2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
18 #include <asm/cputype.h>
19 #include <asm/mach-types.h>
20 #include <asm/sections.h>
21 #include <asm/setup.h>
22 #include <asm/sizes.h>
25 #include <asm/mach/arch.h>
26 #include <asm/mach/map.h>
30 DEFINE_PER_CPU(struct mmu_gather
, mmu_gathers
);
33 * empty_zero_page is a special page that is used for
34 * zero-initialized data and COW.
36 struct page
*empty_zero_page
;
37 EXPORT_SYMBOL(empty_zero_page
);
40 * The pmd table for the upper-most set of pages.
44 #define CPOLICY_UNCACHED 0
45 #define CPOLICY_BUFFERED 1
46 #define CPOLICY_WRITETHROUGH 2
47 #define CPOLICY_WRITEBACK 3
48 #define CPOLICY_WRITEALLOC 4
50 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
51 static unsigned int ecc_mask __initdata
= 0;
53 pgprot_t pgprot_kernel
;
55 EXPORT_SYMBOL(pgprot_user
);
56 EXPORT_SYMBOL(pgprot_kernel
);
59 const char policy
[16];
65 static struct cachepolicy cache_policies
[] __initdata
= {
69 .pmd
= PMD_SECT_UNCACHED
,
70 .pte
= L_PTE_MT_UNCACHED
,
74 .pmd
= PMD_SECT_BUFFERED
,
75 .pte
= L_PTE_MT_BUFFERABLE
,
77 .policy
= "writethrough",
80 .pte
= L_PTE_MT_WRITETHROUGH
,
82 .policy
= "writeback",
85 .pte
= L_PTE_MT_WRITEBACK
,
87 .policy
= "writealloc",
90 .pte
= L_PTE_MT_WRITEALLOC
,
95 * These are useful for identifying cache coherency
96 * problems by allowing the cache or the cache and
97 * writebuffer to be turned off. (Note: the write
98 * buffer should not be on and the cache off).
100 static void __init
early_cachepolicy(char **p
)
104 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
105 int len
= strlen(cache_policies
[i
].policy
);
107 if (memcmp(*p
, cache_policies
[i
].policy
, len
) == 0) {
109 cr_alignment
&= ~cache_policies
[i
].cr_mask
;
110 cr_no_alignment
&= ~cache_policies
[i
].cr_mask
;
115 if (i
== ARRAY_SIZE(cache_policies
))
116 printk(KERN_ERR
"ERROR: unknown or unsupported cache policy\n");
117 if (cpu_architecture() >= CPU_ARCH_ARMv6
) {
118 printk(KERN_WARNING
"Only cachepolicy=writeback supported on ARMv6 and later\n");
119 cachepolicy
= CPOLICY_WRITEBACK
;
122 set_cr(cr_alignment
);
124 __early_param("cachepolicy=", early_cachepolicy
);
126 static void __init
early_nocache(char **__unused
)
128 char *p
= "buffered";
129 printk(KERN_WARNING
"nocache is deprecated; use cachepolicy=%s\n", p
);
130 early_cachepolicy(&p
);
132 __early_param("nocache", early_nocache
);
134 static void __init
early_nowrite(char **__unused
)
136 char *p
= "uncached";
137 printk(KERN_WARNING
"nowb is deprecated; use cachepolicy=%s\n", p
);
138 early_cachepolicy(&p
);
140 __early_param("nowb", early_nowrite
);
142 static void __init
early_ecc(char **p
)
144 if (memcmp(*p
, "on", 2) == 0) {
145 ecc_mask
= PMD_PROTECTION
;
147 } else if (memcmp(*p
, "off", 3) == 0) {
152 __early_param("ecc=", early_ecc
);
154 static int __init
noalign_setup(char *__unused
)
156 cr_alignment
&= ~CR_A
;
157 cr_no_alignment
&= ~CR_A
;
158 set_cr(cr_alignment
);
161 __setup("noalign", noalign_setup
);
164 void adjust_cr(unsigned long mask
, unsigned long set
)
172 local_irq_save(flags
);
174 cr_no_alignment
= (cr_no_alignment
& ~mask
) | set
;
175 cr_alignment
= (cr_alignment
& ~mask
) | set
;
177 set_cr((get_cr() & ~mask
) | set
);
179 local_irq_restore(flags
);
183 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
184 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
186 static struct mem_type mem_types
[] = {
187 [MT_DEVICE
] = { /* Strongly ordered / ARMv6 shared device */
188 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_SHARED
|
190 .prot_l1
= PMD_TYPE_TABLE
,
191 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_S
,
194 [MT_DEVICE_NONSHARED
] = { /* ARMv6 non-shared device */
195 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_NONSHARED
,
196 .prot_l1
= PMD_TYPE_TABLE
,
197 .prot_sect
= PROT_SECT_DEVICE
,
200 [MT_DEVICE_CACHED
] = { /* ioremap_cached */
201 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_CACHED
,
202 .prot_l1
= PMD_TYPE_TABLE
,
203 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_WB
,
206 [MT_DEVICE_WC
] = { /* ioremap_wc */
207 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_WC
,
208 .prot_l1
= PMD_TYPE_TABLE
,
209 .prot_sect
= PROT_SECT_DEVICE
,
213 .prot_pte
= PROT_PTE_DEVICE
,
214 .prot_l1
= PMD_TYPE_TABLE
,
215 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
219 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
220 .domain
= DOMAIN_KERNEL
,
223 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
| PMD_SECT_MINICACHE
,
224 .domain
= DOMAIN_KERNEL
,
227 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
229 .prot_l1
= PMD_TYPE_TABLE
,
230 .domain
= DOMAIN_USER
,
232 [MT_HIGH_VECTORS
] = {
233 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
234 L_PTE_USER
| L_PTE_EXEC
,
235 .prot_l1
= PMD_TYPE_TABLE
,
236 .domain
= DOMAIN_USER
,
239 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
240 .domain
= DOMAIN_KERNEL
,
243 .prot_sect
= PMD_TYPE_SECT
,
244 .domain
= DOMAIN_KERNEL
,
248 const struct mem_type
*get_mem_type(unsigned int type
)
250 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
254 * Adjust the PMD section entries according to the CPU in use.
256 static void __init
build_mem_type_table(void)
258 struct cachepolicy
*cp
;
259 unsigned int cr
= get_cr();
260 unsigned int user_pgprot
, kern_pgprot
, vecs_pgprot
;
261 int cpu_arch
= cpu_architecture();
264 if (cpu_arch
< CPU_ARCH_ARMv6
) {
265 #if defined(CONFIG_CPU_DCACHE_DISABLE)
266 if (cachepolicy
> CPOLICY_BUFFERED
)
267 cachepolicy
= CPOLICY_BUFFERED
;
268 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
269 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
270 cachepolicy
= CPOLICY_WRITETHROUGH
;
273 if (cpu_arch
< CPU_ARCH_ARMv5
) {
274 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
275 cachepolicy
= CPOLICY_WRITEBACK
;
279 cachepolicy
= CPOLICY_WRITEALLOC
;
283 * Strip out features not present on earlier architectures.
284 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
285 * without extended page tables don't have the 'Shared' bit.
287 if (cpu_arch
< CPU_ARCH_ARMv5
)
288 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
289 mem_types
[i
].prot_sect
&= ~PMD_SECT_TEX(7);
290 if ((cpu_arch
< CPU_ARCH_ARMv6
|| !(cr
& CR_XP
)) && !cpu_is_xsc3())
291 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
292 mem_types
[i
].prot_sect
&= ~PMD_SECT_S
;
295 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
296 * "update-able on write" bit on ARM610). However, Xscale and
297 * Xscale3 require this bit to be cleared.
299 if (cpu_is_xscale() || cpu_is_xsc3()) {
300 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
301 mem_types
[i
].prot_sect
&= ~PMD_BIT4
;
302 mem_types
[i
].prot_l1
&= ~PMD_BIT4
;
304 } else if (cpu_arch
< CPU_ARCH_ARMv6
) {
305 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
306 if (mem_types
[i
].prot_l1
)
307 mem_types
[i
].prot_l1
|= PMD_BIT4
;
308 if (mem_types
[i
].prot_sect
)
309 mem_types
[i
].prot_sect
|= PMD_BIT4
;
314 * Mark the device areas according to the CPU/architecture.
316 if (cpu_is_xsc3() || (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
))) {
317 if (!cpu_is_xsc3()) {
319 * Mark device regions on ARMv6+ as execute-never
320 * to prevent speculative instruction fetches.
322 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_XN
;
323 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_XN
;
324 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_XN
;
325 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_XN
;
327 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
329 * For ARMv7 with TEX remapping,
330 * - shared device is SXCB=1100
331 * - nonshared device is SXCB=0100
332 * - write combine device mem is SXCB=0001
333 * (Uncached Normal memory)
335 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1);
336 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(1);
337 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
338 } else if (cpu_is_xsc3()) {
341 * - shared device is TEXCB=00101
342 * - nonshared device is TEXCB=01000
343 * - write combine device mem is TEXCB=00100
344 * (Inner/Outer Uncacheable in xsc3 parlance)
346 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED
;
347 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
348 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
351 * For ARMv6 and ARMv7 without TEX remapping,
352 * - shared device is TEXCB=00001
353 * - nonshared device is TEXCB=01000
354 * - write combine device mem is TEXCB=00100
355 * (Uncached Normal in ARMv6 parlance).
357 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
358 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
359 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
363 * On others, write combining is "Uncached/Buffered"
365 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
369 * Now deal with the memory-type mappings
371 cp
= &cache_policies
[cachepolicy
];
372 vecs_pgprot
= kern_pgprot
= user_pgprot
= cp
->pte
;
376 * Only use write-through for non-SMP systems
378 if (cpu_arch
>= CPU_ARCH_ARMv5
&& cachepolicy
> CPOLICY_WRITETHROUGH
)
379 vecs_pgprot
= cache_policies
[CPOLICY_WRITETHROUGH
].pte
;
383 * Enable CPU-specific coherency if supported.
384 * (Only available on XSC3 at the moment.)
386 if (arch_is_coherent() && cpu_is_xsc3())
387 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
390 * ARMv6 and above have extended page tables.
392 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
394 * Mark cache clean areas and XIP ROM read only
395 * from SVC mode and no access from userspace.
397 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
398 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
399 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
403 * Mark memory with the "shared" attribute for SMP systems
405 user_pgprot
|= L_PTE_SHARED
;
406 kern_pgprot
|= L_PTE_SHARED
;
407 vecs_pgprot
|= L_PTE_SHARED
;
408 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
412 for (i
= 0; i
< 16; i
++) {
413 unsigned long v
= pgprot_val(protection_map
[i
]);
414 protection_map
[i
] = __pgprot(v
| user_pgprot
);
417 mem_types
[MT_LOW_VECTORS
].prot_pte
|= vecs_pgprot
;
418 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= vecs_pgprot
;
420 pgprot_user
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| user_pgprot
);
421 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
422 L_PTE_DIRTY
| L_PTE_WRITE
|
423 L_PTE_EXEC
| kern_pgprot
);
425 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
426 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
427 mem_types
[MT_MEMORY
].prot_sect
|= ecc_mask
| cp
->pmd
;
428 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
432 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
436 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
439 printk("Memory policy: ECC %sabled, Data cache %s\n",
440 ecc_mask
? "en" : "dis", cp
->policy
);
442 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
443 struct mem_type
*t
= &mem_types
[i
];
445 t
->prot_l1
|= PMD_DOMAIN(t
->domain
);
447 t
->prot_sect
|= PMD_DOMAIN(t
->domain
);
451 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
453 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
454 unsigned long end
, unsigned long pfn
,
455 const struct mem_type
*type
)
459 if (pmd_none(*pmd
)) {
460 pte
= alloc_bootmem_low_pages(2 * PTRS_PER_PTE
* sizeof(pte_t
));
461 __pmd_populate(pmd
, __pa(pte
) | type
->prot_l1
);
464 pte
= pte_offset_kernel(pmd
, addr
);
466 set_pte_ext(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)), 0);
468 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
471 static void __init
alloc_init_section(pgd_t
*pgd
, unsigned long addr
,
472 unsigned long end
, unsigned long phys
,
473 const struct mem_type
*type
)
475 pmd_t
*pmd
= pmd_offset(pgd
, addr
);
478 * Try a section mapping - end, addr and phys must all be aligned
479 * to a section boundary. Note that PMDs refer to the individual
480 * L1 entries, whereas PGDs refer to a group of L1 entries making
481 * up one logical pointer to an L2 table.
483 if (((addr
| end
| phys
) & ~SECTION_MASK
) == 0) {
486 if (addr
& SECTION_SIZE
)
490 *pmd
= __pmd(phys
| type
->prot_sect
);
491 phys
+= SECTION_SIZE
;
492 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
497 * No need to loop; pte's aren't interested in the
498 * individual L1 entries.
500 alloc_init_pte(pmd
, addr
, end
, __phys_to_pfn(phys
), type
);
504 static void __init
create_36bit_mapping(struct map_desc
*md
,
505 const struct mem_type
*type
)
507 unsigned long phys
, addr
, length
, end
;
511 phys
= (unsigned long)__pfn_to_phys(md
->pfn
);
512 length
= PAGE_ALIGN(md
->length
);
514 if (!(cpu_architecture() >= CPU_ARCH_ARMv6
|| cpu_is_xsc3())) {
515 printk(KERN_ERR
"MM: CPU does not support supersection "
516 "mapping for 0x%08llx at 0x%08lx\n",
517 __pfn_to_phys((u64
)md
->pfn
), addr
);
521 /* N.B. ARMv6 supersections are only defined to work with domain 0.
522 * Since domain assignments can in fact be arbitrary, the
523 * 'domain == 0' check below is required to insure that ARMv6
524 * supersections are only allocated for domain 0 regardless
525 * of the actual domain assignments in use.
528 printk(KERN_ERR
"MM: invalid domain in supersection "
529 "mapping for 0x%08llx at 0x%08lx\n",
530 __pfn_to_phys((u64
)md
->pfn
), addr
);
534 if ((addr
| length
| __pfn_to_phys(md
->pfn
)) & ~SUPERSECTION_MASK
) {
535 printk(KERN_ERR
"MM: cannot create mapping for "
536 "0x%08llx at 0x%08lx invalid alignment\n",
537 __pfn_to_phys((u64
)md
->pfn
), addr
);
542 * Shift bits [35:32] of address into bits [23:20] of PMD
545 phys
|= (((md
->pfn
>> (32 - PAGE_SHIFT
)) & 0xF) << 20);
547 pgd
= pgd_offset_k(addr
);
550 pmd_t
*pmd
= pmd_offset(pgd
, addr
);
553 for (i
= 0; i
< 16; i
++)
554 *pmd
++ = __pmd(phys
| type
->prot_sect
| PMD_SECT_SUPER
);
556 addr
+= SUPERSECTION_SIZE
;
557 phys
+= SUPERSECTION_SIZE
;
558 pgd
+= SUPERSECTION_SIZE
>> PGDIR_SHIFT
;
559 } while (addr
!= end
);
563 * Create the page directory entries and any necessary
564 * page tables for the mapping specified by `md'. We
565 * are able to cope here with varying sizes and address
566 * offsets, and we take full advantage of sections and
569 void __init
create_mapping(struct map_desc
*md
)
571 unsigned long phys
, addr
, length
, end
;
572 const struct mem_type
*type
;
575 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
576 printk(KERN_WARNING
"BUG: not creating mapping for "
577 "0x%08llx at 0x%08lx in user region\n",
578 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
582 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
583 md
->virtual >= PAGE_OFFSET
&& md
->virtual < VMALLOC_END
) {
584 printk(KERN_WARNING
"BUG: mapping for 0x%08llx at 0x%08lx "
585 "overlaps vmalloc space\n",
586 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
589 type
= &mem_types
[md
->type
];
592 * Catch 36-bit addresses
594 if (md
->pfn
>= 0x100000) {
595 create_36bit_mapping(md
, type
);
599 addr
= md
->virtual & PAGE_MASK
;
600 phys
= (unsigned long)__pfn_to_phys(md
->pfn
);
601 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
603 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
604 printk(KERN_WARNING
"BUG: map for 0x%08lx at 0x%08lx can not "
605 "be mapped using pages, ignoring.\n",
606 __pfn_to_phys(md
->pfn
), addr
);
610 pgd
= pgd_offset_k(addr
);
613 unsigned long next
= pgd_addr_end(addr
, end
);
615 alloc_init_section(pgd
, addr
, next
, phys
, type
);
619 } while (pgd
++, addr
!= end
);
623 * Create the architecture specific mappings
625 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
629 for (i
= 0; i
< nr
; i
++)
630 create_mapping(io_desc
+ i
);
633 static unsigned long __initdata vmalloc_reserve
= SZ_128M
;
636 * vmalloc=size forces the vmalloc area to be exactly 'size'
637 * bytes. This can be used to increase (or decrease) the vmalloc
638 * area - the default is 128m.
640 static void __init
early_vmalloc(char **arg
)
642 vmalloc_reserve
= memparse(*arg
, arg
);
644 if (vmalloc_reserve
< SZ_16M
) {
645 vmalloc_reserve
= SZ_16M
;
647 "vmalloc area too small, limiting to %luMB\n",
648 vmalloc_reserve
>> 20);
651 if (vmalloc_reserve
> VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
)) {
652 vmalloc_reserve
= VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
);
654 "vmalloc area is too big, limiting to %luMB\n",
655 vmalloc_reserve
>> 20);
658 __early_param("vmalloc=", early_vmalloc
);
660 #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
662 static void __init
sanity_check_meminfo(void)
666 for (i
= 0, j
= 0; i
< meminfo
.nr_banks
; i
++) {
667 struct membank
*bank
= &meminfo
.bank
[j
];
668 *bank
= meminfo
.bank
[i
];
670 #ifdef CONFIG_HIGHMEM
672 * Split those memory banks which are partially overlapping
673 * the vmalloc area greatly simplifying things later.
675 if (__va(bank
->start
) < VMALLOC_MIN
&&
676 bank
->size
> VMALLOC_MIN
- __va(bank
->start
)) {
677 if (meminfo
.nr_banks
>= NR_BANKS
) {
678 printk(KERN_CRIT
"NR_BANKS too low, "
679 "ignoring high memory\n");
681 memmove(bank
+ 1, bank
,
682 (meminfo
.nr_banks
- i
) * sizeof(*bank
));
685 bank
[1].size
-= VMALLOC_MIN
- __va(bank
->start
);
686 bank
[1].start
= __pa(VMALLOC_MIN
- 1) + 1;
689 bank
->size
= VMALLOC_MIN
- __va(bank
->start
);
693 * Check whether this memory bank would entirely overlap
696 if (__va(bank
->start
) >= VMALLOC_MIN
) {
697 printk(KERN_NOTICE
"Ignoring RAM at %.8lx-%.8lx "
698 "(vmalloc region overlap).\n",
699 bank
->start
, bank
->start
+ bank
->size
- 1);
704 * Check whether this memory bank would partially overlap
707 if (__va(bank
->start
+ bank
->size
) > VMALLOC_MIN
||
708 __va(bank
->start
+ bank
->size
) < __va(bank
->start
)) {
709 unsigned long newsize
= VMALLOC_MIN
- __va(bank
->start
);
710 printk(KERN_NOTICE
"Truncating RAM at %.8lx-%.8lx "
711 "to -%.8lx (vmalloc region overlap).\n",
712 bank
->start
, bank
->start
+ bank
->size
- 1,
713 bank
->start
+ newsize
- 1);
714 bank
->size
= newsize
;
719 meminfo
.nr_banks
= j
;
722 static inline void prepare_page_table(void)
727 * Clear out all the mappings below the kernel image.
729 for (addr
= 0; addr
< MODULES_VADDR
; addr
+= PGDIR_SIZE
)
730 pmd_clear(pmd_off_k(addr
));
732 #ifdef CONFIG_XIP_KERNEL
733 /* The XIP kernel is mapped in the module area -- skip over it */
734 addr
= ((unsigned long)_etext
+ PGDIR_SIZE
- 1) & PGDIR_MASK
;
736 for ( ; addr
< PAGE_OFFSET
; addr
+= PGDIR_SIZE
)
737 pmd_clear(pmd_off_k(addr
));
740 * Clear out all the kernel space mappings, except for the first
741 * memory bank, up to the end of the vmalloc region.
743 for (addr
= __phys_to_virt(bank_phys_end(&meminfo
.bank
[0]));
744 addr
< VMALLOC_END
; addr
+= PGDIR_SIZE
)
745 pmd_clear(pmd_off_k(addr
));
749 * Reserve the various regions of node 0
751 void __init
reserve_node_zero(pg_data_t
*pgdat
)
753 unsigned long res_size
= 0;
756 * Register the kernel text and data with bootmem.
757 * Note that this can only be in node 0.
759 #ifdef CONFIG_XIP_KERNEL
760 reserve_bootmem_node(pgdat
, __pa(_data
), _end
- _data
,
763 reserve_bootmem_node(pgdat
, __pa(_stext
), _end
- _stext
,
768 * Reserve the page tables. These are already in use,
769 * and can only be in node 0.
771 reserve_bootmem_node(pgdat
, __pa(swapper_pg_dir
),
772 PTRS_PER_PGD
* sizeof(pgd_t
), BOOTMEM_DEFAULT
);
775 * Hmm... This should go elsewhere, but we really really need to
776 * stop things allocating the low memory; ideally we need a better
777 * implementation of GFP_DMA which does not assume that DMA-able
778 * memory starts at zero.
780 if (machine_is_integrator() || machine_is_cintegrator())
781 res_size
= __pa(swapper_pg_dir
) - PHYS_OFFSET
;
784 * These should likewise go elsewhere. They pre-reserve the
785 * screen memory region at the start of main system memory.
787 if (machine_is_edb7211())
788 res_size
= 0x00020000;
789 if (machine_is_p720t())
790 res_size
= 0x00014000;
792 /* H1940 and RX3715 need to reserve this for suspend */
794 if (machine_is_h1940() || machine_is_rx3715()) {
795 reserve_bootmem_node(pgdat
, 0x30003000, 0x1000,
797 reserve_bootmem_node(pgdat
, 0x30081000, 0x1000,
803 * Because of the SA1111 DMA bug, we want to preserve our
804 * precious DMA-able memory...
806 res_size
= __pa(swapper_pg_dir
) - PHYS_OFFSET
;
809 reserve_bootmem_node(pgdat
, PHYS_OFFSET
, res_size
,
814 * Set up device the mappings. Since we clear out the page tables for all
815 * mappings above VMALLOC_END, we will remove any debug device mappings.
816 * This means you have to be careful how you debug this function, or any
817 * called function. This means you can't use any function or debugging
818 * method which may touch any device, otherwise the kernel _will_ crash.
820 static void __init
devicemaps_init(struct machine_desc
*mdesc
)
827 * Allocate the vector page early.
829 vectors
= alloc_bootmem_low_pages(PAGE_SIZE
);
831 for (addr
= VMALLOC_END
; addr
; addr
+= PGDIR_SIZE
)
832 pmd_clear(pmd_off_k(addr
));
835 * Map the kernel if it is XIP.
836 * It is always first in the modulearea.
838 #ifdef CONFIG_XIP_KERNEL
839 map
.pfn
= __phys_to_pfn(CONFIG_XIP_PHYS_ADDR
& SECTION_MASK
);
840 map
.virtual = MODULES_VADDR
;
841 map
.length
= ((unsigned long)_etext
- map
.virtual + ~SECTION_MASK
) & SECTION_MASK
;
843 create_mapping(&map
);
847 * Map the cache flushing regions.
850 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
);
851 map
.virtual = FLUSH_BASE
;
853 map
.type
= MT_CACHECLEAN
;
854 create_mapping(&map
);
856 #ifdef FLUSH_BASE_MINICACHE
857 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
+ SZ_1M
);
858 map
.virtual = FLUSH_BASE_MINICACHE
;
860 map
.type
= MT_MINICLEAN
;
861 create_mapping(&map
);
865 * Create a mapping for the machine vectors at the high-vectors
866 * location (0xffff0000). If we aren't using high-vectors, also
867 * create a mapping at the low-vectors virtual address.
869 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
870 map
.virtual = 0xffff0000;
871 map
.length
= PAGE_SIZE
;
872 map
.type
= MT_HIGH_VECTORS
;
873 create_mapping(&map
);
875 if (!vectors_high()) {
877 map
.type
= MT_LOW_VECTORS
;
878 create_mapping(&map
);
882 * Ask the machine support to map in the statically mapped devices.
888 * Finally flush the caches and tlb to ensure that we're in a
889 * consistent state wrt the writebuffer. This also ensures that
890 * any write-allocated cache lines in the vector page are written
891 * back. After this point, we can start to touch devices again.
893 local_flush_tlb_all();
898 * paging_init() sets up the page tables, initialises the zone memory
899 * maps, and sets up the zero page, bad page and bad page tables.
901 void __init
paging_init(struct machine_desc
*mdesc
)
905 build_mem_type_table();
906 sanity_check_meminfo();
907 prepare_page_table();
909 devicemaps_init(mdesc
);
911 top_pmd
= pmd_off_k(0xffff0000);
914 * allocate the zero page. Note that this always succeeds and
915 * returns a zeroed result.
917 zero_page
= alloc_bootmem_low_pages(PAGE_SIZE
);
918 empty_zero_page
= virt_to_page(zero_page
);
919 flush_dcache_page(empty_zero_page
);
923 * In order to soft-boot, we need to insert a 1:1 mapping in place of
924 * the user-mode pages. This will then ensure that we have predictable
925 * results when turning the mmu off
927 void setup_mm_for_reboot(char mode
)
929 unsigned long base_pmdval
;
933 if (current
->mm
&& current
->mm
->pgd
)
934 pgd
= current
->mm
->pgd
;
938 base_pmdval
= PMD_SECT_AP_WRITE
| PMD_SECT_AP_READ
| PMD_TYPE_SECT
;
939 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ
&& !cpu_is_xscale())
940 base_pmdval
|= PMD_BIT4
;
942 for (i
= 0; i
< FIRST_USER_PGD_NR
+ USER_PTRS_PER_PGD
; i
++, pgd
++) {
943 unsigned long pmdval
= (i
<< PGDIR_SHIFT
) | base_pmdval
;
946 pmd
= pmd_off(pgd
, i
<< PGDIR_SHIFT
);
947 pmd
[0] = __pmd(pmdval
);
948 pmd
[1] = __pmd(pmdval
+ (1 << (PGDIR_SHIFT
- 1)));
949 flush_pmd_entry(pmd
);