2 * include/linux/ktime.h
4 * ktime_t - nanosecond-resolution time format.
6 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
9 * data type definitions, declarations, prototypes and macros.
11 * Started by: Thomas Gleixner and Ingo Molnar
13 * For licencing details see kernel-base/COPYING
15 #ifndef _LINUX_KTIME_H
16 #define _LINUX_KTIME_H
18 #include <linux/time.h>
19 #include <linux/jiffies.h>
24 * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
25 * internal representation of time values in scalar nanoseconds. The
26 * design plays out best on 64-bit CPUs, where most conversions are
27 * NOPs and most arithmetic ktime_t operations are plain arithmetic
30 * On 32-bit CPUs an optimized representation of the timespec structure
31 * is used to avoid expensive conversions from and to timespecs. The
32 * endian-aware order of the tv struct members is choosen to allow
33 * mathematical operations on the tv64 member of the union too, which
34 * for certain operations produces better code.
36 * For architectures with efficient support for 64/32-bit conversions the
37 * plain scalar nanosecond based representation can be selected by the
38 * config switch CONFIG_KTIME_SCALAR.
42 #if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
53 #define KTIME_MAX (~((u64)1 << 63))
56 * ktime_t definitions when using the 64-bit scalar representation:
59 #if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
61 /* Define a ktime_t variable and initialize it to zero: */
62 #define DEFINE_KTIME(kt) ktime_t kt = { .tv64 = 0 }
65 * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
67 * @secs: seconds to set
68 * @nsecs: nanoseconds to set
70 * Return the ktime_t representation of the value
72 static inline ktime_t
ktime_set(const long secs
, const unsigned long nsecs
)
74 return (ktime_t
) { .tv64
= (s64
)secs
* NSEC_PER_SEC
+ (s64
)nsecs
};
77 /* Subtract two ktime_t variables. rem = lhs -rhs: */
78 #define ktime_sub(lhs, rhs) \
79 ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
81 /* Add two ktime_t variables. res = lhs + rhs: */
82 #define ktime_add(lhs, rhs) \
83 ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
86 * Add a ktime_t variable and a scalar nanosecond value.
89 #define ktime_add_ns(kt, nsval) \
90 ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
92 /* convert a timespec to ktime_t format: */
93 #define timespec_to_ktime(ts) ktime_set((ts).tv_sec, (ts).tv_nsec)
95 /* convert a timeval to ktime_t format: */
96 #define timeval_to_ktime(tv) ktime_set((tv).tv_sec, (tv).tv_usec * 1000)
98 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
99 #define ktime_to_timespec(kt) ns_to_timespec((kt).tv64)
101 /* Map the ktime_t to timeval conversion to ns_to_timeval function */
102 #define ktime_to_timeval(kt) ns_to_timeval((kt).tv64)
104 /* Map the ktime_t to clock_t conversion to the inline in jiffies.h: */
105 #define ktime_to_clock_t(kt) nsec_to_clock_t((kt).tv64)
107 /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
108 #define ktime_to_ns(kt) ((kt).tv64)
113 * Helper macros/inlines to get the ktime_t math right in the timespec
114 * representation. The macros are sometimes ugly - their actual use is
115 * pretty okay-ish, given the circumstances. We do all this for
116 * performance reasons. The pure scalar nsec_t based code was nice and
117 * simple, but created too many 64-bit / 32-bit conversions and divisions.
119 * Be especially aware that negative values are represented in a way
120 * that the tv.sec field is negative and the tv.nsec field is greater
121 * or equal to zero but less than nanoseconds per second. This is the
122 * same representation which is used by timespecs.
124 * tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
127 /* Define a ktime_t variable and initialize it to zero: */
128 #define DEFINE_KTIME(kt) ktime_t kt = { .tv64 = 0 }
130 /* Set a ktime_t variable to a value in sec/nsec representation: */
131 static inline ktime_t
ktime_set(const long secs
, const unsigned long nsecs
)
133 return (ktime_t
) { .tv
= { .sec
= secs
, .nsec
= nsecs
} };
137 * ktime_sub - subtract two ktime_t variables
142 * Returns the remainder of the substraction
144 static inline ktime_t
ktime_sub(const ktime_t lhs
, const ktime_t rhs
)
148 res
.tv64
= lhs
.tv64
- rhs
.tv64
;
150 res
.tv
.nsec
+= NSEC_PER_SEC
;
156 * ktime_add - add two ktime_t variables
161 * Returns the sum of addend1 and addend2
163 static inline ktime_t
ktime_add(const ktime_t add1
, const ktime_t add2
)
167 res
.tv64
= add1
.tv64
+ add2
.tv64
;
169 * performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
170 * so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
172 * it's equivalent to:
173 * tv.nsec -= NSEC_PER_SEC
176 if (res
.tv
.nsec
>= NSEC_PER_SEC
)
177 res
.tv64
+= (u32
)-NSEC_PER_SEC
;
183 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
186 * @nsec: the scalar nsec value to add
188 * Returns the sum of kt and nsec in ktime_t format
190 extern ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
);
193 * timespec_to_ktime - convert a timespec to ktime_t format
195 * @ts: the timespec variable to convert
197 * Returns a ktime_t variable with the converted timespec value
199 static inline ktime_t
timespec_to_ktime(const struct timespec ts
)
201 return (ktime_t
) { .tv
= { .sec
= (s32
)ts
.tv_sec
,
202 .nsec
= (s32
)ts
.tv_nsec
} };
206 * timeval_to_ktime - convert a timeval to ktime_t format
208 * @tv: the timeval variable to convert
210 * Returns a ktime_t variable with the converted timeval value
212 static inline ktime_t
timeval_to_ktime(const struct timeval tv
)
214 return (ktime_t
) { .tv
= { .sec
= (s32
)tv
.tv_sec
,
215 .nsec
= (s32
)tv
.tv_usec
* 1000 } };
219 * ktime_to_timespec - convert a ktime_t variable to timespec format
221 * @kt: the ktime_t variable to convert
223 * Returns the timespec representation of the ktime value
225 static inline struct timespec
ktime_to_timespec(const ktime_t kt
)
227 return (struct timespec
) { .tv_sec
= (time_t) kt
.tv
.sec
,
228 .tv_nsec
= (long) kt
.tv
.nsec
};
232 * ktime_to_timeval - convert a ktime_t variable to timeval format
234 * @kt: the ktime_t variable to convert
236 * Returns the timeval representation of the ktime value
238 static inline struct timeval
ktime_to_timeval(const ktime_t kt
)
240 return (struct timeval
) {
241 .tv_sec
= (time_t) kt
.tv
.sec
,
242 .tv_usec
= (suseconds_t
) (kt
.tv
.nsec
/ NSEC_PER_USEC
) };
246 * ktime_to_clock_t - convert a ktime_t variable to clock_t format
247 * @kt: the ktime_t variable to convert
249 * Returns a clock_t variable with the converted value
251 static inline clock_t ktime_to_clock_t(const ktime_t kt
)
253 return nsec_to_clock_t( (u64
) kt
.tv
.sec
* NSEC_PER_SEC
+ kt
.tv
.nsec
);
257 * ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
258 * @kt: the ktime_t variable to convert
260 * Returns the scalar nanoseconds representation of kt
262 static inline u64
ktime_to_ns(const ktime_t kt
)
264 return (u64
) kt
.tv
.sec
* NSEC_PER_SEC
+ kt
.tv
.nsec
;
270 * The resolution of the clocks. The resolution value is returned in
271 * the clock_getres() system call to give application programmers an
272 * idea of the (in)accuracy of timers. Timer values are rounded up to
273 * this resolution values.
275 #define KTIME_REALTIME_RES (NSEC_PER_SEC/HZ)
276 #define KTIME_MONOTONIC_RES (NSEC_PER_SEC/HZ)
278 /* Get the monotonic time in timespec format: */
279 extern void ktime_get_ts(struct timespec
*ts
);
281 /* Get the real (wall-) time in timespec format: */
282 #define ktime_get_real_ts(ts) getnstimeofday(ts)