ftrace: add trace_vprintk()
[linux-2.6/mini2440.git] / kernel / exit.c
blob7b71f87f1207bf6b5aab8fa8daa1ee27c24a4f7a
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/pipe_fs_i.h>
45 #include <linux/audit.h> /* for audit_free() */
46 #include <linux/resource.h>
47 #include <linux/blkdev.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/tracehook.h>
50 #include <trace/sched.h>
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu_context.h>
57 static void exit_mm(struct task_struct * tsk);
59 static inline int task_detached(struct task_struct *p)
61 return p->exit_signal == -1;
64 static void __unhash_process(struct task_struct *p)
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (thread_group_leader(p)) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
72 list_del_rcu(&p->tasks);
73 __get_cpu_var(process_counts)--;
75 list_del_rcu(&p->thread_group);
76 list_del_init(&p->sibling);
80 * This function expects the tasklist_lock write-locked.
82 static void __exit_signal(struct task_struct *tsk)
84 struct signal_struct *sig = tsk->signal;
85 struct sighand_struct *sighand;
87 BUG_ON(!sig);
88 BUG_ON(!atomic_read(&sig->count));
90 sighand = rcu_dereference(tsk->sighand);
91 spin_lock(&sighand->siglock);
93 posix_cpu_timers_exit(tsk);
94 if (atomic_dec_and_test(&sig->count))
95 posix_cpu_timers_exit_group(tsk);
96 else {
98 * If there is any task waiting for the group exit
99 * then notify it:
101 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
102 wake_up_process(sig->group_exit_task);
104 if (tsk == sig->curr_target)
105 sig->curr_target = next_thread(tsk);
107 * Accumulate here the counters for all threads but the
108 * group leader as they die, so they can be added into
109 * the process-wide totals when those are taken.
110 * The group leader stays around as a zombie as long
111 * as there are other threads. When it gets reaped,
112 * the exit.c code will add its counts into these totals.
113 * We won't ever get here for the group leader, since it
114 * will have been the last reference on the signal_struct.
116 sig->utime = cputime_add(sig->utime, task_utime(tsk));
117 sig->stime = cputime_add(sig->stime, task_stime(tsk));
118 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
119 sig->min_flt += tsk->min_flt;
120 sig->maj_flt += tsk->maj_flt;
121 sig->nvcsw += tsk->nvcsw;
122 sig->nivcsw += tsk->nivcsw;
123 sig->inblock += task_io_get_inblock(tsk);
124 sig->oublock += task_io_get_oublock(tsk);
125 task_io_accounting_add(&sig->ioac, &tsk->ioac);
126 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
127 sig = NULL; /* Marker for below. */
130 __unhash_process(tsk);
133 * Do this under ->siglock, we can race with another thread
134 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
136 flush_sigqueue(&tsk->pending);
138 tsk->signal = NULL;
139 tsk->sighand = NULL;
140 spin_unlock(&sighand->siglock);
142 __cleanup_sighand(sighand);
143 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
144 if (sig) {
145 flush_sigqueue(&sig->shared_pending);
146 taskstats_tgid_free(sig);
147 __cleanup_signal(sig);
151 static void delayed_put_task_struct(struct rcu_head *rhp)
153 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
155 trace_sched_process_free(tsk);
156 put_task_struct(tsk);
160 void release_task(struct task_struct * p)
162 struct task_struct *leader;
163 int zap_leader;
164 repeat:
165 tracehook_prepare_release_task(p);
166 atomic_dec(&p->user->processes);
167 proc_flush_task(p);
168 write_lock_irq(&tasklist_lock);
169 tracehook_finish_release_task(p);
170 __exit_signal(p);
173 * If we are the last non-leader member of the thread
174 * group, and the leader is zombie, then notify the
175 * group leader's parent process. (if it wants notification.)
177 zap_leader = 0;
178 leader = p->group_leader;
179 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
180 BUG_ON(task_detached(leader));
181 do_notify_parent(leader, leader->exit_signal);
183 * If we were the last child thread and the leader has
184 * exited already, and the leader's parent ignores SIGCHLD,
185 * then we are the one who should release the leader.
187 * do_notify_parent() will have marked it self-reaping in
188 * that case.
190 zap_leader = task_detached(leader);
193 * This maintains the invariant that release_task()
194 * only runs on a task in EXIT_DEAD, just for sanity.
196 if (zap_leader)
197 leader->exit_state = EXIT_DEAD;
200 write_unlock_irq(&tasklist_lock);
201 release_thread(p);
202 call_rcu(&p->rcu, delayed_put_task_struct);
204 p = leader;
205 if (unlikely(zap_leader))
206 goto repeat;
210 * This checks not only the pgrp, but falls back on the pid if no
211 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
212 * without this...
214 * The caller must hold rcu lock or the tasklist lock.
216 struct pid *session_of_pgrp(struct pid *pgrp)
218 struct task_struct *p;
219 struct pid *sid = NULL;
221 p = pid_task(pgrp, PIDTYPE_PGID);
222 if (p == NULL)
223 p = pid_task(pgrp, PIDTYPE_PID);
224 if (p != NULL)
225 sid = task_session(p);
227 return sid;
231 * Determine if a process group is "orphaned", according to the POSIX
232 * definition in 2.2.2.52. Orphaned process groups are not to be affected
233 * by terminal-generated stop signals. Newly orphaned process groups are
234 * to receive a SIGHUP and a SIGCONT.
236 * "I ask you, have you ever known what it is to be an orphan?"
238 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
240 struct task_struct *p;
242 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
243 if ((p == ignored_task) ||
244 (p->exit_state && thread_group_empty(p)) ||
245 is_global_init(p->real_parent))
246 continue;
248 if (task_pgrp(p->real_parent) != pgrp &&
249 task_session(p->real_parent) == task_session(p))
250 return 0;
251 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
253 return 1;
256 int is_current_pgrp_orphaned(void)
258 int retval;
260 read_lock(&tasklist_lock);
261 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
262 read_unlock(&tasklist_lock);
264 return retval;
267 static int has_stopped_jobs(struct pid *pgrp)
269 int retval = 0;
270 struct task_struct *p;
272 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
273 if (!task_is_stopped(p))
274 continue;
275 retval = 1;
276 break;
277 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
278 return retval;
282 * Check to see if any process groups have become orphaned as
283 * a result of our exiting, and if they have any stopped jobs,
284 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
286 static void
287 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
289 struct pid *pgrp = task_pgrp(tsk);
290 struct task_struct *ignored_task = tsk;
292 if (!parent)
293 /* exit: our father is in a different pgrp than
294 * we are and we were the only connection outside.
296 parent = tsk->real_parent;
297 else
298 /* reparent: our child is in a different pgrp than
299 * we are, and it was the only connection outside.
301 ignored_task = NULL;
303 if (task_pgrp(parent) != pgrp &&
304 task_session(parent) == task_session(tsk) &&
305 will_become_orphaned_pgrp(pgrp, ignored_task) &&
306 has_stopped_jobs(pgrp)) {
307 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
308 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
313 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
315 * If a kernel thread is launched as a result of a system call, or if
316 * it ever exits, it should generally reparent itself to kthreadd so it
317 * isn't in the way of other processes and is correctly cleaned up on exit.
319 * The various task state such as scheduling policy and priority may have
320 * been inherited from a user process, so we reset them to sane values here.
322 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
324 static void reparent_to_kthreadd(void)
326 write_lock_irq(&tasklist_lock);
328 ptrace_unlink(current);
329 /* Reparent to init */
330 current->real_parent = current->parent = kthreadd_task;
331 list_move_tail(&current->sibling, &current->real_parent->children);
333 /* Set the exit signal to SIGCHLD so we signal init on exit */
334 current->exit_signal = SIGCHLD;
336 if (task_nice(current) < 0)
337 set_user_nice(current, 0);
338 /* cpus_allowed? */
339 /* rt_priority? */
340 /* signals? */
341 security_task_reparent_to_init(current);
342 memcpy(current->signal->rlim, init_task.signal->rlim,
343 sizeof(current->signal->rlim));
344 atomic_inc(&(INIT_USER->__count));
345 write_unlock_irq(&tasklist_lock);
346 switch_uid(INIT_USER);
349 void __set_special_pids(struct pid *pid)
351 struct task_struct *curr = current->group_leader;
352 pid_t nr = pid_nr(pid);
354 if (task_session(curr) != pid) {
355 change_pid(curr, PIDTYPE_SID, pid);
356 set_task_session(curr, nr);
358 if (task_pgrp(curr) != pid) {
359 change_pid(curr, PIDTYPE_PGID, pid);
360 set_task_pgrp(curr, nr);
364 static void set_special_pids(struct pid *pid)
366 write_lock_irq(&tasklist_lock);
367 __set_special_pids(pid);
368 write_unlock_irq(&tasklist_lock);
372 * Let kernel threads use this to say that they
373 * allow a certain signal (since daemonize() will
374 * have disabled all of them by default).
376 int allow_signal(int sig)
378 if (!valid_signal(sig) || sig < 1)
379 return -EINVAL;
381 spin_lock_irq(&current->sighand->siglock);
382 sigdelset(&current->blocked, sig);
383 if (!current->mm) {
384 /* Kernel threads handle their own signals.
385 Let the signal code know it'll be handled, so
386 that they don't get converted to SIGKILL or
387 just silently dropped */
388 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
390 recalc_sigpending();
391 spin_unlock_irq(&current->sighand->siglock);
392 return 0;
395 EXPORT_SYMBOL(allow_signal);
397 int disallow_signal(int sig)
399 if (!valid_signal(sig) || sig < 1)
400 return -EINVAL;
402 spin_lock_irq(&current->sighand->siglock);
403 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
404 recalc_sigpending();
405 spin_unlock_irq(&current->sighand->siglock);
406 return 0;
409 EXPORT_SYMBOL(disallow_signal);
412 * Put all the gunge required to become a kernel thread without
413 * attached user resources in one place where it belongs.
416 void daemonize(const char *name, ...)
418 va_list args;
419 struct fs_struct *fs;
420 sigset_t blocked;
422 va_start(args, name);
423 vsnprintf(current->comm, sizeof(current->comm), name, args);
424 va_end(args);
427 * If we were started as result of loading a module, close all of the
428 * user space pages. We don't need them, and if we didn't close them
429 * they would be locked into memory.
431 exit_mm(current);
433 * We don't want to have TIF_FREEZE set if the system-wide hibernation
434 * or suspend transition begins right now.
436 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
438 if (current->nsproxy != &init_nsproxy) {
439 get_nsproxy(&init_nsproxy);
440 switch_task_namespaces(current, &init_nsproxy);
442 set_special_pids(&init_struct_pid);
443 proc_clear_tty(current);
445 /* Block and flush all signals */
446 sigfillset(&blocked);
447 sigprocmask(SIG_BLOCK, &blocked, NULL);
448 flush_signals(current);
450 /* Become as one with the init task */
452 exit_fs(current); /* current->fs->count--; */
453 fs = init_task.fs;
454 current->fs = fs;
455 atomic_inc(&fs->count);
457 exit_files(current);
458 current->files = init_task.files;
459 atomic_inc(&current->files->count);
461 reparent_to_kthreadd();
464 EXPORT_SYMBOL(daemonize);
466 static void close_files(struct files_struct * files)
468 int i, j;
469 struct fdtable *fdt;
471 j = 0;
474 * It is safe to dereference the fd table without RCU or
475 * ->file_lock because this is the last reference to the
476 * files structure.
478 fdt = files_fdtable(files);
479 for (;;) {
480 unsigned long set;
481 i = j * __NFDBITS;
482 if (i >= fdt->max_fds)
483 break;
484 set = fdt->open_fds->fds_bits[j++];
485 while (set) {
486 if (set & 1) {
487 struct file * file = xchg(&fdt->fd[i], NULL);
488 if (file) {
489 filp_close(file, files);
490 cond_resched();
493 i++;
494 set >>= 1;
499 struct files_struct *get_files_struct(struct task_struct *task)
501 struct files_struct *files;
503 task_lock(task);
504 files = task->files;
505 if (files)
506 atomic_inc(&files->count);
507 task_unlock(task);
509 return files;
512 void put_files_struct(struct files_struct *files)
514 struct fdtable *fdt;
516 if (atomic_dec_and_test(&files->count)) {
517 close_files(files);
519 * Free the fd and fdset arrays if we expanded them.
520 * If the fdtable was embedded, pass files for freeing
521 * at the end of the RCU grace period. Otherwise,
522 * you can free files immediately.
524 fdt = files_fdtable(files);
525 if (fdt != &files->fdtab)
526 kmem_cache_free(files_cachep, files);
527 free_fdtable(fdt);
531 void reset_files_struct(struct files_struct *files)
533 struct task_struct *tsk = current;
534 struct files_struct *old;
536 old = tsk->files;
537 task_lock(tsk);
538 tsk->files = files;
539 task_unlock(tsk);
540 put_files_struct(old);
543 void exit_files(struct task_struct *tsk)
545 struct files_struct * files = tsk->files;
547 if (files) {
548 task_lock(tsk);
549 tsk->files = NULL;
550 task_unlock(tsk);
551 put_files_struct(files);
555 void put_fs_struct(struct fs_struct *fs)
557 /* No need to hold fs->lock if we are killing it */
558 if (atomic_dec_and_test(&fs->count)) {
559 path_put(&fs->root);
560 path_put(&fs->pwd);
561 kmem_cache_free(fs_cachep, fs);
565 void exit_fs(struct task_struct *tsk)
567 struct fs_struct * fs = tsk->fs;
569 if (fs) {
570 task_lock(tsk);
571 tsk->fs = NULL;
572 task_unlock(tsk);
573 put_fs_struct(fs);
577 EXPORT_SYMBOL_GPL(exit_fs);
579 #ifdef CONFIG_MM_OWNER
581 * Task p is exiting and it owned mm, lets find a new owner for it
583 static inline int
584 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
587 * If there are other users of the mm and the owner (us) is exiting
588 * we need to find a new owner to take on the responsibility.
590 if (atomic_read(&mm->mm_users) <= 1)
591 return 0;
592 if (mm->owner != p)
593 return 0;
594 return 1;
597 void mm_update_next_owner(struct mm_struct *mm)
599 struct task_struct *c, *g, *p = current;
601 retry:
602 if (!mm_need_new_owner(mm, p))
603 return;
605 read_lock(&tasklist_lock);
607 * Search in the children
609 list_for_each_entry(c, &p->children, sibling) {
610 if (c->mm == mm)
611 goto assign_new_owner;
615 * Search in the siblings
617 list_for_each_entry(c, &p->parent->children, sibling) {
618 if (c->mm == mm)
619 goto assign_new_owner;
623 * Search through everything else. We should not get
624 * here often
626 do_each_thread(g, c) {
627 if (c->mm == mm)
628 goto assign_new_owner;
629 } while_each_thread(g, c);
631 read_unlock(&tasklist_lock);
633 * We found no owner yet mm_users > 1: this implies that we are
634 * most likely racing with swapoff (try_to_unuse()) or /proc or
635 * ptrace or page migration (get_task_mm()). Mark owner as NULL,
636 * so that subsystems can understand the callback and take action.
638 down_write(&mm->mmap_sem);
639 cgroup_mm_owner_callbacks(mm->owner, NULL);
640 mm->owner = NULL;
641 up_write(&mm->mmap_sem);
642 return;
644 assign_new_owner:
645 BUG_ON(c == p);
646 get_task_struct(c);
648 * The task_lock protects c->mm from changing.
649 * We always want mm->owner->mm == mm
651 task_lock(c);
653 * Delay read_unlock() till we have the task_lock()
654 * to ensure that c does not slip away underneath us
656 read_unlock(&tasklist_lock);
657 if (c->mm != mm) {
658 task_unlock(c);
659 put_task_struct(c);
660 goto retry;
662 cgroup_mm_owner_callbacks(mm->owner, c);
663 mm->owner = c;
664 task_unlock(c);
665 put_task_struct(c);
667 #endif /* CONFIG_MM_OWNER */
670 * Turn us into a lazy TLB process if we
671 * aren't already..
673 static void exit_mm(struct task_struct * tsk)
675 struct mm_struct *mm = tsk->mm;
676 struct core_state *core_state;
678 mm_release(tsk, mm);
679 if (!mm)
680 return;
682 * Serialize with any possible pending coredump.
683 * We must hold mmap_sem around checking core_state
684 * and clearing tsk->mm. The core-inducing thread
685 * will increment ->nr_threads for each thread in the
686 * group with ->mm != NULL.
688 down_read(&mm->mmap_sem);
689 core_state = mm->core_state;
690 if (core_state) {
691 struct core_thread self;
692 up_read(&mm->mmap_sem);
694 self.task = tsk;
695 self.next = xchg(&core_state->dumper.next, &self);
697 * Implies mb(), the result of xchg() must be visible
698 * to core_state->dumper.
700 if (atomic_dec_and_test(&core_state->nr_threads))
701 complete(&core_state->startup);
703 for (;;) {
704 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
705 if (!self.task) /* see coredump_finish() */
706 break;
707 schedule();
709 __set_task_state(tsk, TASK_RUNNING);
710 down_read(&mm->mmap_sem);
712 atomic_inc(&mm->mm_count);
713 BUG_ON(mm != tsk->active_mm);
714 /* more a memory barrier than a real lock */
715 task_lock(tsk);
716 tsk->mm = NULL;
717 up_read(&mm->mmap_sem);
718 enter_lazy_tlb(mm, current);
719 /* We don't want this task to be frozen prematurely */
720 clear_freeze_flag(tsk);
721 task_unlock(tsk);
722 mm_update_next_owner(mm);
723 mmput(mm);
727 * Return nonzero if @parent's children should reap themselves.
729 * Called with write_lock_irq(&tasklist_lock) held.
731 static int ignoring_children(struct task_struct *parent)
733 int ret;
734 struct sighand_struct *psig = parent->sighand;
735 unsigned long flags;
736 spin_lock_irqsave(&psig->siglock, flags);
737 ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
738 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT));
739 spin_unlock_irqrestore(&psig->siglock, flags);
740 return ret;
744 * Detach all tasks we were using ptrace on.
745 * Any that need to be release_task'd are put on the @dead list.
747 * Called with write_lock(&tasklist_lock) held.
749 static void ptrace_exit(struct task_struct *parent, struct list_head *dead)
751 struct task_struct *p, *n;
752 int ign = -1;
754 list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) {
755 __ptrace_unlink(p);
757 if (p->exit_state != EXIT_ZOMBIE)
758 continue;
761 * If it's a zombie, our attachedness prevented normal
762 * parent notification or self-reaping. Do notification
763 * now if it would have happened earlier. If it should
764 * reap itself, add it to the @dead list. We can't call
765 * release_task() here because we already hold tasklist_lock.
767 * If it's our own child, there is no notification to do.
768 * But if our normal children self-reap, then this child
769 * was prevented by ptrace and we must reap it now.
771 if (!task_detached(p) && thread_group_empty(p)) {
772 if (!same_thread_group(p->real_parent, parent))
773 do_notify_parent(p, p->exit_signal);
774 else {
775 if (ign < 0)
776 ign = ignoring_children(parent);
777 if (ign)
778 p->exit_signal = -1;
782 if (task_detached(p)) {
784 * Mark it as in the process of being reaped.
786 p->exit_state = EXIT_DEAD;
787 list_add(&p->ptrace_entry, dead);
793 * Finish up exit-time ptrace cleanup.
795 * Called without locks.
797 static void ptrace_exit_finish(struct task_struct *parent,
798 struct list_head *dead)
800 struct task_struct *p, *n;
802 BUG_ON(!list_empty(&parent->ptraced));
804 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
805 list_del_init(&p->ptrace_entry);
806 release_task(p);
810 static void reparent_thread(struct task_struct *p, struct task_struct *father)
812 if (p->pdeath_signal)
813 /* We already hold the tasklist_lock here. */
814 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
816 list_move_tail(&p->sibling, &p->real_parent->children);
818 /* If this is a threaded reparent there is no need to
819 * notify anyone anything has happened.
821 if (same_thread_group(p->real_parent, father))
822 return;
824 /* We don't want people slaying init. */
825 if (!task_detached(p))
826 p->exit_signal = SIGCHLD;
828 /* If we'd notified the old parent about this child's death,
829 * also notify the new parent.
831 if (!ptrace_reparented(p) &&
832 p->exit_state == EXIT_ZOMBIE &&
833 !task_detached(p) && thread_group_empty(p))
834 do_notify_parent(p, p->exit_signal);
836 kill_orphaned_pgrp(p, father);
840 * When we die, we re-parent all our children.
841 * Try to give them to another thread in our thread
842 * group, and if no such member exists, give it to
843 * the child reaper process (ie "init") in our pid
844 * space.
846 static struct task_struct *find_new_reaper(struct task_struct *father)
848 struct pid_namespace *pid_ns = task_active_pid_ns(father);
849 struct task_struct *thread;
851 thread = father;
852 while_each_thread(father, thread) {
853 if (thread->flags & PF_EXITING)
854 continue;
855 if (unlikely(pid_ns->child_reaper == father))
856 pid_ns->child_reaper = thread;
857 return thread;
860 if (unlikely(pid_ns->child_reaper == father)) {
861 write_unlock_irq(&tasklist_lock);
862 if (unlikely(pid_ns == &init_pid_ns))
863 panic("Attempted to kill init!");
865 zap_pid_ns_processes(pid_ns);
866 write_lock_irq(&tasklist_lock);
868 * We can not clear ->child_reaper or leave it alone.
869 * There may by stealth EXIT_DEAD tasks on ->children,
870 * forget_original_parent() must move them somewhere.
872 pid_ns->child_reaper = init_pid_ns.child_reaper;
875 return pid_ns->child_reaper;
878 static void forget_original_parent(struct task_struct *father)
880 struct task_struct *p, *n, *reaper;
881 LIST_HEAD(ptrace_dead);
883 write_lock_irq(&tasklist_lock);
884 reaper = find_new_reaper(father);
886 * First clean up ptrace if we were using it.
888 ptrace_exit(father, &ptrace_dead);
890 list_for_each_entry_safe(p, n, &father->children, sibling) {
891 p->real_parent = reaper;
892 if (p->parent == father) {
893 BUG_ON(p->ptrace);
894 p->parent = p->real_parent;
896 reparent_thread(p, father);
899 write_unlock_irq(&tasklist_lock);
900 BUG_ON(!list_empty(&father->children));
902 ptrace_exit_finish(father, &ptrace_dead);
906 * Send signals to all our closest relatives so that they know
907 * to properly mourn us..
909 static void exit_notify(struct task_struct *tsk, int group_dead)
911 int signal;
912 void *cookie;
915 * This does two things:
917 * A. Make init inherit all the child processes
918 * B. Check to see if any process groups have become orphaned
919 * as a result of our exiting, and if they have any stopped
920 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
922 forget_original_parent(tsk);
923 exit_task_namespaces(tsk);
925 write_lock_irq(&tasklist_lock);
926 if (group_dead)
927 kill_orphaned_pgrp(tsk->group_leader, NULL);
929 /* Let father know we died
931 * Thread signals are configurable, but you aren't going to use
932 * that to send signals to arbitary processes.
933 * That stops right now.
935 * If the parent exec id doesn't match the exec id we saved
936 * when we started then we know the parent has changed security
937 * domain.
939 * If our self_exec id doesn't match our parent_exec_id then
940 * we have changed execution domain as these two values started
941 * the same after a fork.
943 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
944 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
945 tsk->self_exec_id != tsk->parent_exec_id) &&
946 !capable(CAP_KILL))
947 tsk->exit_signal = SIGCHLD;
949 signal = tracehook_notify_death(tsk, &cookie, group_dead);
950 if (signal >= 0)
951 signal = do_notify_parent(tsk, signal);
953 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
955 /* mt-exec, de_thread() is waiting for us */
956 if (thread_group_leader(tsk) &&
957 tsk->signal->group_exit_task &&
958 tsk->signal->notify_count < 0)
959 wake_up_process(tsk->signal->group_exit_task);
961 write_unlock_irq(&tasklist_lock);
963 tracehook_report_death(tsk, signal, cookie, group_dead);
965 /* If the process is dead, release it - nobody will wait for it */
966 if (signal == DEATH_REAP)
967 release_task(tsk);
970 #ifdef CONFIG_DEBUG_STACK_USAGE
971 static void check_stack_usage(void)
973 static DEFINE_SPINLOCK(low_water_lock);
974 static int lowest_to_date = THREAD_SIZE;
975 unsigned long *n = end_of_stack(current);
976 unsigned long free;
978 while (*n == 0)
979 n++;
980 free = (unsigned long)n - (unsigned long)end_of_stack(current);
982 if (free >= lowest_to_date)
983 return;
985 spin_lock(&low_water_lock);
986 if (free < lowest_to_date) {
987 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
988 "left\n",
989 current->comm, free);
990 lowest_to_date = free;
992 spin_unlock(&low_water_lock);
994 #else
995 static inline void check_stack_usage(void) {}
996 #endif
998 NORET_TYPE void do_exit(long code)
1000 struct task_struct *tsk = current;
1001 int group_dead;
1003 profile_task_exit(tsk);
1005 WARN_ON(atomic_read(&tsk->fs_excl));
1007 if (unlikely(in_interrupt()))
1008 panic("Aiee, killing interrupt handler!");
1009 if (unlikely(!tsk->pid))
1010 panic("Attempted to kill the idle task!");
1012 tracehook_report_exit(&code);
1015 * We're taking recursive faults here in do_exit. Safest is to just
1016 * leave this task alone and wait for reboot.
1018 if (unlikely(tsk->flags & PF_EXITING)) {
1019 printk(KERN_ALERT
1020 "Fixing recursive fault but reboot is needed!\n");
1022 * We can do this unlocked here. The futex code uses
1023 * this flag just to verify whether the pi state
1024 * cleanup has been done or not. In the worst case it
1025 * loops once more. We pretend that the cleanup was
1026 * done as there is no way to return. Either the
1027 * OWNER_DIED bit is set by now or we push the blocked
1028 * task into the wait for ever nirwana as well.
1030 tsk->flags |= PF_EXITPIDONE;
1031 if (tsk->io_context)
1032 exit_io_context();
1033 set_current_state(TASK_UNINTERRUPTIBLE);
1034 schedule();
1037 exit_signals(tsk); /* sets PF_EXITING */
1039 * tsk->flags are checked in the futex code to protect against
1040 * an exiting task cleaning up the robust pi futexes.
1042 smp_mb();
1043 spin_unlock_wait(&tsk->pi_lock);
1045 if (unlikely(in_atomic()))
1046 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1047 current->comm, task_pid_nr(current),
1048 preempt_count());
1050 acct_update_integrals(tsk);
1051 if (tsk->mm) {
1052 update_hiwater_rss(tsk->mm);
1053 update_hiwater_vm(tsk->mm);
1055 group_dead = atomic_dec_and_test(&tsk->signal->live);
1056 if (group_dead) {
1057 hrtimer_cancel(&tsk->signal->real_timer);
1058 exit_itimers(tsk->signal);
1060 acct_collect(code, group_dead);
1061 #ifdef CONFIG_FUTEX
1062 if (unlikely(tsk->robust_list))
1063 exit_robust_list(tsk);
1064 #ifdef CONFIG_COMPAT
1065 if (unlikely(tsk->compat_robust_list))
1066 compat_exit_robust_list(tsk);
1067 #endif
1068 #endif
1069 if (group_dead)
1070 tty_audit_exit();
1071 if (unlikely(tsk->audit_context))
1072 audit_free(tsk);
1074 tsk->exit_code = code;
1075 taskstats_exit(tsk, group_dead);
1077 exit_mm(tsk);
1079 if (group_dead)
1080 acct_process();
1081 trace_sched_process_exit(tsk);
1083 exit_sem(tsk);
1084 exit_files(tsk);
1085 exit_fs(tsk);
1086 check_stack_usage();
1087 exit_thread();
1088 cgroup_exit(tsk, 1);
1089 exit_keys(tsk);
1091 if (group_dead && tsk->signal->leader)
1092 disassociate_ctty(1);
1094 module_put(task_thread_info(tsk)->exec_domain->module);
1095 if (tsk->binfmt)
1096 module_put(tsk->binfmt->module);
1098 proc_exit_connector(tsk);
1099 exit_notify(tsk, group_dead);
1100 #ifdef CONFIG_NUMA
1101 mpol_put(tsk->mempolicy);
1102 tsk->mempolicy = NULL;
1103 #endif
1104 #ifdef CONFIG_FUTEX
1106 * This must happen late, after the PID is not
1107 * hashed anymore:
1109 if (unlikely(!list_empty(&tsk->pi_state_list)))
1110 exit_pi_state_list(tsk);
1111 if (unlikely(current->pi_state_cache))
1112 kfree(current->pi_state_cache);
1113 #endif
1115 * Make sure we are holding no locks:
1117 debug_check_no_locks_held(tsk);
1119 * We can do this unlocked here. The futex code uses this flag
1120 * just to verify whether the pi state cleanup has been done
1121 * or not. In the worst case it loops once more.
1123 tsk->flags |= PF_EXITPIDONE;
1125 if (tsk->io_context)
1126 exit_io_context();
1128 if (tsk->splice_pipe)
1129 __free_pipe_info(tsk->splice_pipe);
1131 preempt_disable();
1132 /* causes final put_task_struct in finish_task_switch(). */
1133 tsk->state = TASK_DEAD;
1135 schedule();
1136 BUG();
1137 /* Avoid "noreturn function does return". */
1138 for (;;)
1139 cpu_relax(); /* For when BUG is null */
1142 EXPORT_SYMBOL_GPL(do_exit);
1144 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1146 if (comp)
1147 complete(comp);
1149 do_exit(code);
1152 EXPORT_SYMBOL(complete_and_exit);
1154 asmlinkage long sys_exit(int error_code)
1156 do_exit((error_code&0xff)<<8);
1160 * Take down every thread in the group. This is called by fatal signals
1161 * as well as by sys_exit_group (below).
1163 NORET_TYPE void
1164 do_group_exit(int exit_code)
1166 struct signal_struct *sig = current->signal;
1168 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1170 if (signal_group_exit(sig))
1171 exit_code = sig->group_exit_code;
1172 else if (!thread_group_empty(current)) {
1173 struct sighand_struct *const sighand = current->sighand;
1174 spin_lock_irq(&sighand->siglock);
1175 if (signal_group_exit(sig))
1176 /* Another thread got here before we took the lock. */
1177 exit_code = sig->group_exit_code;
1178 else {
1179 sig->group_exit_code = exit_code;
1180 sig->flags = SIGNAL_GROUP_EXIT;
1181 zap_other_threads(current);
1183 spin_unlock_irq(&sighand->siglock);
1186 do_exit(exit_code);
1187 /* NOTREACHED */
1191 * this kills every thread in the thread group. Note that any externally
1192 * wait4()-ing process will get the correct exit code - even if this
1193 * thread is not the thread group leader.
1195 asmlinkage void sys_exit_group(int error_code)
1197 do_group_exit((error_code & 0xff) << 8);
1200 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1202 struct pid *pid = NULL;
1203 if (type == PIDTYPE_PID)
1204 pid = task->pids[type].pid;
1205 else if (type < PIDTYPE_MAX)
1206 pid = task->group_leader->pids[type].pid;
1207 return pid;
1210 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1211 struct task_struct *p)
1213 int err;
1215 if (type < PIDTYPE_MAX) {
1216 if (task_pid_type(p, type) != pid)
1217 return 0;
1220 /* Wait for all children (clone and not) if __WALL is set;
1221 * otherwise, wait for clone children *only* if __WCLONE is
1222 * set; otherwise, wait for non-clone children *only*. (Note:
1223 * A "clone" child here is one that reports to its parent
1224 * using a signal other than SIGCHLD.) */
1225 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1226 && !(options & __WALL))
1227 return 0;
1229 err = security_task_wait(p);
1230 if (err)
1231 return err;
1233 return 1;
1236 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1237 int why, int status,
1238 struct siginfo __user *infop,
1239 struct rusage __user *rusagep)
1241 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1243 put_task_struct(p);
1244 if (!retval)
1245 retval = put_user(SIGCHLD, &infop->si_signo);
1246 if (!retval)
1247 retval = put_user(0, &infop->si_errno);
1248 if (!retval)
1249 retval = put_user((short)why, &infop->si_code);
1250 if (!retval)
1251 retval = put_user(pid, &infop->si_pid);
1252 if (!retval)
1253 retval = put_user(uid, &infop->si_uid);
1254 if (!retval)
1255 retval = put_user(status, &infop->si_status);
1256 if (!retval)
1257 retval = pid;
1258 return retval;
1262 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1263 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1264 * the lock and this task is uninteresting. If we return nonzero, we have
1265 * released the lock and the system call should return.
1267 static int wait_task_zombie(struct task_struct *p, int options,
1268 struct siginfo __user *infop,
1269 int __user *stat_addr, struct rusage __user *ru)
1271 unsigned long state;
1272 int retval, status, traced;
1273 pid_t pid = task_pid_vnr(p);
1275 if (!likely(options & WEXITED))
1276 return 0;
1278 if (unlikely(options & WNOWAIT)) {
1279 uid_t uid = p->uid;
1280 int exit_code = p->exit_code;
1281 int why, status;
1283 get_task_struct(p);
1284 read_unlock(&tasklist_lock);
1285 if ((exit_code & 0x7f) == 0) {
1286 why = CLD_EXITED;
1287 status = exit_code >> 8;
1288 } else {
1289 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1290 status = exit_code & 0x7f;
1292 return wait_noreap_copyout(p, pid, uid, why,
1293 status, infop, ru);
1297 * Try to move the task's state to DEAD
1298 * only one thread is allowed to do this:
1300 state = xchg(&p->exit_state, EXIT_DEAD);
1301 if (state != EXIT_ZOMBIE) {
1302 BUG_ON(state != EXIT_DEAD);
1303 return 0;
1306 traced = ptrace_reparented(p);
1308 if (likely(!traced)) {
1309 struct signal_struct *psig;
1310 struct signal_struct *sig;
1313 * The resource counters for the group leader are in its
1314 * own task_struct. Those for dead threads in the group
1315 * are in its signal_struct, as are those for the child
1316 * processes it has previously reaped. All these
1317 * accumulate in the parent's signal_struct c* fields.
1319 * We don't bother to take a lock here to protect these
1320 * p->signal fields, because they are only touched by
1321 * __exit_signal, which runs with tasklist_lock
1322 * write-locked anyway, and so is excluded here. We do
1323 * need to protect the access to p->parent->signal fields,
1324 * as other threads in the parent group can be right
1325 * here reaping other children at the same time.
1327 spin_lock_irq(&p->parent->sighand->siglock);
1328 psig = p->parent->signal;
1329 sig = p->signal;
1330 psig->cutime =
1331 cputime_add(psig->cutime,
1332 cputime_add(p->utime,
1333 cputime_add(sig->utime,
1334 sig->cutime)));
1335 psig->cstime =
1336 cputime_add(psig->cstime,
1337 cputime_add(p->stime,
1338 cputime_add(sig->stime,
1339 sig->cstime)));
1340 psig->cgtime =
1341 cputime_add(psig->cgtime,
1342 cputime_add(p->gtime,
1343 cputime_add(sig->gtime,
1344 sig->cgtime)));
1345 psig->cmin_flt +=
1346 p->min_flt + sig->min_flt + sig->cmin_flt;
1347 psig->cmaj_flt +=
1348 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1349 psig->cnvcsw +=
1350 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1351 psig->cnivcsw +=
1352 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1353 psig->cinblock +=
1354 task_io_get_inblock(p) +
1355 sig->inblock + sig->cinblock;
1356 psig->coublock +=
1357 task_io_get_oublock(p) +
1358 sig->oublock + sig->coublock;
1359 task_io_accounting_add(&psig->ioac, &p->ioac);
1360 task_io_accounting_add(&psig->ioac, &sig->ioac);
1361 spin_unlock_irq(&p->parent->sighand->siglock);
1365 * Now we are sure this task is interesting, and no other
1366 * thread can reap it because we set its state to EXIT_DEAD.
1368 read_unlock(&tasklist_lock);
1370 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1371 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1372 ? p->signal->group_exit_code : p->exit_code;
1373 if (!retval && stat_addr)
1374 retval = put_user(status, stat_addr);
1375 if (!retval && infop)
1376 retval = put_user(SIGCHLD, &infop->si_signo);
1377 if (!retval && infop)
1378 retval = put_user(0, &infop->si_errno);
1379 if (!retval && infop) {
1380 int why;
1382 if ((status & 0x7f) == 0) {
1383 why = CLD_EXITED;
1384 status >>= 8;
1385 } else {
1386 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1387 status &= 0x7f;
1389 retval = put_user((short)why, &infop->si_code);
1390 if (!retval)
1391 retval = put_user(status, &infop->si_status);
1393 if (!retval && infop)
1394 retval = put_user(pid, &infop->si_pid);
1395 if (!retval && infop)
1396 retval = put_user(p->uid, &infop->si_uid);
1397 if (!retval)
1398 retval = pid;
1400 if (traced) {
1401 write_lock_irq(&tasklist_lock);
1402 /* We dropped tasklist, ptracer could die and untrace */
1403 ptrace_unlink(p);
1405 * If this is not a detached task, notify the parent.
1406 * If it's still not detached after that, don't release
1407 * it now.
1409 if (!task_detached(p)) {
1410 do_notify_parent(p, p->exit_signal);
1411 if (!task_detached(p)) {
1412 p->exit_state = EXIT_ZOMBIE;
1413 p = NULL;
1416 write_unlock_irq(&tasklist_lock);
1418 if (p != NULL)
1419 release_task(p);
1421 return retval;
1425 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1426 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1427 * the lock and this task is uninteresting. If we return nonzero, we have
1428 * released the lock and the system call should return.
1430 static int wait_task_stopped(int ptrace, struct task_struct *p,
1431 int options, struct siginfo __user *infop,
1432 int __user *stat_addr, struct rusage __user *ru)
1434 int retval, exit_code, why;
1435 uid_t uid = 0; /* unneeded, required by compiler */
1436 pid_t pid;
1438 if (!(options & WUNTRACED))
1439 return 0;
1441 exit_code = 0;
1442 spin_lock_irq(&p->sighand->siglock);
1444 if (unlikely(!task_is_stopped_or_traced(p)))
1445 goto unlock_sig;
1447 if (!ptrace && p->signal->group_stop_count > 0)
1449 * A group stop is in progress and this is the group leader.
1450 * We won't report until all threads have stopped.
1452 goto unlock_sig;
1454 exit_code = p->exit_code;
1455 if (!exit_code)
1456 goto unlock_sig;
1458 if (!unlikely(options & WNOWAIT))
1459 p->exit_code = 0;
1461 uid = p->uid;
1462 unlock_sig:
1463 spin_unlock_irq(&p->sighand->siglock);
1464 if (!exit_code)
1465 return 0;
1468 * Now we are pretty sure this task is interesting.
1469 * Make sure it doesn't get reaped out from under us while we
1470 * give up the lock and then examine it below. We don't want to
1471 * keep holding onto the tasklist_lock while we call getrusage and
1472 * possibly take page faults for user memory.
1474 get_task_struct(p);
1475 pid = task_pid_vnr(p);
1476 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1477 read_unlock(&tasklist_lock);
1479 if (unlikely(options & WNOWAIT))
1480 return wait_noreap_copyout(p, pid, uid,
1481 why, exit_code,
1482 infop, ru);
1484 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1485 if (!retval && stat_addr)
1486 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1487 if (!retval && infop)
1488 retval = put_user(SIGCHLD, &infop->si_signo);
1489 if (!retval && infop)
1490 retval = put_user(0, &infop->si_errno);
1491 if (!retval && infop)
1492 retval = put_user((short)why, &infop->si_code);
1493 if (!retval && infop)
1494 retval = put_user(exit_code, &infop->si_status);
1495 if (!retval && infop)
1496 retval = put_user(pid, &infop->si_pid);
1497 if (!retval && infop)
1498 retval = put_user(uid, &infop->si_uid);
1499 if (!retval)
1500 retval = pid;
1501 put_task_struct(p);
1503 BUG_ON(!retval);
1504 return retval;
1508 * Handle do_wait work for one task in a live, non-stopped state.
1509 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1510 * the lock and this task is uninteresting. If we return nonzero, we have
1511 * released the lock and the system call should return.
1513 static int wait_task_continued(struct task_struct *p, int options,
1514 struct siginfo __user *infop,
1515 int __user *stat_addr, struct rusage __user *ru)
1517 int retval;
1518 pid_t pid;
1519 uid_t uid;
1521 if (!unlikely(options & WCONTINUED))
1522 return 0;
1524 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1525 return 0;
1527 spin_lock_irq(&p->sighand->siglock);
1528 /* Re-check with the lock held. */
1529 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1530 spin_unlock_irq(&p->sighand->siglock);
1531 return 0;
1533 if (!unlikely(options & WNOWAIT))
1534 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1535 spin_unlock_irq(&p->sighand->siglock);
1537 pid = task_pid_vnr(p);
1538 uid = p->uid;
1539 get_task_struct(p);
1540 read_unlock(&tasklist_lock);
1542 if (!infop) {
1543 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1544 put_task_struct(p);
1545 if (!retval && stat_addr)
1546 retval = put_user(0xffff, stat_addr);
1547 if (!retval)
1548 retval = pid;
1549 } else {
1550 retval = wait_noreap_copyout(p, pid, uid,
1551 CLD_CONTINUED, SIGCONT,
1552 infop, ru);
1553 BUG_ON(retval == 0);
1556 return retval;
1560 * Consider @p for a wait by @parent.
1562 * -ECHILD should be in *@notask_error before the first call.
1563 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1564 * Returns zero if the search for a child should continue;
1565 * then *@notask_error is 0 if @p is an eligible child,
1566 * or another error from security_task_wait(), or still -ECHILD.
1568 static int wait_consider_task(struct task_struct *parent, int ptrace,
1569 struct task_struct *p, int *notask_error,
1570 enum pid_type type, struct pid *pid, int options,
1571 struct siginfo __user *infop,
1572 int __user *stat_addr, struct rusage __user *ru)
1574 int ret = eligible_child(type, pid, options, p);
1575 if (!ret)
1576 return ret;
1578 if (unlikely(ret < 0)) {
1580 * If we have not yet seen any eligible child,
1581 * then let this error code replace -ECHILD.
1582 * A permission error will give the user a clue
1583 * to look for security policy problems, rather
1584 * than for mysterious wait bugs.
1586 if (*notask_error)
1587 *notask_error = ret;
1590 if (likely(!ptrace) && unlikely(p->ptrace)) {
1592 * This child is hidden by ptrace.
1593 * We aren't allowed to see it now, but eventually we will.
1595 *notask_error = 0;
1596 return 0;
1599 if (p->exit_state == EXIT_DEAD)
1600 return 0;
1603 * We don't reap group leaders with subthreads.
1605 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1606 return wait_task_zombie(p, options, infop, stat_addr, ru);
1609 * It's stopped or running now, so it might
1610 * later continue, exit, or stop again.
1612 *notask_error = 0;
1614 if (task_is_stopped_or_traced(p))
1615 return wait_task_stopped(ptrace, p, options,
1616 infop, stat_addr, ru);
1618 return wait_task_continued(p, options, infop, stat_addr, ru);
1622 * Do the work of do_wait() for one thread in the group, @tsk.
1624 * -ECHILD should be in *@notask_error before the first call.
1625 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1626 * Returns zero if the search for a child should continue; then
1627 * *@notask_error is 0 if there were any eligible children,
1628 * or another error from security_task_wait(), or still -ECHILD.
1630 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1631 enum pid_type type, struct pid *pid, int options,
1632 struct siginfo __user *infop, int __user *stat_addr,
1633 struct rusage __user *ru)
1635 struct task_struct *p;
1637 list_for_each_entry(p, &tsk->children, sibling) {
1639 * Do not consider detached threads.
1641 if (!task_detached(p)) {
1642 int ret = wait_consider_task(tsk, 0, p, notask_error,
1643 type, pid, options,
1644 infop, stat_addr, ru);
1645 if (ret)
1646 return ret;
1650 return 0;
1653 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1654 enum pid_type type, struct pid *pid, int options,
1655 struct siginfo __user *infop, int __user *stat_addr,
1656 struct rusage __user *ru)
1658 struct task_struct *p;
1661 * Traditionally we see ptrace'd stopped tasks regardless of options.
1663 options |= WUNTRACED;
1665 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1666 int ret = wait_consider_task(tsk, 1, p, notask_error,
1667 type, pid, options,
1668 infop, stat_addr, ru);
1669 if (ret)
1670 return ret;
1673 return 0;
1676 static long do_wait(enum pid_type type, struct pid *pid, int options,
1677 struct siginfo __user *infop, int __user *stat_addr,
1678 struct rusage __user *ru)
1680 DECLARE_WAITQUEUE(wait, current);
1681 struct task_struct *tsk;
1682 int retval;
1684 trace_sched_process_wait(pid);
1686 add_wait_queue(&current->signal->wait_chldexit,&wait);
1687 repeat:
1689 * If there is nothing that can match our critiera just get out.
1690 * We will clear @retval to zero if we see any child that might later
1691 * match our criteria, even if we are not able to reap it yet.
1693 retval = -ECHILD;
1694 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1695 goto end;
1697 current->state = TASK_INTERRUPTIBLE;
1698 read_lock(&tasklist_lock);
1699 tsk = current;
1700 do {
1701 int tsk_result = do_wait_thread(tsk, &retval,
1702 type, pid, options,
1703 infop, stat_addr, ru);
1704 if (!tsk_result)
1705 tsk_result = ptrace_do_wait(tsk, &retval,
1706 type, pid, options,
1707 infop, stat_addr, ru);
1708 if (tsk_result) {
1710 * tasklist_lock is unlocked and we have a final result.
1712 retval = tsk_result;
1713 goto end;
1716 if (options & __WNOTHREAD)
1717 break;
1718 tsk = next_thread(tsk);
1719 BUG_ON(tsk->signal != current->signal);
1720 } while (tsk != current);
1721 read_unlock(&tasklist_lock);
1723 if (!retval && !(options & WNOHANG)) {
1724 retval = -ERESTARTSYS;
1725 if (!signal_pending(current)) {
1726 schedule();
1727 goto repeat;
1731 end:
1732 current->state = TASK_RUNNING;
1733 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1734 if (infop) {
1735 if (retval > 0)
1736 retval = 0;
1737 else {
1739 * For a WNOHANG return, clear out all the fields
1740 * we would set so the user can easily tell the
1741 * difference.
1743 if (!retval)
1744 retval = put_user(0, &infop->si_signo);
1745 if (!retval)
1746 retval = put_user(0, &infop->si_errno);
1747 if (!retval)
1748 retval = put_user(0, &infop->si_code);
1749 if (!retval)
1750 retval = put_user(0, &infop->si_pid);
1751 if (!retval)
1752 retval = put_user(0, &infop->si_uid);
1753 if (!retval)
1754 retval = put_user(0, &infop->si_status);
1757 return retval;
1760 asmlinkage long sys_waitid(int which, pid_t upid,
1761 struct siginfo __user *infop, int options,
1762 struct rusage __user *ru)
1764 struct pid *pid = NULL;
1765 enum pid_type type;
1766 long ret;
1768 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1769 return -EINVAL;
1770 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1771 return -EINVAL;
1773 switch (which) {
1774 case P_ALL:
1775 type = PIDTYPE_MAX;
1776 break;
1777 case P_PID:
1778 type = PIDTYPE_PID;
1779 if (upid <= 0)
1780 return -EINVAL;
1781 break;
1782 case P_PGID:
1783 type = PIDTYPE_PGID;
1784 if (upid <= 0)
1785 return -EINVAL;
1786 break;
1787 default:
1788 return -EINVAL;
1791 if (type < PIDTYPE_MAX)
1792 pid = find_get_pid(upid);
1793 ret = do_wait(type, pid, options, infop, NULL, ru);
1794 put_pid(pid);
1796 /* avoid REGPARM breakage on x86: */
1797 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1798 return ret;
1801 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1802 int options, struct rusage __user *ru)
1804 struct pid *pid = NULL;
1805 enum pid_type type;
1806 long ret;
1808 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1809 __WNOTHREAD|__WCLONE|__WALL))
1810 return -EINVAL;
1812 if (upid == -1)
1813 type = PIDTYPE_MAX;
1814 else if (upid < 0) {
1815 type = PIDTYPE_PGID;
1816 pid = find_get_pid(-upid);
1817 } else if (upid == 0) {
1818 type = PIDTYPE_PGID;
1819 pid = get_pid(task_pgrp(current));
1820 } else /* upid > 0 */ {
1821 type = PIDTYPE_PID;
1822 pid = find_get_pid(upid);
1825 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1826 put_pid(pid);
1828 /* avoid REGPARM breakage on x86: */
1829 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1830 return ret;
1833 #ifdef __ARCH_WANT_SYS_WAITPID
1836 * sys_waitpid() remains for compatibility. waitpid() should be
1837 * implemented by calling sys_wait4() from libc.a.
1839 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1841 return sys_wait4(pid, stat_addr, options, NULL);
1844 #endif