e1000: drop lltx, remove unnecessary lock
[linux-2.6/mini2440.git] / arch / arm / mm / mmu.c
blob9b36c5cb5e9f68306c017cf63f94ab55ccc1ce3f
1 /*
2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
18 #include <asm/cputype.h>
19 #include <asm/mach-types.h>
20 #include <asm/sections.h>
21 #include <asm/setup.h>
22 #include <asm/sizes.h>
23 #include <asm/tlb.h>
25 #include <asm/mach/arch.h>
26 #include <asm/mach/map.h>
28 #include "mm.h"
30 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
33 * empty_zero_page is a special page that is used for
34 * zero-initialized data and COW.
36 struct page *empty_zero_page;
37 EXPORT_SYMBOL(empty_zero_page);
40 * The pmd table for the upper-most set of pages.
42 pmd_t *top_pmd;
44 #define CPOLICY_UNCACHED 0
45 #define CPOLICY_BUFFERED 1
46 #define CPOLICY_WRITETHROUGH 2
47 #define CPOLICY_WRITEBACK 3
48 #define CPOLICY_WRITEALLOC 4
50 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
51 static unsigned int ecc_mask __initdata = 0;
52 pgprot_t pgprot_user;
53 pgprot_t pgprot_kernel;
55 EXPORT_SYMBOL(pgprot_user);
56 EXPORT_SYMBOL(pgprot_kernel);
58 struct cachepolicy {
59 const char policy[16];
60 unsigned int cr_mask;
61 unsigned int pmd;
62 unsigned int pte;
65 static struct cachepolicy cache_policies[] __initdata = {
67 .policy = "uncached",
68 .cr_mask = CR_W|CR_C,
69 .pmd = PMD_SECT_UNCACHED,
70 .pte = L_PTE_MT_UNCACHED,
71 }, {
72 .policy = "buffered",
73 .cr_mask = CR_C,
74 .pmd = PMD_SECT_BUFFERED,
75 .pte = L_PTE_MT_BUFFERABLE,
76 }, {
77 .policy = "writethrough",
78 .cr_mask = 0,
79 .pmd = PMD_SECT_WT,
80 .pte = L_PTE_MT_WRITETHROUGH,
81 }, {
82 .policy = "writeback",
83 .cr_mask = 0,
84 .pmd = PMD_SECT_WB,
85 .pte = L_PTE_MT_WRITEBACK,
86 }, {
87 .policy = "writealloc",
88 .cr_mask = 0,
89 .pmd = PMD_SECT_WBWA,
90 .pte = L_PTE_MT_WRITEALLOC,
95 * These are useful for identifying cache coherency
96 * problems by allowing the cache or the cache and
97 * writebuffer to be turned off. (Note: the write
98 * buffer should not be on and the cache off).
100 static void __init early_cachepolicy(char **p)
102 int i;
104 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
105 int len = strlen(cache_policies[i].policy);
107 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
108 cachepolicy = i;
109 cr_alignment &= ~cache_policies[i].cr_mask;
110 cr_no_alignment &= ~cache_policies[i].cr_mask;
111 *p += len;
112 break;
115 if (i == ARRAY_SIZE(cache_policies))
116 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
117 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
118 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
119 cachepolicy = CPOLICY_WRITEBACK;
121 flush_cache_all();
122 set_cr(cr_alignment);
124 __early_param("cachepolicy=", early_cachepolicy);
126 static void __init early_nocache(char **__unused)
128 char *p = "buffered";
129 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
130 early_cachepolicy(&p);
132 __early_param("nocache", early_nocache);
134 static void __init early_nowrite(char **__unused)
136 char *p = "uncached";
137 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
138 early_cachepolicy(&p);
140 __early_param("nowb", early_nowrite);
142 static void __init early_ecc(char **p)
144 if (memcmp(*p, "on", 2) == 0) {
145 ecc_mask = PMD_PROTECTION;
146 *p += 2;
147 } else if (memcmp(*p, "off", 3) == 0) {
148 ecc_mask = 0;
149 *p += 3;
152 __early_param("ecc=", early_ecc);
154 static int __init noalign_setup(char *__unused)
156 cr_alignment &= ~CR_A;
157 cr_no_alignment &= ~CR_A;
158 set_cr(cr_alignment);
159 return 1;
161 __setup("noalign", noalign_setup);
163 #ifndef CONFIG_SMP
164 void adjust_cr(unsigned long mask, unsigned long set)
166 unsigned long flags;
168 mask &= ~CR_A;
170 set &= mask;
172 local_irq_save(flags);
174 cr_no_alignment = (cr_no_alignment & ~mask) | set;
175 cr_alignment = (cr_alignment & ~mask) | set;
177 set_cr((get_cr() & ~mask) | set);
179 local_irq_restore(flags);
181 #endif
183 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
184 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
186 static struct mem_type mem_types[] = {
187 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
188 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
189 L_PTE_SHARED,
190 .prot_l1 = PMD_TYPE_TABLE,
191 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
192 .domain = DOMAIN_IO,
194 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
195 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
196 .prot_l1 = PMD_TYPE_TABLE,
197 .prot_sect = PROT_SECT_DEVICE,
198 .domain = DOMAIN_IO,
200 [MT_DEVICE_CACHED] = { /* ioremap_cached */
201 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
202 .prot_l1 = PMD_TYPE_TABLE,
203 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
204 .domain = DOMAIN_IO,
206 [MT_DEVICE_WC] = { /* ioremap_wc */
207 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
208 .prot_l1 = PMD_TYPE_TABLE,
209 .prot_sect = PROT_SECT_DEVICE,
210 .domain = DOMAIN_IO,
212 [MT_UNCACHED] = {
213 .prot_pte = PROT_PTE_DEVICE,
214 .prot_l1 = PMD_TYPE_TABLE,
215 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
216 .domain = DOMAIN_IO,
218 [MT_CACHECLEAN] = {
219 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
220 .domain = DOMAIN_KERNEL,
222 [MT_MINICLEAN] = {
223 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
224 .domain = DOMAIN_KERNEL,
226 [MT_LOW_VECTORS] = {
227 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
228 L_PTE_EXEC,
229 .prot_l1 = PMD_TYPE_TABLE,
230 .domain = DOMAIN_USER,
232 [MT_HIGH_VECTORS] = {
233 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
234 L_PTE_USER | L_PTE_EXEC,
235 .prot_l1 = PMD_TYPE_TABLE,
236 .domain = DOMAIN_USER,
238 [MT_MEMORY] = {
239 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
240 .domain = DOMAIN_KERNEL,
242 [MT_ROM] = {
243 .prot_sect = PMD_TYPE_SECT,
244 .domain = DOMAIN_KERNEL,
248 const struct mem_type *get_mem_type(unsigned int type)
250 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
254 * Adjust the PMD section entries according to the CPU in use.
256 static void __init build_mem_type_table(void)
258 struct cachepolicy *cp;
259 unsigned int cr = get_cr();
260 unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
261 int cpu_arch = cpu_architecture();
262 int i;
264 if (cpu_arch < CPU_ARCH_ARMv6) {
265 #if defined(CONFIG_CPU_DCACHE_DISABLE)
266 if (cachepolicy > CPOLICY_BUFFERED)
267 cachepolicy = CPOLICY_BUFFERED;
268 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
269 if (cachepolicy > CPOLICY_WRITETHROUGH)
270 cachepolicy = CPOLICY_WRITETHROUGH;
271 #endif
273 if (cpu_arch < CPU_ARCH_ARMv5) {
274 if (cachepolicy >= CPOLICY_WRITEALLOC)
275 cachepolicy = CPOLICY_WRITEBACK;
276 ecc_mask = 0;
278 #ifdef CONFIG_SMP
279 cachepolicy = CPOLICY_WRITEALLOC;
280 #endif
283 * Strip out features not present on earlier architectures.
284 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
285 * without extended page tables don't have the 'Shared' bit.
287 if (cpu_arch < CPU_ARCH_ARMv5)
288 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
289 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
290 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
291 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
292 mem_types[i].prot_sect &= ~PMD_SECT_S;
295 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
296 * "update-able on write" bit on ARM610). However, Xscale and
297 * Xscale3 require this bit to be cleared.
299 if (cpu_is_xscale() || cpu_is_xsc3()) {
300 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
301 mem_types[i].prot_sect &= ~PMD_BIT4;
302 mem_types[i].prot_l1 &= ~PMD_BIT4;
304 } else if (cpu_arch < CPU_ARCH_ARMv6) {
305 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
306 if (mem_types[i].prot_l1)
307 mem_types[i].prot_l1 |= PMD_BIT4;
308 if (mem_types[i].prot_sect)
309 mem_types[i].prot_sect |= PMD_BIT4;
314 * Mark the device areas according to the CPU/architecture.
316 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
317 if (!cpu_is_xsc3()) {
319 * Mark device regions on ARMv6+ as execute-never
320 * to prevent speculative instruction fetches.
322 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
323 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
324 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
325 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
327 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
329 * For ARMv7 with TEX remapping,
330 * - shared device is SXCB=1100
331 * - nonshared device is SXCB=0100
332 * - write combine device mem is SXCB=0001
333 * (Uncached Normal memory)
335 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
336 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
337 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
338 } else if (cpu_is_xsc3()) {
340 * For Xscale3,
341 * - shared device is TEXCB=00101
342 * - nonshared device is TEXCB=01000
343 * - write combine device mem is TEXCB=00100
344 * (Inner/Outer Uncacheable in xsc3 parlance)
346 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
347 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
348 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
349 } else {
351 * For ARMv6 and ARMv7 without TEX remapping,
352 * - shared device is TEXCB=00001
353 * - nonshared device is TEXCB=01000
354 * - write combine device mem is TEXCB=00100
355 * (Uncached Normal in ARMv6 parlance).
357 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
358 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
359 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
361 } else {
363 * On others, write combining is "Uncached/Buffered"
365 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
369 * Now deal with the memory-type mappings
371 cp = &cache_policies[cachepolicy];
372 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
374 #ifndef CONFIG_SMP
376 * Only use write-through for non-SMP systems
378 if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
379 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
380 #endif
383 * Enable CPU-specific coherency if supported.
384 * (Only available on XSC3 at the moment.)
386 if (arch_is_coherent() && cpu_is_xsc3())
387 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
390 * ARMv6 and above have extended page tables.
392 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
394 * Mark cache clean areas and XIP ROM read only
395 * from SVC mode and no access from userspace.
397 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
398 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
399 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
401 #ifdef CONFIG_SMP
403 * Mark memory with the "shared" attribute for SMP systems
405 user_pgprot |= L_PTE_SHARED;
406 kern_pgprot |= L_PTE_SHARED;
407 vecs_pgprot |= L_PTE_SHARED;
408 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
409 #endif
412 for (i = 0; i < 16; i++) {
413 unsigned long v = pgprot_val(protection_map[i]);
414 protection_map[i] = __pgprot(v | user_pgprot);
417 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
418 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
420 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
421 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
422 L_PTE_DIRTY | L_PTE_WRITE |
423 L_PTE_EXEC | kern_pgprot);
425 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
426 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
427 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
428 mem_types[MT_ROM].prot_sect |= cp->pmd;
430 switch (cp->pmd) {
431 case PMD_SECT_WT:
432 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
433 break;
434 case PMD_SECT_WB:
435 case PMD_SECT_WBWA:
436 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
437 break;
439 printk("Memory policy: ECC %sabled, Data cache %s\n",
440 ecc_mask ? "en" : "dis", cp->policy);
442 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
443 struct mem_type *t = &mem_types[i];
444 if (t->prot_l1)
445 t->prot_l1 |= PMD_DOMAIN(t->domain);
446 if (t->prot_sect)
447 t->prot_sect |= PMD_DOMAIN(t->domain);
451 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
453 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
454 unsigned long end, unsigned long pfn,
455 const struct mem_type *type)
457 pte_t *pte;
459 if (pmd_none(*pmd)) {
460 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
461 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
464 pte = pte_offset_kernel(pmd, addr);
465 do {
466 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
467 pfn++;
468 } while (pte++, addr += PAGE_SIZE, addr != end);
471 static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
472 unsigned long end, unsigned long phys,
473 const struct mem_type *type)
475 pmd_t *pmd = pmd_offset(pgd, addr);
478 * Try a section mapping - end, addr and phys must all be aligned
479 * to a section boundary. Note that PMDs refer to the individual
480 * L1 entries, whereas PGDs refer to a group of L1 entries making
481 * up one logical pointer to an L2 table.
483 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
484 pmd_t *p = pmd;
486 if (addr & SECTION_SIZE)
487 pmd++;
489 do {
490 *pmd = __pmd(phys | type->prot_sect);
491 phys += SECTION_SIZE;
492 } while (pmd++, addr += SECTION_SIZE, addr != end);
494 flush_pmd_entry(p);
495 } else {
497 * No need to loop; pte's aren't interested in the
498 * individual L1 entries.
500 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
504 static void __init create_36bit_mapping(struct map_desc *md,
505 const struct mem_type *type)
507 unsigned long phys, addr, length, end;
508 pgd_t *pgd;
510 addr = md->virtual;
511 phys = (unsigned long)__pfn_to_phys(md->pfn);
512 length = PAGE_ALIGN(md->length);
514 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
515 printk(KERN_ERR "MM: CPU does not support supersection "
516 "mapping for 0x%08llx at 0x%08lx\n",
517 __pfn_to_phys((u64)md->pfn), addr);
518 return;
521 /* N.B. ARMv6 supersections are only defined to work with domain 0.
522 * Since domain assignments can in fact be arbitrary, the
523 * 'domain == 0' check below is required to insure that ARMv6
524 * supersections are only allocated for domain 0 regardless
525 * of the actual domain assignments in use.
527 if (type->domain) {
528 printk(KERN_ERR "MM: invalid domain in supersection "
529 "mapping for 0x%08llx at 0x%08lx\n",
530 __pfn_to_phys((u64)md->pfn), addr);
531 return;
534 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
535 printk(KERN_ERR "MM: cannot create mapping for "
536 "0x%08llx at 0x%08lx invalid alignment\n",
537 __pfn_to_phys((u64)md->pfn), addr);
538 return;
542 * Shift bits [35:32] of address into bits [23:20] of PMD
543 * (See ARMv6 spec).
545 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
547 pgd = pgd_offset_k(addr);
548 end = addr + length;
549 do {
550 pmd_t *pmd = pmd_offset(pgd, addr);
551 int i;
553 for (i = 0; i < 16; i++)
554 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
556 addr += SUPERSECTION_SIZE;
557 phys += SUPERSECTION_SIZE;
558 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
559 } while (addr != end);
563 * Create the page directory entries and any necessary
564 * page tables for the mapping specified by `md'. We
565 * are able to cope here with varying sizes and address
566 * offsets, and we take full advantage of sections and
567 * supersections.
569 void __init create_mapping(struct map_desc *md)
571 unsigned long phys, addr, length, end;
572 const struct mem_type *type;
573 pgd_t *pgd;
575 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
576 printk(KERN_WARNING "BUG: not creating mapping for "
577 "0x%08llx at 0x%08lx in user region\n",
578 __pfn_to_phys((u64)md->pfn), md->virtual);
579 return;
582 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
583 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
584 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
585 "overlaps vmalloc space\n",
586 __pfn_to_phys((u64)md->pfn), md->virtual);
589 type = &mem_types[md->type];
592 * Catch 36-bit addresses
594 if (md->pfn >= 0x100000) {
595 create_36bit_mapping(md, type);
596 return;
599 addr = md->virtual & PAGE_MASK;
600 phys = (unsigned long)__pfn_to_phys(md->pfn);
601 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
603 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
604 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
605 "be mapped using pages, ignoring.\n",
606 __pfn_to_phys(md->pfn), addr);
607 return;
610 pgd = pgd_offset_k(addr);
611 end = addr + length;
612 do {
613 unsigned long next = pgd_addr_end(addr, end);
615 alloc_init_section(pgd, addr, next, phys, type);
617 phys += next - addr;
618 addr = next;
619 } while (pgd++, addr != end);
623 * Create the architecture specific mappings
625 void __init iotable_init(struct map_desc *io_desc, int nr)
627 int i;
629 for (i = 0; i < nr; i++)
630 create_mapping(io_desc + i);
633 static unsigned long __initdata vmalloc_reserve = SZ_128M;
636 * vmalloc=size forces the vmalloc area to be exactly 'size'
637 * bytes. This can be used to increase (or decrease) the vmalloc
638 * area - the default is 128m.
640 static void __init early_vmalloc(char **arg)
642 vmalloc_reserve = memparse(*arg, arg);
644 if (vmalloc_reserve < SZ_16M) {
645 vmalloc_reserve = SZ_16M;
646 printk(KERN_WARNING
647 "vmalloc area too small, limiting to %luMB\n",
648 vmalloc_reserve >> 20);
651 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
652 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
653 printk(KERN_WARNING
654 "vmalloc area is too big, limiting to %luMB\n",
655 vmalloc_reserve >> 20);
658 __early_param("vmalloc=", early_vmalloc);
660 #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
662 static void __init sanity_check_meminfo(void)
664 int i, j;
666 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
667 struct membank *bank = &meminfo.bank[j];
668 *bank = meminfo.bank[i];
670 #ifdef CONFIG_HIGHMEM
672 * Split those memory banks which are partially overlapping
673 * the vmalloc area greatly simplifying things later.
675 if (__va(bank->start) < VMALLOC_MIN &&
676 bank->size > VMALLOC_MIN - __va(bank->start)) {
677 if (meminfo.nr_banks >= NR_BANKS) {
678 printk(KERN_CRIT "NR_BANKS too low, "
679 "ignoring high memory\n");
680 } else {
681 memmove(bank + 1, bank,
682 (meminfo.nr_banks - i) * sizeof(*bank));
683 meminfo.nr_banks++;
684 i++;
685 bank[1].size -= VMALLOC_MIN - __va(bank->start);
686 bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
687 j++;
689 bank->size = VMALLOC_MIN - __va(bank->start);
691 #else
693 * Check whether this memory bank would entirely overlap
694 * the vmalloc area.
696 if (__va(bank->start) >= VMALLOC_MIN) {
697 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
698 "(vmalloc region overlap).\n",
699 bank->start, bank->start + bank->size - 1);
700 continue;
704 * Check whether this memory bank would partially overlap
705 * the vmalloc area.
707 if (__va(bank->start + bank->size) > VMALLOC_MIN ||
708 __va(bank->start + bank->size) < __va(bank->start)) {
709 unsigned long newsize = VMALLOC_MIN - __va(bank->start);
710 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
711 "to -%.8lx (vmalloc region overlap).\n",
712 bank->start, bank->start + bank->size - 1,
713 bank->start + newsize - 1);
714 bank->size = newsize;
716 #endif
717 j++;
719 meminfo.nr_banks = j;
722 static inline void prepare_page_table(void)
724 unsigned long addr;
727 * Clear out all the mappings below the kernel image.
729 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
730 pmd_clear(pmd_off_k(addr));
732 #ifdef CONFIG_XIP_KERNEL
733 /* The XIP kernel is mapped in the module area -- skip over it */
734 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
735 #endif
736 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
737 pmd_clear(pmd_off_k(addr));
740 * Clear out all the kernel space mappings, except for the first
741 * memory bank, up to the end of the vmalloc region.
743 for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
744 addr < VMALLOC_END; addr += PGDIR_SIZE)
745 pmd_clear(pmd_off_k(addr));
749 * Reserve the various regions of node 0
751 void __init reserve_node_zero(pg_data_t *pgdat)
753 unsigned long res_size = 0;
756 * Register the kernel text and data with bootmem.
757 * Note that this can only be in node 0.
759 #ifdef CONFIG_XIP_KERNEL
760 reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
761 BOOTMEM_DEFAULT);
762 #else
763 reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
764 BOOTMEM_DEFAULT);
765 #endif
768 * Reserve the page tables. These are already in use,
769 * and can only be in node 0.
771 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
772 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
775 * Hmm... This should go elsewhere, but we really really need to
776 * stop things allocating the low memory; ideally we need a better
777 * implementation of GFP_DMA which does not assume that DMA-able
778 * memory starts at zero.
780 if (machine_is_integrator() || machine_is_cintegrator())
781 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
784 * These should likewise go elsewhere. They pre-reserve the
785 * screen memory region at the start of main system memory.
787 if (machine_is_edb7211())
788 res_size = 0x00020000;
789 if (machine_is_p720t())
790 res_size = 0x00014000;
792 /* H1940 and RX3715 need to reserve this for suspend */
794 if (machine_is_h1940() || machine_is_rx3715()) {
795 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
796 BOOTMEM_DEFAULT);
797 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
798 BOOTMEM_DEFAULT);
801 #ifdef CONFIG_SA1111
803 * Because of the SA1111 DMA bug, we want to preserve our
804 * precious DMA-able memory...
806 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
807 #endif
808 if (res_size)
809 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
810 BOOTMEM_DEFAULT);
814 * Set up device the mappings. Since we clear out the page tables for all
815 * mappings above VMALLOC_END, we will remove any debug device mappings.
816 * This means you have to be careful how you debug this function, or any
817 * called function. This means you can't use any function or debugging
818 * method which may touch any device, otherwise the kernel _will_ crash.
820 static void __init devicemaps_init(struct machine_desc *mdesc)
822 struct map_desc map;
823 unsigned long addr;
824 void *vectors;
827 * Allocate the vector page early.
829 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
831 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
832 pmd_clear(pmd_off_k(addr));
835 * Map the kernel if it is XIP.
836 * It is always first in the modulearea.
838 #ifdef CONFIG_XIP_KERNEL
839 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
840 map.virtual = MODULES_VADDR;
841 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
842 map.type = MT_ROM;
843 create_mapping(&map);
844 #endif
847 * Map the cache flushing regions.
849 #ifdef FLUSH_BASE
850 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
851 map.virtual = FLUSH_BASE;
852 map.length = SZ_1M;
853 map.type = MT_CACHECLEAN;
854 create_mapping(&map);
855 #endif
856 #ifdef FLUSH_BASE_MINICACHE
857 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
858 map.virtual = FLUSH_BASE_MINICACHE;
859 map.length = SZ_1M;
860 map.type = MT_MINICLEAN;
861 create_mapping(&map);
862 #endif
865 * Create a mapping for the machine vectors at the high-vectors
866 * location (0xffff0000). If we aren't using high-vectors, also
867 * create a mapping at the low-vectors virtual address.
869 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
870 map.virtual = 0xffff0000;
871 map.length = PAGE_SIZE;
872 map.type = MT_HIGH_VECTORS;
873 create_mapping(&map);
875 if (!vectors_high()) {
876 map.virtual = 0;
877 map.type = MT_LOW_VECTORS;
878 create_mapping(&map);
882 * Ask the machine support to map in the statically mapped devices.
884 if (mdesc->map_io)
885 mdesc->map_io();
888 * Finally flush the caches and tlb to ensure that we're in a
889 * consistent state wrt the writebuffer. This also ensures that
890 * any write-allocated cache lines in the vector page are written
891 * back. After this point, we can start to touch devices again.
893 local_flush_tlb_all();
894 flush_cache_all();
898 * paging_init() sets up the page tables, initialises the zone memory
899 * maps, and sets up the zero page, bad page and bad page tables.
901 void __init paging_init(struct machine_desc *mdesc)
903 void *zero_page;
905 build_mem_type_table();
906 sanity_check_meminfo();
907 prepare_page_table();
908 bootmem_init();
909 devicemaps_init(mdesc);
911 top_pmd = pmd_off_k(0xffff0000);
914 * allocate the zero page. Note that this always succeeds and
915 * returns a zeroed result.
917 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
918 empty_zero_page = virt_to_page(zero_page);
919 flush_dcache_page(empty_zero_page);
923 * In order to soft-boot, we need to insert a 1:1 mapping in place of
924 * the user-mode pages. This will then ensure that we have predictable
925 * results when turning the mmu off
927 void setup_mm_for_reboot(char mode)
929 unsigned long base_pmdval;
930 pgd_t *pgd;
931 int i;
933 if (current->mm && current->mm->pgd)
934 pgd = current->mm->pgd;
935 else
936 pgd = init_mm.pgd;
938 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
939 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
940 base_pmdval |= PMD_BIT4;
942 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
943 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
944 pmd_t *pmd;
946 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
947 pmd[0] = __pmd(pmdval);
948 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
949 flush_pmd_entry(pmd);