[PARISC] Add __read_mostly section for parisc
[linux-2.6/mini2440.git] / include / linux / list.h
blob945daa1f13dd05d6a7ad95e6022108a824d6a3dd
1 #ifndef _LINUX_LIST_H
2 #define _LINUX_LIST_H
4 #ifdef __KERNEL__
6 #include <linux/stddef.h>
7 #include <linux/prefetch.h>
8 #include <asm/system.h>
11 * These are non-NULL pointers that will result in page faults
12 * under normal circumstances, used to verify that nobody uses
13 * non-initialized list entries.
15 #define LIST_POISON1 ((void *) 0x00100100)
16 #define LIST_POISON2 ((void *) 0x00200200)
19 * Simple doubly linked list implementation.
21 * Some of the internal functions ("__xxx") are useful when
22 * manipulating whole lists rather than single entries, as
23 * sometimes we already know the next/prev entries and we can
24 * generate better code by using them directly rather than
25 * using the generic single-entry routines.
28 struct list_head {
29 struct list_head *next, *prev;
32 #define LIST_HEAD_INIT(name) { &(name), &(name) }
34 #define LIST_HEAD(name) \
35 struct list_head name = LIST_HEAD_INIT(name)
37 #define INIT_LIST_HEAD(ptr) do { \
38 (ptr)->next = (ptr); (ptr)->prev = (ptr); \
39 } while (0)
42 * Insert a new entry between two known consecutive entries.
44 * This is only for internal list manipulation where we know
45 * the prev/next entries already!
47 static inline void __list_add(struct list_head *new,
48 struct list_head *prev,
49 struct list_head *next)
51 next->prev = new;
52 new->next = next;
53 new->prev = prev;
54 prev->next = new;
57 /**
58 * list_add - add a new entry
59 * @new: new entry to be added
60 * @head: list head to add it after
62 * Insert a new entry after the specified head.
63 * This is good for implementing stacks.
65 static inline void list_add(struct list_head *new, struct list_head *head)
67 __list_add(new, head, head->next);
70 /**
71 * list_add_tail - add a new entry
72 * @new: new entry to be added
73 * @head: list head to add it before
75 * Insert a new entry before the specified head.
76 * This is useful for implementing queues.
78 static inline void list_add_tail(struct list_head *new, struct list_head *head)
80 __list_add(new, head->prev, head);
84 * Insert a new entry between two known consecutive entries.
86 * This is only for internal list manipulation where we know
87 * the prev/next entries already!
89 static inline void __list_add_rcu(struct list_head * new,
90 struct list_head * prev, struct list_head * next)
92 new->next = next;
93 new->prev = prev;
94 smp_wmb();
95 next->prev = new;
96 prev->next = new;
99 /**
100 * list_add_rcu - add a new entry to rcu-protected list
101 * @new: new entry to be added
102 * @head: list head to add it after
104 * Insert a new entry after the specified head.
105 * This is good for implementing stacks.
107 * The caller must take whatever precautions are necessary
108 * (such as holding appropriate locks) to avoid racing
109 * with another list-mutation primitive, such as list_add_rcu()
110 * or list_del_rcu(), running on this same list.
111 * However, it is perfectly legal to run concurrently with
112 * the _rcu list-traversal primitives, such as
113 * list_for_each_entry_rcu().
115 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
117 __list_add_rcu(new, head, head->next);
121 * list_add_tail_rcu - add a new entry to rcu-protected list
122 * @new: new entry to be added
123 * @head: list head to add it before
125 * Insert a new entry before the specified head.
126 * This is useful for implementing queues.
128 * The caller must take whatever precautions are necessary
129 * (such as holding appropriate locks) to avoid racing
130 * with another list-mutation primitive, such as list_add_tail_rcu()
131 * or list_del_rcu(), running on this same list.
132 * However, it is perfectly legal to run concurrently with
133 * the _rcu list-traversal primitives, such as
134 * list_for_each_entry_rcu().
136 static inline void list_add_tail_rcu(struct list_head *new,
137 struct list_head *head)
139 __list_add_rcu(new, head->prev, head);
143 * Delete a list entry by making the prev/next entries
144 * point to each other.
146 * This is only for internal list manipulation where we know
147 * the prev/next entries already!
149 static inline void __list_del(struct list_head * prev, struct list_head * next)
151 next->prev = prev;
152 prev->next = next;
156 * list_del - deletes entry from list.
157 * @entry: the element to delete from the list.
158 * Note: list_empty on entry does not return true after this, the entry is
159 * in an undefined state.
161 static inline void list_del(struct list_head *entry)
163 __list_del(entry->prev, entry->next);
164 entry->next = LIST_POISON1;
165 entry->prev = LIST_POISON2;
169 * list_del_rcu - deletes entry from list without re-initialization
170 * @entry: the element to delete from the list.
172 * Note: list_empty on entry does not return true after this,
173 * the entry is in an undefined state. It is useful for RCU based
174 * lockfree traversal.
176 * In particular, it means that we can not poison the forward
177 * pointers that may still be used for walking the list.
179 * The caller must take whatever precautions are necessary
180 * (such as holding appropriate locks) to avoid racing
181 * with another list-mutation primitive, such as list_del_rcu()
182 * or list_add_rcu(), running on this same list.
183 * However, it is perfectly legal to run concurrently with
184 * the _rcu list-traversal primitives, such as
185 * list_for_each_entry_rcu().
187 * Note that the caller is not permitted to immediately free
188 * the newly deleted entry. Instead, either synchronize_rcu()
189 * or call_rcu() must be used to defer freeing until an RCU
190 * grace period has elapsed.
192 static inline void list_del_rcu(struct list_head *entry)
194 __list_del(entry->prev, entry->next);
195 entry->prev = LIST_POISON2;
199 * list_replace_rcu - replace old entry by new one
200 * @old : the element to be replaced
201 * @new : the new element to insert
203 * The old entry will be replaced with the new entry atomically.
205 static inline void list_replace_rcu(struct list_head *old,
206 struct list_head *new)
208 new->next = old->next;
209 new->prev = old->prev;
210 smp_wmb();
211 new->next->prev = new;
212 new->prev->next = new;
213 old->prev = LIST_POISON2;
217 * list_del_init - deletes entry from list and reinitialize it.
218 * @entry: the element to delete from the list.
220 static inline void list_del_init(struct list_head *entry)
222 __list_del(entry->prev, entry->next);
223 INIT_LIST_HEAD(entry);
227 * list_move - delete from one list and add as another's head
228 * @list: the entry to move
229 * @head: the head that will precede our entry
231 static inline void list_move(struct list_head *list, struct list_head *head)
233 __list_del(list->prev, list->next);
234 list_add(list, head);
238 * list_move_tail - delete from one list and add as another's tail
239 * @list: the entry to move
240 * @head: the head that will follow our entry
242 static inline void list_move_tail(struct list_head *list,
243 struct list_head *head)
245 __list_del(list->prev, list->next);
246 list_add_tail(list, head);
250 * list_empty - tests whether a list is empty
251 * @head: the list to test.
253 static inline int list_empty(const struct list_head *head)
255 return head->next == head;
259 * list_empty_careful - tests whether a list is
260 * empty _and_ checks that no other CPU might be
261 * in the process of still modifying either member
263 * NOTE: using list_empty_careful() without synchronization
264 * can only be safe if the only activity that can happen
265 * to the list entry is list_del_init(). Eg. it cannot be used
266 * if another CPU could re-list_add() it.
268 * @head: the list to test.
270 static inline int list_empty_careful(const struct list_head *head)
272 struct list_head *next = head->next;
273 return (next == head) && (next == head->prev);
276 static inline void __list_splice(struct list_head *list,
277 struct list_head *head)
279 struct list_head *first = list->next;
280 struct list_head *last = list->prev;
281 struct list_head *at = head->next;
283 first->prev = head;
284 head->next = first;
286 last->next = at;
287 at->prev = last;
291 * list_splice - join two lists
292 * @list: the new list to add.
293 * @head: the place to add it in the first list.
295 static inline void list_splice(struct list_head *list, struct list_head *head)
297 if (!list_empty(list))
298 __list_splice(list, head);
302 * list_splice_init - join two lists and reinitialise the emptied list.
303 * @list: the new list to add.
304 * @head: the place to add it in the first list.
306 * The list at @list is reinitialised
308 static inline void list_splice_init(struct list_head *list,
309 struct list_head *head)
311 if (!list_empty(list)) {
312 __list_splice(list, head);
313 INIT_LIST_HEAD(list);
318 * list_entry - get the struct for this entry
319 * @ptr: the &struct list_head pointer.
320 * @type: the type of the struct this is embedded in.
321 * @member: the name of the list_struct within the struct.
323 #define list_entry(ptr, type, member) \
324 container_of(ptr, type, member)
327 * list_for_each - iterate over a list
328 * @pos: the &struct list_head to use as a loop counter.
329 * @head: the head for your list.
331 #define list_for_each(pos, head) \
332 for (pos = (head)->next; prefetch(pos->next), pos != (head); \
333 pos = pos->next)
336 * __list_for_each - iterate over a list
337 * @pos: the &struct list_head to use as a loop counter.
338 * @head: the head for your list.
340 * This variant differs from list_for_each() in that it's the
341 * simplest possible list iteration code, no prefetching is done.
342 * Use this for code that knows the list to be very short (empty
343 * or 1 entry) most of the time.
345 #define __list_for_each(pos, head) \
346 for (pos = (head)->next; pos != (head); pos = pos->next)
349 * list_for_each_prev - iterate over a list backwards
350 * @pos: the &struct list_head to use as a loop counter.
351 * @head: the head for your list.
353 #define list_for_each_prev(pos, head) \
354 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
355 pos = pos->prev)
358 * list_for_each_safe - iterate over a list safe against removal of list entry
359 * @pos: the &struct list_head to use as a loop counter.
360 * @n: another &struct list_head to use as temporary storage
361 * @head: the head for your list.
363 #define list_for_each_safe(pos, n, head) \
364 for (pos = (head)->next, n = pos->next; pos != (head); \
365 pos = n, n = pos->next)
368 * list_for_each_entry - iterate over list of given type
369 * @pos: the type * to use as a loop counter.
370 * @head: the head for your list.
371 * @member: the name of the list_struct within the struct.
373 #define list_for_each_entry(pos, head, member) \
374 for (pos = list_entry((head)->next, typeof(*pos), member); \
375 prefetch(pos->member.next), &pos->member != (head); \
376 pos = list_entry(pos->member.next, typeof(*pos), member))
379 * list_for_each_entry_reverse - iterate backwards over list of given type.
380 * @pos: the type * to use as a loop counter.
381 * @head: the head for your list.
382 * @member: the name of the list_struct within the struct.
384 #define list_for_each_entry_reverse(pos, head, member) \
385 for (pos = list_entry((head)->prev, typeof(*pos), member); \
386 prefetch(pos->member.prev), &pos->member != (head); \
387 pos = list_entry(pos->member.prev, typeof(*pos), member))
390 * list_prepare_entry - prepare a pos entry for use as a start point in
391 * list_for_each_entry_continue
392 * @pos: the type * to use as a start point
393 * @head: the head of the list
394 * @member: the name of the list_struct within the struct.
396 #define list_prepare_entry(pos, head, member) \
397 ((pos) ? : list_entry(head, typeof(*pos), member))
400 * list_for_each_entry_continue - iterate over list of given type
401 * continuing after existing point
402 * @pos: the type * to use as a loop counter.
403 * @head: the head for your list.
404 * @member: the name of the list_struct within the struct.
406 #define list_for_each_entry_continue(pos, head, member) \
407 for (pos = list_entry(pos->member.next, typeof(*pos), member); \
408 prefetch(pos->member.next), &pos->member != (head); \
409 pos = list_entry(pos->member.next, typeof(*pos), member))
412 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
413 * @pos: the type * to use as a loop counter.
414 * @n: another type * to use as temporary storage
415 * @head: the head for your list.
416 * @member: the name of the list_struct within the struct.
418 #define list_for_each_entry_safe(pos, n, head, member) \
419 for (pos = list_entry((head)->next, typeof(*pos), member), \
420 n = list_entry(pos->member.next, typeof(*pos), member); \
421 &pos->member != (head); \
422 pos = n, n = list_entry(n->member.next, typeof(*n), member))
425 * list_for_each_entry_safe_continue - iterate over list of given type
426 * continuing after existing point safe against removal of list entry
427 * @pos: the type * to use as a loop counter.
428 * @n: another type * to use as temporary storage
429 * @head: the head for your list.
430 * @member: the name of the list_struct within the struct.
432 #define list_for_each_entry_safe_continue(pos, n, head, member) \
433 for (pos = list_entry(pos->member.next, typeof(*pos), member), \
434 n = list_entry(pos->member.next, typeof(*pos), member); \
435 &pos->member != (head); \
436 pos = n, n = list_entry(n->member.next, typeof(*n), member))
439 * list_for_each_entry_safe_reverse - iterate backwards over list of given type safe against
440 * removal of list entry
441 * @pos: the type * to use as a loop counter.
442 * @n: another type * to use as temporary storage
443 * @head: the head for your list.
444 * @member: the name of the list_struct within the struct.
446 #define list_for_each_entry_safe_reverse(pos, n, head, member) \
447 for (pos = list_entry((head)->prev, typeof(*pos), member), \
448 n = list_entry(pos->member.prev, typeof(*pos), member); \
449 &pos->member != (head); \
450 pos = n, n = list_entry(n->member.prev, typeof(*n), member))
453 * list_for_each_rcu - iterate over an rcu-protected list
454 * @pos: the &struct list_head to use as a loop counter.
455 * @head: the head for your list.
457 * This list-traversal primitive may safely run concurrently with
458 * the _rcu list-mutation primitives such as list_add_rcu()
459 * as long as the traversal is guarded by rcu_read_lock().
461 #define list_for_each_rcu(pos, head) \
462 for (pos = (head)->next; \
463 prefetch(rcu_dereference(pos)->next), pos != (head); \
464 pos = pos->next)
466 #define __list_for_each_rcu(pos, head) \
467 for (pos = (head)->next; \
468 rcu_dereference(pos) != (head); \
469 pos = pos->next)
472 * list_for_each_safe_rcu - iterate over an rcu-protected list safe
473 * against removal of list entry
474 * @pos: the &struct list_head to use as a loop counter.
475 * @n: another &struct list_head to use as temporary storage
476 * @head: the head for your list.
478 * This list-traversal primitive may safely run concurrently with
479 * the _rcu list-mutation primitives such as list_add_rcu()
480 * as long as the traversal is guarded by rcu_read_lock().
482 #define list_for_each_safe_rcu(pos, n, head) \
483 for (pos = (head)->next; \
484 n = rcu_dereference(pos)->next, pos != (head); \
485 pos = n)
488 * list_for_each_entry_rcu - iterate over rcu list of given type
489 * @pos: the type * to use as a loop counter.
490 * @head: the head for your list.
491 * @member: the name of the list_struct within the struct.
493 * This list-traversal primitive may safely run concurrently with
494 * the _rcu list-mutation primitives such as list_add_rcu()
495 * as long as the traversal is guarded by rcu_read_lock().
497 #define list_for_each_entry_rcu(pos, head, member) \
498 for (pos = list_entry((head)->next, typeof(*pos), member); \
499 prefetch(rcu_dereference(pos)->member.next), \
500 &pos->member != (head); \
501 pos = list_entry(pos->member.next, typeof(*pos), member))
505 * list_for_each_continue_rcu - iterate over an rcu-protected list
506 * continuing after existing point.
507 * @pos: the &struct list_head to use as a loop counter.
508 * @head: the head for your list.
510 * This list-traversal primitive may safely run concurrently with
511 * the _rcu list-mutation primitives such as list_add_rcu()
512 * as long as the traversal is guarded by rcu_read_lock().
514 #define list_for_each_continue_rcu(pos, head) \
515 for ((pos) = (pos)->next; \
516 prefetch(rcu_dereference((pos))->next), (pos) != (head); \
517 (pos) = (pos)->next)
520 * Double linked lists with a single pointer list head.
521 * Mostly useful for hash tables where the two pointer list head is
522 * too wasteful.
523 * You lose the ability to access the tail in O(1).
526 struct hlist_head {
527 struct hlist_node *first;
530 struct hlist_node {
531 struct hlist_node *next, **pprev;
534 #define HLIST_HEAD_INIT { .first = NULL }
535 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
536 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
537 #define INIT_HLIST_NODE(ptr) ((ptr)->next = NULL, (ptr)->pprev = NULL)
539 static inline int hlist_unhashed(const struct hlist_node *h)
541 return !h->pprev;
544 static inline int hlist_empty(const struct hlist_head *h)
546 return !h->first;
549 static inline void __hlist_del(struct hlist_node *n)
551 struct hlist_node *next = n->next;
552 struct hlist_node **pprev = n->pprev;
553 *pprev = next;
554 if (next)
555 next->pprev = pprev;
558 static inline void hlist_del(struct hlist_node *n)
560 __hlist_del(n);
561 n->next = LIST_POISON1;
562 n->pprev = LIST_POISON2;
566 * hlist_del_rcu - deletes entry from hash list without re-initialization
567 * @n: the element to delete from the hash list.
569 * Note: list_unhashed() on entry does not return true after this,
570 * the entry is in an undefined state. It is useful for RCU based
571 * lockfree traversal.
573 * In particular, it means that we can not poison the forward
574 * pointers that may still be used for walking the hash list.
576 * The caller must take whatever precautions are necessary
577 * (such as holding appropriate locks) to avoid racing
578 * with another list-mutation primitive, such as hlist_add_head_rcu()
579 * or hlist_del_rcu(), running on this same list.
580 * However, it is perfectly legal to run concurrently with
581 * the _rcu list-traversal primitives, such as
582 * hlist_for_each_entry().
584 static inline void hlist_del_rcu(struct hlist_node *n)
586 __hlist_del(n);
587 n->pprev = LIST_POISON2;
590 static inline void hlist_del_init(struct hlist_node *n)
592 if (n->pprev) {
593 __hlist_del(n);
594 INIT_HLIST_NODE(n);
599 * hlist_replace_rcu - replace old entry by new one
600 * @old : the element to be replaced
601 * @new : the new element to insert
603 * The old entry will be replaced with the new entry atomically.
605 static inline void hlist_replace_rcu(struct hlist_node *old,
606 struct hlist_node *new)
608 struct hlist_node *next = old->next;
610 new->next = next;
611 new->pprev = old->pprev;
612 smp_wmb();
613 if (next)
614 new->next->pprev = &new->next;
615 *new->pprev = new;
616 old->pprev = LIST_POISON2;
619 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
621 struct hlist_node *first = h->first;
622 n->next = first;
623 if (first)
624 first->pprev = &n->next;
625 h->first = n;
626 n->pprev = &h->first;
631 * hlist_add_head_rcu - adds the specified element to the specified hlist,
632 * while permitting racing traversals.
633 * @n: the element to add to the hash list.
634 * @h: the list to add to.
636 * The caller must take whatever precautions are necessary
637 * (such as holding appropriate locks) to avoid racing
638 * with another list-mutation primitive, such as hlist_add_head_rcu()
639 * or hlist_del_rcu(), running on this same list.
640 * However, it is perfectly legal to run concurrently with
641 * the _rcu list-traversal primitives, such as
642 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
643 * problems on Alpha CPUs. Regardless of the type of CPU, the
644 * list-traversal primitive must be guarded by rcu_read_lock().
646 static inline void hlist_add_head_rcu(struct hlist_node *n,
647 struct hlist_head *h)
649 struct hlist_node *first = h->first;
650 n->next = first;
651 n->pprev = &h->first;
652 smp_wmb();
653 if (first)
654 first->pprev = &n->next;
655 h->first = n;
658 /* next must be != NULL */
659 static inline void hlist_add_before(struct hlist_node *n,
660 struct hlist_node *next)
662 n->pprev = next->pprev;
663 n->next = next;
664 next->pprev = &n->next;
665 *(n->pprev) = n;
668 static inline void hlist_add_after(struct hlist_node *n,
669 struct hlist_node *next)
671 next->next = n->next;
672 n->next = next;
673 next->pprev = &n->next;
675 if(next->next)
676 next->next->pprev = &next->next;
680 * hlist_add_before_rcu - adds the specified element to the specified hlist
681 * before the specified node while permitting racing traversals.
682 * @n: the new element to add to the hash list.
683 * @next: the existing element to add the new element before.
685 * The caller must take whatever precautions are necessary
686 * (such as holding appropriate locks) to avoid racing
687 * with another list-mutation primitive, such as hlist_add_head_rcu()
688 * or hlist_del_rcu(), running on this same list.
689 * However, it is perfectly legal to run concurrently with
690 * the _rcu list-traversal primitives, such as
691 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
692 * problems on Alpha CPUs.
694 static inline void hlist_add_before_rcu(struct hlist_node *n,
695 struct hlist_node *next)
697 n->pprev = next->pprev;
698 n->next = next;
699 smp_wmb();
700 next->pprev = &n->next;
701 *(n->pprev) = n;
705 * hlist_add_after_rcu - adds the specified element to the specified hlist
706 * after the specified node while permitting racing traversals.
707 * @prev: the existing element to add the new element after.
708 * @n: the new element to add to the hash list.
710 * The caller must take whatever precautions are necessary
711 * (such as holding appropriate locks) to avoid racing
712 * with another list-mutation primitive, such as hlist_add_head_rcu()
713 * or hlist_del_rcu(), running on this same list.
714 * However, it is perfectly legal to run concurrently with
715 * the _rcu list-traversal primitives, such as
716 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
717 * problems on Alpha CPUs.
719 static inline void hlist_add_after_rcu(struct hlist_node *prev,
720 struct hlist_node *n)
722 n->next = prev->next;
723 n->pprev = &prev->next;
724 smp_wmb();
725 prev->next = n;
726 if (n->next)
727 n->next->pprev = &n->next;
730 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
732 #define hlist_for_each(pos, head) \
733 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
734 pos = pos->next)
736 #define hlist_for_each_safe(pos, n, head) \
737 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
738 pos = n)
741 * hlist_for_each_entry - iterate over list of given type
742 * @tpos: the type * to use as a loop counter.
743 * @pos: the &struct hlist_node to use as a loop counter.
744 * @head: the head for your list.
745 * @member: the name of the hlist_node within the struct.
747 #define hlist_for_each_entry(tpos, pos, head, member) \
748 for (pos = (head)->first; \
749 pos && ({ prefetch(pos->next); 1;}) && \
750 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
751 pos = pos->next)
754 * hlist_for_each_entry_continue - iterate over a hlist continuing after existing point
755 * @tpos: the type * to use as a loop counter.
756 * @pos: the &struct hlist_node to use as a loop counter.
757 * @member: the name of the hlist_node within the struct.
759 #define hlist_for_each_entry_continue(tpos, pos, member) \
760 for (pos = (pos)->next; \
761 pos && ({ prefetch(pos->next); 1;}) && \
762 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
763 pos = pos->next)
766 * hlist_for_each_entry_from - iterate over a hlist continuing from existing point
767 * @tpos: the type * to use as a loop counter.
768 * @pos: the &struct hlist_node to use as a loop counter.
769 * @member: the name of the hlist_node within the struct.
771 #define hlist_for_each_entry_from(tpos, pos, member) \
772 for (; pos && ({ prefetch(pos->next); 1;}) && \
773 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
774 pos = pos->next)
777 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
778 * @tpos: the type * to use as a loop counter.
779 * @pos: the &struct hlist_node to use as a loop counter.
780 * @n: another &struct hlist_node to use as temporary storage
781 * @head: the head for your list.
782 * @member: the name of the hlist_node within the struct.
784 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) \
785 for (pos = (head)->first; \
786 pos && ({ n = pos->next; 1; }) && \
787 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
788 pos = n)
791 * hlist_for_each_entry_rcu - iterate over rcu list of given type
792 * @tpos: the type * to use as a loop counter.
793 * @pos: the &struct hlist_node to use as a loop counter.
794 * @head: the head for your list.
795 * @member: the name of the hlist_node within the struct.
797 * This list-traversal primitive may safely run concurrently with
798 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
799 * as long as the traversal is guarded by rcu_read_lock().
801 #define hlist_for_each_entry_rcu(tpos, pos, head, member) \
802 for (pos = (head)->first; \
803 rcu_dereference(pos) && ({ prefetch(pos->next); 1;}) && \
804 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
805 pos = pos->next)
807 #else
808 #warning "don't include kernel headers in userspace"
809 #endif /* __KERNEL__ */
810 #endif