x86: create ipi.c
[linux-2.6/mini2440.git] / arch / x86 / kernel / smp_32.c
blobd80623aba9c5a24722efedea8009aec30d59fba4
1 /*
2 * Intel SMP support routines.
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
7 * This code is released under the GNU General Public License version 2 or
8 * later.
9 */
11 #include <linux/init.h>
13 #include <linux/mm.h>
14 #include <linux/delay.h>
15 #include <linux/spinlock.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/mc146818rtc.h>
18 #include <linux/cache.h>
19 #include <linux/interrupt.h>
20 #include <linux/cpu.h>
21 #include <linux/module.h>
23 #include <asm/mtrr.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 #include <mach_apic.h>
27 #include <asm/proto.h>
30 * Some notes on x86 processor bugs affecting SMP operation:
32 * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
33 * The Linux implications for SMP are handled as follows:
35 * Pentium III / [Xeon]
36 * None of the E1AP-E3AP errata are visible to the user.
38 * E1AP. see PII A1AP
39 * E2AP. see PII A2AP
40 * E3AP. see PII A3AP
42 * Pentium II / [Xeon]
43 * None of the A1AP-A3AP errata are visible to the user.
45 * A1AP. see PPro 1AP
46 * A2AP. see PPro 2AP
47 * A3AP. see PPro 7AP
49 * Pentium Pro
50 * None of 1AP-9AP errata are visible to the normal user,
51 * except occasional delivery of 'spurious interrupt' as trap #15.
52 * This is very rare and a non-problem.
54 * 1AP. Linux maps APIC as non-cacheable
55 * 2AP. worked around in hardware
56 * 3AP. fixed in C0 and above steppings microcode update.
57 * Linux does not use excessive STARTUP_IPIs.
58 * 4AP. worked around in hardware
59 * 5AP. symmetric IO mode (normal Linux operation) not affected.
60 * 'noapic' mode has vector 0xf filled out properly.
61 * 6AP. 'noapic' mode might be affected - fixed in later steppings
62 * 7AP. We do not assume writes to the LVT deassering IRQs
63 * 8AP. We do not enable low power mode (deep sleep) during MP bootup
64 * 9AP. We do not use mixed mode
66 * Pentium
67 * There is a marginal case where REP MOVS on 100MHz SMP
68 * machines with B stepping processors can fail. XXX should provide
69 * an L1cache=Writethrough or L1cache=off option.
71 * B stepping CPUs may hang. There are hardware work arounds
72 * for this. We warn about it in case your board doesn't have the work
73 * arounds. Basically that's so I can tell anyone with a B stepping
74 * CPU and SMP problems "tough".
76 * Specific items [From Pentium Processor Specification Update]
78 * 1AP. Linux doesn't use remote read
79 * 2AP. Linux doesn't trust APIC errors
80 * 3AP. We work around this
81 * 4AP. Linux never generated 3 interrupts of the same priority
82 * to cause a lost local interrupt.
83 * 5AP. Remote read is never used
84 * 6AP. not affected - worked around in hardware
85 * 7AP. not affected - worked around in hardware
86 * 8AP. worked around in hardware - we get explicit CS errors if not
87 * 9AP. only 'noapic' mode affected. Might generate spurious
88 * interrupts, we log only the first one and count the
89 * rest silently.
90 * 10AP. not affected - worked around in hardware
91 * 11AP. Linux reads the APIC between writes to avoid this, as per
92 * the documentation. Make sure you preserve this as it affects
93 * the C stepping chips too.
94 * 12AP. not affected - worked around in hardware
95 * 13AP. not affected - worked around in hardware
96 * 14AP. we always deassert INIT during bootup
97 * 15AP. not affected - worked around in hardware
98 * 16AP. not affected - worked around in hardware
99 * 17AP. not affected - worked around in hardware
100 * 18AP. not affected - worked around in hardware
101 * 19AP. not affected - worked around in BIOS
103 * If this sounds worrying believe me these bugs are either ___RARE___,
104 * or are signal timing bugs worked around in hardware and there's
105 * about nothing of note with C stepping upwards.
108 DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, };
110 #include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
113 * Smarter SMP flushing macros.
114 * c/o Linus Torvalds.
116 * These mean you can really definitely utterly forget about
117 * writing to user space from interrupts. (Its not allowed anyway).
119 * Optimizations Manfred Spraul <manfred@colorfullife.com>
122 static cpumask_t flush_cpumask;
123 static struct mm_struct * flush_mm;
124 static unsigned long flush_va;
125 static DEFINE_SPINLOCK(tlbstate_lock);
128 * We cannot call mmdrop() because we are in interrupt context,
129 * instead update mm->cpu_vm_mask.
131 * We need to reload %cr3 since the page tables may be going
132 * away from under us..
134 void leave_mm(int cpu)
136 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
137 BUG();
138 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
139 load_cr3(swapper_pg_dir);
141 EXPORT_SYMBOL_GPL(leave_mm);
145 * The flush IPI assumes that a thread switch happens in this order:
146 * [cpu0: the cpu that switches]
147 * 1) switch_mm() either 1a) or 1b)
148 * 1a) thread switch to a different mm
149 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
150 * Stop ipi delivery for the old mm. This is not synchronized with
151 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
152 * for the wrong mm, and in the worst case we perform a superfluous
153 * tlb flush.
154 * 1a2) set cpu_tlbstate to TLBSTATE_OK
155 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
156 * was in lazy tlb mode.
157 * 1a3) update cpu_tlbstate[].active_mm
158 * Now cpu0 accepts tlb flushes for the new mm.
159 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
160 * Now the other cpus will send tlb flush ipis.
161 * 1a4) change cr3.
162 * 1b) thread switch without mm change
163 * cpu_tlbstate[].active_mm is correct, cpu0 already handles
164 * flush ipis.
165 * 1b1) set cpu_tlbstate to TLBSTATE_OK
166 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
167 * Atomically set the bit [other cpus will start sending flush ipis],
168 * and test the bit.
169 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
170 * 2) switch %%esp, ie current
172 * The interrupt must handle 2 special cases:
173 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
174 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
175 * runs in kernel space, the cpu could load tlb entries for user space
176 * pages.
178 * The good news is that cpu_tlbstate is local to each cpu, no
179 * write/read ordering problems.
183 * TLB flush IPI:
185 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
186 * 2) Leave the mm if we are in the lazy tlb mode.
189 void smp_invalidate_interrupt(struct pt_regs *regs)
191 unsigned long cpu;
193 cpu = get_cpu();
195 if (!cpu_isset(cpu, flush_cpumask))
196 goto out;
198 * This was a BUG() but until someone can quote me the
199 * line from the intel manual that guarantees an IPI to
200 * multiple CPUs is retried _only_ on the erroring CPUs
201 * its staying as a return
203 * BUG();
206 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
207 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
208 if (flush_va == TLB_FLUSH_ALL)
209 local_flush_tlb();
210 else
211 __flush_tlb_one(flush_va);
212 } else
213 leave_mm(cpu);
215 ack_APIC_irq();
216 smp_mb__before_clear_bit();
217 cpu_clear(cpu, flush_cpumask);
218 smp_mb__after_clear_bit();
219 out:
220 put_cpu_no_resched();
221 __get_cpu_var(irq_stat).irq_tlb_count++;
224 void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm,
225 unsigned long va)
227 cpumask_t cpumask = *cpumaskp;
230 * A couple of (to be removed) sanity checks:
232 * - current CPU must not be in mask
233 * - mask must exist :)
235 BUG_ON(cpus_empty(cpumask));
236 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
237 BUG_ON(!mm);
239 #ifdef CONFIG_HOTPLUG_CPU
240 /* If a CPU which we ran on has gone down, OK. */
241 cpus_and(cpumask, cpumask, cpu_online_map);
242 if (unlikely(cpus_empty(cpumask)))
243 return;
244 #endif
247 * i'm not happy about this global shared spinlock in the
248 * MM hot path, but we'll see how contended it is.
249 * AK: x86-64 has a faster method that could be ported.
251 spin_lock(&tlbstate_lock);
253 flush_mm = mm;
254 flush_va = va;
255 cpus_or(flush_cpumask, cpumask, flush_cpumask);
257 * We have to send the IPI only to
258 * CPUs affected.
260 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
262 while (!cpus_empty(flush_cpumask))
263 /* nothing. lockup detection does not belong here */
264 cpu_relax();
266 flush_mm = NULL;
267 flush_va = 0;
268 spin_unlock(&tlbstate_lock);
271 void flush_tlb_current_task(void)
273 struct mm_struct *mm = current->mm;
274 cpumask_t cpu_mask;
276 preempt_disable();
277 cpu_mask = mm->cpu_vm_mask;
278 cpu_clear(smp_processor_id(), cpu_mask);
280 local_flush_tlb();
281 if (!cpus_empty(cpu_mask))
282 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
283 preempt_enable();
286 void flush_tlb_mm (struct mm_struct * mm)
288 cpumask_t cpu_mask;
290 preempt_disable();
291 cpu_mask = mm->cpu_vm_mask;
292 cpu_clear(smp_processor_id(), cpu_mask);
294 if (current->active_mm == mm) {
295 if (current->mm)
296 local_flush_tlb();
297 else
298 leave_mm(smp_processor_id());
300 if (!cpus_empty(cpu_mask))
301 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
303 preempt_enable();
306 void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
308 struct mm_struct *mm = vma->vm_mm;
309 cpumask_t cpu_mask;
311 preempt_disable();
312 cpu_mask = mm->cpu_vm_mask;
313 cpu_clear(smp_processor_id(), cpu_mask);
315 if (current->active_mm == mm) {
316 if(current->mm)
317 __flush_tlb_one(va);
318 else
319 leave_mm(smp_processor_id());
322 if (!cpus_empty(cpu_mask))
323 flush_tlb_others(cpu_mask, mm, va);
325 preempt_enable();
327 EXPORT_SYMBOL(flush_tlb_page);
329 static void do_flush_tlb_all(void* info)
331 unsigned long cpu = smp_processor_id();
333 __flush_tlb_all();
334 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
335 leave_mm(cpu);
338 void flush_tlb_all(void)
340 on_each_cpu(do_flush_tlb_all, NULL, 1, 1);