appletalk: convert LTPC to net_device_ops
[linux-2.6/mini2440.git] / mm / shmem.c
blob7ec78e24a30dcc549670b88643078509bbd12e4d
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 * This file is released under the GPL.
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/swap.h>
31 #include <linux/ima.h>
33 static struct vfsmount *shm_mnt;
35 #ifdef CONFIG_SHMEM
37 * This virtual memory filesystem is heavily based on the ramfs. It
38 * extends ramfs by the ability to use swap and honor resource limits
39 * which makes it a completely usable filesystem.
42 #include <linux/xattr.h>
43 #include <linux/exportfs.h>
44 #include <linux/generic_acl.h>
45 #include <linux/mman.h>
46 #include <linux/pagemap.h>
47 #include <linux/string.h>
48 #include <linux/slab.h>
49 #include <linux/backing-dev.h>
50 #include <linux/shmem_fs.h>
51 #include <linux/writeback.h>
52 #include <linux/vfs.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
68 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
69 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
70 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
72 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
73 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
75 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
77 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
78 #define SHMEM_PAGEIN VM_READ
79 #define SHMEM_TRUNCATE VM_WRITE
81 /* Definition to limit shmem_truncate's steps between cond_rescheds */
82 #define LATENCY_LIMIT 64
84 /* Pretend that each entry is of this size in directory's i_size */
85 #define BOGO_DIRENT_SIZE 20
87 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
88 enum sgp_type {
89 SGP_READ, /* don't exceed i_size, don't allocate page */
90 SGP_CACHE, /* don't exceed i_size, may allocate page */
91 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
92 SGP_WRITE, /* may exceed i_size, may allocate page */
95 #ifdef CONFIG_TMPFS
96 static unsigned long shmem_default_max_blocks(void)
98 return totalram_pages / 2;
101 static unsigned long shmem_default_max_inodes(void)
103 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
105 #endif
107 static int shmem_getpage(struct inode *inode, unsigned long idx,
108 struct page **pagep, enum sgp_type sgp, int *type);
110 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
113 * The above definition of ENTRIES_PER_PAGE, and the use of
114 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
115 * might be reconsidered if it ever diverges from PAGE_SIZE.
117 * Mobility flags are masked out as swap vectors cannot move
119 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
120 PAGE_CACHE_SHIFT-PAGE_SHIFT);
123 static inline void shmem_dir_free(struct page *page)
125 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
128 static struct page **shmem_dir_map(struct page *page)
130 return (struct page **)kmap_atomic(page, KM_USER0);
133 static inline void shmem_dir_unmap(struct page **dir)
135 kunmap_atomic(dir, KM_USER0);
138 static swp_entry_t *shmem_swp_map(struct page *page)
140 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
143 static inline void shmem_swp_balance_unmap(void)
146 * When passing a pointer to an i_direct entry, to code which
147 * also handles indirect entries and so will shmem_swp_unmap,
148 * we must arrange for the preempt count to remain in balance.
149 * What kmap_atomic of a lowmem page does depends on config
150 * and architecture, so pretend to kmap_atomic some lowmem page.
152 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
155 static inline void shmem_swp_unmap(swp_entry_t *entry)
157 kunmap_atomic(entry, KM_USER1);
160 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
162 return sb->s_fs_info;
166 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
167 * for shared memory and for shared anonymous (/dev/zero) mappings
168 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
169 * consistent with the pre-accounting of private mappings ...
171 static inline int shmem_acct_size(unsigned long flags, loff_t size)
173 return (flags & VM_NORESERVE) ?
174 0 : security_vm_enough_memory_kern(VM_ACCT(size));
177 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
179 if (!(flags & VM_NORESERVE))
180 vm_unacct_memory(VM_ACCT(size));
184 * ... whereas tmpfs objects are accounted incrementally as
185 * pages are allocated, in order to allow huge sparse files.
186 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
187 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
189 static inline int shmem_acct_block(unsigned long flags)
191 return (flags & VM_NORESERVE) ?
192 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
195 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
197 if (flags & VM_NORESERVE)
198 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
201 static const struct super_operations shmem_ops;
202 static const struct address_space_operations shmem_aops;
203 static const struct file_operations shmem_file_operations;
204 static const struct inode_operations shmem_inode_operations;
205 static const struct inode_operations shmem_dir_inode_operations;
206 static const struct inode_operations shmem_special_inode_operations;
207 static struct vm_operations_struct shmem_vm_ops;
209 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
210 .ra_pages = 0, /* No readahead */
211 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
212 .unplug_io_fn = default_unplug_io_fn,
215 static LIST_HEAD(shmem_swaplist);
216 static DEFINE_MUTEX(shmem_swaplist_mutex);
218 static void shmem_free_blocks(struct inode *inode, long pages)
220 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
221 if (sbinfo->max_blocks) {
222 spin_lock(&sbinfo->stat_lock);
223 sbinfo->free_blocks += pages;
224 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
225 spin_unlock(&sbinfo->stat_lock);
229 static int shmem_reserve_inode(struct super_block *sb)
231 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
232 if (sbinfo->max_inodes) {
233 spin_lock(&sbinfo->stat_lock);
234 if (!sbinfo->free_inodes) {
235 spin_unlock(&sbinfo->stat_lock);
236 return -ENOSPC;
238 sbinfo->free_inodes--;
239 spin_unlock(&sbinfo->stat_lock);
241 return 0;
244 static void shmem_free_inode(struct super_block *sb)
246 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
247 if (sbinfo->max_inodes) {
248 spin_lock(&sbinfo->stat_lock);
249 sbinfo->free_inodes++;
250 spin_unlock(&sbinfo->stat_lock);
255 * shmem_recalc_inode - recalculate the size of an inode
256 * @inode: inode to recalc
258 * We have to calculate the free blocks since the mm can drop
259 * undirtied hole pages behind our back.
261 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
262 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
264 * It has to be called with the spinlock held.
266 static void shmem_recalc_inode(struct inode *inode)
268 struct shmem_inode_info *info = SHMEM_I(inode);
269 long freed;
271 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
272 if (freed > 0) {
273 info->alloced -= freed;
274 shmem_unacct_blocks(info->flags, freed);
275 shmem_free_blocks(inode, freed);
280 * shmem_swp_entry - find the swap vector position in the info structure
281 * @info: info structure for the inode
282 * @index: index of the page to find
283 * @page: optional page to add to the structure. Has to be preset to
284 * all zeros
286 * If there is no space allocated yet it will return NULL when
287 * page is NULL, else it will use the page for the needed block,
288 * setting it to NULL on return to indicate that it has been used.
290 * The swap vector is organized the following way:
292 * There are SHMEM_NR_DIRECT entries directly stored in the
293 * shmem_inode_info structure. So small files do not need an addional
294 * allocation.
296 * For pages with index > SHMEM_NR_DIRECT there is the pointer
297 * i_indirect which points to a page which holds in the first half
298 * doubly indirect blocks, in the second half triple indirect blocks:
300 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
301 * following layout (for SHMEM_NR_DIRECT == 16):
303 * i_indirect -> dir --> 16-19
304 * | +-> 20-23
306 * +-->dir2 --> 24-27
307 * | +-> 28-31
308 * | +-> 32-35
309 * | +-> 36-39
311 * +-->dir3 --> 40-43
312 * +-> 44-47
313 * +-> 48-51
314 * +-> 52-55
316 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
318 unsigned long offset;
319 struct page **dir;
320 struct page *subdir;
322 if (index < SHMEM_NR_DIRECT) {
323 shmem_swp_balance_unmap();
324 return info->i_direct+index;
326 if (!info->i_indirect) {
327 if (page) {
328 info->i_indirect = *page;
329 *page = NULL;
331 return NULL; /* need another page */
334 index -= SHMEM_NR_DIRECT;
335 offset = index % ENTRIES_PER_PAGE;
336 index /= ENTRIES_PER_PAGE;
337 dir = shmem_dir_map(info->i_indirect);
339 if (index >= ENTRIES_PER_PAGE/2) {
340 index -= ENTRIES_PER_PAGE/2;
341 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
342 index %= ENTRIES_PER_PAGE;
343 subdir = *dir;
344 if (!subdir) {
345 if (page) {
346 *dir = *page;
347 *page = NULL;
349 shmem_dir_unmap(dir);
350 return NULL; /* need another page */
352 shmem_dir_unmap(dir);
353 dir = shmem_dir_map(subdir);
356 dir += index;
357 subdir = *dir;
358 if (!subdir) {
359 if (!page || !(subdir = *page)) {
360 shmem_dir_unmap(dir);
361 return NULL; /* need a page */
363 *dir = subdir;
364 *page = NULL;
366 shmem_dir_unmap(dir);
367 return shmem_swp_map(subdir) + offset;
370 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
372 long incdec = value? 1: -1;
374 entry->val = value;
375 info->swapped += incdec;
376 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
377 struct page *page = kmap_atomic_to_page(entry);
378 set_page_private(page, page_private(page) + incdec);
383 * shmem_swp_alloc - get the position of the swap entry for the page.
384 * @info: info structure for the inode
385 * @index: index of the page to find
386 * @sgp: check and recheck i_size? skip allocation?
388 * If the entry does not exist, allocate it.
390 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
392 struct inode *inode = &info->vfs_inode;
393 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
394 struct page *page = NULL;
395 swp_entry_t *entry;
397 if (sgp != SGP_WRITE &&
398 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
399 return ERR_PTR(-EINVAL);
401 while (!(entry = shmem_swp_entry(info, index, &page))) {
402 if (sgp == SGP_READ)
403 return shmem_swp_map(ZERO_PAGE(0));
405 * Test free_blocks against 1 not 0, since we have 1 data
406 * page (and perhaps indirect index pages) yet to allocate:
407 * a waste to allocate index if we cannot allocate data.
409 if (sbinfo->max_blocks) {
410 spin_lock(&sbinfo->stat_lock);
411 if (sbinfo->free_blocks <= 1) {
412 spin_unlock(&sbinfo->stat_lock);
413 return ERR_PTR(-ENOSPC);
415 sbinfo->free_blocks--;
416 inode->i_blocks += BLOCKS_PER_PAGE;
417 spin_unlock(&sbinfo->stat_lock);
420 spin_unlock(&info->lock);
421 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
422 if (page)
423 set_page_private(page, 0);
424 spin_lock(&info->lock);
426 if (!page) {
427 shmem_free_blocks(inode, 1);
428 return ERR_PTR(-ENOMEM);
430 if (sgp != SGP_WRITE &&
431 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
432 entry = ERR_PTR(-EINVAL);
433 break;
435 if (info->next_index <= index)
436 info->next_index = index + 1;
438 if (page) {
439 /* another task gave its page, or truncated the file */
440 shmem_free_blocks(inode, 1);
441 shmem_dir_free(page);
443 if (info->next_index <= index && !IS_ERR(entry))
444 info->next_index = index + 1;
445 return entry;
449 * shmem_free_swp - free some swap entries in a directory
450 * @dir: pointer to the directory
451 * @edir: pointer after last entry of the directory
452 * @punch_lock: pointer to spinlock when needed for the holepunch case
454 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
455 spinlock_t *punch_lock)
457 spinlock_t *punch_unlock = NULL;
458 swp_entry_t *ptr;
459 int freed = 0;
461 for (ptr = dir; ptr < edir; ptr++) {
462 if (ptr->val) {
463 if (unlikely(punch_lock)) {
464 punch_unlock = punch_lock;
465 punch_lock = NULL;
466 spin_lock(punch_unlock);
467 if (!ptr->val)
468 continue;
470 free_swap_and_cache(*ptr);
471 *ptr = (swp_entry_t){0};
472 freed++;
475 if (punch_unlock)
476 spin_unlock(punch_unlock);
477 return freed;
480 static int shmem_map_and_free_swp(struct page *subdir, int offset,
481 int limit, struct page ***dir, spinlock_t *punch_lock)
483 swp_entry_t *ptr;
484 int freed = 0;
486 ptr = shmem_swp_map(subdir);
487 for (; offset < limit; offset += LATENCY_LIMIT) {
488 int size = limit - offset;
489 if (size > LATENCY_LIMIT)
490 size = LATENCY_LIMIT;
491 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
492 punch_lock);
493 if (need_resched()) {
494 shmem_swp_unmap(ptr);
495 if (*dir) {
496 shmem_dir_unmap(*dir);
497 *dir = NULL;
499 cond_resched();
500 ptr = shmem_swp_map(subdir);
503 shmem_swp_unmap(ptr);
504 return freed;
507 static void shmem_free_pages(struct list_head *next)
509 struct page *page;
510 int freed = 0;
512 do {
513 page = container_of(next, struct page, lru);
514 next = next->next;
515 shmem_dir_free(page);
516 freed++;
517 if (freed >= LATENCY_LIMIT) {
518 cond_resched();
519 freed = 0;
521 } while (next);
524 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
526 struct shmem_inode_info *info = SHMEM_I(inode);
527 unsigned long idx;
528 unsigned long size;
529 unsigned long limit;
530 unsigned long stage;
531 unsigned long diroff;
532 struct page **dir;
533 struct page *topdir;
534 struct page *middir;
535 struct page *subdir;
536 swp_entry_t *ptr;
537 LIST_HEAD(pages_to_free);
538 long nr_pages_to_free = 0;
539 long nr_swaps_freed = 0;
540 int offset;
541 int freed;
542 int punch_hole;
543 spinlock_t *needs_lock;
544 spinlock_t *punch_lock;
545 unsigned long upper_limit;
547 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
548 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
549 if (idx >= info->next_index)
550 return;
552 spin_lock(&info->lock);
553 info->flags |= SHMEM_TRUNCATE;
554 if (likely(end == (loff_t) -1)) {
555 limit = info->next_index;
556 upper_limit = SHMEM_MAX_INDEX;
557 info->next_index = idx;
558 needs_lock = NULL;
559 punch_hole = 0;
560 } else {
561 if (end + 1 >= inode->i_size) { /* we may free a little more */
562 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
563 PAGE_CACHE_SHIFT;
564 upper_limit = SHMEM_MAX_INDEX;
565 } else {
566 limit = (end + 1) >> PAGE_CACHE_SHIFT;
567 upper_limit = limit;
569 needs_lock = &info->lock;
570 punch_hole = 1;
573 topdir = info->i_indirect;
574 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
575 info->i_indirect = NULL;
576 nr_pages_to_free++;
577 list_add(&topdir->lru, &pages_to_free);
579 spin_unlock(&info->lock);
581 if (info->swapped && idx < SHMEM_NR_DIRECT) {
582 ptr = info->i_direct;
583 size = limit;
584 if (size > SHMEM_NR_DIRECT)
585 size = SHMEM_NR_DIRECT;
586 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
590 * If there are no indirect blocks or we are punching a hole
591 * below indirect blocks, nothing to be done.
593 if (!topdir || limit <= SHMEM_NR_DIRECT)
594 goto done2;
597 * The truncation case has already dropped info->lock, and we're safe
598 * because i_size and next_index have already been lowered, preventing
599 * access beyond. But in the punch_hole case, we still need to take
600 * the lock when updating the swap directory, because there might be
601 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
602 * shmem_writepage. However, whenever we find we can remove a whole
603 * directory page (not at the misaligned start or end of the range),
604 * we first NULLify its pointer in the level above, and then have no
605 * need to take the lock when updating its contents: needs_lock and
606 * punch_lock (either pointing to info->lock or NULL) manage this.
609 upper_limit -= SHMEM_NR_DIRECT;
610 limit -= SHMEM_NR_DIRECT;
611 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
612 offset = idx % ENTRIES_PER_PAGE;
613 idx -= offset;
615 dir = shmem_dir_map(topdir);
616 stage = ENTRIES_PER_PAGEPAGE/2;
617 if (idx < ENTRIES_PER_PAGEPAGE/2) {
618 middir = topdir;
619 diroff = idx/ENTRIES_PER_PAGE;
620 } else {
621 dir += ENTRIES_PER_PAGE/2;
622 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
623 while (stage <= idx)
624 stage += ENTRIES_PER_PAGEPAGE;
625 middir = *dir;
626 if (*dir) {
627 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
628 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
629 if (!diroff && !offset && upper_limit >= stage) {
630 if (needs_lock) {
631 spin_lock(needs_lock);
632 *dir = NULL;
633 spin_unlock(needs_lock);
634 needs_lock = NULL;
635 } else
636 *dir = NULL;
637 nr_pages_to_free++;
638 list_add(&middir->lru, &pages_to_free);
640 shmem_dir_unmap(dir);
641 dir = shmem_dir_map(middir);
642 } else {
643 diroff = 0;
644 offset = 0;
645 idx = stage;
649 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
650 if (unlikely(idx == stage)) {
651 shmem_dir_unmap(dir);
652 dir = shmem_dir_map(topdir) +
653 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
654 while (!*dir) {
655 dir++;
656 idx += ENTRIES_PER_PAGEPAGE;
657 if (idx >= limit)
658 goto done1;
660 stage = idx + ENTRIES_PER_PAGEPAGE;
661 middir = *dir;
662 if (punch_hole)
663 needs_lock = &info->lock;
664 if (upper_limit >= stage) {
665 if (needs_lock) {
666 spin_lock(needs_lock);
667 *dir = NULL;
668 spin_unlock(needs_lock);
669 needs_lock = NULL;
670 } else
671 *dir = NULL;
672 nr_pages_to_free++;
673 list_add(&middir->lru, &pages_to_free);
675 shmem_dir_unmap(dir);
676 cond_resched();
677 dir = shmem_dir_map(middir);
678 diroff = 0;
680 punch_lock = needs_lock;
681 subdir = dir[diroff];
682 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
683 if (needs_lock) {
684 spin_lock(needs_lock);
685 dir[diroff] = NULL;
686 spin_unlock(needs_lock);
687 punch_lock = NULL;
688 } else
689 dir[diroff] = NULL;
690 nr_pages_to_free++;
691 list_add(&subdir->lru, &pages_to_free);
693 if (subdir && page_private(subdir) /* has swap entries */) {
694 size = limit - idx;
695 if (size > ENTRIES_PER_PAGE)
696 size = ENTRIES_PER_PAGE;
697 freed = shmem_map_and_free_swp(subdir,
698 offset, size, &dir, punch_lock);
699 if (!dir)
700 dir = shmem_dir_map(middir);
701 nr_swaps_freed += freed;
702 if (offset || punch_lock) {
703 spin_lock(&info->lock);
704 set_page_private(subdir,
705 page_private(subdir) - freed);
706 spin_unlock(&info->lock);
707 } else
708 BUG_ON(page_private(subdir) != freed);
710 offset = 0;
712 done1:
713 shmem_dir_unmap(dir);
714 done2:
715 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
717 * Call truncate_inode_pages again: racing shmem_unuse_inode
718 * may have swizzled a page in from swap since vmtruncate or
719 * generic_delete_inode did it, before we lowered next_index.
720 * Also, though shmem_getpage checks i_size before adding to
721 * cache, no recheck after: so fix the narrow window there too.
723 * Recalling truncate_inode_pages_range and unmap_mapping_range
724 * every time for punch_hole (which never got a chance to clear
725 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
726 * yet hardly ever necessary: try to optimize them out later.
728 truncate_inode_pages_range(inode->i_mapping, start, end);
729 if (punch_hole)
730 unmap_mapping_range(inode->i_mapping, start,
731 end - start, 1);
734 spin_lock(&info->lock);
735 info->flags &= ~SHMEM_TRUNCATE;
736 info->swapped -= nr_swaps_freed;
737 if (nr_pages_to_free)
738 shmem_free_blocks(inode, nr_pages_to_free);
739 shmem_recalc_inode(inode);
740 spin_unlock(&info->lock);
743 * Empty swap vector directory pages to be freed?
745 if (!list_empty(&pages_to_free)) {
746 pages_to_free.prev->next = NULL;
747 shmem_free_pages(pages_to_free.next);
751 static void shmem_truncate(struct inode *inode)
753 shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
756 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
758 struct inode *inode = dentry->d_inode;
759 struct page *page = NULL;
760 int error;
762 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
763 if (attr->ia_size < inode->i_size) {
765 * If truncating down to a partial page, then
766 * if that page is already allocated, hold it
767 * in memory until the truncation is over, so
768 * truncate_partial_page cannnot miss it were
769 * it assigned to swap.
771 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
772 (void) shmem_getpage(inode,
773 attr->ia_size>>PAGE_CACHE_SHIFT,
774 &page, SGP_READ, NULL);
775 if (page)
776 unlock_page(page);
779 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
780 * detect if any pages might have been added to cache
781 * after truncate_inode_pages. But we needn't bother
782 * if it's being fully truncated to zero-length: the
783 * nrpages check is efficient enough in that case.
785 if (attr->ia_size) {
786 struct shmem_inode_info *info = SHMEM_I(inode);
787 spin_lock(&info->lock);
788 info->flags &= ~SHMEM_PAGEIN;
789 spin_unlock(&info->lock);
794 error = inode_change_ok(inode, attr);
795 if (!error)
796 error = inode_setattr(inode, attr);
797 #ifdef CONFIG_TMPFS_POSIX_ACL
798 if (!error && (attr->ia_valid & ATTR_MODE))
799 error = generic_acl_chmod(inode, &shmem_acl_ops);
800 #endif
801 if (page)
802 page_cache_release(page);
803 return error;
806 static void shmem_delete_inode(struct inode *inode)
808 struct shmem_inode_info *info = SHMEM_I(inode);
810 if (inode->i_op->truncate == shmem_truncate) {
811 truncate_inode_pages(inode->i_mapping, 0);
812 shmem_unacct_size(info->flags, inode->i_size);
813 inode->i_size = 0;
814 shmem_truncate(inode);
815 if (!list_empty(&info->swaplist)) {
816 mutex_lock(&shmem_swaplist_mutex);
817 list_del_init(&info->swaplist);
818 mutex_unlock(&shmem_swaplist_mutex);
821 BUG_ON(inode->i_blocks);
822 shmem_free_inode(inode->i_sb);
823 clear_inode(inode);
826 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
828 swp_entry_t *ptr;
830 for (ptr = dir; ptr < edir; ptr++) {
831 if (ptr->val == entry.val)
832 return ptr - dir;
834 return -1;
837 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
839 struct inode *inode;
840 unsigned long idx;
841 unsigned long size;
842 unsigned long limit;
843 unsigned long stage;
844 struct page **dir;
845 struct page *subdir;
846 swp_entry_t *ptr;
847 int offset;
848 int error;
850 idx = 0;
851 ptr = info->i_direct;
852 spin_lock(&info->lock);
853 if (!info->swapped) {
854 list_del_init(&info->swaplist);
855 goto lost2;
857 limit = info->next_index;
858 size = limit;
859 if (size > SHMEM_NR_DIRECT)
860 size = SHMEM_NR_DIRECT;
861 offset = shmem_find_swp(entry, ptr, ptr+size);
862 if (offset >= 0)
863 goto found;
864 if (!info->i_indirect)
865 goto lost2;
867 dir = shmem_dir_map(info->i_indirect);
868 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
870 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
871 if (unlikely(idx == stage)) {
872 shmem_dir_unmap(dir-1);
873 if (cond_resched_lock(&info->lock)) {
874 /* check it has not been truncated */
875 if (limit > info->next_index) {
876 limit = info->next_index;
877 if (idx >= limit)
878 goto lost2;
881 dir = shmem_dir_map(info->i_indirect) +
882 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
883 while (!*dir) {
884 dir++;
885 idx += ENTRIES_PER_PAGEPAGE;
886 if (idx >= limit)
887 goto lost1;
889 stage = idx + ENTRIES_PER_PAGEPAGE;
890 subdir = *dir;
891 shmem_dir_unmap(dir);
892 dir = shmem_dir_map(subdir);
894 subdir = *dir;
895 if (subdir && page_private(subdir)) {
896 ptr = shmem_swp_map(subdir);
897 size = limit - idx;
898 if (size > ENTRIES_PER_PAGE)
899 size = ENTRIES_PER_PAGE;
900 offset = shmem_find_swp(entry, ptr, ptr+size);
901 shmem_swp_unmap(ptr);
902 if (offset >= 0) {
903 shmem_dir_unmap(dir);
904 goto found;
908 lost1:
909 shmem_dir_unmap(dir-1);
910 lost2:
911 spin_unlock(&info->lock);
912 return 0;
913 found:
914 idx += offset;
915 inode = igrab(&info->vfs_inode);
916 spin_unlock(&info->lock);
919 * Move _head_ to start search for next from here.
920 * But be careful: shmem_delete_inode checks list_empty without taking
921 * mutex, and there's an instant in list_move_tail when info->swaplist
922 * would appear empty, if it were the only one on shmem_swaplist. We
923 * could avoid doing it if inode NULL; or use this minor optimization.
925 if (shmem_swaplist.next != &info->swaplist)
926 list_move_tail(&shmem_swaplist, &info->swaplist);
927 mutex_unlock(&shmem_swaplist_mutex);
929 error = 1;
930 if (!inode)
931 goto out;
933 * Charge page using GFP_KERNEL while we can wait.
934 * Charged back to the user(not to caller) when swap account is used.
935 * add_to_page_cache() will be called with GFP_NOWAIT.
937 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
938 if (error)
939 goto out;
940 error = radix_tree_preload(GFP_KERNEL);
941 if (error) {
942 mem_cgroup_uncharge_cache_page(page);
943 goto out;
945 error = 1;
947 spin_lock(&info->lock);
948 ptr = shmem_swp_entry(info, idx, NULL);
949 if (ptr && ptr->val == entry.val) {
950 error = add_to_page_cache_locked(page, inode->i_mapping,
951 idx, GFP_NOWAIT);
952 /* does mem_cgroup_uncharge_cache_page on error */
953 } else /* we must compensate for our precharge above */
954 mem_cgroup_uncharge_cache_page(page);
956 if (error == -EEXIST) {
957 struct page *filepage = find_get_page(inode->i_mapping, idx);
958 error = 1;
959 if (filepage) {
961 * There might be a more uptodate page coming down
962 * from a stacked writepage: forget our swappage if so.
964 if (PageUptodate(filepage))
965 error = 0;
966 page_cache_release(filepage);
969 if (!error) {
970 delete_from_swap_cache(page);
971 set_page_dirty(page);
972 info->flags |= SHMEM_PAGEIN;
973 shmem_swp_set(info, ptr, 0);
974 swap_free(entry);
975 error = 1; /* not an error, but entry was found */
977 if (ptr)
978 shmem_swp_unmap(ptr);
979 spin_unlock(&info->lock);
980 radix_tree_preload_end();
981 out:
982 unlock_page(page);
983 page_cache_release(page);
984 iput(inode); /* allows for NULL */
985 return error;
989 * shmem_unuse() search for an eventually swapped out shmem page.
991 int shmem_unuse(swp_entry_t entry, struct page *page)
993 struct list_head *p, *next;
994 struct shmem_inode_info *info;
995 int found = 0;
997 mutex_lock(&shmem_swaplist_mutex);
998 list_for_each_safe(p, next, &shmem_swaplist) {
999 info = list_entry(p, struct shmem_inode_info, swaplist);
1000 found = shmem_unuse_inode(info, entry, page);
1001 cond_resched();
1002 if (found)
1003 goto out;
1005 mutex_unlock(&shmem_swaplist_mutex);
1006 out: return found; /* 0 or 1 or -ENOMEM */
1010 * Move the page from the page cache to the swap cache.
1012 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1014 struct shmem_inode_info *info;
1015 swp_entry_t *entry, swap;
1016 struct address_space *mapping;
1017 unsigned long index;
1018 struct inode *inode;
1020 BUG_ON(!PageLocked(page));
1021 mapping = page->mapping;
1022 index = page->index;
1023 inode = mapping->host;
1024 info = SHMEM_I(inode);
1025 if (info->flags & VM_LOCKED)
1026 goto redirty;
1027 if (!total_swap_pages)
1028 goto redirty;
1031 * shmem_backing_dev_info's capabilities prevent regular writeback or
1032 * sync from ever calling shmem_writepage; but a stacking filesystem
1033 * may use the ->writepage of its underlying filesystem, in which case
1034 * tmpfs should write out to swap only in response to memory pressure,
1035 * and not for pdflush or sync. However, in those cases, we do still
1036 * want to check if there's a redundant swappage to be discarded.
1038 if (wbc->for_reclaim)
1039 swap = get_swap_page();
1040 else
1041 swap.val = 0;
1043 spin_lock(&info->lock);
1044 if (index >= info->next_index) {
1045 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1046 goto unlock;
1048 entry = shmem_swp_entry(info, index, NULL);
1049 if (entry->val) {
1051 * The more uptodate page coming down from a stacked
1052 * writepage should replace our old swappage.
1054 free_swap_and_cache(*entry);
1055 shmem_swp_set(info, entry, 0);
1057 shmem_recalc_inode(inode);
1059 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1060 remove_from_page_cache(page);
1061 shmem_swp_set(info, entry, swap.val);
1062 shmem_swp_unmap(entry);
1063 if (list_empty(&info->swaplist))
1064 inode = igrab(inode);
1065 else
1066 inode = NULL;
1067 spin_unlock(&info->lock);
1068 swap_duplicate(swap);
1069 BUG_ON(page_mapped(page));
1070 page_cache_release(page); /* pagecache ref */
1071 set_page_dirty(page);
1072 unlock_page(page);
1073 if (inode) {
1074 mutex_lock(&shmem_swaplist_mutex);
1075 /* move instead of add in case we're racing */
1076 list_move_tail(&info->swaplist, &shmem_swaplist);
1077 mutex_unlock(&shmem_swaplist_mutex);
1078 iput(inode);
1080 return 0;
1083 shmem_swp_unmap(entry);
1084 unlock:
1085 spin_unlock(&info->lock);
1086 swap_free(swap);
1087 redirty:
1088 set_page_dirty(page);
1089 if (wbc->for_reclaim)
1090 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1091 unlock_page(page);
1092 return 0;
1095 #ifdef CONFIG_NUMA
1096 #ifdef CONFIG_TMPFS
1097 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1099 char buffer[64];
1101 if (!mpol || mpol->mode == MPOL_DEFAULT)
1102 return; /* show nothing */
1104 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1106 seq_printf(seq, ",mpol=%s", buffer);
1109 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1111 struct mempolicy *mpol = NULL;
1112 if (sbinfo->mpol) {
1113 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1114 mpol = sbinfo->mpol;
1115 mpol_get(mpol);
1116 spin_unlock(&sbinfo->stat_lock);
1118 return mpol;
1120 #endif /* CONFIG_TMPFS */
1122 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1123 struct shmem_inode_info *info, unsigned long idx)
1125 struct mempolicy mpol, *spol;
1126 struct vm_area_struct pvma;
1127 struct page *page;
1129 spol = mpol_cond_copy(&mpol,
1130 mpol_shared_policy_lookup(&info->policy, idx));
1132 /* Create a pseudo vma that just contains the policy */
1133 pvma.vm_start = 0;
1134 pvma.vm_pgoff = idx;
1135 pvma.vm_ops = NULL;
1136 pvma.vm_policy = spol;
1137 page = swapin_readahead(entry, gfp, &pvma, 0);
1138 return page;
1141 static struct page *shmem_alloc_page(gfp_t gfp,
1142 struct shmem_inode_info *info, unsigned long idx)
1144 struct vm_area_struct pvma;
1146 /* Create a pseudo vma that just contains the policy */
1147 pvma.vm_start = 0;
1148 pvma.vm_pgoff = idx;
1149 pvma.vm_ops = NULL;
1150 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1153 * alloc_page_vma() will drop the shared policy reference
1155 return alloc_page_vma(gfp, &pvma, 0);
1157 #else /* !CONFIG_NUMA */
1158 #ifdef CONFIG_TMPFS
1159 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1162 #endif /* CONFIG_TMPFS */
1164 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1165 struct shmem_inode_info *info, unsigned long idx)
1167 return swapin_readahead(entry, gfp, NULL, 0);
1170 static inline struct page *shmem_alloc_page(gfp_t gfp,
1171 struct shmem_inode_info *info, unsigned long idx)
1173 return alloc_page(gfp);
1175 #endif /* CONFIG_NUMA */
1177 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1178 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1180 return NULL;
1182 #endif
1185 * shmem_getpage - either get the page from swap or allocate a new one
1187 * If we allocate a new one we do not mark it dirty. That's up to the
1188 * vm. If we swap it in we mark it dirty since we also free the swap
1189 * entry since a page cannot live in both the swap and page cache
1191 static int shmem_getpage(struct inode *inode, unsigned long idx,
1192 struct page **pagep, enum sgp_type sgp, int *type)
1194 struct address_space *mapping = inode->i_mapping;
1195 struct shmem_inode_info *info = SHMEM_I(inode);
1196 struct shmem_sb_info *sbinfo;
1197 struct page *filepage = *pagep;
1198 struct page *swappage;
1199 swp_entry_t *entry;
1200 swp_entry_t swap;
1201 gfp_t gfp;
1202 int error;
1204 if (idx >= SHMEM_MAX_INDEX)
1205 return -EFBIG;
1207 if (type)
1208 *type = 0;
1211 * Normally, filepage is NULL on entry, and either found
1212 * uptodate immediately, or allocated and zeroed, or read
1213 * in under swappage, which is then assigned to filepage.
1214 * But shmem_readpage (required for splice) passes in a locked
1215 * filepage, which may be found not uptodate by other callers
1216 * too, and may need to be copied from the swappage read in.
1218 repeat:
1219 if (!filepage)
1220 filepage = find_lock_page(mapping, idx);
1221 if (filepage && PageUptodate(filepage))
1222 goto done;
1223 error = 0;
1224 gfp = mapping_gfp_mask(mapping);
1225 if (!filepage) {
1227 * Try to preload while we can wait, to not make a habit of
1228 * draining atomic reserves; but don't latch on to this cpu.
1230 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1231 if (error)
1232 goto failed;
1233 radix_tree_preload_end();
1236 spin_lock(&info->lock);
1237 shmem_recalc_inode(inode);
1238 entry = shmem_swp_alloc(info, idx, sgp);
1239 if (IS_ERR(entry)) {
1240 spin_unlock(&info->lock);
1241 error = PTR_ERR(entry);
1242 goto failed;
1244 swap = *entry;
1246 if (swap.val) {
1247 /* Look it up and read it in.. */
1248 swappage = lookup_swap_cache(swap);
1249 if (!swappage) {
1250 shmem_swp_unmap(entry);
1251 /* here we actually do the io */
1252 if (type && !(*type & VM_FAULT_MAJOR)) {
1253 __count_vm_event(PGMAJFAULT);
1254 *type |= VM_FAULT_MAJOR;
1256 spin_unlock(&info->lock);
1257 swappage = shmem_swapin(swap, gfp, info, idx);
1258 if (!swappage) {
1259 spin_lock(&info->lock);
1260 entry = shmem_swp_alloc(info, idx, sgp);
1261 if (IS_ERR(entry))
1262 error = PTR_ERR(entry);
1263 else {
1264 if (entry->val == swap.val)
1265 error = -ENOMEM;
1266 shmem_swp_unmap(entry);
1268 spin_unlock(&info->lock);
1269 if (error)
1270 goto failed;
1271 goto repeat;
1273 wait_on_page_locked(swappage);
1274 page_cache_release(swappage);
1275 goto repeat;
1278 /* We have to do this with page locked to prevent races */
1279 if (!trylock_page(swappage)) {
1280 shmem_swp_unmap(entry);
1281 spin_unlock(&info->lock);
1282 wait_on_page_locked(swappage);
1283 page_cache_release(swappage);
1284 goto repeat;
1286 if (PageWriteback(swappage)) {
1287 shmem_swp_unmap(entry);
1288 spin_unlock(&info->lock);
1289 wait_on_page_writeback(swappage);
1290 unlock_page(swappage);
1291 page_cache_release(swappage);
1292 goto repeat;
1294 if (!PageUptodate(swappage)) {
1295 shmem_swp_unmap(entry);
1296 spin_unlock(&info->lock);
1297 unlock_page(swappage);
1298 page_cache_release(swappage);
1299 error = -EIO;
1300 goto failed;
1303 if (filepage) {
1304 shmem_swp_set(info, entry, 0);
1305 shmem_swp_unmap(entry);
1306 delete_from_swap_cache(swappage);
1307 spin_unlock(&info->lock);
1308 copy_highpage(filepage, swappage);
1309 unlock_page(swappage);
1310 page_cache_release(swappage);
1311 flush_dcache_page(filepage);
1312 SetPageUptodate(filepage);
1313 set_page_dirty(filepage);
1314 swap_free(swap);
1315 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1316 idx, GFP_NOWAIT))) {
1317 info->flags |= SHMEM_PAGEIN;
1318 shmem_swp_set(info, entry, 0);
1319 shmem_swp_unmap(entry);
1320 delete_from_swap_cache(swappage);
1321 spin_unlock(&info->lock);
1322 filepage = swappage;
1323 set_page_dirty(filepage);
1324 swap_free(swap);
1325 } else {
1326 shmem_swp_unmap(entry);
1327 spin_unlock(&info->lock);
1328 if (error == -ENOMEM) {
1329 /* allow reclaim from this memory cgroup */
1330 error = mem_cgroup_shrink_usage(swappage,
1331 current->mm,
1332 gfp);
1333 if (error) {
1334 unlock_page(swappage);
1335 page_cache_release(swappage);
1336 goto failed;
1339 unlock_page(swappage);
1340 page_cache_release(swappage);
1341 goto repeat;
1343 } else if (sgp == SGP_READ && !filepage) {
1344 shmem_swp_unmap(entry);
1345 filepage = find_get_page(mapping, idx);
1346 if (filepage &&
1347 (!PageUptodate(filepage) || !trylock_page(filepage))) {
1348 spin_unlock(&info->lock);
1349 wait_on_page_locked(filepage);
1350 page_cache_release(filepage);
1351 filepage = NULL;
1352 goto repeat;
1354 spin_unlock(&info->lock);
1355 } else {
1356 shmem_swp_unmap(entry);
1357 sbinfo = SHMEM_SB(inode->i_sb);
1358 if (sbinfo->max_blocks) {
1359 spin_lock(&sbinfo->stat_lock);
1360 if (sbinfo->free_blocks == 0 ||
1361 shmem_acct_block(info->flags)) {
1362 spin_unlock(&sbinfo->stat_lock);
1363 spin_unlock(&info->lock);
1364 error = -ENOSPC;
1365 goto failed;
1367 sbinfo->free_blocks--;
1368 inode->i_blocks += BLOCKS_PER_PAGE;
1369 spin_unlock(&sbinfo->stat_lock);
1370 } else if (shmem_acct_block(info->flags)) {
1371 spin_unlock(&info->lock);
1372 error = -ENOSPC;
1373 goto failed;
1376 if (!filepage) {
1377 int ret;
1379 spin_unlock(&info->lock);
1380 filepage = shmem_alloc_page(gfp, info, idx);
1381 if (!filepage) {
1382 shmem_unacct_blocks(info->flags, 1);
1383 shmem_free_blocks(inode, 1);
1384 error = -ENOMEM;
1385 goto failed;
1387 SetPageSwapBacked(filepage);
1389 /* Precharge page while we can wait, compensate after */
1390 error = mem_cgroup_cache_charge(filepage, current->mm,
1391 GFP_KERNEL);
1392 if (error) {
1393 page_cache_release(filepage);
1394 shmem_unacct_blocks(info->flags, 1);
1395 shmem_free_blocks(inode, 1);
1396 filepage = NULL;
1397 goto failed;
1400 spin_lock(&info->lock);
1401 entry = shmem_swp_alloc(info, idx, sgp);
1402 if (IS_ERR(entry))
1403 error = PTR_ERR(entry);
1404 else {
1405 swap = *entry;
1406 shmem_swp_unmap(entry);
1408 ret = error || swap.val;
1409 if (ret)
1410 mem_cgroup_uncharge_cache_page(filepage);
1411 else
1412 ret = add_to_page_cache_lru(filepage, mapping,
1413 idx, GFP_NOWAIT);
1415 * At add_to_page_cache_lru() failure, uncharge will
1416 * be done automatically.
1418 if (ret) {
1419 spin_unlock(&info->lock);
1420 page_cache_release(filepage);
1421 shmem_unacct_blocks(info->flags, 1);
1422 shmem_free_blocks(inode, 1);
1423 filepage = NULL;
1424 if (error)
1425 goto failed;
1426 goto repeat;
1428 info->flags |= SHMEM_PAGEIN;
1431 info->alloced++;
1432 spin_unlock(&info->lock);
1433 clear_highpage(filepage);
1434 flush_dcache_page(filepage);
1435 SetPageUptodate(filepage);
1436 if (sgp == SGP_DIRTY)
1437 set_page_dirty(filepage);
1439 done:
1440 *pagep = filepage;
1441 return 0;
1443 failed:
1444 if (*pagep != filepage) {
1445 unlock_page(filepage);
1446 page_cache_release(filepage);
1448 return error;
1451 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1453 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1454 int error;
1455 int ret;
1457 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1458 return VM_FAULT_SIGBUS;
1460 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1461 if (error)
1462 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1464 return ret | VM_FAULT_LOCKED;
1467 #ifdef CONFIG_NUMA
1468 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1470 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1471 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1474 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1475 unsigned long addr)
1477 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1478 unsigned long idx;
1480 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1481 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1483 #endif
1485 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1487 struct inode *inode = file->f_path.dentry->d_inode;
1488 struct shmem_inode_info *info = SHMEM_I(inode);
1489 int retval = -ENOMEM;
1491 spin_lock(&info->lock);
1492 if (lock && !(info->flags & VM_LOCKED)) {
1493 if (!user_shm_lock(inode->i_size, user))
1494 goto out_nomem;
1495 info->flags |= VM_LOCKED;
1496 mapping_set_unevictable(file->f_mapping);
1498 if (!lock && (info->flags & VM_LOCKED) && user) {
1499 user_shm_unlock(inode->i_size, user);
1500 info->flags &= ~VM_LOCKED;
1501 mapping_clear_unevictable(file->f_mapping);
1502 scan_mapping_unevictable_pages(file->f_mapping);
1504 retval = 0;
1506 out_nomem:
1507 spin_unlock(&info->lock);
1508 return retval;
1511 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1513 file_accessed(file);
1514 vma->vm_ops = &shmem_vm_ops;
1515 vma->vm_flags |= VM_CAN_NONLINEAR;
1516 return 0;
1519 static struct inode *shmem_get_inode(struct super_block *sb, int mode,
1520 dev_t dev, unsigned long flags)
1522 struct inode *inode;
1523 struct shmem_inode_info *info;
1524 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1526 if (shmem_reserve_inode(sb))
1527 return NULL;
1529 inode = new_inode(sb);
1530 if (inode) {
1531 inode->i_mode = mode;
1532 inode->i_uid = current_fsuid();
1533 inode->i_gid = current_fsgid();
1534 inode->i_blocks = 0;
1535 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1536 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1537 inode->i_generation = get_seconds();
1538 info = SHMEM_I(inode);
1539 memset(info, 0, (char *)inode - (char *)info);
1540 spin_lock_init(&info->lock);
1541 info->flags = flags & VM_NORESERVE;
1542 INIT_LIST_HEAD(&info->swaplist);
1544 switch (mode & S_IFMT) {
1545 default:
1546 inode->i_op = &shmem_special_inode_operations;
1547 init_special_inode(inode, mode, dev);
1548 break;
1549 case S_IFREG:
1550 inode->i_mapping->a_ops = &shmem_aops;
1551 inode->i_op = &shmem_inode_operations;
1552 inode->i_fop = &shmem_file_operations;
1553 mpol_shared_policy_init(&info->policy,
1554 shmem_get_sbmpol(sbinfo));
1555 break;
1556 case S_IFDIR:
1557 inc_nlink(inode);
1558 /* Some things misbehave if size == 0 on a directory */
1559 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1560 inode->i_op = &shmem_dir_inode_operations;
1561 inode->i_fop = &simple_dir_operations;
1562 break;
1563 case S_IFLNK:
1565 * Must not load anything in the rbtree,
1566 * mpol_free_shared_policy will not be called.
1568 mpol_shared_policy_init(&info->policy, NULL);
1569 break;
1571 } else
1572 shmem_free_inode(sb);
1573 return inode;
1576 #ifdef CONFIG_TMPFS
1577 static const struct inode_operations shmem_symlink_inode_operations;
1578 static const struct inode_operations shmem_symlink_inline_operations;
1581 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1582 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1583 * below the loop driver, in the generic fashion that many filesystems support.
1585 static int shmem_readpage(struct file *file, struct page *page)
1587 struct inode *inode = page->mapping->host;
1588 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1589 unlock_page(page);
1590 return error;
1593 static int
1594 shmem_write_begin(struct file *file, struct address_space *mapping,
1595 loff_t pos, unsigned len, unsigned flags,
1596 struct page **pagep, void **fsdata)
1598 struct inode *inode = mapping->host;
1599 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1600 *pagep = NULL;
1601 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1604 static int
1605 shmem_write_end(struct file *file, struct address_space *mapping,
1606 loff_t pos, unsigned len, unsigned copied,
1607 struct page *page, void *fsdata)
1609 struct inode *inode = mapping->host;
1611 if (pos + copied > inode->i_size)
1612 i_size_write(inode, pos + copied);
1614 unlock_page(page);
1615 set_page_dirty(page);
1616 page_cache_release(page);
1618 return copied;
1621 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1623 struct inode *inode = filp->f_path.dentry->d_inode;
1624 struct address_space *mapping = inode->i_mapping;
1625 unsigned long index, offset;
1626 enum sgp_type sgp = SGP_READ;
1629 * Might this read be for a stacking filesystem? Then when reading
1630 * holes of a sparse file, we actually need to allocate those pages,
1631 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1633 if (segment_eq(get_fs(), KERNEL_DS))
1634 sgp = SGP_DIRTY;
1636 index = *ppos >> PAGE_CACHE_SHIFT;
1637 offset = *ppos & ~PAGE_CACHE_MASK;
1639 for (;;) {
1640 struct page *page = NULL;
1641 unsigned long end_index, nr, ret;
1642 loff_t i_size = i_size_read(inode);
1644 end_index = i_size >> PAGE_CACHE_SHIFT;
1645 if (index > end_index)
1646 break;
1647 if (index == end_index) {
1648 nr = i_size & ~PAGE_CACHE_MASK;
1649 if (nr <= offset)
1650 break;
1653 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1654 if (desc->error) {
1655 if (desc->error == -EINVAL)
1656 desc->error = 0;
1657 break;
1659 if (page)
1660 unlock_page(page);
1663 * We must evaluate after, since reads (unlike writes)
1664 * are called without i_mutex protection against truncate
1666 nr = PAGE_CACHE_SIZE;
1667 i_size = i_size_read(inode);
1668 end_index = i_size >> PAGE_CACHE_SHIFT;
1669 if (index == end_index) {
1670 nr = i_size & ~PAGE_CACHE_MASK;
1671 if (nr <= offset) {
1672 if (page)
1673 page_cache_release(page);
1674 break;
1677 nr -= offset;
1679 if (page) {
1681 * If users can be writing to this page using arbitrary
1682 * virtual addresses, take care about potential aliasing
1683 * before reading the page on the kernel side.
1685 if (mapping_writably_mapped(mapping))
1686 flush_dcache_page(page);
1688 * Mark the page accessed if we read the beginning.
1690 if (!offset)
1691 mark_page_accessed(page);
1692 } else {
1693 page = ZERO_PAGE(0);
1694 page_cache_get(page);
1698 * Ok, we have the page, and it's up-to-date, so
1699 * now we can copy it to user space...
1701 * The actor routine returns how many bytes were actually used..
1702 * NOTE! This may not be the same as how much of a user buffer
1703 * we filled up (we may be padding etc), so we can only update
1704 * "pos" here (the actor routine has to update the user buffer
1705 * pointers and the remaining count).
1707 ret = actor(desc, page, offset, nr);
1708 offset += ret;
1709 index += offset >> PAGE_CACHE_SHIFT;
1710 offset &= ~PAGE_CACHE_MASK;
1712 page_cache_release(page);
1713 if (ret != nr || !desc->count)
1714 break;
1716 cond_resched();
1719 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1720 file_accessed(filp);
1723 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1724 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1726 struct file *filp = iocb->ki_filp;
1727 ssize_t retval;
1728 unsigned long seg;
1729 size_t count;
1730 loff_t *ppos = &iocb->ki_pos;
1732 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1733 if (retval)
1734 return retval;
1736 for (seg = 0; seg < nr_segs; seg++) {
1737 read_descriptor_t desc;
1739 desc.written = 0;
1740 desc.arg.buf = iov[seg].iov_base;
1741 desc.count = iov[seg].iov_len;
1742 if (desc.count == 0)
1743 continue;
1744 desc.error = 0;
1745 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1746 retval += desc.written;
1747 if (desc.error) {
1748 retval = retval ?: desc.error;
1749 break;
1751 if (desc.count > 0)
1752 break;
1754 return retval;
1757 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1759 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1761 buf->f_type = TMPFS_MAGIC;
1762 buf->f_bsize = PAGE_CACHE_SIZE;
1763 buf->f_namelen = NAME_MAX;
1764 spin_lock(&sbinfo->stat_lock);
1765 if (sbinfo->max_blocks) {
1766 buf->f_blocks = sbinfo->max_blocks;
1767 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1769 if (sbinfo->max_inodes) {
1770 buf->f_files = sbinfo->max_inodes;
1771 buf->f_ffree = sbinfo->free_inodes;
1773 /* else leave those fields 0 like simple_statfs */
1774 spin_unlock(&sbinfo->stat_lock);
1775 return 0;
1779 * File creation. Allocate an inode, and we're done..
1781 static int
1782 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1784 struct inode *inode;
1785 int error = -ENOSPC;
1787 inode = shmem_get_inode(dir->i_sb, mode, dev, VM_NORESERVE);
1788 if (inode) {
1789 error = security_inode_init_security(inode, dir, NULL, NULL,
1790 NULL);
1791 if (error) {
1792 if (error != -EOPNOTSUPP) {
1793 iput(inode);
1794 return error;
1797 error = shmem_acl_init(inode, dir);
1798 if (error) {
1799 iput(inode);
1800 return error;
1802 if (dir->i_mode & S_ISGID) {
1803 inode->i_gid = dir->i_gid;
1804 if (S_ISDIR(mode))
1805 inode->i_mode |= S_ISGID;
1807 dir->i_size += BOGO_DIRENT_SIZE;
1808 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1809 d_instantiate(dentry, inode);
1810 dget(dentry); /* Extra count - pin the dentry in core */
1812 return error;
1815 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1817 int error;
1819 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1820 return error;
1821 inc_nlink(dir);
1822 return 0;
1825 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1826 struct nameidata *nd)
1828 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1832 * Link a file..
1834 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1836 struct inode *inode = old_dentry->d_inode;
1837 int ret;
1840 * No ordinary (disk based) filesystem counts links as inodes;
1841 * but each new link needs a new dentry, pinning lowmem, and
1842 * tmpfs dentries cannot be pruned until they are unlinked.
1844 ret = shmem_reserve_inode(inode->i_sb);
1845 if (ret)
1846 goto out;
1848 dir->i_size += BOGO_DIRENT_SIZE;
1849 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1850 inc_nlink(inode);
1851 atomic_inc(&inode->i_count); /* New dentry reference */
1852 dget(dentry); /* Extra pinning count for the created dentry */
1853 d_instantiate(dentry, inode);
1854 out:
1855 return ret;
1858 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1860 struct inode *inode = dentry->d_inode;
1862 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1863 shmem_free_inode(inode->i_sb);
1865 dir->i_size -= BOGO_DIRENT_SIZE;
1866 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1867 drop_nlink(inode);
1868 dput(dentry); /* Undo the count from "create" - this does all the work */
1869 return 0;
1872 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1874 if (!simple_empty(dentry))
1875 return -ENOTEMPTY;
1877 drop_nlink(dentry->d_inode);
1878 drop_nlink(dir);
1879 return shmem_unlink(dir, dentry);
1883 * The VFS layer already does all the dentry stuff for rename,
1884 * we just have to decrement the usage count for the target if
1885 * it exists so that the VFS layer correctly free's it when it
1886 * gets overwritten.
1888 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1890 struct inode *inode = old_dentry->d_inode;
1891 int they_are_dirs = S_ISDIR(inode->i_mode);
1893 if (!simple_empty(new_dentry))
1894 return -ENOTEMPTY;
1896 if (new_dentry->d_inode) {
1897 (void) shmem_unlink(new_dir, new_dentry);
1898 if (they_are_dirs)
1899 drop_nlink(old_dir);
1900 } else if (they_are_dirs) {
1901 drop_nlink(old_dir);
1902 inc_nlink(new_dir);
1905 old_dir->i_size -= BOGO_DIRENT_SIZE;
1906 new_dir->i_size += BOGO_DIRENT_SIZE;
1907 old_dir->i_ctime = old_dir->i_mtime =
1908 new_dir->i_ctime = new_dir->i_mtime =
1909 inode->i_ctime = CURRENT_TIME;
1910 return 0;
1913 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1915 int error;
1916 int len;
1917 struct inode *inode;
1918 struct page *page = NULL;
1919 char *kaddr;
1920 struct shmem_inode_info *info;
1922 len = strlen(symname) + 1;
1923 if (len > PAGE_CACHE_SIZE)
1924 return -ENAMETOOLONG;
1926 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1927 if (!inode)
1928 return -ENOSPC;
1930 error = security_inode_init_security(inode, dir, NULL, NULL,
1931 NULL);
1932 if (error) {
1933 if (error != -EOPNOTSUPP) {
1934 iput(inode);
1935 return error;
1937 error = 0;
1940 info = SHMEM_I(inode);
1941 inode->i_size = len-1;
1942 if (len <= (char *)inode - (char *)info) {
1943 /* do it inline */
1944 memcpy(info, symname, len);
1945 inode->i_op = &shmem_symlink_inline_operations;
1946 } else {
1947 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1948 if (error) {
1949 iput(inode);
1950 return error;
1952 unlock_page(page);
1953 inode->i_mapping->a_ops = &shmem_aops;
1954 inode->i_op = &shmem_symlink_inode_operations;
1955 kaddr = kmap_atomic(page, KM_USER0);
1956 memcpy(kaddr, symname, len);
1957 kunmap_atomic(kaddr, KM_USER0);
1958 set_page_dirty(page);
1959 page_cache_release(page);
1961 if (dir->i_mode & S_ISGID)
1962 inode->i_gid = dir->i_gid;
1963 dir->i_size += BOGO_DIRENT_SIZE;
1964 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1965 d_instantiate(dentry, inode);
1966 dget(dentry);
1967 return 0;
1970 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1972 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1973 return NULL;
1976 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1978 struct page *page = NULL;
1979 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1980 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1981 if (page)
1982 unlock_page(page);
1983 return page;
1986 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1988 if (!IS_ERR(nd_get_link(nd))) {
1989 struct page *page = cookie;
1990 kunmap(page);
1991 mark_page_accessed(page);
1992 page_cache_release(page);
1996 static const struct inode_operations shmem_symlink_inline_operations = {
1997 .readlink = generic_readlink,
1998 .follow_link = shmem_follow_link_inline,
2001 static const struct inode_operations shmem_symlink_inode_operations = {
2002 .truncate = shmem_truncate,
2003 .readlink = generic_readlink,
2004 .follow_link = shmem_follow_link,
2005 .put_link = shmem_put_link,
2008 #ifdef CONFIG_TMPFS_POSIX_ACL
2010 * Superblocks without xattr inode operations will get security.* xattr
2011 * support from the VFS "for free". As soon as we have any other xattrs
2012 * like ACLs, we also need to implement the security.* handlers at
2013 * filesystem level, though.
2016 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2017 size_t list_len, const char *name,
2018 size_t name_len)
2020 return security_inode_listsecurity(inode, list, list_len);
2023 static int shmem_xattr_security_get(struct inode *inode, const char *name,
2024 void *buffer, size_t size)
2026 if (strcmp(name, "") == 0)
2027 return -EINVAL;
2028 return xattr_getsecurity(inode, name, buffer, size);
2031 static int shmem_xattr_security_set(struct inode *inode, const char *name,
2032 const void *value, size_t size, int flags)
2034 if (strcmp(name, "") == 0)
2035 return -EINVAL;
2036 return security_inode_setsecurity(inode, name, value, size, flags);
2039 static struct xattr_handler shmem_xattr_security_handler = {
2040 .prefix = XATTR_SECURITY_PREFIX,
2041 .list = shmem_xattr_security_list,
2042 .get = shmem_xattr_security_get,
2043 .set = shmem_xattr_security_set,
2046 static struct xattr_handler *shmem_xattr_handlers[] = {
2047 &shmem_xattr_acl_access_handler,
2048 &shmem_xattr_acl_default_handler,
2049 &shmem_xattr_security_handler,
2050 NULL
2052 #endif
2054 static struct dentry *shmem_get_parent(struct dentry *child)
2056 return ERR_PTR(-ESTALE);
2059 static int shmem_match(struct inode *ino, void *vfh)
2061 __u32 *fh = vfh;
2062 __u64 inum = fh[2];
2063 inum = (inum << 32) | fh[1];
2064 return ino->i_ino == inum && fh[0] == ino->i_generation;
2067 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2068 struct fid *fid, int fh_len, int fh_type)
2070 struct inode *inode;
2071 struct dentry *dentry = NULL;
2072 u64 inum = fid->raw[2];
2073 inum = (inum << 32) | fid->raw[1];
2075 if (fh_len < 3)
2076 return NULL;
2078 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2079 shmem_match, fid->raw);
2080 if (inode) {
2081 dentry = d_find_alias(inode);
2082 iput(inode);
2085 return dentry;
2088 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2089 int connectable)
2091 struct inode *inode = dentry->d_inode;
2093 if (*len < 3)
2094 return 255;
2096 if (hlist_unhashed(&inode->i_hash)) {
2097 /* Unfortunately insert_inode_hash is not idempotent,
2098 * so as we hash inodes here rather than at creation
2099 * time, we need a lock to ensure we only try
2100 * to do it once
2102 static DEFINE_SPINLOCK(lock);
2103 spin_lock(&lock);
2104 if (hlist_unhashed(&inode->i_hash))
2105 __insert_inode_hash(inode,
2106 inode->i_ino + inode->i_generation);
2107 spin_unlock(&lock);
2110 fh[0] = inode->i_generation;
2111 fh[1] = inode->i_ino;
2112 fh[2] = ((__u64)inode->i_ino) >> 32;
2114 *len = 3;
2115 return 1;
2118 static const struct export_operations shmem_export_ops = {
2119 .get_parent = shmem_get_parent,
2120 .encode_fh = shmem_encode_fh,
2121 .fh_to_dentry = shmem_fh_to_dentry,
2124 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2125 bool remount)
2127 char *this_char, *value, *rest;
2129 while (options != NULL) {
2130 this_char = options;
2131 for (;;) {
2133 * NUL-terminate this option: unfortunately,
2134 * mount options form a comma-separated list,
2135 * but mpol's nodelist may also contain commas.
2137 options = strchr(options, ',');
2138 if (options == NULL)
2139 break;
2140 options++;
2141 if (!isdigit(*options)) {
2142 options[-1] = '\0';
2143 break;
2146 if (!*this_char)
2147 continue;
2148 if ((value = strchr(this_char,'=')) != NULL) {
2149 *value++ = 0;
2150 } else {
2151 printk(KERN_ERR
2152 "tmpfs: No value for mount option '%s'\n",
2153 this_char);
2154 return 1;
2157 if (!strcmp(this_char,"size")) {
2158 unsigned long long size;
2159 size = memparse(value,&rest);
2160 if (*rest == '%') {
2161 size <<= PAGE_SHIFT;
2162 size *= totalram_pages;
2163 do_div(size, 100);
2164 rest++;
2166 if (*rest)
2167 goto bad_val;
2168 sbinfo->max_blocks =
2169 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2170 } else if (!strcmp(this_char,"nr_blocks")) {
2171 sbinfo->max_blocks = memparse(value, &rest);
2172 if (*rest)
2173 goto bad_val;
2174 } else if (!strcmp(this_char,"nr_inodes")) {
2175 sbinfo->max_inodes = memparse(value, &rest);
2176 if (*rest)
2177 goto bad_val;
2178 } else if (!strcmp(this_char,"mode")) {
2179 if (remount)
2180 continue;
2181 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2182 if (*rest)
2183 goto bad_val;
2184 } else if (!strcmp(this_char,"uid")) {
2185 if (remount)
2186 continue;
2187 sbinfo->uid = simple_strtoul(value, &rest, 0);
2188 if (*rest)
2189 goto bad_val;
2190 } else if (!strcmp(this_char,"gid")) {
2191 if (remount)
2192 continue;
2193 sbinfo->gid = simple_strtoul(value, &rest, 0);
2194 if (*rest)
2195 goto bad_val;
2196 } else if (!strcmp(this_char,"mpol")) {
2197 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2198 goto bad_val;
2199 } else {
2200 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2201 this_char);
2202 return 1;
2205 return 0;
2207 bad_val:
2208 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2209 value, this_char);
2210 return 1;
2214 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2217 struct shmem_sb_info config = *sbinfo;
2218 unsigned long blocks;
2219 unsigned long inodes;
2220 int error = -EINVAL;
2222 if (shmem_parse_options(data, &config, true))
2223 return error;
2225 spin_lock(&sbinfo->stat_lock);
2226 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2227 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2228 if (config.max_blocks < blocks)
2229 goto out;
2230 if (config.max_inodes < inodes)
2231 goto out;
2233 * Those tests also disallow limited->unlimited while any are in
2234 * use, so i_blocks will always be zero when max_blocks is zero;
2235 * but we must separately disallow unlimited->limited, because
2236 * in that case we have no record of how much is already in use.
2238 if (config.max_blocks && !sbinfo->max_blocks)
2239 goto out;
2240 if (config.max_inodes && !sbinfo->max_inodes)
2241 goto out;
2243 error = 0;
2244 sbinfo->max_blocks = config.max_blocks;
2245 sbinfo->free_blocks = config.max_blocks - blocks;
2246 sbinfo->max_inodes = config.max_inodes;
2247 sbinfo->free_inodes = config.max_inodes - inodes;
2249 mpol_put(sbinfo->mpol);
2250 sbinfo->mpol = config.mpol; /* transfers initial ref */
2251 out:
2252 spin_unlock(&sbinfo->stat_lock);
2253 return error;
2256 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2258 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2260 if (sbinfo->max_blocks != shmem_default_max_blocks())
2261 seq_printf(seq, ",size=%luk",
2262 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2263 if (sbinfo->max_inodes != shmem_default_max_inodes())
2264 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2265 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2266 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2267 if (sbinfo->uid != 0)
2268 seq_printf(seq, ",uid=%u", sbinfo->uid);
2269 if (sbinfo->gid != 0)
2270 seq_printf(seq, ",gid=%u", sbinfo->gid);
2271 shmem_show_mpol(seq, sbinfo->mpol);
2272 return 0;
2274 #endif /* CONFIG_TMPFS */
2276 static void shmem_put_super(struct super_block *sb)
2278 kfree(sb->s_fs_info);
2279 sb->s_fs_info = NULL;
2282 static int shmem_fill_super(struct super_block *sb,
2283 void *data, int silent)
2285 struct inode *inode;
2286 struct dentry *root;
2287 struct shmem_sb_info *sbinfo;
2288 int err = -ENOMEM;
2290 /* Round up to L1_CACHE_BYTES to resist false sharing */
2291 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2292 L1_CACHE_BYTES), GFP_KERNEL);
2293 if (!sbinfo)
2294 return -ENOMEM;
2296 sbinfo->max_blocks = 0;
2297 sbinfo->max_inodes = 0;
2298 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2299 sbinfo->uid = current_fsuid();
2300 sbinfo->gid = current_fsgid();
2301 sbinfo->mpol = NULL;
2302 sb->s_fs_info = sbinfo;
2304 #ifdef CONFIG_TMPFS
2306 * Per default we only allow half of the physical ram per
2307 * tmpfs instance, limiting inodes to one per page of lowmem;
2308 * but the internal instance is left unlimited.
2310 if (!(sb->s_flags & MS_NOUSER)) {
2311 sbinfo->max_blocks = shmem_default_max_blocks();
2312 sbinfo->max_inodes = shmem_default_max_inodes();
2313 if (shmem_parse_options(data, sbinfo, false)) {
2314 err = -EINVAL;
2315 goto failed;
2318 sb->s_export_op = &shmem_export_ops;
2319 #else
2320 sb->s_flags |= MS_NOUSER;
2321 #endif
2323 spin_lock_init(&sbinfo->stat_lock);
2324 sbinfo->free_blocks = sbinfo->max_blocks;
2325 sbinfo->free_inodes = sbinfo->max_inodes;
2327 sb->s_maxbytes = SHMEM_MAX_BYTES;
2328 sb->s_blocksize = PAGE_CACHE_SIZE;
2329 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2330 sb->s_magic = TMPFS_MAGIC;
2331 sb->s_op = &shmem_ops;
2332 sb->s_time_gran = 1;
2333 #ifdef CONFIG_TMPFS_POSIX_ACL
2334 sb->s_xattr = shmem_xattr_handlers;
2335 sb->s_flags |= MS_POSIXACL;
2336 #endif
2338 inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2339 if (!inode)
2340 goto failed;
2341 inode->i_uid = sbinfo->uid;
2342 inode->i_gid = sbinfo->gid;
2343 root = d_alloc_root(inode);
2344 if (!root)
2345 goto failed_iput;
2346 sb->s_root = root;
2347 return 0;
2349 failed_iput:
2350 iput(inode);
2351 failed:
2352 shmem_put_super(sb);
2353 return err;
2356 static struct kmem_cache *shmem_inode_cachep;
2358 static struct inode *shmem_alloc_inode(struct super_block *sb)
2360 struct shmem_inode_info *p;
2361 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2362 if (!p)
2363 return NULL;
2364 return &p->vfs_inode;
2367 static void shmem_destroy_inode(struct inode *inode)
2369 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2370 /* only struct inode is valid if it's an inline symlink */
2371 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2373 shmem_acl_destroy_inode(inode);
2374 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2377 static void init_once(void *foo)
2379 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2381 inode_init_once(&p->vfs_inode);
2382 #ifdef CONFIG_TMPFS_POSIX_ACL
2383 p->i_acl = NULL;
2384 p->i_default_acl = NULL;
2385 #endif
2388 static int init_inodecache(void)
2390 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2391 sizeof(struct shmem_inode_info),
2392 0, SLAB_PANIC, init_once);
2393 return 0;
2396 static void destroy_inodecache(void)
2398 kmem_cache_destroy(shmem_inode_cachep);
2401 static const struct address_space_operations shmem_aops = {
2402 .writepage = shmem_writepage,
2403 .set_page_dirty = __set_page_dirty_no_writeback,
2404 #ifdef CONFIG_TMPFS
2405 .readpage = shmem_readpage,
2406 .write_begin = shmem_write_begin,
2407 .write_end = shmem_write_end,
2408 #endif
2409 .migratepage = migrate_page,
2412 static const struct file_operations shmem_file_operations = {
2413 .mmap = shmem_mmap,
2414 #ifdef CONFIG_TMPFS
2415 .llseek = generic_file_llseek,
2416 .read = do_sync_read,
2417 .write = do_sync_write,
2418 .aio_read = shmem_file_aio_read,
2419 .aio_write = generic_file_aio_write,
2420 .fsync = simple_sync_file,
2421 .splice_read = generic_file_splice_read,
2422 .splice_write = generic_file_splice_write,
2423 #endif
2426 static const struct inode_operations shmem_inode_operations = {
2427 .truncate = shmem_truncate,
2428 .setattr = shmem_notify_change,
2429 .truncate_range = shmem_truncate_range,
2430 #ifdef CONFIG_TMPFS_POSIX_ACL
2431 .setxattr = generic_setxattr,
2432 .getxattr = generic_getxattr,
2433 .listxattr = generic_listxattr,
2434 .removexattr = generic_removexattr,
2435 .permission = shmem_permission,
2436 #endif
2440 static const struct inode_operations shmem_dir_inode_operations = {
2441 #ifdef CONFIG_TMPFS
2442 .create = shmem_create,
2443 .lookup = simple_lookup,
2444 .link = shmem_link,
2445 .unlink = shmem_unlink,
2446 .symlink = shmem_symlink,
2447 .mkdir = shmem_mkdir,
2448 .rmdir = shmem_rmdir,
2449 .mknod = shmem_mknod,
2450 .rename = shmem_rename,
2451 #endif
2452 #ifdef CONFIG_TMPFS_POSIX_ACL
2453 .setattr = shmem_notify_change,
2454 .setxattr = generic_setxattr,
2455 .getxattr = generic_getxattr,
2456 .listxattr = generic_listxattr,
2457 .removexattr = generic_removexattr,
2458 .permission = shmem_permission,
2459 #endif
2462 static const struct inode_operations shmem_special_inode_operations = {
2463 #ifdef CONFIG_TMPFS_POSIX_ACL
2464 .setattr = shmem_notify_change,
2465 .setxattr = generic_setxattr,
2466 .getxattr = generic_getxattr,
2467 .listxattr = generic_listxattr,
2468 .removexattr = generic_removexattr,
2469 .permission = shmem_permission,
2470 #endif
2473 static const struct super_operations shmem_ops = {
2474 .alloc_inode = shmem_alloc_inode,
2475 .destroy_inode = shmem_destroy_inode,
2476 #ifdef CONFIG_TMPFS
2477 .statfs = shmem_statfs,
2478 .remount_fs = shmem_remount_fs,
2479 .show_options = shmem_show_options,
2480 #endif
2481 .delete_inode = shmem_delete_inode,
2482 .drop_inode = generic_delete_inode,
2483 .put_super = shmem_put_super,
2486 static struct vm_operations_struct shmem_vm_ops = {
2487 .fault = shmem_fault,
2488 #ifdef CONFIG_NUMA
2489 .set_policy = shmem_set_policy,
2490 .get_policy = shmem_get_policy,
2491 #endif
2495 static int shmem_get_sb(struct file_system_type *fs_type,
2496 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2498 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2501 static struct file_system_type tmpfs_fs_type = {
2502 .owner = THIS_MODULE,
2503 .name = "tmpfs",
2504 .get_sb = shmem_get_sb,
2505 .kill_sb = kill_litter_super,
2508 static int __init init_tmpfs(void)
2510 int error;
2512 error = bdi_init(&shmem_backing_dev_info);
2513 if (error)
2514 goto out4;
2516 error = init_inodecache();
2517 if (error)
2518 goto out3;
2520 error = register_filesystem(&tmpfs_fs_type);
2521 if (error) {
2522 printk(KERN_ERR "Could not register tmpfs\n");
2523 goto out2;
2526 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2527 tmpfs_fs_type.name, NULL);
2528 if (IS_ERR(shm_mnt)) {
2529 error = PTR_ERR(shm_mnt);
2530 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2531 goto out1;
2533 return 0;
2535 out1:
2536 unregister_filesystem(&tmpfs_fs_type);
2537 out2:
2538 destroy_inodecache();
2539 out3:
2540 bdi_destroy(&shmem_backing_dev_info);
2541 out4:
2542 shm_mnt = ERR_PTR(error);
2543 return error;
2546 #else /* !CONFIG_SHMEM */
2549 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2551 * This is intended for small system where the benefits of the full
2552 * shmem code (swap-backed and resource-limited) are outweighed by
2553 * their complexity. On systems without swap this code should be
2554 * effectively equivalent, but much lighter weight.
2557 #include <linux/ramfs.h>
2559 static struct file_system_type tmpfs_fs_type = {
2560 .name = "tmpfs",
2561 .get_sb = ramfs_get_sb,
2562 .kill_sb = kill_litter_super,
2565 static int __init init_tmpfs(void)
2567 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2569 shm_mnt = kern_mount(&tmpfs_fs_type);
2570 BUG_ON(IS_ERR(shm_mnt));
2572 return 0;
2575 int shmem_unuse(swp_entry_t entry, struct page *page)
2577 return 0;
2580 #define shmem_vm_ops generic_file_vm_ops
2581 #define shmem_file_operations ramfs_file_operations
2582 #define shmem_get_inode(sb, mode, dev, flags) ramfs_get_inode(sb, mode, dev)
2583 #define shmem_acct_size(flags, size) 0
2584 #define shmem_unacct_size(flags, size) do {} while (0)
2585 #define SHMEM_MAX_BYTES LLONG_MAX
2587 #endif /* CONFIG_SHMEM */
2589 /* common code */
2592 * shmem_file_setup - get an unlinked file living in tmpfs
2593 * @name: name for dentry (to be seen in /proc/<pid>/maps
2594 * @size: size to be set for the file
2595 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2597 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2599 int error;
2600 struct file *file;
2601 struct inode *inode;
2602 struct dentry *dentry, *root;
2603 struct qstr this;
2605 if (IS_ERR(shm_mnt))
2606 return (void *)shm_mnt;
2608 if (size < 0 || size > SHMEM_MAX_BYTES)
2609 return ERR_PTR(-EINVAL);
2611 if (shmem_acct_size(flags, size))
2612 return ERR_PTR(-ENOMEM);
2614 error = -ENOMEM;
2615 this.name = name;
2616 this.len = strlen(name);
2617 this.hash = 0; /* will go */
2618 root = shm_mnt->mnt_root;
2619 dentry = d_alloc(root, &this);
2620 if (!dentry)
2621 goto put_memory;
2623 error = -ENFILE;
2624 file = get_empty_filp();
2625 if (!file)
2626 goto put_dentry;
2628 error = -ENOSPC;
2629 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0, flags);
2630 if (!inode)
2631 goto close_file;
2633 d_instantiate(dentry, inode);
2634 inode->i_size = size;
2635 inode->i_nlink = 0; /* It is unlinked */
2636 init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2637 &shmem_file_operations);
2639 #ifndef CONFIG_MMU
2640 error = ramfs_nommu_expand_for_mapping(inode, size);
2641 if (error)
2642 goto close_file;
2643 #endif
2644 return file;
2646 close_file:
2647 put_filp(file);
2648 put_dentry:
2649 dput(dentry);
2650 put_memory:
2651 shmem_unacct_size(flags, size);
2652 return ERR_PTR(error);
2654 EXPORT_SYMBOL_GPL(shmem_file_setup);
2657 * shmem_zero_setup - setup a shared anonymous mapping
2658 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2660 int shmem_zero_setup(struct vm_area_struct *vma)
2662 struct file *file;
2663 loff_t size = vma->vm_end - vma->vm_start;
2665 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2666 if (IS_ERR(file))
2667 return PTR_ERR(file);
2669 ima_shm_check(file);
2670 if (vma->vm_file)
2671 fput(vma->vm_file);
2672 vma->vm_file = file;
2673 vma->vm_ops = &shmem_vm_ops;
2674 return 0;
2677 module_init(init_tmpfs)