cpuidle: Add decaying history logic to menu idle predictor
[linux-2.6/mini2440.git] / include / linux / pagemap.h
blob709742be02f0a1bac5336d5e38b172a2b7d9f2b7
1 #ifndef _LINUX_PAGEMAP_H
2 #define _LINUX_PAGEMAP_H
4 /*
5 * Copyright 1995 Linus Torvalds
6 */
7 #include <linux/mm.h>
8 #include <linux/fs.h>
9 #include <linux/list.h>
10 #include <linux/highmem.h>
11 #include <linux/compiler.h>
12 #include <asm/uaccess.h>
13 #include <linux/gfp.h>
14 #include <linux/bitops.h>
15 #include <linux/hardirq.h> /* for in_interrupt() */
18 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
19 * allocation mode flags.
21 #define AS_EIO (__GFP_BITS_SHIFT + 0) /* IO error on async write */
22 #define AS_ENOSPC (__GFP_BITS_SHIFT + 1) /* ENOSPC on async write */
23 #define AS_MM_ALL_LOCKS (__GFP_BITS_SHIFT + 2) /* under mm_take_all_locks() */
25 static inline void mapping_set_error(struct address_space *mapping, int error)
27 if (unlikely(error)) {
28 if (error == -ENOSPC)
29 set_bit(AS_ENOSPC, &mapping->flags);
30 else
31 set_bit(AS_EIO, &mapping->flags);
35 #ifdef CONFIG_UNEVICTABLE_LRU
36 #define AS_UNEVICTABLE (__GFP_BITS_SHIFT + 2) /* e.g., ramdisk, SHM_LOCK */
38 static inline void mapping_set_unevictable(struct address_space *mapping)
40 set_bit(AS_UNEVICTABLE, &mapping->flags);
43 static inline void mapping_clear_unevictable(struct address_space *mapping)
45 clear_bit(AS_UNEVICTABLE, &mapping->flags);
48 static inline int mapping_unevictable(struct address_space *mapping)
50 if (likely(mapping))
51 return test_bit(AS_UNEVICTABLE, &mapping->flags);
52 return !!mapping;
54 #else
55 static inline void mapping_set_unevictable(struct address_space *mapping) { }
56 static inline void mapping_clear_unevictable(struct address_space *mapping) { }
57 static inline int mapping_unevictable(struct address_space *mapping)
59 return 0;
61 #endif
63 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
65 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
69 * This is non-atomic. Only to be used before the mapping is activated.
70 * Probably needs a barrier...
72 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
74 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
75 (__force unsigned long)mask;
79 * The page cache can done in larger chunks than
80 * one page, because it allows for more efficient
81 * throughput (it can then be mapped into user
82 * space in smaller chunks for same flexibility).
84 * Or rather, it _will_ be done in larger chunks.
86 #define PAGE_CACHE_SHIFT PAGE_SHIFT
87 #define PAGE_CACHE_SIZE PAGE_SIZE
88 #define PAGE_CACHE_MASK PAGE_MASK
89 #define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
91 #define page_cache_get(page) get_page(page)
92 #define page_cache_release(page) put_page(page)
93 void release_pages(struct page **pages, int nr, int cold);
96 * speculatively take a reference to a page.
97 * If the page is free (_count == 0), then _count is untouched, and 0
98 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
100 * This function must be called inside the same rcu_read_lock() section as has
101 * been used to lookup the page in the pagecache radix-tree (or page table):
102 * this allows allocators to use a synchronize_rcu() to stabilize _count.
104 * Unless an RCU grace period has passed, the count of all pages coming out
105 * of the allocator must be considered unstable. page_count may return higher
106 * than expected, and put_page must be able to do the right thing when the
107 * page has been finished with, no matter what it is subsequently allocated
108 * for (because put_page is what is used here to drop an invalid speculative
109 * reference).
111 * This is the interesting part of the lockless pagecache (and lockless
112 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
113 * has the following pattern:
114 * 1. find page in radix tree
115 * 2. conditionally increment refcount
116 * 3. check the page is still in pagecache (if no, goto 1)
118 * Remove-side that cares about stability of _count (eg. reclaim) has the
119 * following (with tree_lock held for write):
120 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
121 * B. remove page from pagecache
122 * C. free the page
124 * There are 2 critical interleavings that matter:
125 * - 2 runs before A: in this case, A sees elevated refcount and bails out
126 * - A runs before 2: in this case, 2 sees zero refcount and retries;
127 * subsequently, B will complete and 1 will find no page, causing the
128 * lookup to return NULL.
130 * It is possible that between 1 and 2, the page is removed then the exact same
131 * page is inserted into the same position in pagecache. That's OK: the
132 * old find_get_page using tree_lock could equally have run before or after
133 * such a re-insertion, depending on order that locks are granted.
135 * Lookups racing against pagecache insertion isn't a big problem: either 1
136 * will find the page or it will not. Likewise, the old find_get_page could run
137 * either before the insertion or afterwards, depending on timing.
139 static inline int page_cache_get_speculative(struct page *page)
141 VM_BUG_ON(in_interrupt());
143 #if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
144 # ifdef CONFIG_PREEMPT
145 VM_BUG_ON(!in_atomic());
146 # endif
148 * Preempt must be disabled here - we rely on rcu_read_lock doing
149 * this for us.
151 * Pagecache won't be truncated from interrupt context, so if we have
152 * found a page in the radix tree here, we have pinned its refcount by
153 * disabling preempt, and hence no need for the "speculative get" that
154 * SMP requires.
156 VM_BUG_ON(page_count(page) == 0);
157 atomic_inc(&page->_count);
159 #else
160 if (unlikely(!get_page_unless_zero(page))) {
162 * Either the page has been freed, or will be freed.
163 * In either case, retry here and the caller should
164 * do the right thing (see comments above).
166 return 0;
168 #endif
169 VM_BUG_ON(PageTail(page));
171 return 1;
175 * Same as above, but add instead of inc (could just be merged)
177 static inline int page_cache_add_speculative(struct page *page, int count)
179 VM_BUG_ON(in_interrupt());
181 #if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
182 # ifdef CONFIG_PREEMPT
183 VM_BUG_ON(!in_atomic());
184 # endif
185 VM_BUG_ON(page_count(page) == 0);
186 atomic_add(count, &page->_count);
188 #else
189 if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
190 return 0;
191 #endif
192 VM_BUG_ON(PageCompound(page) && page != compound_head(page));
194 return 1;
197 static inline int page_freeze_refs(struct page *page, int count)
199 return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
202 static inline void page_unfreeze_refs(struct page *page, int count)
204 VM_BUG_ON(page_count(page) != 0);
205 VM_BUG_ON(count == 0);
207 atomic_set(&page->_count, count);
210 #ifdef CONFIG_NUMA
211 extern struct page *__page_cache_alloc(gfp_t gfp);
212 #else
213 static inline struct page *__page_cache_alloc(gfp_t gfp)
215 return alloc_pages(gfp, 0);
217 #endif
219 static inline struct page *page_cache_alloc(struct address_space *x)
221 return __page_cache_alloc(mapping_gfp_mask(x));
224 static inline struct page *page_cache_alloc_cold(struct address_space *x)
226 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
229 typedef int filler_t(void *, struct page *);
231 extern struct page * find_get_page(struct address_space *mapping,
232 pgoff_t index);
233 extern struct page * find_lock_page(struct address_space *mapping,
234 pgoff_t index);
235 extern struct page * find_or_create_page(struct address_space *mapping,
236 pgoff_t index, gfp_t gfp_mask);
237 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
238 unsigned int nr_pages, struct page **pages);
239 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
240 unsigned int nr_pages, struct page **pages);
241 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
242 int tag, unsigned int nr_pages, struct page **pages);
244 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index);
247 * Returns locked page at given index in given cache, creating it if needed.
249 static inline struct page *grab_cache_page(struct address_space *mapping,
250 pgoff_t index)
252 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
255 extern struct page * grab_cache_page_nowait(struct address_space *mapping,
256 pgoff_t index);
257 extern struct page * read_cache_page_async(struct address_space *mapping,
258 pgoff_t index, filler_t *filler,
259 void *data);
260 extern struct page * read_cache_page(struct address_space *mapping,
261 pgoff_t index, filler_t *filler,
262 void *data);
263 extern int read_cache_pages(struct address_space *mapping,
264 struct list_head *pages, filler_t *filler, void *data);
266 static inline struct page *read_mapping_page_async(
267 struct address_space *mapping,
268 pgoff_t index, void *data)
270 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
271 return read_cache_page_async(mapping, index, filler, data);
274 static inline struct page *read_mapping_page(struct address_space *mapping,
275 pgoff_t index, void *data)
277 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
278 return read_cache_page(mapping, index, filler, data);
282 * Return byte-offset into filesystem object for page.
284 static inline loff_t page_offset(struct page *page)
286 return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
289 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
290 unsigned long address)
292 pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
293 pgoff += vma->vm_pgoff;
294 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
297 extern void __lock_page(struct page *page);
298 extern int __lock_page_killable(struct page *page);
299 extern void __lock_page_nosync(struct page *page);
300 extern void unlock_page(struct page *page);
302 static inline void __set_page_locked(struct page *page)
304 __set_bit(PG_locked, &page->flags);
307 static inline void __clear_page_locked(struct page *page)
309 __clear_bit(PG_locked, &page->flags);
312 static inline int trylock_page(struct page *page)
314 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
318 * lock_page may only be called if we have the page's inode pinned.
320 static inline void lock_page(struct page *page)
322 might_sleep();
323 if (!trylock_page(page))
324 __lock_page(page);
328 * lock_page_killable is like lock_page but can be interrupted by fatal
329 * signals. It returns 0 if it locked the page and -EINTR if it was
330 * killed while waiting.
332 static inline int lock_page_killable(struct page *page)
334 might_sleep();
335 if (!trylock_page(page))
336 return __lock_page_killable(page);
337 return 0;
341 * lock_page_nosync should only be used if we can't pin the page's inode.
342 * Doesn't play quite so well with block device plugging.
344 static inline void lock_page_nosync(struct page *page)
346 might_sleep();
347 if (!trylock_page(page))
348 __lock_page_nosync(page);
352 * This is exported only for wait_on_page_locked/wait_on_page_writeback.
353 * Never use this directly!
355 extern void wait_on_page_bit(struct page *page, int bit_nr);
358 * Wait for a page to be unlocked.
360 * This must be called with the caller "holding" the page,
361 * ie with increased "page->count" so that the page won't
362 * go away during the wait..
364 static inline void wait_on_page_locked(struct page *page)
366 if (PageLocked(page))
367 wait_on_page_bit(page, PG_locked);
371 * Wait for a page to complete writeback
373 static inline void wait_on_page_writeback(struct page *page)
375 if (PageWriteback(page))
376 wait_on_page_bit(page, PG_writeback);
379 extern void end_page_writeback(struct page *page);
382 * Fault a userspace page into pagetables. Return non-zero on a fault.
384 * This assumes that two userspace pages are always sufficient. That's
385 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
387 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
389 int ret;
391 if (unlikely(size == 0))
392 return 0;
395 * Writing zeroes into userspace here is OK, because we know that if
396 * the zero gets there, we'll be overwriting it.
398 ret = __put_user(0, uaddr);
399 if (ret == 0) {
400 char __user *end = uaddr + size - 1;
403 * If the page was already mapped, this will get a cache miss
404 * for sure, so try to avoid doing it.
406 if (((unsigned long)uaddr & PAGE_MASK) !=
407 ((unsigned long)end & PAGE_MASK))
408 ret = __put_user(0, end);
410 return ret;
413 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
415 volatile char c;
416 int ret;
418 if (unlikely(size == 0))
419 return 0;
421 ret = __get_user(c, uaddr);
422 if (ret == 0) {
423 const char __user *end = uaddr + size - 1;
425 if (((unsigned long)uaddr & PAGE_MASK) !=
426 ((unsigned long)end & PAGE_MASK))
427 ret = __get_user(c, end);
429 return ret;
432 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
433 pgoff_t index, gfp_t gfp_mask);
434 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
435 pgoff_t index, gfp_t gfp_mask);
436 extern void remove_from_page_cache(struct page *page);
437 extern void __remove_from_page_cache(struct page *page);
440 * Like add_to_page_cache_locked, but used to add newly allocated pages:
441 * the page is new, so we can just run __set_page_locked() against it.
443 static inline int add_to_page_cache(struct page *page,
444 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
446 int error;
448 __set_page_locked(page);
449 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
450 if (unlikely(error))
451 __clear_page_locked(page);
452 return error;
455 #endif /* _LINUX_PAGEMAP_H */