active object is initialized
400 static int timer_fixup_init(void *addr, enum debug_obj_state state)
402 struct timer_list *timer = addr;
404 switch (state) {
405 case ODEBUG_STATE_ACTIVE:
406 del_timer_sync(timer);
407 debug_object_init(timer, &timer_debug_descr);
408 return 1;
409 default:
410 return 0;
415 * fixup_activate is called when:
416 * - an active object is activated
417 * - an unknown object is activated (might be a statically initialized object)
419 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
421 struct timer_list *timer = addr;
423 switch (state) {
425 case ODEBUG_STATE_NOTAVAILABLE:
427 * This is not really a fixup. The timer was
428 * statically initialized. We just make sure that it
429 * is tracked in the object tracker.
431 if (timer->entry.next == NULL &&
432 timer->entry.prev == TIMER_ENTRY_STATIC) {
433 debug_object_init(timer, &timer_debug_descr);
434 debug_object_activate(timer, &timer_debug_descr);
435 return 0;
436 } else {
437 WARN_ON_ONCE(1);
439 return 0;
441 case ODEBUG_STATE_ACTIVE:
442 WARN_ON(1);
444 default:
445 return 0;
450 * fixup_free is called when:
451 * - an active object is freed
453 static int timer_fixup_free(void *addr, enum debug_obj_state state)
455 struct timer_list *timer = addr;
457 switch (state) {
458 case ODEBUG_STATE_ACTIVE:
459 del_timer_sync(timer);
460 debug_object_free(timer, &timer_debug_descr);
461 return 1;
462 default:
463 return 0;
467 static struct debug_obj_descr timer_debug_descr = {
468 .name = "timer_list",
469 .fixup_init = timer_fixup_init,
470 .fixup_activate = timer_fixup_activate,
471 .fixup_free = timer_fixup_free,
474 static inline void debug_timer_init(struct timer_list *timer)
476 debug_object_init(timer, &timer_debug_descr);
479 static inline void debug_timer_activate(struct timer_list *timer)
481 debug_object_activate(timer, &timer_debug_descr);
484 static inline void debug_timer_deactivate(struct timer_list *timer)
486 debug_object_deactivate(timer, &timer_debug_descr);
489 static inline void debug_timer_free(struct timer_list *timer)
491 debug_object_free(timer, &timer_debug_descr);
494 static void __init_timer(struct timer_list *timer);
496 void init_timer_on_stack(struct timer_list *timer)
498 debug_object_init_on_stack(timer, &timer_debug_descr);
499 __init_timer(timer);
501 EXPORT_SYMBOL_GPL(init_timer_on_stack);
503 void destroy_timer_on_stack(struct timer_list *timer)
505 debug_object_free(timer, &timer_debug_descr);
507 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
509 #else
510 static inline void debug_timer_init(struct timer_list *timer) { }
511 static inline void debug_timer_activate(struct timer_list *timer) { }
512 static inline void debug_timer_deactivate(struct timer_list *timer) { }
513 #endif
515 static void __init_timer(struct timer_list *timer)
517 timer->entry.next = NULL;
518 timer->base = __raw_get_cpu_var(tvec_bases);
519 #ifdef CONFIG_TIMER_STATS
520 timer->start_site = NULL;
521 timer->start_pid = -1;
522 memset(timer->start_comm, 0, TASK_COMM_LEN);
523 #endif
527 * init_timer - initialize a timer.
528 * @timer: the timer to be initialized
530 * init_timer() must be done to a timer prior calling *any* of the
531 * other timer functions.
533 void init_timer(struct timer_list *timer)
535 debug_timer_init(timer);
536 __init_timer(timer);
538 EXPORT_SYMBOL(init_timer);
540 void init_timer_deferrable(struct timer_list *timer)
542 init_timer(timer);
543 timer_set_deferrable(timer);
545 EXPORT_SYMBOL(init_timer_deferrable);
547 static inline void detach_timer(struct timer_list *timer,
548 int clear_pending)
550 struct list_head *entry = &timer->entry;
552 debug_timer_deactivate(timer);
554 __list_del(entry->prev, entry->next);
555 if (clear_pending)
556 entry->next = NULL;
557 entry->prev = LIST_POISON2;
561 * We are using hashed locking: holding per_cpu(tvec_bases).lock
562 * means that all timers which are tied to this base via timer->base are
563 * locked, and the base itself is locked too.
565 * So __run_timers/migrate_timers can safely modify all timers which could
566 * be found on ->tvX lists.
568 * When the timer's base is locked, and the timer removed from list, it is
569 * possible to set timer->base = NULL and drop the lock: the timer remains
570 * locked.
572 static struct tvec_base *lock_timer_base(struct timer_list *timer,
573 unsigned long *flags)
574 __acquires(timer->base->lock)
576 struct tvec_base *base;
578 for (;;) {
579 struct tvec_base *prelock_base = timer->base;
580 base = tbase_get_base(prelock_base);
581 if (likely(base != NULL)) {
582 spin_lock_irqsave(&base->lock, *flags);
583 if (likely(prelock_base == timer->base))
584 return base;
585 /* The timer has migrated to another CPU */
586 spin_unlock_irqrestore(&base->lock, *flags);
588 cpu_relax();
592 static inline int
593 __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
595 struct tvec_base *base, *new_base;
596 unsigned long flags;
597 int ret;
599 ret = 0;
601 timer_stats_timer_set_start_info(timer);
602 BUG_ON(!timer->function);
604 base = lock_timer_base(timer, &flags);
606 if (timer_pending(timer)) {
607 detach_timer(timer, 0);
608 ret = 1;
609 } else {
610 if (pending_only)
611 goto out_unlock;
614 debug_timer_activate(timer);
616 new_base = __get_cpu_var(tvec_bases);
618 if (base != new_base) {
620 * We are trying to schedule the timer on the local CPU.
621 * However we can't change timer's base while it is running,
622 * otherwise del_timer_sync() can't detect that the timer's
623 * handler yet has not finished. This also guarantees that
624 * the timer is serialized wrt itself.
626 if (likely(base->running_timer != timer)) {
627 /* See the comment in lock_timer_base() */
628 timer_set_base(timer, NULL);
629 spin_unlock(&base->lock);
630 base = new_base;
631 spin_lock(&base->lock);
632 timer_set_base(timer, base);
636 timer->expires = expires;
637 internal_add_timer(base, timer);
639 out_unlock:
640 spin_unlock_irqrestore(&base->lock, flags);
642 return ret;
646 * mod_timer_pending - modify a pending timer's timeout
647 * @timer: the pending timer to be modified
648 * @expires: new timeout in jiffies
650 * mod_timer_pending() is the same for pending timers as mod_timer(),
651 * but will not re-activate and modify already deleted timers.
653 * It is useful for unserialized use of timers.
655 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
657 return __mod_timer(timer, expires, true);
659 EXPORT_SYMBOL(mod_timer_pending);
662 * mod_timer - modify a timer's timeout
663 * @timer: the timer to be modified
664 * @expires: new timeout in jiffies
666 * mod_timer() is a more efficient way to update the expire field of an
667 * active timer (if the timer is inactive it will be activated)
669 * mod_timer(timer, expires) is equivalent to:
671 * del_timer(timer); timer->expires = expires; add_timer(timer);
673 * Note that if there are multiple unserialized concurrent users of the
674 * same timer, then mod_timer() is the only safe way to modify the timeout,
675 * since add_timer() cannot modify an already running timer.
677 * The function returns whether it has modified a pending timer or not.
678 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
679 * active timer returns 1.)
681 int mod_timer(struct timer_list *timer, unsigned long expires)
684 * This is a common optimization triggered by the
685 * networking code - if the timer is re-modified
686 * to be the same thing then just return:
688 if (timer->expires == expires && timer_pending(timer))
689 return 1;
691 return __mod_timer(timer, expires, false);
693 EXPORT_SYMBOL(mod_timer);
696 * add_timer - start a timer
697 * @timer: the timer to be added
699 * The kernel will do a ->function(->data) callback from the
700 * timer interrupt at the ->expires point in the future. The
701 * current time is 'jiffies'.
703 * The timer's ->expires, ->function (and if the handler uses it, ->data)
704 * fields must be set prior calling this function.
706 * Timers with an ->expires field in the past will be executed in the next
707 * timer tick.
709 void add_timer(struct timer_list *timer)
711 BUG_ON(timer_pending(timer));
712 mod_timer(timer, timer->expires);
714 EXPORT_SYMBOL(add_timer);
717 * add_timer_on - start a timer on a particular CPU
718 * @timer: the timer to be added
719 * @cpu: the CPU to start it on
721 * This is not very scalable on SMP. Double adds are not possible.
723 void add_timer_on(struct timer_list *timer, int cpu)
725 struct tvec_base *base = per_cpu(tvec_bases, cpu);
726 unsigned long flags;
728 timer_stats_timer_set_start_info(timer);
729 BUG_ON(timer_pending(timer) || !timer->function);
730 spin_lock_irqsave(&base->lock, flags);
731 timer_set_base(timer, base);
732 debug_timer_activate(timer);
733 internal_add_timer(base, timer);
735 * Check whether the other CPU is idle and needs to be
736 * triggered to reevaluate the timer wheel when nohz is
737 * active. We are protected against the other CPU fiddling
738 * with the timer by holding the timer base lock. This also
739 * makes sure that a CPU on the way to idle can not evaluate
740 * the timer wheel.
742 wake_up_idle_cpu(cpu);
743 spin_unlock_irqrestore(&base->lock, flags);
747 * del_timer - deactive a timer.
748 * @timer: the timer to be deactivated
750 * del_timer() deactivates a timer - this works on both active and inactive
751 * timers.
753 * The function returns whether it has deactivated a pending timer or not.
754 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
755 * active timer returns 1.)
757 int del_timer(struct timer_list *timer)
759 struct tvec_base *base;
760 unsigned long flags;
761 int ret = 0;
763 timer_stats_timer_clear_start_info(timer);
764 if (timer_pending(timer)) {
765 base = lock_timer_base(timer, &flags);
766 if (timer_pending(timer)) {
767 detach_timer(timer, 1);
768 ret = 1;
770 spin_unlock_irqrestore(&base->lock, flags);
773 return ret;
775 EXPORT_SYMBOL(del_timer);
777 #ifdef CONFIG_SMP
779 * try_to_del_timer_sync - Try to deactivate a timer
780 * @timer: timer do del
782 * This function tries to deactivate a timer. Upon successful (ret >= 0)
783 * exit the timer is not queued and the handler is not running on any CPU.
785 * It must not be called from interrupt contexts.
787 int try_to_del_timer_sync(struct timer_list *timer)
789 struct tvec_base *base;
790 unsigned long flags;
791 int ret = -1;
793 base = lock_timer_base(timer, &flags);
795 if (base->running_timer == timer)
796 goto out;
798 ret = 0;
799 if (timer_pending(timer)) {
800 detach_timer(timer, 1);
801 ret = 1;
803 out:
804 spin_unlock_irqrestore(&base->lock, flags);
806 return ret;
808 EXPORT_SYMBOL(try_to_del_timer_sync);
811 * del_timer_sync - deactivate a timer and wait for the handler to finish.
812 * @timer: the timer to be deactivated
814 * This function only differs from del_timer() on SMP: besides deactivating
815 * the timer it also makes sure the handler has finished executing on other
816 * CPUs.
818 * Synchronization rules: Callers must prevent restarting of the timer,
819 * otherwise this function is meaningless. It must not be called from
820 * interrupt contexts. The caller must not hold locks which would prevent
821 * completion of the timer's handler. The timer's handler must not call
822 * add_timer_on(). Upon exit the timer is not queued and the handler is
823 * not running on any CPU.
825 * The function returns whether it has deactivated a pending timer or not.
827 int del_timer_sync(struct timer_list *timer)
829 for (;;) {
830 int ret = try_to_del_timer_sync(timer);
831 if (ret >= 0)
832 return ret;
833 cpu_relax();
836 EXPORT_SYMBOL(del_timer_sync);
837 #endif
839 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
841 /* cascade all the timers from tv up one level */
842 struct timer_list *timer, *tmp;
843 struct list_head tv_list;
845 list_replace_init(tv->vec + index, &tv_list);
848 * We are removing _all_ timers from the list, so we
849 * don't have to detach them individually.
851 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
852 BUG_ON(tbase_get_base(timer->base) != base);
853 internal_add_timer(base, timer);
856 return index;
859 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
862 * __run_timers - run all expired timers (if any) on this CPU.
863 * @base: the timer vector to be processed.
865 * This function cascades all vectors and executes all expired timer
866 * vectors.
868 static inline void __run_timers(struct tvec_base *base)
870 struct timer_list *timer;
872 spin_lock_irq(&base->lock);
873 while (time_after_eq(jiffies, base->timer_jiffies)) {
874 struct list_head work_list;
875 struct list_head *head = &work_list;
876 int index = base->timer_jiffies & TVR_MASK;
879 * Cascade timers:
881 if (!index &&
882 (!cascade(base, &base->tv2, INDEX(0))) &&
883 (!cascade(base, &base->tv3, INDEX(1))) &&
884 !cascade(base, &base->tv4, INDEX(2)))
885 cascade(base, &base->tv5, INDEX(3));
886 ++base->timer_jiffies;
887 list_replace_init(base->tv1.vec + index, &work_list);
888 while (!list_empty(head)) {
889 void (*fn)(unsigned long);
890 unsigned long data;
892 timer = list_first_entry(head, struct timer_list,entry);
893 fn = timer->function;
894 data = timer->data;
896 timer_stats_account_timer(timer);
898 set_running_timer(base, timer);
899 detach_timer(timer, 1);
900 spin_unlock_irq(&base->lock);
902 int preempt_count = preempt_count();
903 fn(data);
904 if (preempt_count != preempt_count()) {
905 printk(KERN_ERR "huh, entered %p "
906 "with preempt_count %08x, exited"
907 " with %08x?\n",
908 fn, preempt_count,
909 preempt_count());
910 BUG();
913 spin_lock_irq(&base->lock);
916 set_running_timer(base, NULL);
917 spin_unlock_irq(&base->lock);
920 #ifdef CONFIG_NO_HZ
922 * Find out when the next timer event is due to happen. This
923 * is used on S/390 to stop all activity when a cpus is idle.
924 * This functions needs to be called disabled.
926 static unsigned long __next_timer_interrupt(struct tvec_base *base)
928 unsigned long timer_jiffies = base->timer_jiffies;
929 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
930 int index, slot, array, found = 0;
931 struct timer_list *nte;
932 struct tvec *varray[4];
934 /* Look for timer events in tv1. */
935 index = slot = timer_jiffies & TVR_MASK;
936 do {
937 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
938 if (tbase_get_deferrable(nte->base))
939 continue;
941 found = 1;
942 expires = nte->expires;
943 /* Look at the cascade bucket(s)? */
944 if (!index || slot < index)
945 goto cascade;
946 return expires;
948 slot = (slot + 1) & TVR_MASK;
949 } while (slot != index);
951 cascade:
952 /* Calculate the next cascade event */
953 if (index)
954 timer_jiffies += TVR_SIZE - index;
955 timer_jiffies >>= TVR_BITS;
957 /* Check tv2-tv5. */
958 varray[0] = &base->tv2;
959 varray[1] = &base->tv3;
960 varray[2] = &base->tv4;
961 varray[3] = &base->tv5;
963 for (array = 0; array < 4; array++) {
964 struct tvec *varp = varray[array];
966 index = slot = timer_jiffies & TVN_MASK;
967 do {
968 list_for_each_entry(nte, varp->vec + slot, entry) {
969 found = 1;
970 if (time_before(nte->expires, expires))
971 expires = nte->expires;
974 * Do we still search for the first timer or are
975 * we looking up the cascade buckets ?
977 if (found) {
978 /* Look at the cascade bucket(s)? */
979 if (!index || slot < index)
980 break;
981 return expires;
983 slot = (slot + 1) & TVN_MASK;
984 } while (slot != index);
986 if (index)
987 timer_jiffies += TVN_SIZE - index;
988 timer_jiffies >>= TVN_BITS;
990 return expires;
994 * Check, if the next hrtimer event is before the next timer wheel
995 * event:
997 static unsigned long cmp_next_hrtimer_event(unsigned long now,
998 unsigned long expires)
1000 ktime_t hr_delta = hrtimer_get_next_event();
1001 struct timespec tsdelta;
1002 unsigned long delta;
1004 if (hr_delta.tv64 == KTIME_MAX)
1005 return expires;
1008 * Expired timer available, let it expire in the next tick
1010 if (hr_delta.tv64 <= 0)
1011 return now + 1;
1013 tsdelta = ktime_to_timespec(hr_delta);
1014 delta = timespec_to_jiffies(&tsdelta);
1017 * Limit the delta to the max value, which is checked in
1018 * tick_nohz_stop_sched_tick():
1020 if (delta > NEXT_TIMER_MAX_DELTA)
1021 delta = NEXT_TIMER_MAX_DELTA;
1024 * Take rounding errors in to account and make sure, that it
1025 * expires in the next tick. Otherwise we go into an endless
1026 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1027 * the timer softirq
1029 if (delta < 1)
1030 delta = 1;
1031 now += delta;
1032 if (time_before(now, expires))
1033 return now;
1034 return expires;
1038 * get_next_timer_interrupt - return the jiffy of the next pending timer
1039 * @now: current time (in jiffies)
1041 unsigned long get_next_timer_interrupt(unsigned long now)
1043 struct tvec_base *base = __get_cpu_var(tvec_bases);
1044 unsigned long expires;
1046 spin_lock(&base->lock);
1047 expires = __next_timer_interrupt(base);
1048 spin_unlock(&base->lock);
1050 if (time_before_eq(expires, now))
1051 return now;
1053 return cmp_next_hrtimer_event(now, expires);
1055 #endif
1058 * Called from the timer interrupt handler to charge one tick to the current
1059 * process. user_tick is 1 if the tick is user time, 0 for system.
1061 void update_process_times(int user_tick)
1063 struct task_struct *p = current;
1064 int cpu = smp_processor_id();
1066 /* Note: this timer irq context must be accounted for as well. */
1067 account_process_tick(p, user_tick);
1068 run_local_timers();
1069 if (rcu_pending(cpu))
1070 rcu_check_callbacks(cpu, user_tick);
1071 printk_tick();
1072 scheduler_tick();
1073 run_posix_cpu_timers(p);
1077 * Nr of active tasks - counted in fixed-point numbers
1079 static unsigned long count_active_tasks(void)
1081 return nr_active() * FIXED_1;
1085 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1086 * imply that avenrun[] is the standard name for this kind of thing.
1087 * Nothing else seems to be standardized: the fractional size etc
1088 * all seem to differ on different machines.
1090 * Requires xtime_lock to access.
1092 unsigned long avenrun[3];
1094 EXPORT_SYMBOL(avenrun);
1097 * calc_load - given tick count, update the avenrun load estimates.
1098 * This is called while holding a write_lock on xtime_lock.
1100 static inline void calc_load(unsigned long ticks)
1102 unsigned long active_tasks; /* fixed-point */
1103 static int count = LOAD_FREQ;
1105 count -= ticks;
1106 if (unlikely(count < 0)) {
1107 active_tasks = count_active_tasks();
1108 do {
1109 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1110 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1111 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1112 count += LOAD_FREQ;
1113 } while (count < 0);
1118 * This function runs timers and the timer-tq in bottom half context.
1120 static void run_timer_softirq(struct softirq_action *h)
1122 struct tvec_base *base = __get_cpu_var(tvec_bases);
1124 hrtimer_run_pending();
1126 if (time_after_eq(jiffies, base->timer_jiffies))
1127 __run_timers(base);
1131 * Called by the local, per-CPU timer interrupt on SMP.
1133 void run_local_timers(void)
1135 hrtimer_run_queues();
1136 raise_softirq(TIMER_SOFTIRQ);
1137 softlockup_tick();
1141 * Called by the timer interrupt. xtime_lock must already be taken
1142 * by the timer IRQ!
1144 static inline void update_times(unsigned long ticks)
1146 update_wall_time();
1147 calc_load(ticks);
1151 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1152 * without sampling the sequence number in xtime_lock.
1153 * jiffies is defined in the linker script...
1156 void do_timer(unsigned long ticks)
1158 jiffies_64 += ticks;
1159 update_times(ticks);
1162 #ifdef __ARCH_WANT_SYS_ALARM
1165 * For backwards compatibility? This can be done in libc so Alpha
1166 * and all newer ports shouldn't need it.
1168 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1170 return alarm_setitimer(seconds);
1173 #endif
1175 #ifndef __alpha__
1178 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1179 * should be moved into arch/i386 instead?
1183 * sys_getpid - return the thread group id of the current process
1185 * Note, despite the name, this returns the tgid not the pid. The tgid and
1186 * the pid are identical unless CLONE_THREAD was specified on clone() in
1187 * which case the tgid is the same in all threads of the same group.
1189 * This is SMP safe as current->tgid does not change.
1191 SYSCALL_DEFINE0(getpid)
1193 return task_tgid_vnr(current);
1197 * Accessing ->real_parent is not SMP-safe, it could
1198 * change from under us. However, we can use a stale
1199 * value of ->real_parent under rcu_read_lock(), see
1200 * release_task()->call_rcu(delayed_put_task_struct).
1202 SYSCALL_DEFINE0(getppid)
1204 int pid;
1206 rcu_read_lock();
1207 pid = task_tgid_vnr(current->real_parent);
1208 rcu_read_unlock();
1210 return pid;
1213 SYSCALL_DEFINE0(getuid)
1215 /* Only we change this so SMP safe */
1216 return current_uid();
1219 SYSCALL_DEFINE0(geteuid)
1221 /* Only we change this so SMP safe */
1222 return current_euid();
1225 SYSCALL_DEFINE0(getgid)
1227 /* Only we change this so SMP safe */
1228 return current_gid();
1231 SYSCALL_DEFINE0(getegid)
1233 /* Only we change this so SMP safe */
1234 return current_egid();
1237 #endif
1239 static void process_timeout(unsigned long __data)
1241 wake_up_process((struct task_struct *)__data);
1245 * schedule_timeout - sleep until timeout
1246 * @timeout: timeout value in jiffies
1248 * Make the current task sleep until @timeout jiffies have
1249 * elapsed. The routine will return immediately unless
1250 * the current task state has been set (see set_current_state()).
1252 * You can set the task state as follows -
1254 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1255 * pass before the routine returns. The routine will return 0
1257 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1258 * delivered to the current task. In this case the remaining time
1259 * in jiffies will be returned, or 0 if the timer expired in time
1261 * The current task state is guaranteed to be TASK_RUNNING when this
1262 * routine returns.
1264 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1265 * the CPU away without a bound on the timeout. In this case the return
1266 * value will be %MAX_SCHEDULE_TIMEOUT.
1268 * In all cases the return value is guaranteed to be non-negative.
1270 signed long __sched schedule_timeout(signed long timeout)
1272 struct timer_list timer;
1273 unsigned long expire;
1275 switch (timeout)
1277 case MAX_SCHEDULE_TIMEOUT:
1279 * These two special cases are useful to be comfortable
1280 * in the caller. Nothing more. We could take
1281 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1282 * but I' d like to return a valid offset (>=0) to allow
1283 * the caller to do everything it want with the retval.
1285 schedule();
1286 goto out;
1287 default:
1289 * Another bit of PARANOID. Note that the retval will be
1290 * 0 since no piece of kernel is supposed to do a check
1291 * for a negative retval of schedule_timeout() (since it
1292 * should never happens anyway). You just have the printk()
1293 * that will tell you if something is gone wrong and where.
1295 if (timeout < 0) {
1296 printk(KERN_ERR "schedule_timeout: wrong timeout "
1297 "value %lx\n", timeout);
1298 dump_stack();
1299 current->state = TASK_RUNNING;
1300 goto out;
1304 expire = timeout + jiffies;
1306 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1307 __mod_timer(&timer, expire, false);
1308 schedule();
1309 del_singleshot_timer_sync(&timer);
1311 /* Remove the timer from the object tracker */
1312 destroy_timer_on_stack(&timer);
1314 timeout = expire - jiffies;
1316 out:
1317 return timeout < 0 ? 0 : timeout;
1319 EXPORT_SYMBOL(schedule_timeout);
1322 * We can use __set_current_state() here because schedule_timeout() calls
1323 * schedule() unconditionally.
1325 signed long __sched schedule_timeout_interruptible(signed long timeout)
1327 __set_current_state(TASK_INTERRUPTIBLE);
1328 return schedule_timeout(timeout);
1330 EXPORT_SYMBOL(schedule_timeout_interruptible);
1332 signed long __sched schedule_timeout_killable(signed long timeout)
1334 __set_current_state(TASK_KILLABLE);
1335 return schedule_timeout(timeout);
1337 EXPORT_SYMBOL(schedule_timeout_killable);
1339 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1341 __set_current_state(TASK_UNINTERRUPTIBLE);
1342 return schedule_timeout(timeout);
1344 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1346 /* Thread ID - the internal kernel "pid" */
1347 SYSCALL_DEFINE0(gettid)
1349 return task_pid_vnr(current);
1353 * do_sysinfo - fill in sysinfo struct
1354 * @info: pointer to buffer to fill
1356 int do_sysinfo(struct sysinfo *info)
1358 unsigned long mem_total, sav_total;
1359 unsigned int mem_unit, bitcount;
1360 unsigned long seq;
1362 memset(info, 0, sizeof(struct sysinfo));
1364 do {
1365 struct timespec tp;
1366 seq = read_seqbegin(&xtime_lock);
1369 * This is annoying. The below is the same thing
1370 * posix_get_clock_monotonic() does, but it wants to
1371 * take the lock which we want to cover the loads stuff
1372 * too.
1375 getnstimeofday(&tp);
1376 tp.tv_sec += wall_to_monotonic.tv_sec;
1377 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1378 monotonic_to_bootbased(&tp);
1379 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1380 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1381 tp.tv_sec++;
1383 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1385 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1386 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1387 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1389 info->procs = nr_threads;
1390 } while (read_seqretry(&xtime_lock, seq));
1392 si_meminfo(info);
1393 si_swapinfo(info);
1396 * If the sum of all the available memory (i.e. ram + swap)
1397 * is less than can be stored in a 32 bit unsigned long then
1398 * we can be binary compatible with 2.2.x kernels. If not,
1399 * well, in that case 2.2.x was broken anyways...
1401 * -Erik Andersen <andersee@debian.org>
1404 mem_total = info->totalram + info->totalswap;
1405 if (mem_total < info->totalram || mem_total < info->totalswap)
1406 goto out;
1407 bitcount = 0;
1408 mem_unit = info->mem_unit;
1409 while (mem_unit > 1) {
1410 bitcount++;
1411 mem_unit >>= 1;
1412 sav_total = mem_total;
1413 mem_total <<= 1;
1414 if (mem_total < sav_total)
1415 goto out;
1419 * If mem_total did not overflow, multiply all memory values by
1420 * info->mem_unit and set it to 1. This leaves things compatible
1421 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1422 * kernels...
1425 info->mem_unit = 1;
1426 info->totalram <<= bitcount;
1427 info->freeram <<= bitcount;
1428 info->sharedram <<= bitcount;
1429 info->bufferram <<= bitcount;
1430 info->totalswap <<= bitcount;
1431 info->freeswap <<= bitcount;
1432 info->totalhigh <<= bitcount;
1433 info->freehigh <<= bitcount;
1435 out:
1436 return 0;
1439 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1441 struct sysinfo val;
1443 do_sysinfo(&val);
1445 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1446 return -EFAULT;
1448 return 0;
1451 static int __cpuinit init_timers_cpu(int cpu)
1453 int j;
1454 struct tvec_base *base;
1455 static char __cpuinitdata tvec_base_done[NR_CPUS];
1457 if (!tvec_base_done[cpu]) {
1458 static char boot_done;
1460 if (boot_done) {
1462 * The APs use this path later in boot
1464 base = kmalloc_node(sizeof(*base),
1465 GFP_KERNEL | __GFP_ZERO,
1466 cpu_to_node(cpu));
1467 if (!base)
1468 return -ENOMEM;
1470 /* Make sure that tvec_base is 2 byte aligned */
1471 if (tbase_get_deferrable(base)) {
1472 WARN_ON(1);
1473 kfree(base);
1474 return -ENOMEM;
1476 per_cpu(tvec_bases, cpu) = base;
1477 } else {
1479 * This is for the boot CPU - we use compile-time
1480 * static initialisation because per-cpu memory isn't
1481 * ready yet and because the memory allocators are not
1482 * initialised either.
1484 boot_done = 1;
1485 base = &boot_tvec_bases;
1487 tvec_base_done[cpu] = 1;
1488 } else {
1489 base = per_cpu(tvec_bases, cpu);
1492 spin_lock_init(&base->lock);
1494 for (j = 0; j < TVN_SIZE; j++) {
1495 INIT_LIST_HEAD(base->tv5.vec + j);
1496 INIT_LIST_HEAD(base->tv4.vec + j);
1497 INIT_LIST_HEAD(base->tv3.vec + j);
1498 INIT_LIST_HEAD(base->tv2.vec + j);
1500 for (j = 0; j < TVR_SIZE; j++)
1501 INIT_LIST_HEAD(base->tv1.vec + j);
1503 base->timer_jiffies = jiffies;
1504 return 0;
1507 #ifdef CONFIG_HOTPLUG_CPU
1508 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1510 struct timer_list *timer;
1512 while (!list_empty(head)) {
1513 timer = list_first_entry(head, struct timer_list, entry);
1514 detach_timer(timer, 0);
1515 timer_set_base(timer, new_base);
1516 internal_add_timer(new_base, timer);
1520 static void __cpuinit migrate_timers(int cpu)
1522 struct tvec_base *old_base;
1523 struct tvec_base *new_base;
1524 int i;
1526 BUG_ON(cpu_online(cpu));
1527 old_base = per_cpu(tvec_bases, cpu);
1528 new_base = get_cpu_var(tvec_bases);
1530 * The caller is globally serialized and nobody else
1531 * takes two locks at once, deadlock is not possible.
1533 spin_lock_irq(&new_base->lock);
1534 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1536 BUG_ON(old_base->running_timer);
1538 for (i = 0; i < TVR_SIZE; i++)
1539 migrate_timer_list(new_base, old_base->tv1.vec + i);
1540 for (i = 0; i < TVN_SIZE; i++) {
1541 migrate_timer_list(new_base, old_base->tv2.vec + i);
1542 migrate_timer_list(new_base, old_base->tv3.vec + i);
1543 migrate_timer_list(new_base, old_base->tv4.vec + i);
1544 migrate_timer_list(new_base, old_base->tv5.vec + i);
1547 spin_unlock(&old_base->lock);
1548 spin_unlock_irq(&new_base->lock);
1549 put_cpu_var(tvec_bases);
1551 #endif /* CONFIG_HOTPLUG_CPU */
1553 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1554 unsigned long action, void *hcpu)
1556 long cpu = (long)hcpu;
1557 switch(action) {
1558 case CPU_UP_PREPARE:
1559 case CPU_UP_PREPARE_FROZEN:
1560 if (init_timers_cpu(cpu) < 0)
1561 return NOTIFY_BAD;
1562 break;
1563 #ifdef CONFIG_HOTPLUG_CPU
1564 case CPU_DEAD:
1565 case CPU_DEAD_FROZEN:
1566 migrate_timers(cpu);
1567 break;
1568 #endif
1569 default:
1570 break;
1572 return NOTIFY_OK;
1575 static struct notifier_block __cpuinitdata timers_nb = {
1576 .notifier_call = timer_cpu_notify,
1580 void __init init_timers(void)
1582 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1583 (void *)(long)smp_processor_id());
1585 init_timer_stats();
1587 BUG_ON(err == NOTIFY_BAD);
1588 register_cpu_notifier(&timers_nb);
1589 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1593 * msleep - sleep safely even with waitqueue interruptions
1594 * @msecs: Time in milliseconds to sleep for
1596 void msleep(unsigned int msecs)
1598 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1600 while (timeout)
1601 timeout = schedule_timeout_uninterruptible(timeout);
1604 EXPORT_SYMBOL(msleep);
1607 * msleep_interruptible - sleep waiting for signals
1608 * @msecs: Time in milliseconds to sleep for
1610 unsigned long msleep_interruptible(unsigned int msecs)
1612 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1614 while (timeout && !signal_pending(current))
1615 timeout = schedule_timeout_interruptible(timeout);
1616 return jiffies_to_msecs(timeout);
1619 EXPORT_SYMBOL(msleep_interruptible);