1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
71 extern struct list_head audit_filter_list
[];
72 extern int audit_ever_enabled
;
74 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
75 * for saving names from getname(). */
76 #define AUDIT_NAMES 20
78 /* Indicates that audit should log the full pathname. */
79 #define AUDIT_NAME_FULL -1
81 /* no execve audit message should be longer than this (userspace limits) */
82 #define MAX_EXECVE_AUDIT_LEN 7500
84 /* number of audit rules */
87 /* determines whether we collect data for signals sent */
90 /* When fs/namei.c:getname() is called, we store the pointer in name and
91 * we don't let putname() free it (instead we free all of the saved
92 * pointers at syscall exit time).
94 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
97 int name_len
; /* number of name's characters to log */
98 unsigned name_put
; /* call __putname() for this name */
108 struct audit_aux_data
{
109 struct audit_aux_data
*next
;
113 #define AUDIT_AUX_IPCPERM 0
115 /* Number of target pids per aux struct. */
116 #define AUDIT_AUX_PIDS 16
118 struct audit_aux_data_mq_open
{
119 struct audit_aux_data d
;
125 struct audit_aux_data_mq_sendrecv
{
126 struct audit_aux_data d
;
129 unsigned int msg_prio
;
130 struct timespec abs_timeout
;
133 struct audit_aux_data_mq_notify
{
134 struct audit_aux_data d
;
136 struct sigevent notification
;
139 struct audit_aux_data_mq_getsetattr
{
140 struct audit_aux_data d
;
142 struct mq_attr mqstat
;
145 struct audit_aux_data_ipcctl
{
146 struct audit_aux_data d
;
148 unsigned long qbytes
;
155 struct audit_aux_data_execve
{
156 struct audit_aux_data d
;
159 struct mm_struct
*mm
;
162 struct audit_aux_data_socketcall
{
163 struct audit_aux_data d
;
165 unsigned long args
[0];
168 struct audit_aux_data_sockaddr
{
169 struct audit_aux_data d
;
174 struct audit_aux_data_fd_pair
{
175 struct audit_aux_data d
;
179 struct audit_aux_data_pids
{
180 struct audit_aux_data d
;
181 pid_t target_pid
[AUDIT_AUX_PIDS
];
182 uid_t target_auid
[AUDIT_AUX_PIDS
];
183 uid_t target_uid
[AUDIT_AUX_PIDS
];
184 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
185 u32 target_sid
[AUDIT_AUX_PIDS
];
186 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
190 struct audit_tree_refs
{
191 struct audit_tree_refs
*next
;
192 struct audit_chunk
*c
[31];
195 /* The per-task audit context. */
196 struct audit_context
{
197 int dummy
; /* must be the first element */
198 int in_syscall
; /* 1 if task is in a syscall */
199 enum audit_state state
;
200 unsigned int serial
; /* serial number for record */
201 struct timespec ctime
; /* time of syscall entry */
202 int major
; /* syscall number */
203 unsigned long argv
[4]; /* syscall arguments */
204 int return_valid
; /* return code is valid */
205 long return_code
;/* syscall return code */
206 int auditable
; /* 1 if record should be written */
208 struct audit_names names
[AUDIT_NAMES
];
209 char * filterkey
; /* key for rule that triggered record */
211 struct audit_context
*previous
; /* For nested syscalls */
212 struct audit_aux_data
*aux
;
213 struct audit_aux_data
*aux_pids
;
215 /* Save things to print about task_struct */
217 uid_t uid
, euid
, suid
, fsuid
;
218 gid_t gid
, egid
, sgid
, fsgid
;
219 unsigned long personality
;
225 unsigned int target_sessionid
;
227 char target_comm
[TASK_COMM_LEN
];
229 struct audit_tree_refs
*trees
, *first_trees
;
238 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
239 static inline int open_arg(int flags
, int mask
)
241 int n
= ACC_MODE(flags
);
242 if (flags
& (O_TRUNC
| O_CREAT
))
243 n
|= AUDIT_PERM_WRITE
;
247 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
249 unsigned n
= ctx
->major
;
250 switch (audit_classify_syscall(ctx
->arch
, n
)) {
252 if ((mask
& AUDIT_PERM_WRITE
) &&
253 audit_match_class(AUDIT_CLASS_WRITE
, n
))
255 if ((mask
& AUDIT_PERM_READ
) &&
256 audit_match_class(AUDIT_CLASS_READ
, n
))
258 if ((mask
& AUDIT_PERM_ATTR
) &&
259 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
262 case 1: /* 32bit on biarch */
263 if ((mask
& AUDIT_PERM_WRITE
) &&
264 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
266 if ((mask
& AUDIT_PERM_READ
) &&
267 audit_match_class(AUDIT_CLASS_READ_32
, n
))
269 if ((mask
& AUDIT_PERM_ATTR
) &&
270 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
274 return mask
& ACC_MODE(ctx
->argv
[1]);
276 return mask
& ACC_MODE(ctx
->argv
[2]);
277 case 4: /* socketcall */
278 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
280 return mask
& AUDIT_PERM_EXEC
;
287 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
288 * ->first_trees points to its beginning, ->trees - to the current end of data.
289 * ->tree_count is the number of free entries in array pointed to by ->trees.
290 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
291 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
292 * it's going to remain 1-element for almost any setup) until we free context itself.
293 * References in it _are_ dropped - at the same time we free/drop aux stuff.
296 #ifdef CONFIG_AUDIT_TREE
297 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
299 struct audit_tree_refs
*p
= ctx
->trees
;
300 int left
= ctx
->tree_count
;
302 p
->c
[--left
] = chunk
;
303 ctx
->tree_count
= left
;
312 ctx
->tree_count
= 30;
318 static int grow_tree_refs(struct audit_context
*ctx
)
320 struct audit_tree_refs
*p
= ctx
->trees
;
321 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
327 p
->next
= ctx
->trees
;
329 ctx
->first_trees
= ctx
->trees
;
330 ctx
->tree_count
= 31;
335 static void unroll_tree_refs(struct audit_context
*ctx
,
336 struct audit_tree_refs
*p
, int count
)
338 #ifdef CONFIG_AUDIT_TREE
339 struct audit_tree_refs
*q
;
342 /* we started with empty chain */
343 p
= ctx
->first_trees
;
345 /* if the very first allocation has failed, nothing to do */
350 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
352 audit_put_chunk(q
->c
[n
]);
356 while (n
-- > ctx
->tree_count
) {
357 audit_put_chunk(q
->c
[n
]);
361 ctx
->tree_count
= count
;
365 static void free_tree_refs(struct audit_context
*ctx
)
367 struct audit_tree_refs
*p
, *q
;
368 for (p
= ctx
->first_trees
; p
; p
= q
) {
374 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
376 #ifdef CONFIG_AUDIT_TREE
377 struct audit_tree_refs
*p
;
382 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
383 for (n
= 0; n
< 31; n
++)
384 if (audit_tree_match(p
->c
[n
], tree
))
389 for (n
= ctx
->tree_count
; n
< 31; n
++)
390 if (audit_tree_match(p
->c
[n
], tree
))
397 /* Determine if any context name data matches a rule's watch data */
398 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
400 static int audit_filter_rules(struct task_struct
*tsk
,
401 struct audit_krule
*rule
,
402 struct audit_context
*ctx
,
403 struct audit_names
*name
,
404 enum audit_state
*state
)
406 int i
, j
, need_sid
= 1;
409 for (i
= 0; i
< rule
->field_count
; i
++) {
410 struct audit_field
*f
= &rule
->fields
[i
];
415 result
= audit_comparator(tsk
->pid
, f
->op
, f
->val
);
420 ctx
->ppid
= sys_getppid();
421 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
425 result
= audit_comparator(tsk
->uid
, f
->op
, f
->val
);
428 result
= audit_comparator(tsk
->euid
, f
->op
, f
->val
);
431 result
= audit_comparator(tsk
->suid
, f
->op
, f
->val
);
434 result
= audit_comparator(tsk
->fsuid
, f
->op
, f
->val
);
437 result
= audit_comparator(tsk
->gid
, f
->op
, f
->val
);
440 result
= audit_comparator(tsk
->egid
, f
->op
, f
->val
);
443 result
= audit_comparator(tsk
->sgid
, f
->op
, f
->val
);
446 result
= audit_comparator(tsk
->fsgid
, f
->op
, f
->val
);
449 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
453 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
457 if (ctx
&& ctx
->return_valid
)
458 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
461 if (ctx
&& ctx
->return_valid
) {
463 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
465 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
470 result
= audit_comparator(MAJOR(name
->dev
),
473 for (j
= 0; j
< ctx
->name_count
; j
++) {
474 if (audit_comparator(MAJOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
483 result
= audit_comparator(MINOR(name
->dev
),
486 for (j
= 0; j
< ctx
->name_count
; j
++) {
487 if (audit_comparator(MINOR(ctx
->names
[j
].dev
), f
->op
, f
->val
)) {
496 result
= (name
->ino
== f
->val
);
498 for (j
= 0; j
< ctx
->name_count
; j
++) {
499 if (audit_comparator(ctx
->names
[j
].ino
, f
->op
, f
->val
)) {
507 if (name
&& rule
->watch
->ino
!= (unsigned long)-1)
508 result
= (name
->dev
== rule
->watch
->dev
&&
509 name
->ino
== rule
->watch
->ino
);
513 result
= match_tree_refs(ctx
, rule
->tree
);
518 result
= audit_comparator(tsk
->loginuid
, f
->op
, f
->val
);
520 case AUDIT_SUBJ_USER
:
521 case AUDIT_SUBJ_ROLE
:
522 case AUDIT_SUBJ_TYPE
:
525 /* NOTE: this may return negative values indicating
526 a temporary error. We simply treat this as a
527 match for now to avoid losing information that
528 may be wanted. An error message will also be
532 security_task_getsecid(tsk
, &sid
);
535 result
= security_audit_rule_match(sid
, f
->type
,
544 case AUDIT_OBJ_LEV_LOW
:
545 case AUDIT_OBJ_LEV_HIGH
:
546 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
549 /* Find files that match */
551 result
= security_audit_rule_match(
552 name
->osid
, f
->type
, f
->op
,
555 for (j
= 0; j
< ctx
->name_count
; j
++) {
556 if (security_audit_rule_match(
565 /* Find ipc objects that match */
567 struct audit_aux_data
*aux
;
568 for (aux
= ctx
->aux
; aux
;
570 if (aux
->type
== AUDIT_IPC
) {
571 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
572 if (security_audit_rule_match(axi
->osid
, f
->type
, f
->op
, f
->lsm_rule
, ctx
)) {
586 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
588 case AUDIT_FILTERKEY
:
589 /* ignore this field for filtering */
593 result
= audit_match_perm(ctx
, f
->val
);
601 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
602 switch (rule
->action
) {
603 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
604 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
609 /* At process creation time, we can determine if system-call auditing is
610 * completely disabled for this task. Since we only have the task
611 * structure at this point, we can only check uid and gid.
613 static enum audit_state
audit_filter_task(struct task_struct
*tsk
)
615 struct audit_entry
*e
;
616 enum audit_state state
;
619 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
620 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
, &state
)) {
626 return AUDIT_BUILD_CONTEXT
;
629 /* At syscall entry and exit time, this filter is called if the
630 * audit_state is not low enough that auditing cannot take place, but is
631 * also not high enough that we already know we have to write an audit
632 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
634 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
635 struct audit_context
*ctx
,
636 struct list_head
*list
)
638 struct audit_entry
*e
;
639 enum audit_state state
;
641 if (audit_pid
&& tsk
->tgid
== audit_pid
)
642 return AUDIT_DISABLED
;
645 if (!list_empty(list
)) {
646 int word
= AUDIT_WORD(ctx
->major
);
647 int bit
= AUDIT_BIT(ctx
->major
);
649 list_for_each_entry_rcu(e
, list
, list
) {
650 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
651 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
659 return AUDIT_BUILD_CONTEXT
;
662 /* At syscall exit time, this filter is called if any audit_names[] have been
663 * collected during syscall processing. We only check rules in sublists at hash
664 * buckets applicable to the inode numbers in audit_names[].
665 * Regarding audit_state, same rules apply as for audit_filter_syscall().
667 enum audit_state
audit_filter_inodes(struct task_struct
*tsk
,
668 struct audit_context
*ctx
)
671 struct audit_entry
*e
;
672 enum audit_state state
;
674 if (audit_pid
&& tsk
->tgid
== audit_pid
)
675 return AUDIT_DISABLED
;
678 for (i
= 0; i
< ctx
->name_count
; i
++) {
679 int word
= AUDIT_WORD(ctx
->major
);
680 int bit
= AUDIT_BIT(ctx
->major
);
681 struct audit_names
*n
= &ctx
->names
[i
];
682 int h
= audit_hash_ino((u32
)n
->ino
);
683 struct list_head
*list
= &audit_inode_hash
[h
];
685 if (list_empty(list
))
688 list_for_each_entry_rcu(e
, list
, list
) {
689 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
690 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
)) {
697 return AUDIT_BUILD_CONTEXT
;
700 void audit_set_auditable(struct audit_context
*ctx
)
705 static inline struct audit_context
*audit_get_context(struct task_struct
*tsk
,
709 struct audit_context
*context
= tsk
->audit_context
;
711 if (likely(!context
))
713 context
->return_valid
= return_valid
;
716 * we need to fix up the return code in the audit logs if the actual
717 * return codes are later going to be fixed up by the arch specific
720 * This is actually a test for:
721 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
722 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
724 * but is faster than a bunch of ||
726 if (unlikely(return_code
<= -ERESTARTSYS
) &&
727 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
728 (return_code
!= -ENOIOCTLCMD
))
729 context
->return_code
= -EINTR
;
731 context
->return_code
= return_code
;
733 if (context
->in_syscall
&& !context
->dummy
&& !context
->auditable
) {
734 enum audit_state state
;
736 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
737 if (state
== AUDIT_RECORD_CONTEXT
) {
738 context
->auditable
= 1;
742 state
= audit_filter_inodes(tsk
, context
);
743 if (state
== AUDIT_RECORD_CONTEXT
)
744 context
->auditable
= 1;
750 tsk
->audit_context
= NULL
;
754 static inline void audit_free_names(struct audit_context
*context
)
759 if (context
->auditable
760 ||context
->put_count
+ context
->ino_count
!= context
->name_count
) {
761 printk(KERN_ERR
"%s:%d(:%d): major=%d in_syscall=%d"
762 " name_count=%d put_count=%d"
763 " ino_count=%d [NOT freeing]\n",
765 context
->serial
, context
->major
, context
->in_syscall
,
766 context
->name_count
, context
->put_count
,
768 for (i
= 0; i
< context
->name_count
; i
++) {
769 printk(KERN_ERR
"names[%d] = %p = %s\n", i
,
770 context
->names
[i
].name
,
771 context
->names
[i
].name
?: "(null)");
778 context
->put_count
= 0;
779 context
->ino_count
= 0;
782 for (i
= 0; i
< context
->name_count
; i
++) {
783 if (context
->names
[i
].name
&& context
->names
[i
].name_put
)
784 __putname(context
->names
[i
].name
);
786 context
->name_count
= 0;
787 path_put(&context
->pwd
);
788 context
->pwd
.dentry
= NULL
;
789 context
->pwd
.mnt
= NULL
;
792 static inline void audit_free_aux(struct audit_context
*context
)
794 struct audit_aux_data
*aux
;
796 while ((aux
= context
->aux
)) {
797 context
->aux
= aux
->next
;
800 while ((aux
= context
->aux_pids
)) {
801 context
->aux_pids
= aux
->next
;
806 static inline void audit_zero_context(struct audit_context
*context
,
807 enum audit_state state
)
809 memset(context
, 0, sizeof(*context
));
810 context
->state
= state
;
813 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
815 struct audit_context
*context
;
817 if (!(context
= kmalloc(sizeof(*context
), GFP_KERNEL
)))
819 audit_zero_context(context
, state
);
824 * audit_alloc - allocate an audit context block for a task
827 * Filter on the task information and allocate a per-task audit context
828 * if necessary. Doing so turns on system call auditing for the
829 * specified task. This is called from copy_process, so no lock is
832 int audit_alloc(struct task_struct
*tsk
)
834 struct audit_context
*context
;
835 enum audit_state state
;
837 if (likely(!audit_ever_enabled
))
838 return 0; /* Return if not auditing. */
840 state
= audit_filter_task(tsk
);
841 if (likely(state
== AUDIT_DISABLED
))
844 if (!(context
= audit_alloc_context(state
))) {
845 audit_log_lost("out of memory in audit_alloc");
849 tsk
->audit_context
= context
;
850 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
854 static inline void audit_free_context(struct audit_context
*context
)
856 struct audit_context
*previous
;
860 previous
= context
->previous
;
861 if (previous
|| (count
&& count
< 10)) {
863 printk(KERN_ERR
"audit(:%d): major=%d name_count=%d:"
864 " freeing multiple contexts (%d)\n",
865 context
->serial
, context
->major
,
866 context
->name_count
, count
);
868 audit_free_names(context
);
869 unroll_tree_refs(context
, NULL
, 0);
870 free_tree_refs(context
);
871 audit_free_aux(context
);
872 kfree(context
->filterkey
);
877 printk(KERN_ERR
"audit: freed %d contexts\n", count
);
880 void audit_log_task_context(struct audit_buffer
*ab
)
887 security_task_getsecid(current
, &sid
);
891 error
= security_secid_to_secctx(sid
, &ctx
, &len
);
893 if (error
!= -EINVAL
)
898 audit_log_format(ab
, " subj=%s", ctx
);
899 security_release_secctx(ctx
, len
);
903 audit_panic("error in audit_log_task_context");
907 EXPORT_SYMBOL(audit_log_task_context
);
909 static void audit_log_task_info(struct audit_buffer
*ab
, struct task_struct
*tsk
)
911 char name
[sizeof(tsk
->comm
)];
912 struct mm_struct
*mm
= tsk
->mm
;
913 struct vm_area_struct
*vma
;
917 get_task_comm(name
, tsk
);
918 audit_log_format(ab
, " comm=");
919 audit_log_untrustedstring(ab
, name
);
922 down_read(&mm
->mmap_sem
);
925 if ((vma
->vm_flags
& VM_EXECUTABLE
) &&
927 audit_log_d_path(ab
, "exe=",
928 &vma
->vm_file
->f_path
);
933 up_read(&mm
->mmap_sem
);
935 audit_log_task_context(ab
);
938 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
939 uid_t auid
, uid_t uid
, unsigned int sessionid
,
942 struct audit_buffer
*ab
;
947 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
951 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
, auid
,
953 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
954 audit_log_format(ab
, " obj=(none)");
957 audit_log_format(ab
, " obj=%s", ctx
);
958 security_release_secctx(ctx
, len
);
960 audit_log_format(ab
, " ocomm=");
961 audit_log_untrustedstring(ab
, comm
);
968 * to_send and len_sent accounting are very loose estimates. We aren't
969 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
970 * within about 500 bytes (next page boundry)
972 * why snprintf? an int is up to 12 digits long. if we just assumed when
973 * logging that a[%d]= was going to be 16 characters long we would be wasting
974 * space in every audit message. In one 7500 byte message we can log up to
975 * about 1000 min size arguments. That comes down to about 50% waste of space
976 * if we didn't do the snprintf to find out how long arg_num_len was.
978 static int audit_log_single_execve_arg(struct audit_context
*context
,
979 struct audit_buffer
**ab
,
982 const char __user
*p
,
985 char arg_num_len_buf
[12];
986 const char __user
*tmp_p
= p
;
987 /* how many digits are in arg_num? 3 is the length of a=\n */
988 size_t arg_num_len
= snprintf(arg_num_len_buf
, 12, "%d", arg_num
) + 3;
989 size_t len
, len_left
, to_send
;
990 size_t max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
;
991 unsigned int i
, has_cntl
= 0, too_long
= 0;
994 /* strnlen_user includes the null we don't want to send */
995 len_left
= len
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
998 * We just created this mm, if we can't find the strings
999 * we just copied into it something is _very_ wrong. Similar
1000 * for strings that are too long, we should not have created
1003 if (unlikely((len
== -1) || len
> MAX_ARG_STRLEN
- 1)) {
1005 send_sig(SIGKILL
, current
, 0);
1009 /* walk the whole argument looking for non-ascii chars */
1011 if (len_left
> MAX_EXECVE_AUDIT_LEN
)
1012 to_send
= MAX_EXECVE_AUDIT_LEN
;
1015 ret
= copy_from_user(buf
, tmp_p
, to_send
);
1017 * There is no reason for this copy to be short. We just
1018 * copied them here, and the mm hasn't been exposed to user-
1023 send_sig(SIGKILL
, current
, 0);
1026 buf
[to_send
] = '\0';
1027 has_cntl
= audit_string_contains_control(buf
, to_send
);
1030 * hex messages get logged as 2 bytes, so we can only
1031 * send half as much in each message
1033 max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
/ 2;
1036 len_left
-= to_send
;
1038 } while (len_left
> 0);
1042 if (len
> max_execve_audit_len
)
1045 /* rewalk the argument actually logging the message */
1046 for (i
= 0; len_left
> 0; i
++) {
1049 if (len_left
> max_execve_audit_len
)
1050 to_send
= max_execve_audit_len
;
1054 /* do we have space left to send this argument in this ab? */
1055 room_left
= MAX_EXECVE_AUDIT_LEN
- arg_num_len
- *len_sent
;
1057 room_left
-= (to_send
* 2);
1059 room_left
-= to_send
;
1060 if (room_left
< 0) {
1063 *ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EXECVE
);
1069 * first record needs to say how long the original string was
1070 * so we can be sure nothing was lost.
1072 if ((i
== 0) && (too_long
))
1073 audit_log_format(*ab
, "a%d_len=%zu ", arg_num
,
1074 has_cntl
? 2*len
: len
);
1077 * normally arguments are small enough to fit and we already
1078 * filled buf above when we checked for control characters
1079 * so don't bother with another copy_from_user
1081 if (len
>= max_execve_audit_len
)
1082 ret
= copy_from_user(buf
, p
, to_send
);
1087 send_sig(SIGKILL
, current
, 0);
1090 buf
[to_send
] = '\0';
1092 /* actually log it */
1093 audit_log_format(*ab
, "a%d", arg_num
);
1095 audit_log_format(*ab
, "[%d]", i
);
1096 audit_log_format(*ab
, "=");
1098 audit_log_hex(*ab
, buf
, to_send
);
1100 audit_log_format(*ab
, "\"%s\"", buf
);
1101 audit_log_format(*ab
, "\n");
1104 len_left
-= to_send
;
1105 *len_sent
+= arg_num_len
;
1107 *len_sent
+= to_send
* 2;
1109 *len_sent
+= to_send
;
1111 /* include the null we didn't log */
1115 static void audit_log_execve_info(struct audit_context
*context
,
1116 struct audit_buffer
**ab
,
1117 struct audit_aux_data_execve
*axi
)
1120 size_t len
, len_sent
= 0;
1121 const char __user
*p
;
1124 if (axi
->mm
!= current
->mm
)
1125 return; /* execve failed, no additional info */
1127 p
= (const char __user
*)axi
->mm
->arg_start
;
1129 audit_log_format(*ab
, "argc=%d ", axi
->argc
);
1132 * we need some kernel buffer to hold the userspace args. Just
1133 * allocate one big one rather than allocating one of the right size
1134 * for every single argument inside audit_log_single_execve_arg()
1135 * should be <8k allocation so should be pretty safe.
1137 buf
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1139 audit_panic("out of memory for argv string\n");
1143 for (i
= 0; i
< axi
->argc
; i
++) {
1144 len
= audit_log_single_execve_arg(context
, ab
, i
,
1153 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1155 int i
, call_panic
= 0;
1156 struct audit_buffer
*ab
;
1157 struct audit_aux_data
*aux
;
1160 /* tsk == current */
1161 context
->pid
= tsk
->pid
;
1163 context
->ppid
= sys_getppid();
1164 context
->uid
= tsk
->uid
;
1165 context
->gid
= tsk
->gid
;
1166 context
->euid
= tsk
->euid
;
1167 context
->suid
= tsk
->suid
;
1168 context
->fsuid
= tsk
->fsuid
;
1169 context
->egid
= tsk
->egid
;
1170 context
->sgid
= tsk
->sgid
;
1171 context
->fsgid
= tsk
->fsgid
;
1172 context
->personality
= tsk
->personality
;
1174 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1176 return; /* audit_panic has been called */
1177 audit_log_format(ab
, "arch=%x syscall=%d",
1178 context
->arch
, context
->major
);
1179 if (context
->personality
!= PER_LINUX
)
1180 audit_log_format(ab
, " per=%lx", context
->personality
);
1181 if (context
->return_valid
)
1182 audit_log_format(ab
, " success=%s exit=%ld",
1183 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1184 context
->return_code
);
1186 mutex_lock(&tty_mutex
);
1187 read_lock(&tasklist_lock
);
1188 if (tsk
->signal
&& tsk
->signal
->tty
&& tsk
->signal
->tty
->name
)
1189 tty
= tsk
->signal
->tty
->name
;
1192 read_unlock(&tasklist_lock
);
1193 audit_log_format(ab
,
1194 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1195 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1196 " euid=%u suid=%u fsuid=%u"
1197 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1202 context
->name_count
,
1208 context
->euid
, context
->suid
, context
->fsuid
,
1209 context
->egid
, context
->sgid
, context
->fsgid
, tty
,
1212 mutex_unlock(&tty_mutex
);
1214 audit_log_task_info(ab
, tsk
);
1215 if (context
->filterkey
) {
1216 audit_log_format(ab
, " key=");
1217 audit_log_untrustedstring(ab
, context
->filterkey
);
1219 audit_log_format(ab
, " key=(null)");
1222 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1224 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1226 continue; /* audit_panic has been called */
1228 switch (aux
->type
) {
1229 case AUDIT_MQ_OPEN
: {
1230 struct audit_aux_data_mq_open
*axi
= (void *)aux
;
1231 audit_log_format(ab
,
1232 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1233 "mq_msgsize=%ld mq_curmsgs=%ld",
1234 axi
->oflag
, axi
->mode
, axi
->attr
.mq_flags
,
1235 axi
->attr
.mq_maxmsg
, axi
->attr
.mq_msgsize
,
1236 axi
->attr
.mq_curmsgs
);
1239 case AUDIT_MQ_SENDRECV
: {
1240 struct audit_aux_data_mq_sendrecv
*axi
= (void *)aux
;
1241 audit_log_format(ab
,
1242 "mqdes=%d msg_len=%zd msg_prio=%u "
1243 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1244 axi
->mqdes
, axi
->msg_len
, axi
->msg_prio
,
1245 axi
->abs_timeout
.tv_sec
, axi
->abs_timeout
.tv_nsec
);
1248 case AUDIT_MQ_NOTIFY
: {
1249 struct audit_aux_data_mq_notify
*axi
= (void *)aux
;
1250 audit_log_format(ab
,
1251 "mqdes=%d sigev_signo=%d",
1253 axi
->notification
.sigev_signo
);
1256 case AUDIT_MQ_GETSETATTR
: {
1257 struct audit_aux_data_mq_getsetattr
*axi
= (void *)aux
;
1258 audit_log_format(ab
,
1259 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1262 axi
->mqstat
.mq_flags
, axi
->mqstat
.mq_maxmsg
,
1263 axi
->mqstat
.mq_msgsize
, axi
->mqstat
.mq_curmsgs
);
1267 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
1268 audit_log_format(ab
,
1269 "ouid=%u ogid=%u mode=%#o",
1270 axi
->uid
, axi
->gid
, axi
->mode
);
1271 if (axi
->osid
!= 0) {
1274 if (security_secid_to_secctx(
1275 axi
->osid
, &ctx
, &len
)) {
1276 audit_log_format(ab
, " osid=%u",
1280 audit_log_format(ab
, " obj=%s", ctx
);
1281 security_release_secctx(ctx
, len
);
1286 case AUDIT_IPC_SET_PERM
: {
1287 struct audit_aux_data_ipcctl
*axi
= (void *)aux
;
1288 audit_log_format(ab
,
1289 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1290 axi
->qbytes
, axi
->uid
, axi
->gid
, axi
->mode
);
1293 case AUDIT_EXECVE
: {
1294 struct audit_aux_data_execve
*axi
= (void *)aux
;
1295 audit_log_execve_info(context
, &ab
, axi
);
1298 case AUDIT_SOCKETCALL
: {
1300 struct audit_aux_data_socketcall
*axs
= (void *)aux
;
1301 audit_log_format(ab
, "nargs=%d", axs
->nargs
);
1302 for (i
=0; i
<axs
->nargs
; i
++)
1303 audit_log_format(ab
, " a%d=%lx", i
, axs
->args
[i
]);
1306 case AUDIT_SOCKADDR
: {
1307 struct audit_aux_data_sockaddr
*axs
= (void *)aux
;
1309 audit_log_format(ab
, "saddr=");
1310 audit_log_hex(ab
, axs
->a
, axs
->len
);
1313 case AUDIT_FD_PAIR
: {
1314 struct audit_aux_data_fd_pair
*axs
= (void *)aux
;
1315 audit_log_format(ab
, "fd0=%d fd1=%d", axs
->fd
[0], axs
->fd
[1]);
1322 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1323 struct audit_aux_data_pids
*axs
= (void *)aux
;
1326 for (i
= 0; i
< axs
->pid_count
; i
++)
1327 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1328 axs
->target_auid
[i
],
1330 axs
->target_sessionid
[i
],
1332 axs
->target_comm
[i
]))
1336 if (context
->target_pid
&&
1337 audit_log_pid_context(context
, context
->target_pid
,
1338 context
->target_auid
, context
->target_uid
,
1339 context
->target_sessionid
,
1340 context
->target_sid
, context
->target_comm
))
1343 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1344 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1346 audit_log_d_path(ab
, "cwd=", &context
->pwd
);
1350 for (i
= 0; i
< context
->name_count
; i
++) {
1351 struct audit_names
*n
= &context
->names
[i
];
1353 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_PATH
);
1355 continue; /* audit_panic has been called */
1357 audit_log_format(ab
, "item=%d", i
);
1360 switch(n
->name_len
) {
1361 case AUDIT_NAME_FULL
:
1362 /* log the full path */
1363 audit_log_format(ab
, " name=");
1364 audit_log_untrustedstring(ab
, n
->name
);
1367 /* name was specified as a relative path and the
1368 * directory component is the cwd */
1369 audit_log_d_path(ab
, " name=", &context
->pwd
);
1372 /* log the name's directory component */
1373 audit_log_format(ab
, " name=");
1374 audit_log_n_untrustedstring(ab
, n
->name_len
,
1378 audit_log_format(ab
, " name=(null)");
1380 if (n
->ino
!= (unsigned long)-1) {
1381 audit_log_format(ab
, " inode=%lu"
1382 " dev=%02x:%02x mode=%#o"
1383 " ouid=%u ogid=%u rdev=%02x:%02x",
1396 if (security_secid_to_secctx(
1397 n
->osid
, &ctx
, &len
)) {
1398 audit_log_format(ab
, " osid=%u", n
->osid
);
1401 audit_log_format(ab
, " obj=%s", ctx
);
1402 security_release_secctx(ctx
, len
);
1409 /* Send end of event record to help user space know we are finished */
1410 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1414 audit_panic("error converting sid to string");
1418 * audit_free - free a per-task audit context
1419 * @tsk: task whose audit context block to free
1421 * Called from copy_process and do_exit
1423 void audit_free(struct task_struct
*tsk
)
1425 struct audit_context
*context
;
1427 context
= audit_get_context(tsk
, 0, 0);
1428 if (likely(!context
))
1431 /* Check for system calls that do not go through the exit
1432 * function (e.g., exit_group), then free context block.
1433 * We use GFP_ATOMIC here because we might be doing this
1434 * in the context of the idle thread */
1435 /* that can happen only if we are called from do_exit() */
1436 if (context
->in_syscall
&& context
->auditable
)
1437 audit_log_exit(context
, tsk
);
1439 audit_free_context(context
);
1443 * audit_syscall_entry - fill in an audit record at syscall entry
1444 * @tsk: task being audited
1445 * @arch: architecture type
1446 * @major: major syscall type (function)
1447 * @a1: additional syscall register 1
1448 * @a2: additional syscall register 2
1449 * @a3: additional syscall register 3
1450 * @a4: additional syscall register 4
1452 * Fill in audit context at syscall entry. This only happens if the
1453 * audit context was created when the task was created and the state or
1454 * filters demand the audit context be built. If the state from the
1455 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1456 * then the record will be written at syscall exit time (otherwise, it
1457 * will only be written if another part of the kernel requests that it
1460 void audit_syscall_entry(int arch
, int major
,
1461 unsigned long a1
, unsigned long a2
,
1462 unsigned long a3
, unsigned long a4
)
1464 struct task_struct
*tsk
= current
;
1465 struct audit_context
*context
= tsk
->audit_context
;
1466 enum audit_state state
;
1471 * This happens only on certain architectures that make system
1472 * calls in kernel_thread via the entry.S interface, instead of
1473 * with direct calls. (If you are porting to a new
1474 * architecture, hitting this condition can indicate that you
1475 * got the _exit/_leave calls backward in entry.S.)
1479 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1481 * This also happens with vm86 emulation in a non-nested manner
1482 * (entries without exits), so this case must be caught.
1484 if (context
->in_syscall
) {
1485 struct audit_context
*newctx
;
1489 "audit(:%d) pid=%d in syscall=%d;"
1490 " entering syscall=%d\n",
1491 context
->serial
, tsk
->pid
, context
->major
, major
);
1493 newctx
= audit_alloc_context(context
->state
);
1495 newctx
->previous
= context
;
1497 tsk
->audit_context
= newctx
;
1499 /* If we can't alloc a new context, the best we
1500 * can do is to leak memory (any pending putname
1501 * will be lost). The only other alternative is
1502 * to abandon auditing. */
1503 audit_zero_context(context
, context
->state
);
1506 BUG_ON(context
->in_syscall
|| context
->name_count
);
1511 context
->arch
= arch
;
1512 context
->major
= major
;
1513 context
->argv
[0] = a1
;
1514 context
->argv
[1] = a2
;
1515 context
->argv
[2] = a3
;
1516 context
->argv
[3] = a4
;
1518 state
= context
->state
;
1519 context
->dummy
= !audit_n_rules
;
1520 if (!context
->dummy
&& (state
== AUDIT_SETUP_CONTEXT
|| state
== AUDIT_BUILD_CONTEXT
))
1521 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1522 if (likely(state
== AUDIT_DISABLED
))
1525 context
->serial
= 0;
1526 context
->ctime
= CURRENT_TIME
;
1527 context
->in_syscall
= 1;
1528 context
->auditable
= !!(state
== AUDIT_RECORD_CONTEXT
);
1533 * audit_syscall_exit - deallocate audit context after a system call
1534 * @tsk: task being audited
1535 * @valid: success/failure flag
1536 * @return_code: syscall return value
1538 * Tear down after system call. If the audit context has been marked as
1539 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1540 * filtering, or because some other part of the kernel write an audit
1541 * message), then write out the syscall information. In call cases,
1542 * free the names stored from getname().
1544 void audit_syscall_exit(int valid
, long return_code
)
1546 struct task_struct
*tsk
= current
;
1547 struct audit_context
*context
;
1549 context
= audit_get_context(tsk
, valid
, return_code
);
1551 if (likely(!context
))
1554 if (context
->in_syscall
&& context
->auditable
)
1555 audit_log_exit(context
, tsk
);
1557 context
->in_syscall
= 0;
1558 context
->auditable
= 0;
1560 if (context
->previous
) {
1561 struct audit_context
*new_context
= context
->previous
;
1562 context
->previous
= NULL
;
1563 audit_free_context(context
);
1564 tsk
->audit_context
= new_context
;
1566 audit_free_names(context
);
1567 unroll_tree_refs(context
, NULL
, 0);
1568 audit_free_aux(context
);
1569 context
->aux
= NULL
;
1570 context
->aux_pids
= NULL
;
1571 context
->target_pid
= 0;
1572 context
->target_sid
= 0;
1573 kfree(context
->filterkey
);
1574 context
->filterkey
= NULL
;
1575 tsk
->audit_context
= context
;
1579 static inline void handle_one(const struct inode
*inode
)
1581 #ifdef CONFIG_AUDIT_TREE
1582 struct audit_context
*context
;
1583 struct audit_tree_refs
*p
;
1584 struct audit_chunk
*chunk
;
1586 if (likely(list_empty(&inode
->inotify_watches
)))
1588 context
= current
->audit_context
;
1590 count
= context
->tree_count
;
1592 chunk
= audit_tree_lookup(inode
);
1596 if (likely(put_tree_ref(context
, chunk
)))
1598 if (unlikely(!grow_tree_refs(context
))) {
1599 printk(KERN_WARNING
"out of memory, audit has lost a tree reference");
1600 audit_set_auditable(context
);
1601 audit_put_chunk(chunk
);
1602 unroll_tree_refs(context
, p
, count
);
1605 put_tree_ref(context
, chunk
);
1609 static void handle_path(const struct dentry
*dentry
)
1611 #ifdef CONFIG_AUDIT_TREE
1612 struct audit_context
*context
;
1613 struct audit_tree_refs
*p
;
1614 const struct dentry
*d
, *parent
;
1615 struct audit_chunk
*drop
;
1619 context
= current
->audit_context
;
1621 count
= context
->tree_count
;
1626 seq
= read_seqbegin(&rename_lock
);
1628 struct inode
*inode
= d
->d_inode
;
1629 if (inode
&& unlikely(!list_empty(&inode
->inotify_watches
))) {
1630 struct audit_chunk
*chunk
;
1631 chunk
= audit_tree_lookup(inode
);
1633 if (unlikely(!put_tree_ref(context
, chunk
))) {
1639 parent
= d
->d_parent
;
1644 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1647 /* just a race with rename */
1648 unroll_tree_refs(context
, p
, count
);
1651 audit_put_chunk(drop
);
1652 if (grow_tree_refs(context
)) {
1653 /* OK, got more space */
1654 unroll_tree_refs(context
, p
, count
);
1659 "out of memory, audit has lost a tree reference");
1660 unroll_tree_refs(context
, p
, count
);
1661 audit_set_auditable(context
);
1669 * audit_getname - add a name to the list
1670 * @name: name to add
1672 * Add a name to the list of audit names for this context.
1673 * Called from fs/namei.c:getname().
1675 void __audit_getname(const char *name
)
1677 struct audit_context
*context
= current
->audit_context
;
1679 if (IS_ERR(name
) || !name
)
1682 if (!context
->in_syscall
) {
1683 #if AUDIT_DEBUG == 2
1684 printk(KERN_ERR
"%s:%d(:%d): ignoring getname(%p)\n",
1685 __FILE__
, __LINE__
, context
->serial
, name
);
1690 BUG_ON(context
->name_count
>= AUDIT_NAMES
);
1691 context
->names
[context
->name_count
].name
= name
;
1692 context
->names
[context
->name_count
].name_len
= AUDIT_NAME_FULL
;
1693 context
->names
[context
->name_count
].name_put
= 1;
1694 context
->names
[context
->name_count
].ino
= (unsigned long)-1;
1695 context
->names
[context
->name_count
].osid
= 0;
1696 ++context
->name_count
;
1697 if (!context
->pwd
.dentry
) {
1698 read_lock(¤t
->fs
->lock
);
1699 context
->pwd
= current
->fs
->pwd
;
1700 path_get(¤t
->fs
->pwd
);
1701 read_unlock(¤t
->fs
->lock
);
1706 /* audit_putname - intercept a putname request
1707 * @name: name to intercept and delay for putname
1709 * If we have stored the name from getname in the audit context,
1710 * then we delay the putname until syscall exit.
1711 * Called from include/linux/fs.h:putname().
1713 void audit_putname(const char *name
)
1715 struct audit_context
*context
= current
->audit_context
;
1718 if (!context
->in_syscall
) {
1719 #if AUDIT_DEBUG == 2
1720 printk(KERN_ERR
"%s:%d(:%d): __putname(%p)\n",
1721 __FILE__
, __LINE__
, context
->serial
, name
);
1722 if (context
->name_count
) {
1724 for (i
= 0; i
< context
->name_count
; i
++)
1725 printk(KERN_ERR
"name[%d] = %p = %s\n", i
,
1726 context
->names
[i
].name
,
1727 context
->names
[i
].name
?: "(null)");
1734 ++context
->put_count
;
1735 if (context
->put_count
> context
->name_count
) {
1736 printk(KERN_ERR
"%s:%d(:%d): major=%d"
1737 " in_syscall=%d putname(%p) name_count=%d"
1740 context
->serial
, context
->major
,
1741 context
->in_syscall
, name
, context
->name_count
,
1742 context
->put_count
);
1749 static int audit_inc_name_count(struct audit_context
*context
,
1750 const struct inode
*inode
)
1752 if (context
->name_count
>= AUDIT_NAMES
) {
1754 printk(KERN_DEBUG
"name_count maxed, losing inode data: "
1755 "dev=%02x:%02x, inode=%lu",
1756 MAJOR(inode
->i_sb
->s_dev
),
1757 MINOR(inode
->i_sb
->s_dev
),
1761 printk(KERN_DEBUG
"name_count maxed, losing inode data");
1764 context
->name_count
++;
1766 context
->ino_count
++;
1771 /* Copy inode data into an audit_names. */
1772 static void audit_copy_inode(struct audit_names
*name
, const struct inode
*inode
)
1774 name
->ino
= inode
->i_ino
;
1775 name
->dev
= inode
->i_sb
->s_dev
;
1776 name
->mode
= inode
->i_mode
;
1777 name
->uid
= inode
->i_uid
;
1778 name
->gid
= inode
->i_gid
;
1779 name
->rdev
= inode
->i_rdev
;
1780 security_inode_getsecid(inode
, &name
->osid
);
1784 * audit_inode - store the inode and device from a lookup
1785 * @name: name being audited
1786 * @dentry: dentry being audited
1788 * Called from fs/namei.c:path_lookup().
1790 void __audit_inode(const char *name
, const struct dentry
*dentry
)
1793 struct audit_context
*context
= current
->audit_context
;
1794 const struct inode
*inode
= dentry
->d_inode
;
1796 if (!context
->in_syscall
)
1798 if (context
->name_count
1799 && context
->names
[context
->name_count
-1].name
1800 && context
->names
[context
->name_count
-1].name
== name
)
1801 idx
= context
->name_count
- 1;
1802 else if (context
->name_count
> 1
1803 && context
->names
[context
->name_count
-2].name
1804 && context
->names
[context
->name_count
-2].name
== name
)
1805 idx
= context
->name_count
- 2;
1807 /* FIXME: how much do we care about inodes that have no
1808 * associated name? */
1809 if (audit_inc_name_count(context
, inode
))
1811 idx
= context
->name_count
- 1;
1812 context
->names
[idx
].name
= NULL
;
1814 handle_path(dentry
);
1815 audit_copy_inode(&context
->names
[idx
], inode
);
1819 * audit_inode_child - collect inode info for created/removed objects
1820 * @dname: inode's dentry name
1821 * @dentry: dentry being audited
1822 * @parent: inode of dentry parent
1824 * For syscalls that create or remove filesystem objects, audit_inode
1825 * can only collect information for the filesystem object's parent.
1826 * This call updates the audit context with the child's information.
1827 * Syscalls that create a new filesystem object must be hooked after
1828 * the object is created. Syscalls that remove a filesystem object
1829 * must be hooked prior, in order to capture the target inode during
1830 * unsuccessful attempts.
1832 void __audit_inode_child(const char *dname
, const struct dentry
*dentry
,
1833 const struct inode
*parent
)
1836 struct audit_context
*context
= current
->audit_context
;
1837 const char *found_parent
= NULL
, *found_child
= NULL
;
1838 const struct inode
*inode
= dentry
->d_inode
;
1841 if (!context
->in_syscall
)
1846 /* determine matching parent */
1850 /* parent is more likely, look for it first */
1851 for (idx
= 0; idx
< context
->name_count
; idx
++) {
1852 struct audit_names
*n
= &context
->names
[idx
];
1857 if (n
->ino
== parent
->i_ino
&&
1858 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
1859 n
->name_len
= dirlen
; /* update parent data in place */
1860 found_parent
= n
->name
;
1865 /* no matching parent, look for matching child */
1866 for (idx
= 0; idx
< context
->name_count
; idx
++) {
1867 struct audit_names
*n
= &context
->names
[idx
];
1872 /* strcmp() is the more likely scenario */
1873 if (!strcmp(dname
, n
->name
) ||
1874 !audit_compare_dname_path(dname
, n
->name
, &dirlen
)) {
1876 audit_copy_inode(n
, inode
);
1878 n
->ino
= (unsigned long)-1;
1879 found_child
= n
->name
;
1885 if (!found_parent
) {
1886 if (audit_inc_name_count(context
, parent
))
1888 idx
= context
->name_count
- 1;
1889 context
->names
[idx
].name
= NULL
;
1890 audit_copy_inode(&context
->names
[idx
], parent
);
1894 if (audit_inc_name_count(context
, inode
))
1896 idx
= context
->name_count
- 1;
1898 /* Re-use the name belonging to the slot for a matching parent
1899 * directory. All names for this context are relinquished in
1900 * audit_free_names() */
1902 context
->names
[idx
].name
= found_parent
;
1903 context
->names
[idx
].name_len
= AUDIT_NAME_FULL
;
1904 /* don't call __putname() */
1905 context
->names
[idx
].name_put
= 0;
1907 context
->names
[idx
].name
= NULL
;
1911 audit_copy_inode(&context
->names
[idx
], inode
);
1913 context
->names
[idx
].ino
= (unsigned long)-1;
1916 EXPORT_SYMBOL_GPL(__audit_inode_child
);
1919 * auditsc_get_stamp - get local copies of audit_context values
1920 * @ctx: audit_context for the task
1921 * @t: timespec to store time recorded in the audit_context
1922 * @serial: serial value that is recorded in the audit_context
1924 * Also sets the context as auditable.
1926 void auditsc_get_stamp(struct audit_context
*ctx
,
1927 struct timespec
*t
, unsigned int *serial
)
1930 ctx
->serial
= audit_serial();
1931 t
->tv_sec
= ctx
->ctime
.tv_sec
;
1932 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
1933 *serial
= ctx
->serial
;
1937 /* global counter which is incremented every time something logs in */
1938 static atomic_t session_id
= ATOMIC_INIT(0);
1941 * audit_set_loginuid - set a task's audit_context loginuid
1942 * @task: task whose audit context is being modified
1943 * @loginuid: loginuid value
1947 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1949 int audit_set_loginuid(struct task_struct
*task
, uid_t loginuid
)
1951 unsigned int sessionid
= atomic_inc_return(&session_id
);
1952 struct audit_context
*context
= task
->audit_context
;
1954 if (context
&& context
->in_syscall
) {
1955 struct audit_buffer
*ab
;
1957 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
1959 audit_log_format(ab
, "login pid=%d uid=%u "
1960 "old auid=%u new auid=%u"
1961 " old ses=%u new ses=%u",
1962 task
->pid
, task
->uid
,
1963 task
->loginuid
, loginuid
,
1964 task
->sessionid
, sessionid
);
1968 task
->sessionid
= sessionid
;
1969 task
->loginuid
= loginuid
;
1974 * __audit_mq_open - record audit data for a POSIX MQ open
1977 * @u_attr: queue attributes
1979 * Returns 0 for success or NULL context or < 0 on error.
1981 int __audit_mq_open(int oflag
, mode_t mode
, struct mq_attr __user
*u_attr
)
1983 struct audit_aux_data_mq_open
*ax
;
1984 struct audit_context
*context
= current
->audit_context
;
1989 if (likely(!context
))
1992 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
1996 if (u_attr
!= NULL
) {
1997 if (copy_from_user(&ax
->attr
, u_attr
, sizeof(ax
->attr
))) {
2002 memset(&ax
->attr
, 0, sizeof(ax
->attr
));
2007 ax
->d
.type
= AUDIT_MQ_OPEN
;
2008 ax
->d
.next
= context
->aux
;
2009 context
->aux
= (void *)ax
;
2014 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2015 * @mqdes: MQ descriptor
2016 * @msg_len: Message length
2017 * @msg_prio: Message priority
2018 * @u_abs_timeout: Message timeout in absolute time
2020 * Returns 0 for success or NULL context or < 0 on error.
2022 int __audit_mq_timedsend(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2023 const struct timespec __user
*u_abs_timeout
)
2025 struct audit_aux_data_mq_sendrecv
*ax
;
2026 struct audit_context
*context
= current
->audit_context
;
2031 if (likely(!context
))
2034 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2038 if (u_abs_timeout
!= NULL
) {
2039 if (copy_from_user(&ax
->abs_timeout
, u_abs_timeout
, sizeof(ax
->abs_timeout
))) {
2044 memset(&ax
->abs_timeout
, 0, sizeof(ax
->abs_timeout
));
2047 ax
->msg_len
= msg_len
;
2048 ax
->msg_prio
= msg_prio
;
2050 ax
->d
.type
= AUDIT_MQ_SENDRECV
;
2051 ax
->d
.next
= context
->aux
;
2052 context
->aux
= (void *)ax
;
2057 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2058 * @mqdes: MQ descriptor
2059 * @msg_len: Message length
2060 * @u_msg_prio: Message priority
2061 * @u_abs_timeout: Message timeout in absolute time
2063 * Returns 0 for success or NULL context or < 0 on error.
2065 int __audit_mq_timedreceive(mqd_t mqdes
, size_t msg_len
,
2066 unsigned int __user
*u_msg_prio
,
2067 const struct timespec __user
*u_abs_timeout
)
2069 struct audit_aux_data_mq_sendrecv
*ax
;
2070 struct audit_context
*context
= current
->audit_context
;
2075 if (likely(!context
))
2078 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2082 if (u_msg_prio
!= NULL
) {
2083 if (get_user(ax
->msg_prio
, u_msg_prio
)) {
2090 if (u_abs_timeout
!= NULL
) {
2091 if (copy_from_user(&ax
->abs_timeout
, u_abs_timeout
, sizeof(ax
->abs_timeout
))) {
2096 memset(&ax
->abs_timeout
, 0, sizeof(ax
->abs_timeout
));
2099 ax
->msg_len
= msg_len
;
2101 ax
->d
.type
= AUDIT_MQ_SENDRECV
;
2102 ax
->d
.next
= context
->aux
;
2103 context
->aux
= (void *)ax
;
2108 * __audit_mq_notify - record audit data for a POSIX MQ notify
2109 * @mqdes: MQ descriptor
2110 * @u_notification: Notification event
2112 * Returns 0 for success or NULL context or < 0 on error.
2115 int __audit_mq_notify(mqd_t mqdes
, const struct sigevent __user
*u_notification
)
2117 struct audit_aux_data_mq_notify
*ax
;
2118 struct audit_context
*context
= current
->audit_context
;
2123 if (likely(!context
))
2126 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2130 if (u_notification
!= NULL
) {
2131 if (copy_from_user(&ax
->notification
, u_notification
, sizeof(ax
->notification
))) {
2136 memset(&ax
->notification
, 0, sizeof(ax
->notification
));
2140 ax
->d
.type
= AUDIT_MQ_NOTIFY
;
2141 ax
->d
.next
= context
->aux
;
2142 context
->aux
= (void *)ax
;
2147 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2148 * @mqdes: MQ descriptor
2151 * Returns 0 for success or NULL context or < 0 on error.
2153 int __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2155 struct audit_aux_data_mq_getsetattr
*ax
;
2156 struct audit_context
*context
= current
->audit_context
;
2161 if (likely(!context
))
2164 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2169 ax
->mqstat
= *mqstat
;
2171 ax
->d
.type
= AUDIT_MQ_GETSETATTR
;
2172 ax
->d
.next
= context
->aux
;
2173 context
->aux
= (void *)ax
;
2178 * audit_ipc_obj - record audit data for ipc object
2179 * @ipcp: ipc permissions
2181 * Returns 0 for success or NULL context or < 0 on error.
2183 int __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2185 struct audit_aux_data_ipcctl
*ax
;
2186 struct audit_context
*context
= current
->audit_context
;
2188 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2192 ax
->uid
= ipcp
->uid
;
2193 ax
->gid
= ipcp
->gid
;
2194 ax
->mode
= ipcp
->mode
;
2195 security_ipc_getsecid(ipcp
, &ax
->osid
);
2196 ax
->d
.type
= AUDIT_IPC
;
2197 ax
->d
.next
= context
->aux
;
2198 context
->aux
= (void *)ax
;
2203 * audit_ipc_set_perm - record audit data for new ipc permissions
2204 * @qbytes: msgq bytes
2205 * @uid: msgq user id
2206 * @gid: msgq group id
2207 * @mode: msgq mode (permissions)
2209 * Returns 0 for success or NULL context or < 0 on error.
2211 int __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, mode_t mode
)
2213 struct audit_aux_data_ipcctl
*ax
;
2214 struct audit_context
*context
= current
->audit_context
;
2216 ax
= kmalloc(sizeof(*ax
), GFP_ATOMIC
);
2220 ax
->qbytes
= qbytes
;
2225 ax
->d
.type
= AUDIT_IPC_SET_PERM
;
2226 ax
->d
.next
= context
->aux
;
2227 context
->aux
= (void *)ax
;
2231 int audit_bprm(struct linux_binprm
*bprm
)
2233 struct audit_aux_data_execve
*ax
;
2234 struct audit_context
*context
= current
->audit_context
;
2236 if (likely(!audit_enabled
|| !context
|| context
->dummy
))
2239 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2243 ax
->argc
= bprm
->argc
;
2244 ax
->envc
= bprm
->envc
;
2246 ax
->d
.type
= AUDIT_EXECVE
;
2247 ax
->d
.next
= context
->aux
;
2248 context
->aux
= (void *)ax
;
2254 * audit_socketcall - record audit data for sys_socketcall
2255 * @nargs: number of args
2258 * Returns 0 for success or NULL context or < 0 on error.
2260 int audit_socketcall(int nargs
, unsigned long *args
)
2262 struct audit_aux_data_socketcall
*ax
;
2263 struct audit_context
*context
= current
->audit_context
;
2265 if (likely(!context
|| context
->dummy
))
2268 ax
= kmalloc(sizeof(*ax
) + nargs
* sizeof(unsigned long), GFP_KERNEL
);
2273 memcpy(ax
->args
, args
, nargs
* sizeof(unsigned long));
2275 ax
->d
.type
= AUDIT_SOCKETCALL
;
2276 ax
->d
.next
= context
->aux
;
2277 context
->aux
= (void *)ax
;
2282 * __audit_fd_pair - record audit data for pipe and socketpair
2283 * @fd1: the first file descriptor
2284 * @fd2: the second file descriptor
2286 * Returns 0 for success or NULL context or < 0 on error.
2288 int __audit_fd_pair(int fd1
, int fd2
)
2290 struct audit_context
*context
= current
->audit_context
;
2291 struct audit_aux_data_fd_pair
*ax
;
2293 if (likely(!context
)) {
2297 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2305 ax
->d
.type
= AUDIT_FD_PAIR
;
2306 ax
->d
.next
= context
->aux
;
2307 context
->aux
= (void *)ax
;
2312 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2313 * @len: data length in user space
2314 * @a: data address in kernel space
2316 * Returns 0 for success or NULL context or < 0 on error.
2318 int audit_sockaddr(int len
, void *a
)
2320 struct audit_aux_data_sockaddr
*ax
;
2321 struct audit_context
*context
= current
->audit_context
;
2323 if (likely(!context
|| context
->dummy
))
2326 ax
= kmalloc(sizeof(*ax
) + len
, GFP_KERNEL
);
2331 memcpy(ax
->a
, a
, len
);
2333 ax
->d
.type
= AUDIT_SOCKADDR
;
2334 ax
->d
.next
= context
->aux
;
2335 context
->aux
= (void *)ax
;
2339 void __audit_ptrace(struct task_struct
*t
)
2341 struct audit_context
*context
= current
->audit_context
;
2343 context
->target_pid
= t
->pid
;
2344 context
->target_auid
= audit_get_loginuid(t
);
2345 context
->target_uid
= t
->uid
;
2346 context
->target_sessionid
= audit_get_sessionid(t
);
2347 security_task_getsecid(t
, &context
->target_sid
);
2348 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2352 * audit_signal_info - record signal info for shutting down audit subsystem
2353 * @sig: signal value
2354 * @t: task being signaled
2356 * If the audit subsystem is being terminated, record the task (pid)
2357 * and uid that is doing that.
2359 int __audit_signal_info(int sig
, struct task_struct
*t
)
2361 struct audit_aux_data_pids
*axp
;
2362 struct task_struct
*tsk
= current
;
2363 struct audit_context
*ctx
= tsk
->audit_context
;
2364 extern pid_t audit_sig_pid
;
2365 extern uid_t audit_sig_uid
;
2366 extern u32 audit_sig_sid
;
2368 if (audit_pid
&& t
->tgid
== audit_pid
) {
2369 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
) {
2370 audit_sig_pid
= tsk
->pid
;
2371 if (tsk
->loginuid
!= -1)
2372 audit_sig_uid
= tsk
->loginuid
;
2374 audit_sig_uid
= tsk
->uid
;
2375 security_task_getsecid(tsk
, &audit_sig_sid
);
2377 if (!audit_signals
|| audit_dummy_context())
2381 /* optimize the common case by putting first signal recipient directly
2382 * in audit_context */
2383 if (!ctx
->target_pid
) {
2384 ctx
->target_pid
= t
->tgid
;
2385 ctx
->target_auid
= audit_get_loginuid(t
);
2386 ctx
->target_uid
= t
->uid
;
2387 ctx
->target_sessionid
= audit_get_sessionid(t
);
2388 security_task_getsecid(t
, &ctx
->target_sid
);
2389 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2393 axp
= (void *)ctx
->aux_pids
;
2394 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2395 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2399 axp
->d
.type
= AUDIT_OBJ_PID
;
2400 axp
->d
.next
= ctx
->aux_pids
;
2401 ctx
->aux_pids
= (void *)axp
;
2403 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2405 axp
->target_pid
[axp
->pid_count
] = t
->tgid
;
2406 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2407 axp
->target_uid
[axp
->pid_count
] = t
->uid
;
2408 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2409 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2410 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2417 * audit_core_dumps - record information about processes that end abnormally
2418 * @signr: signal value
2420 * If a process ends with a core dump, something fishy is going on and we
2421 * should record the event for investigation.
2423 void audit_core_dumps(long signr
)
2425 struct audit_buffer
*ab
;
2427 uid_t auid
= audit_get_loginuid(current
);
2428 unsigned int sessionid
= audit_get_sessionid(current
);
2433 if (signr
== SIGQUIT
) /* don't care for those */
2436 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2437 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2438 auid
, current
->uid
, current
->gid
, sessionid
);
2439 security_task_getsecid(current
, &sid
);
2444 if (security_secid_to_secctx(sid
, &ctx
, &len
))
2445 audit_log_format(ab
, " ssid=%u", sid
);
2447 audit_log_format(ab
, " subj=%s", ctx
);
2448 security_release_secctx(ctx
, len
);
2451 audit_log_format(ab
, " pid=%d comm=", current
->pid
);
2452 audit_log_untrustedstring(ab
, current
->comm
);
2453 audit_log_format(ab
, " sig=%ld", signr
);