nilfs2: fix preempt count underflow in nilfs_btnode_prepare_change_key
[linux-2.6/mini2440.git] / net / wireless / reg.c
blob9765bc892f0fb31413cfaed8b0ba3deeb01f23f2
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/wireless.h>
41 #include <net/cfg80211.h>
42 #include "core.h"
43 #include "reg.h"
44 #include "nl80211.h"
46 /* Receipt of information from last regulatory request */
47 static struct regulatory_request *last_request;
49 /* To trigger userspace events */
50 static struct platform_device *reg_pdev;
52 /* Keep the ordering from large to small */
53 static u32 supported_bandwidths[] = {
54 MHZ_TO_KHZ(40),
55 MHZ_TO_KHZ(20),
59 * Central wireless core regulatory domains, we only need two,
60 * the current one and a world regulatory domain in case we have no
61 * information to give us an alpha2
63 const struct ieee80211_regdomain *cfg80211_regdomain;
66 * We use this as a place for the rd structure built from the
67 * last parsed country IE to rest until CRDA gets back to us with
68 * what it thinks should apply for the same country
70 static const struct ieee80211_regdomain *country_ie_regdomain;
72 /* Used to queue up regulatory hints */
73 static LIST_HEAD(reg_requests_list);
74 static spinlock_t reg_requests_lock;
76 /* Used to queue up beacon hints for review */
77 static LIST_HEAD(reg_pending_beacons);
78 static spinlock_t reg_pending_beacons_lock;
80 /* Used to keep track of processed beacon hints */
81 static LIST_HEAD(reg_beacon_list);
83 struct reg_beacon {
84 struct list_head list;
85 struct ieee80211_channel chan;
88 /* We keep a static world regulatory domain in case of the absence of CRDA */
89 static const struct ieee80211_regdomain world_regdom = {
90 .n_reg_rules = 5,
91 .alpha2 = "00",
92 .reg_rules = {
93 /* IEEE 802.11b/g, channels 1..11 */
94 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
95 /* IEEE 802.11b/g, channels 12..13. No HT40
96 * channel fits here. */
97 REG_RULE(2467-10, 2472+10, 20, 6, 20,
98 NL80211_RRF_PASSIVE_SCAN |
99 NL80211_RRF_NO_IBSS),
100 /* IEEE 802.11 channel 14 - Only JP enables
101 * this and for 802.11b only */
102 REG_RULE(2484-10, 2484+10, 20, 6, 20,
103 NL80211_RRF_PASSIVE_SCAN |
104 NL80211_RRF_NO_IBSS |
105 NL80211_RRF_NO_OFDM),
106 /* IEEE 802.11a, channel 36..48 */
107 REG_RULE(5180-10, 5240+10, 40, 6, 20,
108 NL80211_RRF_PASSIVE_SCAN |
109 NL80211_RRF_NO_IBSS),
111 /* NB: 5260 MHz - 5700 MHz requies DFS */
113 /* IEEE 802.11a, channel 149..165 */
114 REG_RULE(5745-10, 5825+10, 40, 6, 20,
115 NL80211_RRF_PASSIVE_SCAN |
116 NL80211_RRF_NO_IBSS),
120 static const struct ieee80211_regdomain *cfg80211_world_regdom =
121 &world_regdom;
123 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
124 static char *ieee80211_regdom = "US";
125 #else
126 static char *ieee80211_regdom = "00";
127 #endif
129 module_param(ieee80211_regdom, charp, 0444);
130 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
132 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
134 * We assume 40 MHz bandwidth for the old regulatory work.
135 * We make emphasis we are using the exact same frequencies
136 * as before
139 static const struct ieee80211_regdomain us_regdom = {
140 .n_reg_rules = 6,
141 .alpha2 = "US",
142 .reg_rules = {
143 /* IEEE 802.11b/g, channels 1..11 */
144 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
145 /* IEEE 802.11a, channel 36 */
146 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
147 /* IEEE 802.11a, channel 40 */
148 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
149 /* IEEE 802.11a, channel 44 */
150 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
151 /* IEEE 802.11a, channels 48..64 */
152 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
153 /* IEEE 802.11a, channels 149..165, outdoor */
154 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
158 static const struct ieee80211_regdomain jp_regdom = {
159 .n_reg_rules = 3,
160 .alpha2 = "JP",
161 .reg_rules = {
162 /* IEEE 802.11b/g, channels 1..14 */
163 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
164 /* IEEE 802.11a, channels 34..48 */
165 REG_RULE(5170-10, 5240+10, 40, 6, 20,
166 NL80211_RRF_PASSIVE_SCAN),
167 /* IEEE 802.11a, channels 52..64 */
168 REG_RULE(5260-10, 5320+10, 40, 6, 20,
169 NL80211_RRF_NO_IBSS |
170 NL80211_RRF_DFS),
174 static const struct ieee80211_regdomain eu_regdom = {
175 .n_reg_rules = 6,
177 * This alpha2 is bogus, we leave it here just for stupid
178 * backward compatibility
180 .alpha2 = "EU",
181 .reg_rules = {
182 /* IEEE 802.11b/g, channels 1..13 */
183 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
184 /* IEEE 802.11a, channel 36 */
185 REG_RULE(5180-10, 5180+10, 40, 6, 23,
186 NL80211_RRF_PASSIVE_SCAN),
187 /* IEEE 802.11a, channel 40 */
188 REG_RULE(5200-10, 5200+10, 40, 6, 23,
189 NL80211_RRF_PASSIVE_SCAN),
190 /* IEEE 802.11a, channel 44 */
191 REG_RULE(5220-10, 5220+10, 40, 6, 23,
192 NL80211_RRF_PASSIVE_SCAN),
193 /* IEEE 802.11a, channels 48..64 */
194 REG_RULE(5240-10, 5320+10, 40, 6, 20,
195 NL80211_RRF_NO_IBSS |
196 NL80211_RRF_DFS),
197 /* IEEE 802.11a, channels 100..140 */
198 REG_RULE(5500-10, 5700+10, 40, 6, 30,
199 NL80211_RRF_NO_IBSS |
200 NL80211_RRF_DFS),
204 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
206 if (alpha2[0] == 'U' && alpha2[1] == 'S')
207 return &us_regdom;
208 if (alpha2[0] == 'J' && alpha2[1] == 'P')
209 return &jp_regdom;
210 if (alpha2[0] == 'E' && alpha2[1] == 'U')
211 return &eu_regdom;
212 /* Default, as per the old rules */
213 return &us_regdom;
216 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
218 if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
219 return true;
220 return false;
222 #else
223 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
225 return false;
227 #endif
229 static void reset_regdomains(void)
231 /* avoid freeing static information or freeing something twice */
232 if (cfg80211_regdomain == cfg80211_world_regdom)
233 cfg80211_regdomain = NULL;
234 if (cfg80211_world_regdom == &world_regdom)
235 cfg80211_world_regdom = NULL;
236 if (cfg80211_regdomain == &world_regdom)
237 cfg80211_regdomain = NULL;
238 if (is_old_static_regdom(cfg80211_regdomain))
239 cfg80211_regdomain = NULL;
241 kfree(cfg80211_regdomain);
242 kfree(cfg80211_world_regdom);
244 cfg80211_world_regdom = &world_regdom;
245 cfg80211_regdomain = NULL;
249 * Dynamic world regulatory domain requested by the wireless
250 * core upon initialization
252 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
254 BUG_ON(!last_request);
256 reset_regdomains();
258 cfg80211_world_regdom = rd;
259 cfg80211_regdomain = rd;
262 bool is_world_regdom(const char *alpha2)
264 if (!alpha2)
265 return false;
266 if (alpha2[0] == '0' && alpha2[1] == '0')
267 return true;
268 return false;
271 static bool is_alpha2_set(const char *alpha2)
273 if (!alpha2)
274 return false;
275 if (alpha2[0] != 0 && alpha2[1] != 0)
276 return true;
277 return false;
280 static bool is_alpha_upper(char letter)
282 /* ASCII A - Z */
283 if (letter >= 65 && letter <= 90)
284 return true;
285 return false;
288 static bool is_unknown_alpha2(const char *alpha2)
290 if (!alpha2)
291 return false;
293 * Special case where regulatory domain was built by driver
294 * but a specific alpha2 cannot be determined
296 if (alpha2[0] == '9' && alpha2[1] == '9')
297 return true;
298 return false;
301 static bool is_intersected_alpha2(const char *alpha2)
303 if (!alpha2)
304 return false;
306 * Special case where regulatory domain is the
307 * result of an intersection between two regulatory domain
308 * structures
310 if (alpha2[0] == '9' && alpha2[1] == '8')
311 return true;
312 return false;
315 static bool is_an_alpha2(const char *alpha2)
317 if (!alpha2)
318 return false;
319 if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
320 return true;
321 return false;
324 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
326 if (!alpha2_x || !alpha2_y)
327 return false;
328 if (alpha2_x[0] == alpha2_y[0] &&
329 alpha2_x[1] == alpha2_y[1])
330 return true;
331 return false;
334 static bool regdom_changes(const char *alpha2)
336 assert_cfg80211_lock();
338 if (!cfg80211_regdomain)
339 return true;
340 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
341 return false;
342 return true;
346 * country_ie_integrity_changes - tells us if the country IE has changed
347 * @checksum: checksum of country IE of fields we are interested in
349 * If the country IE has not changed you can ignore it safely. This is
350 * useful to determine if two devices are seeing two different country IEs
351 * even on the same alpha2. Note that this will return false if no IE has
352 * been set on the wireless core yet.
354 static bool country_ie_integrity_changes(u32 checksum)
356 /* If no IE has been set then the checksum doesn't change */
357 if (unlikely(!last_request->country_ie_checksum))
358 return false;
359 if (unlikely(last_request->country_ie_checksum != checksum))
360 return true;
361 return false;
365 * This lets us keep regulatory code which is updated on a regulatory
366 * basis in userspace.
368 static int call_crda(const char *alpha2)
370 char country_env[9 + 2] = "COUNTRY=";
371 char *envp[] = {
372 country_env,
373 NULL
376 if (!is_world_regdom((char *) alpha2))
377 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
378 alpha2[0], alpha2[1]);
379 else
380 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
381 "regulatory domain\n");
383 country_env[8] = alpha2[0];
384 country_env[9] = alpha2[1];
386 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
389 /* Used by nl80211 before kmalloc'ing our regulatory domain */
390 bool reg_is_valid_request(const char *alpha2)
392 assert_cfg80211_lock();
394 if (!last_request)
395 return false;
397 return alpha2_equal(last_request->alpha2, alpha2);
400 /* Sanity check on a regulatory rule */
401 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
403 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
404 u32 freq_diff;
406 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
407 return false;
409 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
410 return false;
412 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
414 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
415 freq_range->max_bandwidth_khz > freq_diff)
416 return false;
418 return true;
421 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
423 const struct ieee80211_reg_rule *reg_rule = NULL;
424 unsigned int i;
426 if (!rd->n_reg_rules)
427 return false;
429 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
430 return false;
432 for (i = 0; i < rd->n_reg_rules; i++) {
433 reg_rule = &rd->reg_rules[i];
434 if (!is_valid_reg_rule(reg_rule))
435 return false;
438 return true;
441 /* Returns value in KHz */
442 static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
443 u32 freq)
445 unsigned int i;
446 for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
447 u32 start_freq_khz = freq - supported_bandwidths[i]/2;
448 u32 end_freq_khz = freq + supported_bandwidths[i]/2;
449 if (start_freq_khz >= freq_range->start_freq_khz &&
450 end_freq_khz <= freq_range->end_freq_khz)
451 return supported_bandwidths[i];
453 return 0;
457 * freq_in_rule_band - tells us if a frequency is in a frequency band
458 * @freq_range: frequency rule we want to query
459 * @freq_khz: frequency we are inquiring about
461 * This lets us know if a specific frequency rule is or is not relevant to
462 * a specific frequency's band. Bands are device specific and artificial
463 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
464 * safe for now to assume that a frequency rule should not be part of a
465 * frequency's band if the start freq or end freq are off by more than 2 GHz.
466 * This resolution can be lowered and should be considered as we add
467 * regulatory rule support for other "bands".
469 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
470 u32 freq_khz)
472 #define ONE_GHZ_IN_KHZ 1000000
473 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
474 return true;
475 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
476 return true;
477 return false;
478 #undef ONE_GHZ_IN_KHZ
482 * Converts a country IE to a regulatory domain. A regulatory domain
483 * structure has a lot of information which the IE doesn't yet have,
484 * so for the other values we use upper max values as we will intersect
485 * with our userspace regulatory agent to get lower bounds.
487 static struct ieee80211_regdomain *country_ie_2_rd(
488 u8 *country_ie,
489 u8 country_ie_len,
490 u32 *checksum)
492 struct ieee80211_regdomain *rd = NULL;
493 unsigned int i = 0;
494 char alpha2[2];
495 u32 flags = 0;
496 u32 num_rules = 0, size_of_regd = 0;
497 u8 *triplets_start = NULL;
498 u8 len_at_triplet = 0;
499 /* the last channel we have registered in a subband (triplet) */
500 int last_sub_max_channel = 0;
502 *checksum = 0xDEADBEEF;
504 /* Country IE requirements */
505 BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
506 country_ie_len & 0x01);
508 alpha2[0] = country_ie[0];
509 alpha2[1] = country_ie[1];
512 * Third octet can be:
513 * 'I' - Indoor
514 * 'O' - Outdoor
516 * anything else we assume is no restrictions
518 if (country_ie[2] == 'I')
519 flags = NL80211_RRF_NO_OUTDOOR;
520 else if (country_ie[2] == 'O')
521 flags = NL80211_RRF_NO_INDOOR;
523 country_ie += 3;
524 country_ie_len -= 3;
526 triplets_start = country_ie;
527 len_at_triplet = country_ie_len;
529 *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
532 * We need to build a reg rule for each triplet, but first we must
533 * calculate the number of reg rules we will need. We will need one
534 * for each channel subband
536 while (country_ie_len >= 3) {
537 int end_channel = 0;
538 struct ieee80211_country_ie_triplet *triplet =
539 (struct ieee80211_country_ie_triplet *) country_ie;
540 int cur_sub_max_channel = 0, cur_channel = 0;
542 if (triplet->ext.reg_extension_id >=
543 IEEE80211_COUNTRY_EXTENSION_ID) {
544 country_ie += 3;
545 country_ie_len -= 3;
546 continue;
549 /* 2 GHz */
550 if (triplet->chans.first_channel <= 14)
551 end_channel = triplet->chans.first_channel +
552 triplet->chans.num_channels;
553 else
555 * 5 GHz -- For example in country IEs if the first
556 * channel given is 36 and the number of channels is 4
557 * then the individual channel numbers defined for the
558 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
559 * and not 36, 37, 38, 39.
561 * See: http://tinyurl.com/11d-clarification
563 end_channel = triplet->chans.first_channel +
564 (4 * (triplet->chans.num_channels - 1));
566 cur_channel = triplet->chans.first_channel;
567 cur_sub_max_channel = end_channel;
569 /* Basic sanity check */
570 if (cur_sub_max_channel < cur_channel)
571 return NULL;
574 * Do not allow overlapping channels. Also channels
575 * passed in each subband must be monotonically
576 * increasing
578 if (last_sub_max_channel) {
579 if (cur_channel <= last_sub_max_channel)
580 return NULL;
581 if (cur_sub_max_channel <= last_sub_max_channel)
582 return NULL;
586 * When dot11RegulatoryClassesRequired is supported
587 * we can throw ext triplets as part of this soup,
588 * for now we don't care when those change as we
589 * don't support them
591 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
592 ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
593 ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
595 last_sub_max_channel = cur_sub_max_channel;
597 country_ie += 3;
598 country_ie_len -= 3;
599 num_rules++;
602 * Note: this is not a IEEE requirement but
603 * simply a memory requirement
605 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
606 return NULL;
609 country_ie = triplets_start;
610 country_ie_len = len_at_triplet;
612 size_of_regd = sizeof(struct ieee80211_regdomain) +
613 (num_rules * sizeof(struct ieee80211_reg_rule));
615 rd = kzalloc(size_of_regd, GFP_KERNEL);
616 if (!rd)
617 return NULL;
619 rd->n_reg_rules = num_rules;
620 rd->alpha2[0] = alpha2[0];
621 rd->alpha2[1] = alpha2[1];
623 /* This time around we fill in the rd */
624 while (country_ie_len >= 3) {
625 int end_channel = 0;
626 struct ieee80211_country_ie_triplet *triplet =
627 (struct ieee80211_country_ie_triplet *) country_ie;
628 struct ieee80211_reg_rule *reg_rule = NULL;
629 struct ieee80211_freq_range *freq_range = NULL;
630 struct ieee80211_power_rule *power_rule = NULL;
633 * Must parse if dot11RegulatoryClassesRequired is true,
634 * we don't support this yet
636 if (triplet->ext.reg_extension_id >=
637 IEEE80211_COUNTRY_EXTENSION_ID) {
638 country_ie += 3;
639 country_ie_len -= 3;
640 continue;
643 reg_rule = &rd->reg_rules[i];
644 freq_range = &reg_rule->freq_range;
645 power_rule = &reg_rule->power_rule;
647 reg_rule->flags = flags;
649 /* 2 GHz */
650 if (triplet->chans.first_channel <= 14)
651 end_channel = triplet->chans.first_channel +
652 triplet->chans.num_channels;
653 else
654 end_channel = triplet->chans.first_channel +
655 (4 * (triplet->chans.num_channels - 1));
658 * The +10 is since the regulatory domain expects
659 * the actual band edge, not the center of freq for
660 * its start and end freqs, assuming 20 MHz bandwidth on
661 * the channels passed
663 freq_range->start_freq_khz =
664 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
665 triplet->chans.first_channel) - 10);
666 freq_range->end_freq_khz =
667 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
668 end_channel) + 10);
671 * These are large arbitrary values we use to intersect later.
672 * Increment this if we ever support >= 40 MHz channels
673 * in IEEE 802.11
675 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
676 power_rule->max_antenna_gain = DBI_TO_MBI(100);
677 power_rule->max_eirp = DBM_TO_MBM(100);
679 country_ie += 3;
680 country_ie_len -= 3;
681 i++;
683 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
686 return rd;
691 * Helper for regdom_intersect(), this does the real
692 * mathematical intersection fun
694 static int reg_rules_intersect(
695 const struct ieee80211_reg_rule *rule1,
696 const struct ieee80211_reg_rule *rule2,
697 struct ieee80211_reg_rule *intersected_rule)
699 const struct ieee80211_freq_range *freq_range1, *freq_range2;
700 struct ieee80211_freq_range *freq_range;
701 const struct ieee80211_power_rule *power_rule1, *power_rule2;
702 struct ieee80211_power_rule *power_rule;
703 u32 freq_diff;
705 freq_range1 = &rule1->freq_range;
706 freq_range2 = &rule2->freq_range;
707 freq_range = &intersected_rule->freq_range;
709 power_rule1 = &rule1->power_rule;
710 power_rule2 = &rule2->power_rule;
711 power_rule = &intersected_rule->power_rule;
713 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
714 freq_range2->start_freq_khz);
715 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
716 freq_range2->end_freq_khz);
717 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
718 freq_range2->max_bandwidth_khz);
720 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
721 if (freq_range->max_bandwidth_khz > freq_diff)
722 freq_range->max_bandwidth_khz = freq_diff;
724 power_rule->max_eirp = min(power_rule1->max_eirp,
725 power_rule2->max_eirp);
726 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
727 power_rule2->max_antenna_gain);
729 intersected_rule->flags = (rule1->flags | rule2->flags);
731 if (!is_valid_reg_rule(intersected_rule))
732 return -EINVAL;
734 return 0;
738 * regdom_intersect - do the intersection between two regulatory domains
739 * @rd1: first regulatory domain
740 * @rd2: second regulatory domain
742 * Use this function to get the intersection between two regulatory domains.
743 * Once completed we will mark the alpha2 for the rd as intersected, "98",
744 * as no one single alpha2 can represent this regulatory domain.
746 * Returns a pointer to the regulatory domain structure which will hold the
747 * resulting intersection of rules between rd1 and rd2. We will
748 * kzalloc() this structure for you.
750 static struct ieee80211_regdomain *regdom_intersect(
751 const struct ieee80211_regdomain *rd1,
752 const struct ieee80211_regdomain *rd2)
754 int r, size_of_regd;
755 unsigned int x, y;
756 unsigned int num_rules = 0, rule_idx = 0;
757 const struct ieee80211_reg_rule *rule1, *rule2;
758 struct ieee80211_reg_rule *intersected_rule;
759 struct ieee80211_regdomain *rd;
760 /* This is just a dummy holder to help us count */
761 struct ieee80211_reg_rule irule;
763 /* Uses the stack temporarily for counter arithmetic */
764 intersected_rule = &irule;
766 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
768 if (!rd1 || !rd2)
769 return NULL;
772 * First we get a count of the rules we'll need, then we actually
773 * build them. This is to so we can malloc() and free() a
774 * regdomain once. The reason we use reg_rules_intersect() here
775 * is it will return -EINVAL if the rule computed makes no sense.
776 * All rules that do check out OK are valid.
779 for (x = 0; x < rd1->n_reg_rules; x++) {
780 rule1 = &rd1->reg_rules[x];
781 for (y = 0; y < rd2->n_reg_rules; y++) {
782 rule2 = &rd2->reg_rules[y];
783 if (!reg_rules_intersect(rule1, rule2,
784 intersected_rule))
785 num_rules++;
786 memset(intersected_rule, 0,
787 sizeof(struct ieee80211_reg_rule));
791 if (!num_rules)
792 return NULL;
794 size_of_regd = sizeof(struct ieee80211_regdomain) +
795 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
797 rd = kzalloc(size_of_regd, GFP_KERNEL);
798 if (!rd)
799 return NULL;
801 for (x = 0; x < rd1->n_reg_rules; x++) {
802 rule1 = &rd1->reg_rules[x];
803 for (y = 0; y < rd2->n_reg_rules; y++) {
804 rule2 = &rd2->reg_rules[y];
806 * This time around instead of using the stack lets
807 * write to the target rule directly saving ourselves
808 * a memcpy()
810 intersected_rule = &rd->reg_rules[rule_idx];
811 r = reg_rules_intersect(rule1, rule2,
812 intersected_rule);
814 * No need to memset here the intersected rule here as
815 * we're not using the stack anymore
817 if (r)
818 continue;
819 rule_idx++;
823 if (rule_idx != num_rules) {
824 kfree(rd);
825 return NULL;
828 rd->n_reg_rules = num_rules;
829 rd->alpha2[0] = '9';
830 rd->alpha2[1] = '8';
832 return rd;
836 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
837 * want to just have the channel structure use these
839 static u32 map_regdom_flags(u32 rd_flags)
841 u32 channel_flags = 0;
842 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
843 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
844 if (rd_flags & NL80211_RRF_NO_IBSS)
845 channel_flags |= IEEE80211_CHAN_NO_IBSS;
846 if (rd_flags & NL80211_RRF_DFS)
847 channel_flags |= IEEE80211_CHAN_RADAR;
848 return channel_flags;
851 static int freq_reg_info_regd(struct wiphy *wiphy,
852 u32 center_freq,
853 u32 *bandwidth,
854 const struct ieee80211_reg_rule **reg_rule,
855 const struct ieee80211_regdomain *custom_regd)
857 int i;
858 bool band_rule_found = false;
859 const struct ieee80211_regdomain *regd;
860 u32 max_bandwidth = 0;
862 regd = custom_regd ? custom_regd : cfg80211_regdomain;
865 * Follow the driver's regulatory domain, if present, unless a country
866 * IE has been processed or a user wants to help complaince further
868 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
869 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
870 wiphy->regd)
871 regd = wiphy->regd;
873 if (!regd)
874 return -EINVAL;
876 for (i = 0; i < regd->n_reg_rules; i++) {
877 const struct ieee80211_reg_rule *rr;
878 const struct ieee80211_freq_range *fr = NULL;
879 const struct ieee80211_power_rule *pr = NULL;
881 rr = &regd->reg_rules[i];
882 fr = &rr->freq_range;
883 pr = &rr->power_rule;
886 * We only need to know if one frequency rule was
887 * was in center_freq's band, that's enough, so lets
888 * not overwrite it once found
890 if (!band_rule_found)
891 band_rule_found = freq_in_rule_band(fr, center_freq);
893 max_bandwidth = freq_max_bandwidth(fr, center_freq);
895 if (max_bandwidth && *bandwidth <= max_bandwidth) {
896 *reg_rule = rr;
897 *bandwidth = max_bandwidth;
898 break;
902 if (!band_rule_found)
903 return -ERANGE;
905 return !max_bandwidth;
907 EXPORT_SYMBOL(freq_reg_info);
909 int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
910 const struct ieee80211_reg_rule **reg_rule)
912 assert_cfg80211_lock();
913 return freq_reg_info_regd(wiphy, center_freq,
914 bandwidth, reg_rule, NULL);
917 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
918 unsigned int chan_idx)
920 int r;
921 u32 flags;
922 u32 max_bandwidth = 0;
923 const struct ieee80211_reg_rule *reg_rule = NULL;
924 const struct ieee80211_power_rule *power_rule = NULL;
925 struct ieee80211_supported_band *sband;
926 struct ieee80211_channel *chan;
927 struct wiphy *request_wiphy = NULL;
929 assert_cfg80211_lock();
931 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
933 sband = wiphy->bands[band];
934 BUG_ON(chan_idx >= sband->n_channels);
935 chan = &sband->channels[chan_idx];
937 flags = chan->orig_flags;
939 r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
940 &max_bandwidth, &reg_rule);
942 if (r) {
944 * This means no regulatory rule was found in the country IE
945 * with a frequency range on the center_freq's band, since
946 * IEEE-802.11 allows for a country IE to have a subset of the
947 * regulatory information provided in a country we ignore
948 * disabling the channel unless at least one reg rule was
949 * found on the center_freq's band. For details see this
950 * clarification:
952 * http://tinyurl.com/11d-clarification
954 if (r == -ERANGE &&
955 last_request->initiator ==
956 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
957 #ifdef CONFIG_CFG80211_REG_DEBUG
958 printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
959 "intact on %s - no rule found in band on "
960 "Country IE\n",
961 chan->center_freq, wiphy_name(wiphy));
962 #endif
963 } else {
965 * In this case we know the country IE has at least one reg rule
966 * for the band so we respect its band definitions
968 #ifdef CONFIG_CFG80211_REG_DEBUG
969 if (last_request->initiator ==
970 NL80211_REGDOM_SET_BY_COUNTRY_IE)
971 printk(KERN_DEBUG "cfg80211: Disabling "
972 "channel %d MHz on %s due to "
973 "Country IE\n",
974 chan->center_freq, wiphy_name(wiphy));
975 #endif
976 flags |= IEEE80211_CHAN_DISABLED;
977 chan->flags = flags;
979 return;
982 power_rule = &reg_rule->power_rule;
984 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
985 request_wiphy && request_wiphy == wiphy &&
986 request_wiphy->strict_regulatory) {
988 * This gaurantees the driver's requested regulatory domain
989 * will always be used as a base for further regulatory
990 * settings
992 chan->flags = chan->orig_flags =
993 map_regdom_flags(reg_rule->flags);
994 chan->max_antenna_gain = chan->orig_mag =
995 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
996 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
997 chan->max_power = chan->orig_mpwr =
998 (int) MBM_TO_DBM(power_rule->max_eirp);
999 return;
1002 chan->flags = flags | map_regdom_flags(reg_rule->flags);
1003 chan->max_antenna_gain = min(chan->orig_mag,
1004 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
1005 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
1006 if (chan->orig_mpwr)
1007 chan->max_power = min(chan->orig_mpwr,
1008 (int) MBM_TO_DBM(power_rule->max_eirp));
1009 else
1010 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1013 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1015 unsigned int i;
1016 struct ieee80211_supported_band *sband;
1018 BUG_ON(!wiphy->bands[band]);
1019 sband = wiphy->bands[band];
1021 for (i = 0; i < sband->n_channels; i++)
1022 handle_channel(wiphy, band, i);
1025 static bool ignore_reg_update(struct wiphy *wiphy,
1026 enum nl80211_reg_initiator initiator)
1028 if (!last_request)
1029 return true;
1030 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1031 wiphy->custom_regulatory)
1032 return true;
1034 * wiphy->regd will be set once the device has its own
1035 * desired regulatory domain set
1037 if (wiphy->strict_regulatory && !wiphy->regd &&
1038 !is_world_regdom(last_request->alpha2))
1039 return true;
1040 return false;
1043 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1045 struct cfg80211_registered_device *drv;
1047 list_for_each_entry(drv, &cfg80211_drv_list, list)
1048 wiphy_update_regulatory(&drv->wiphy, initiator);
1051 static void handle_reg_beacon(struct wiphy *wiphy,
1052 unsigned int chan_idx,
1053 struct reg_beacon *reg_beacon)
1055 #ifdef CONFIG_CFG80211_REG_DEBUG
1056 #define REG_DEBUG_BEACON_FLAG(desc) \
1057 printk(KERN_DEBUG "cfg80211: Enabling " desc " on " \
1058 "frequency: %d MHz (Ch %d) on %s\n", \
1059 reg_beacon->chan.center_freq, \
1060 ieee80211_frequency_to_channel(reg_beacon->chan.center_freq), \
1061 wiphy_name(wiphy));
1062 #else
1063 #define REG_DEBUG_BEACON_FLAG(desc) do {} while (0)
1064 #endif
1065 struct ieee80211_supported_band *sband;
1066 struct ieee80211_channel *chan;
1068 assert_cfg80211_lock();
1070 sband = wiphy->bands[reg_beacon->chan.band];
1071 chan = &sband->channels[chan_idx];
1073 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1074 return;
1076 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1077 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1078 REG_DEBUG_BEACON_FLAG("active scanning");
1081 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1082 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1083 REG_DEBUG_BEACON_FLAG("beaconing");
1086 chan->beacon_found = true;
1087 #undef REG_DEBUG_BEACON_FLAG
1091 * Called when a scan on a wiphy finds a beacon on
1092 * new channel
1094 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1095 struct reg_beacon *reg_beacon)
1097 unsigned int i;
1098 struct ieee80211_supported_band *sband;
1100 assert_cfg80211_lock();
1102 if (!wiphy->bands[reg_beacon->chan.band])
1103 return;
1105 sband = wiphy->bands[reg_beacon->chan.band];
1107 for (i = 0; i < sband->n_channels; i++)
1108 handle_reg_beacon(wiphy, i, reg_beacon);
1112 * Called upon reg changes or a new wiphy is added
1114 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1116 unsigned int i;
1117 struct ieee80211_supported_band *sband;
1118 struct reg_beacon *reg_beacon;
1120 assert_cfg80211_lock();
1122 if (list_empty(&reg_beacon_list))
1123 return;
1125 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1126 if (!wiphy->bands[reg_beacon->chan.band])
1127 continue;
1128 sband = wiphy->bands[reg_beacon->chan.band];
1129 for (i = 0; i < sband->n_channels; i++)
1130 handle_reg_beacon(wiphy, i, reg_beacon);
1134 static bool reg_is_world_roaming(struct wiphy *wiphy)
1136 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1137 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1138 return true;
1139 if (last_request &&
1140 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1141 wiphy->custom_regulatory)
1142 return true;
1143 return false;
1146 /* Reap the advantages of previously found beacons */
1147 static void reg_process_beacons(struct wiphy *wiphy)
1150 * Means we are just firing up cfg80211, so no beacons would
1151 * have been processed yet.
1153 if (!last_request)
1154 return;
1155 if (!reg_is_world_roaming(wiphy))
1156 return;
1157 wiphy_update_beacon_reg(wiphy);
1160 void wiphy_update_regulatory(struct wiphy *wiphy,
1161 enum nl80211_reg_initiator initiator)
1163 enum ieee80211_band band;
1165 if (ignore_reg_update(wiphy, initiator))
1166 goto out;
1167 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1168 if (wiphy->bands[band])
1169 handle_band(wiphy, band);
1171 out:
1172 reg_process_beacons(wiphy);
1173 if (wiphy->reg_notifier)
1174 wiphy->reg_notifier(wiphy, last_request);
1177 static void handle_channel_custom(struct wiphy *wiphy,
1178 enum ieee80211_band band,
1179 unsigned int chan_idx,
1180 const struct ieee80211_regdomain *regd)
1182 int r;
1183 u32 max_bandwidth = 0;
1184 const struct ieee80211_reg_rule *reg_rule = NULL;
1185 const struct ieee80211_power_rule *power_rule = NULL;
1186 struct ieee80211_supported_band *sband;
1187 struct ieee80211_channel *chan;
1189 assert_cfg80211_lock();
1191 sband = wiphy->bands[band];
1192 BUG_ON(chan_idx >= sband->n_channels);
1193 chan = &sband->channels[chan_idx];
1195 r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1196 &max_bandwidth, &reg_rule, regd);
1198 if (r) {
1199 chan->flags = IEEE80211_CHAN_DISABLED;
1200 return;
1203 power_rule = &reg_rule->power_rule;
1205 chan->flags |= map_regdom_flags(reg_rule->flags);
1206 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1207 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
1208 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1211 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1212 const struct ieee80211_regdomain *regd)
1214 unsigned int i;
1215 struct ieee80211_supported_band *sband;
1217 BUG_ON(!wiphy->bands[band]);
1218 sband = wiphy->bands[band];
1220 for (i = 0; i < sband->n_channels; i++)
1221 handle_channel_custom(wiphy, band, i, regd);
1224 /* Used by drivers prior to wiphy registration */
1225 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1226 const struct ieee80211_regdomain *regd)
1228 enum ieee80211_band band;
1230 mutex_lock(&cfg80211_mutex);
1231 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1232 if (wiphy->bands[band])
1233 handle_band_custom(wiphy, band, regd);
1235 mutex_unlock(&cfg80211_mutex);
1237 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1239 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1240 const struct ieee80211_regdomain *src_regd)
1242 struct ieee80211_regdomain *regd;
1243 int size_of_regd = 0;
1244 unsigned int i;
1246 size_of_regd = sizeof(struct ieee80211_regdomain) +
1247 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1249 regd = kzalloc(size_of_regd, GFP_KERNEL);
1250 if (!regd)
1251 return -ENOMEM;
1253 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1255 for (i = 0; i < src_regd->n_reg_rules; i++)
1256 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1257 sizeof(struct ieee80211_reg_rule));
1259 *dst_regd = regd;
1260 return 0;
1264 * Return value which can be used by ignore_request() to indicate
1265 * it has been determined we should intersect two regulatory domains
1267 #define REG_INTERSECT 1
1269 /* This has the logic which determines when a new request
1270 * should be ignored. */
1271 static int ignore_request(struct wiphy *wiphy,
1272 struct regulatory_request *pending_request)
1274 struct wiphy *last_wiphy = NULL;
1276 assert_cfg80211_lock();
1278 /* All initial requests are respected */
1279 if (!last_request)
1280 return 0;
1282 switch (pending_request->initiator) {
1283 case NL80211_REGDOM_SET_BY_CORE:
1284 return -EINVAL;
1285 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1287 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1289 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1290 return -EINVAL;
1291 if (last_request->initiator ==
1292 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1293 if (last_wiphy != wiphy) {
1295 * Two cards with two APs claiming different
1296 * different Country IE alpha2s. We could
1297 * intersect them, but that seems unlikely
1298 * to be correct. Reject second one for now.
1300 if (regdom_changes(pending_request->alpha2))
1301 return -EOPNOTSUPP;
1302 return -EALREADY;
1305 * Two consecutive Country IE hints on the same wiphy.
1306 * This should be picked up early by the driver/stack
1308 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1309 return 0;
1310 return -EALREADY;
1312 return REG_INTERSECT;
1313 case NL80211_REGDOM_SET_BY_DRIVER:
1314 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1315 if (is_old_static_regdom(cfg80211_regdomain))
1316 return 0;
1317 if (regdom_changes(pending_request->alpha2))
1318 return 0;
1319 return -EALREADY;
1323 * This would happen if you unplug and plug your card
1324 * back in or if you add a new device for which the previously
1325 * loaded card also agrees on the regulatory domain.
1327 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1328 !regdom_changes(pending_request->alpha2))
1329 return -EALREADY;
1331 return REG_INTERSECT;
1332 case NL80211_REGDOM_SET_BY_USER:
1333 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1334 return REG_INTERSECT;
1336 * If the user knows better the user should set the regdom
1337 * to their country before the IE is picked up
1339 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1340 last_request->intersect)
1341 return -EOPNOTSUPP;
1343 * Process user requests only after previous user/driver/core
1344 * requests have been processed
1346 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1347 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1348 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1349 if (regdom_changes(last_request->alpha2))
1350 return -EAGAIN;
1353 if (!is_old_static_regdom(cfg80211_regdomain) &&
1354 !regdom_changes(pending_request->alpha2))
1355 return -EALREADY;
1357 return 0;
1360 return -EINVAL;
1364 * __regulatory_hint - hint to the wireless core a regulatory domain
1365 * @wiphy: if the hint comes from country information from an AP, this
1366 * is required to be set to the wiphy that received the information
1367 * @pending_request: the regulatory request currently being processed
1369 * The Wireless subsystem can use this function to hint to the wireless core
1370 * what it believes should be the current regulatory domain.
1372 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1373 * already been set or other standard error codes.
1375 * Caller must hold &cfg80211_mutex
1377 static int __regulatory_hint(struct wiphy *wiphy,
1378 struct regulatory_request *pending_request)
1380 bool intersect = false;
1381 int r = 0;
1383 assert_cfg80211_lock();
1385 r = ignore_request(wiphy, pending_request);
1387 if (r == REG_INTERSECT) {
1388 if (pending_request->initiator ==
1389 NL80211_REGDOM_SET_BY_DRIVER) {
1390 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1391 if (r) {
1392 kfree(pending_request);
1393 return r;
1396 intersect = true;
1397 } else if (r) {
1399 * If the regulatory domain being requested by the
1400 * driver has already been set just copy it to the
1401 * wiphy
1403 if (r == -EALREADY &&
1404 pending_request->initiator ==
1405 NL80211_REGDOM_SET_BY_DRIVER) {
1406 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1407 if (r) {
1408 kfree(pending_request);
1409 return r;
1411 r = -EALREADY;
1412 goto new_request;
1414 kfree(pending_request);
1415 return r;
1418 new_request:
1419 kfree(last_request);
1421 last_request = pending_request;
1422 last_request->intersect = intersect;
1424 pending_request = NULL;
1426 /* When r == REG_INTERSECT we do need to call CRDA */
1427 if (r < 0) {
1429 * Since CRDA will not be called in this case as we already
1430 * have applied the requested regulatory domain before we just
1431 * inform userspace we have processed the request
1433 if (r == -EALREADY)
1434 nl80211_send_reg_change_event(last_request);
1435 return r;
1438 return call_crda(last_request->alpha2);
1441 /* This processes *all* regulatory hints */
1442 static void reg_process_hint(struct regulatory_request *reg_request)
1444 int r = 0;
1445 struct wiphy *wiphy = NULL;
1447 BUG_ON(!reg_request->alpha2);
1449 mutex_lock(&cfg80211_mutex);
1451 if (wiphy_idx_valid(reg_request->wiphy_idx))
1452 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1454 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1455 !wiphy) {
1456 kfree(reg_request);
1457 goto out;
1460 r = __regulatory_hint(wiphy, reg_request);
1461 /* This is required so that the orig_* parameters are saved */
1462 if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
1463 wiphy_update_regulatory(wiphy, reg_request->initiator);
1464 out:
1465 mutex_unlock(&cfg80211_mutex);
1468 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1469 static void reg_process_pending_hints(void)
1471 struct regulatory_request *reg_request;
1473 spin_lock(&reg_requests_lock);
1474 while (!list_empty(&reg_requests_list)) {
1475 reg_request = list_first_entry(&reg_requests_list,
1476 struct regulatory_request,
1477 list);
1478 list_del_init(&reg_request->list);
1480 spin_unlock(&reg_requests_lock);
1481 reg_process_hint(reg_request);
1482 spin_lock(&reg_requests_lock);
1484 spin_unlock(&reg_requests_lock);
1487 /* Processes beacon hints -- this has nothing to do with country IEs */
1488 static void reg_process_pending_beacon_hints(void)
1490 struct cfg80211_registered_device *drv;
1491 struct reg_beacon *pending_beacon, *tmp;
1493 mutex_lock(&cfg80211_mutex);
1495 /* This goes through the _pending_ beacon list */
1496 spin_lock_bh(&reg_pending_beacons_lock);
1498 if (list_empty(&reg_pending_beacons)) {
1499 spin_unlock_bh(&reg_pending_beacons_lock);
1500 goto out;
1503 list_for_each_entry_safe(pending_beacon, tmp,
1504 &reg_pending_beacons, list) {
1506 list_del_init(&pending_beacon->list);
1508 /* Applies the beacon hint to current wiphys */
1509 list_for_each_entry(drv, &cfg80211_drv_list, list)
1510 wiphy_update_new_beacon(&drv->wiphy, pending_beacon);
1512 /* Remembers the beacon hint for new wiphys or reg changes */
1513 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1516 spin_unlock_bh(&reg_pending_beacons_lock);
1517 out:
1518 mutex_unlock(&cfg80211_mutex);
1521 static void reg_todo(struct work_struct *work)
1523 reg_process_pending_hints();
1524 reg_process_pending_beacon_hints();
1527 static DECLARE_WORK(reg_work, reg_todo);
1529 static void queue_regulatory_request(struct regulatory_request *request)
1531 spin_lock(&reg_requests_lock);
1532 list_add_tail(&request->list, &reg_requests_list);
1533 spin_unlock(&reg_requests_lock);
1535 schedule_work(&reg_work);
1538 /* Core regulatory hint -- happens once during cfg80211_init() */
1539 static int regulatory_hint_core(const char *alpha2)
1541 struct regulatory_request *request;
1543 BUG_ON(last_request);
1545 request = kzalloc(sizeof(struct regulatory_request),
1546 GFP_KERNEL);
1547 if (!request)
1548 return -ENOMEM;
1550 request->alpha2[0] = alpha2[0];
1551 request->alpha2[1] = alpha2[1];
1552 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1554 queue_regulatory_request(request);
1557 * This ensures last_request is populated once modules
1558 * come swinging in and calling regulatory hints and
1559 * wiphy_apply_custom_regulatory().
1561 flush_scheduled_work();
1563 return 0;
1566 /* User hints */
1567 int regulatory_hint_user(const char *alpha2)
1569 struct regulatory_request *request;
1571 BUG_ON(!alpha2);
1573 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1574 if (!request)
1575 return -ENOMEM;
1577 request->wiphy_idx = WIPHY_IDX_STALE;
1578 request->alpha2[0] = alpha2[0];
1579 request->alpha2[1] = alpha2[1];
1580 request->initiator = NL80211_REGDOM_SET_BY_USER,
1582 queue_regulatory_request(request);
1584 return 0;
1587 /* Driver hints */
1588 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1590 struct regulatory_request *request;
1592 BUG_ON(!alpha2);
1593 BUG_ON(!wiphy);
1595 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1596 if (!request)
1597 return -ENOMEM;
1599 request->wiphy_idx = get_wiphy_idx(wiphy);
1601 /* Must have registered wiphy first */
1602 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1604 request->alpha2[0] = alpha2[0];
1605 request->alpha2[1] = alpha2[1];
1606 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1608 queue_regulatory_request(request);
1610 return 0;
1612 EXPORT_SYMBOL(regulatory_hint);
1614 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1615 u32 country_ie_checksum)
1617 struct wiphy *request_wiphy;
1619 assert_cfg80211_lock();
1621 if (unlikely(last_request->initiator !=
1622 NL80211_REGDOM_SET_BY_COUNTRY_IE))
1623 return false;
1625 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1627 if (!request_wiphy)
1628 return false;
1630 if (likely(request_wiphy != wiphy))
1631 return !country_ie_integrity_changes(country_ie_checksum);
1633 * We should not have let these through at this point, they
1634 * should have been picked up earlier by the first alpha2 check
1635 * on the device
1637 if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1638 return true;
1639 return false;
1642 void regulatory_hint_11d(struct wiphy *wiphy,
1643 u8 *country_ie,
1644 u8 country_ie_len)
1646 struct ieee80211_regdomain *rd = NULL;
1647 char alpha2[2];
1648 u32 checksum = 0;
1649 enum environment_cap env = ENVIRON_ANY;
1650 struct regulatory_request *request;
1652 mutex_lock(&cfg80211_mutex);
1654 if (unlikely(!last_request)) {
1655 mutex_unlock(&cfg80211_mutex);
1656 return;
1659 /* IE len must be evenly divisible by 2 */
1660 if (country_ie_len & 0x01)
1661 goto out;
1663 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1664 goto out;
1667 * Pending country IE processing, this can happen after we
1668 * call CRDA and wait for a response if a beacon was received before
1669 * we were able to process the last regulatory_hint_11d() call
1671 if (country_ie_regdomain)
1672 goto out;
1674 alpha2[0] = country_ie[0];
1675 alpha2[1] = country_ie[1];
1677 if (country_ie[2] == 'I')
1678 env = ENVIRON_INDOOR;
1679 else if (country_ie[2] == 'O')
1680 env = ENVIRON_OUTDOOR;
1683 * We will run this for *every* beacon processed for the BSSID, so
1684 * we optimize an early check to exit out early if we don't have to
1685 * do anything
1687 if (likely(last_request->initiator ==
1688 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1689 wiphy_idx_valid(last_request->wiphy_idx))) {
1690 struct cfg80211_registered_device *drv_last_ie;
1692 drv_last_ie =
1693 cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1696 * Lets keep this simple -- we trust the first AP
1697 * after we intersect with CRDA
1699 if (likely(&drv_last_ie->wiphy == wiphy)) {
1701 * Ignore IEs coming in on this wiphy with
1702 * the same alpha2 and environment cap
1704 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1705 alpha2) &&
1706 env == drv_last_ie->env)) {
1707 goto out;
1710 * the wiphy moved on to another BSSID or the AP
1711 * was reconfigured. XXX: We need to deal with the
1712 * case where the user suspends and goes to goes
1713 * to another country, and then gets IEs from an
1714 * AP with different settings
1716 goto out;
1717 } else {
1719 * Ignore IEs coming in on two separate wiphys with
1720 * the same alpha2 and environment cap
1722 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1723 alpha2) &&
1724 env == drv_last_ie->env)) {
1725 goto out;
1727 /* We could potentially intersect though */
1728 goto out;
1732 rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1733 if (!rd)
1734 goto out;
1737 * This will not happen right now but we leave it here for the
1738 * the future when we want to add suspend/resume support and having
1739 * the user move to another country after doing so, or having the user
1740 * move to another AP. Right now we just trust the first AP.
1742 * If we hit this before we add this support we want to be informed of
1743 * it as it would indicate a mistake in the current design
1745 if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1746 goto free_rd_out;
1748 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1749 if (!request)
1750 goto free_rd_out;
1753 * We keep this around for when CRDA comes back with a response so
1754 * we can intersect with that
1756 country_ie_regdomain = rd;
1758 request->wiphy_idx = get_wiphy_idx(wiphy);
1759 request->alpha2[0] = rd->alpha2[0];
1760 request->alpha2[1] = rd->alpha2[1];
1761 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1762 request->country_ie_checksum = checksum;
1763 request->country_ie_env = env;
1765 mutex_unlock(&cfg80211_mutex);
1767 queue_regulatory_request(request);
1769 return;
1771 free_rd_out:
1772 kfree(rd);
1773 out:
1774 mutex_unlock(&cfg80211_mutex);
1776 EXPORT_SYMBOL(regulatory_hint_11d);
1778 static bool freq_is_chan_12_13_14(u16 freq)
1780 if (freq == ieee80211_channel_to_frequency(12) ||
1781 freq == ieee80211_channel_to_frequency(13) ||
1782 freq == ieee80211_channel_to_frequency(14))
1783 return true;
1784 return false;
1787 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1788 struct ieee80211_channel *beacon_chan,
1789 gfp_t gfp)
1791 struct reg_beacon *reg_beacon;
1793 if (likely((beacon_chan->beacon_found ||
1794 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1795 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1796 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1797 return 0;
1799 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1800 if (!reg_beacon)
1801 return -ENOMEM;
1803 #ifdef CONFIG_CFG80211_REG_DEBUG
1804 printk(KERN_DEBUG "cfg80211: Found new beacon on "
1805 "frequency: %d MHz (Ch %d) on %s\n",
1806 beacon_chan->center_freq,
1807 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1808 wiphy_name(wiphy));
1809 #endif
1810 memcpy(&reg_beacon->chan, beacon_chan,
1811 sizeof(struct ieee80211_channel));
1815 * Since we can be called from BH or and non-BH context
1816 * we must use spin_lock_bh()
1818 spin_lock_bh(&reg_pending_beacons_lock);
1819 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1820 spin_unlock_bh(&reg_pending_beacons_lock);
1822 schedule_work(&reg_work);
1824 return 0;
1827 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1829 unsigned int i;
1830 const struct ieee80211_reg_rule *reg_rule = NULL;
1831 const struct ieee80211_freq_range *freq_range = NULL;
1832 const struct ieee80211_power_rule *power_rule = NULL;
1834 printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1835 "(max_antenna_gain, max_eirp)\n");
1837 for (i = 0; i < rd->n_reg_rules; i++) {
1838 reg_rule = &rd->reg_rules[i];
1839 freq_range = &reg_rule->freq_range;
1840 power_rule = &reg_rule->power_rule;
1843 * There may not be documentation for max antenna gain
1844 * in certain regions
1846 if (power_rule->max_antenna_gain)
1847 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1848 "(%d mBi, %d mBm)\n",
1849 freq_range->start_freq_khz,
1850 freq_range->end_freq_khz,
1851 freq_range->max_bandwidth_khz,
1852 power_rule->max_antenna_gain,
1853 power_rule->max_eirp);
1854 else
1855 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1856 "(N/A, %d mBm)\n",
1857 freq_range->start_freq_khz,
1858 freq_range->end_freq_khz,
1859 freq_range->max_bandwidth_khz,
1860 power_rule->max_eirp);
1864 static void print_regdomain(const struct ieee80211_regdomain *rd)
1867 if (is_intersected_alpha2(rd->alpha2)) {
1869 if (last_request->initiator ==
1870 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1871 struct cfg80211_registered_device *drv;
1872 drv = cfg80211_drv_by_wiphy_idx(
1873 last_request->wiphy_idx);
1874 if (drv) {
1875 printk(KERN_INFO "cfg80211: Current regulatory "
1876 "domain updated by AP to: %c%c\n",
1877 drv->country_ie_alpha2[0],
1878 drv->country_ie_alpha2[1]);
1879 } else
1880 printk(KERN_INFO "cfg80211: Current regulatory "
1881 "domain intersected: \n");
1882 } else
1883 printk(KERN_INFO "cfg80211: Current regulatory "
1884 "domain intersected: \n");
1885 } else if (is_world_regdom(rd->alpha2))
1886 printk(KERN_INFO "cfg80211: World regulatory "
1887 "domain updated:\n");
1888 else {
1889 if (is_unknown_alpha2(rd->alpha2))
1890 printk(KERN_INFO "cfg80211: Regulatory domain "
1891 "changed to driver built-in settings "
1892 "(unknown country)\n");
1893 else
1894 printk(KERN_INFO "cfg80211: Regulatory domain "
1895 "changed to country: %c%c\n",
1896 rd->alpha2[0], rd->alpha2[1]);
1898 print_rd_rules(rd);
1901 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1903 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1904 rd->alpha2[0], rd->alpha2[1]);
1905 print_rd_rules(rd);
1908 #ifdef CONFIG_CFG80211_REG_DEBUG
1909 static void reg_country_ie_process_debug(
1910 const struct ieee80211_regdomain *rd,
1911 const struct ieee80211_regdomain *country_ie_regdomain,
1912 const struct ieee80211_regdomain *intersected_rd)
1914 printk(KERN_DEBUG "cfg80211: Received country IE:\n");
1915 print_regdomain_info(country_ie_regdomain);
1916 printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
1917 print_regdomain_info(rd);
1918 if (intersected_rd) {
1919 printk(KERN_DEBUG "cfg80211: We intersect both of these "
1920 "and get:\n");
1921 print_regdomain_info(intersected_rd);
1922 return;
1924 printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
1926 #else
1927 static inline void reg_country_ie_process_debug(
1928 const struct ieee80211_regdomain *rd,
1929 const struct ieee80211_regdomain *country_ie_regdomain,
1930 const struct ieee80211_regdomain *intersected_rd)
1933 #endif
1935 /* Takes ownership of rd only if it doesn't fail */
1936 static int __set_regdom(const struct ieee80211_regdomain *rd)
1938 const struct ieee80211_regdomain *intersected_rd = NULL;
1939 struct cfg80211_registered_device *drv = NULL;
1940 struct wiphy *request_wiphy;
1941 /* Some basic sanity checks first */
1943 if (is_world_regdom(rd->alpha2)) {
1944 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1945 return -EINVAL;
1946 update_world_regdomain(rd);
1947 return 0;
1950 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1951 !is_unknown_alpha2(rd->alpha2))
1952 return -EINVAL;
1954 if (!last_request)
1955 return -EINVAL;
1958 * Lets only bother proceeding on the same alpha2 if the current
1959 * rd is non static (it means CRDA was present and was used last)
1960 * and the pending request came in from a country IE
1962 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1964 * If someone else asked us to change the rd lets only bother
1965 * checking if the alpha2 changes if CRDA was already called
1967 if (!is_old_static_regdom(cfg80211_regdomain) &&
1968 !regdom_changes(rd->alpha2))
1969 return -EINVAL;
1973 * Now lets set the regulatory domain, update all driver channels
1974 * and finally inform them of what we have done, in case they want
1975 * to review or adjust their own settings based on their own
1976 * internal EEPROM data
1979 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1980 return -EINVAL;
1982 if (!is_valid_rd(rd)) {
1983 printk(KERN_ERR "cfg80211: Invalid "
1984 "regulatory domain detected:\n");
1985 print_regdomain_info(rd);
1986 return -EINVAL;
1989 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1991 if (!last_request->intersect) {
1992 int r;
1994 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1995 reset_regdomains();
1996 cfg80211_regdomain = rd;
1997 return 0;
2001 * For a driver hint, lets copy the regulatory domain the
2002 * driver wanted to the wiphy to deal with conflicts
2005 BUG_ON(request_wiphy->regd);
2007 r = reg_copy_regd(&request_wiphy->regd, rd);
2008 if (r)
2009 return r;
2011 reset_regdomains();
2012 cfg80211_regdomain = rd;
2013 return 0;
2016 /* Intersection requires a bit more work */
2018 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2020 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2021 if (!intersected_rd)
2022 return -EINVAL;
2025 * We can trash what CRDA provided now.
2026 * However if a driver requested this specific regulatory
2027 * domain we keep it for its private use
2029 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2030 request_wiphy->regd = rd;
2031 else
2032 kfree(rd);
2034 rd = NULL;
2036 reset_regdomains();
2037 cfg80211_regdomain = intersected_rd;
2039 return 0;
2043 * Country IE requests are handled a bit differently, we intersect
2044 * the country IE rd with what CRDA believes that country should have
2048 * Userspace could have sent two replies with only
2049 * one kernel request. By the second reply we would have
2050 * already processed and consumed the country_ie_regdomain.
2052 if (!country_ie_regdomain)
2053 return -EALREADY;
2054 BUG_ON(rd == country_ie_regdomain);
2057 * Intersect what CRDA returned and our what we
2058 * had built from the Country IE received
2061 intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2063 reg_country_ie_process_debug(rd,
2064 country_ie_regdomain,
2065 intersected_rd);
2067 kfree(country_ie_regdomain);
2068 country_ie_regdomain = NULL;
2070 if (!intersected_rd)
2071 return -EINVAL;
2073 drv = wiphy_to_dev(request_wiphy);
2075 drv->country_ie_alpha2[0] = rd->alpha2[0];
2076 drv->country_ie_alpha2[1] = rd->alpha2[1];
2077 drv->env = last_request->country_ie_env;
2079 BUG_ON(intersected_rd == rd);
2081 kfree(rd);
2082 rd = NULL;
2084 reset_regdomains();
2085 cfg80211_regdomain = intersected_rd;
2087 return 0;
2092 * Use this call to set the current regulatory domain. Conflicts with
2093 * multiple drivers can be ironed out later. Caller must've already
2094 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2096 int set_regdom(const struct ieee80211_regdomain *rd)
2098 int r;
2100 assert_cfg80211_lock();
2102 /* Note that this doesn't update the wiphys, this is done below */
2103 r = __set_regdom(rd);
2104 if (r) {
2105 kfree(rd);
2106 return r;
2109 /* This would make this whole thing pointless */
2110 if (!last_request->intersect)
2111 BUG_ON(rd != cfg80211_regdomain);
2113 /* update all wiphys now with the new established regulatory domain */
2114 update_all_wiphy_regulatory(last_request->initiator);
2116 print_regdomain(cfg80211_regdomain);
2118 nl80211_send_reg_change_event(last_request);
2120 return r;
2123 /* Caller must hold cfg80211_mutex */
2124 void reg_device_remove(struct wiphy *wiphy)
2126 struct wiphy *request_wiphy = NULL;
2128 assert_cfg80211_lock();
2130 if (last_request)
2131 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2133 kfree(wiphy->regd);
2134 if (!last_request || !request_wiphy)
2135 return;
2136 if (request_wiphy != wiphy)
2137 return;
2138 last_request->wiphy_idx = WIPHY_IDX_STALE;
2139 last_request->country_ie_env = ENVIRON_ANY;
2142 int regulatory_init(void)
2144 int err = 0;
2146 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2147 if (IS_ERR(reg_pdev))
2148 return PTR_ERR(reg_pdev);
2150 spin_lock_init(&reg_requests_lock);
2151 spin_lock_init(&reg_pending_beacons_lock);
2153 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
2154 cfg80211_regdomain = static_regdom(ieee80211_regdom);
2156 printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2157 print_regdomain_info(cfg80211_regdomain);
2159 * The old code still requests for a new regdomain and if
2160 * you have CRDA you get it updated, otherwise you get
2161 * stuck with the static values. Since "EU" is not a valid
2162 * ISO / IEC 3166 alpha2 code we can't expect userpace to
2163 * give us a regulatory domain for it. We need last_request
2164 * iniitalized though so lets just send a request which we
2165 * know will be ignored... this crap will be removed once
2166 * OLD_REG dies.
2168 err = regulatory_hint_core(ieee80211_regdom);
2169 #else
2170 cfg80211_regdomain = cfg80211_world_regdom;
2172 err = regulatory_hint_core(ieee80211_regdom);
2173 #endif
2174 if (err) {
2175 if (err == -ENOMEM)
2176 return err;
2178 * N.B. kobject_uevent_env() can fail mainly for when we're out
2179 * memory which is handled and propagated appropriately above
2180 * but it can also fail during a netlink_broadcast() or during
2181 * early boot for call_usermodehelper(). For now treat these
2182 * errors as non-fatal.
2184 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2185 "to call CRDA during init");
2186 #ifdef CONFIG_CFG80211_REG_DEBUG
2187 /* We want to find out exactly why when debugging */
2188 WARN_ON(err);
2189 #endif
2192 return 0;
2195 void regulatory_exit(void)
2197 struct regulatory_request *reg_request, *tmp;
2198 struct reg_beacon *reg_beacon, *btmp;
2200 cancel_work_sync(&reg_work);
2202 mutex_lock(&cfg80211_mutex);
2204 reset_regdomains();
2206 kfree(country_ie_regdomain);
2207 country_ie_regdomain = NULL;
2209 kfree(last_request);
2211 platform_device_unregister(reg_pdev);
2213 spin_lock_bh(&reg_pending_beacons_lock);
2214 if (!list_empty(&reg_pending_beacons)) {
2215 list_for_each_entry_safe(reg_beacon, btmp,
2216 &reg_pending_beacons, list) {
2217 list_del(&reg_beacon->list);
2218 kfree(reg_beacon);
2221 spin_unlock_bh(&reg_pending_beacons_lock);
2223 if (!list_empty(&reg_beacon_list)) {
2224 list_for_each_entry_safe(reg_beacon, btmp,
2225 &reg_beacon_list, list) {
2226 list_del(&reg_beacon->list);
2227 kfree(reg_beacon);
2231 spin_lock(&reg_requests_lock);
2232 if (!list_empty(&reg_requests_list)) {
2233 list_for_each_entry_safe(reg_request, tmp,
2234 &reg_requests_list, list) {
2235 list_del(&reg_request->list);
2236 kfree(reg_request);
2239 spin_unlock(&reg_requests_lock);
2241 mutex_unlock(&cfg80211_mutex);