cciss: add cciss driver sysfs entries
[linux-2.6/mini2440.git] / drivers / block / cciss.c
blobe7d00952dd4fe23b6013fc50b06944f62d505a3e
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/init.h>
38 #include <linux/hdreg.h>
39 #include <linux/spinlock.h>
40 #include <linux/compat.h>
41 #include <linux/blktrace_api.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/blkdev.h>
47 #include <linux/genhd.h>
48 #include <linux/completion.h>
49 #include <scsi/scsi.h>
50 #include <scsi/sg.h>
51 #include <scsi/scsi_ioctl.h>
52 #include <linux/cdrom.h>
53 #include <linux/scatterlist.h>
54 #include <linux/kthread.h>
56 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
57 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
58 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
60 /* Embedded module documentation macros - see modules.h */
61 MODULE_AUTHOR("Hewlett-Packard Company");
62 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
63 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
64 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
65 " Smart Array G2 Series SAS/SATA Controllers");
66 MODULE_VERSION("3.6.20");
67 MODULE_LICENSE("GPL");
69 #include "cciss_cmd.h"
70 #include "cciss.h"
71 #include <linux/cciss_ioctl.h>
73 /* define the PCI info for the cards we can control */
74 static const struct pci_device_id cciss_pci_device_id[] = {
75 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
76 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
77 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
78 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
79 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
80 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
83 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
102 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
103 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
104 {0,}
107 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
109 /* board_id = Subsystem Device ID & Vendor ID
110 * product = Marketing Name for the board
111 * access = Address of the struct of function pointers
113 static struct board_type products[] = {
114 {0x40700E11, "Smart Array 5300", &SA5_access},
115 {0x40800E11, "Smart Array 5i", &SA5B_access},
116 {0x40820E11, "Smart Array 532", &SA5B_access},
117 {0x40830E11, "Smart Array 5312", &SA5B_access},
118 {0x409A0E11, "Smart Array 641", &SA5_access},
119 {0x409B0E11, "Smart Array 642", &SA5_access},
120 {0x409C0E11, "Smart Array 6400", &SA5_access},
121 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
122 {0x40910E11, "Smart Array 6i", &SA5_access},
123 {0x3225103C, "Smart Array P600", &SA5_access},
124 {0x3223103C, "Smart Array P800", &SA5_access},
125 {0x3234103C, "Smart Array P400", &SA5_access},
126 {0x3235103C, "Smart Array P400i", &SA5_access},
127 {0x3211103C, "Smart Array E200i", &SA5_access},
128 {0x3212103C, "Smart Array E200", &SA5_access},
129 {0x3213103C, "Smart Array E200i", &SA5_access},
130 {0x3214103C, "Smart Array E200i", &SA5_access},
131 {0x3215103C, "Smart Array E200i", &SA5_access},
132 {0x3237103C, "Smart Array E500", &SA5_access},
133 {0x323D103C, "Smart Array P700m", &SA5_access},
134 {0x3241103C, "Smart Array P212", &SA5_access},
135 {0x3243103C, "Smart Array P410", &SA5_access},
136 {0x3245103C, "Smart Array P410i", &SA5_access},
137 {0x3247103C, "Smart Array P411", &SA5_access},
138 {0x3249103C, "Smart Array P812", &SA5_access},
139 {0x324A103C, "Smart Array P712m", &SA5_access},
140 {0x324B103C, "Smart Array P711m", &SA5_access},
141 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
144 /* How long to wait (in milliseconds) for board to go into simple mode */
145 #define MAX_CONFIG_WAIT 30000
146 #define MAX_IOCTL_CONFIG_WAIT 1000
148 /*define how many times we will try a command because of bus resets */
149 #define MAX_CMD_RETRIES 3
151 #define MAX_CTLR 32
153 /* Originally cciss driver only supports 8 major numbers */
154 #define MAX_CTLR_ORIG 8
156 static ctlr_info_t *hba[MAX_CTLR];
158 static void do_cciss_request(struct request_queue *q);
159 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
160 static int cciss_open(struct block_device *bdev, fmode_t mode);
161 static int cciss_release(struct gendisk *disk, fmode_t mode);
162 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
163 unsigned int cmd, unsigned long arg);
164 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
166 static int cciss_revalidate(struct gendisk *disk);
167 static int rebuild_lun_table(ctlr_info_t *h, int first_time);
168 static int deregister_disk(ctlr_info_t *h, int drv_index,
169 int clear_all);
171 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
172 sector_t *total_size, unsigned int *block_size);
173 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
174 sector_t *total_size, unsigned int *block_size);
175 static void cciss_geometry_inquiry(int ctlr, int logvol,
176 int withirq, sector_t total_size,
177 unsigned int block_size, InquiryData_struct *inq_buff,
178 drive_info_struct *drv);
179 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
180 __u32);
181 static void start_io(ctlr_info_t *h);
182 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
183 unsigned int use_unit_num, unsigned int log_unit,
184 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
185 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
186 unsigned int use_unit_num, unsigned int log_unit,
187 __u8 page_code, int cmd_type);
189 static void fail_all_cmds(unsigned long ctlr);
190 static int scan_thread(void *data);
191 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
193 #ifdef CONFIG_PROC_FS
194 static void cciss_procinit(int i);
195 #else
196 static void cciss_procinit(int i)
199 #endif /* CONFIG_PROC_FS */
201 #ifdef CONFIG_COMPAT
202 static int cciss_compat_ioctl(struct block_device *, fmode_t,
203 unsigned, unsigned long);
204 #endif
206 static struct block_device_operations cciss_fops = {
207 .owner = THIS_MODULE,
208 .open = cciss_open,
209 .release = cciss_release,
210 .locked_ioctl = cciss_ioctl,
211 .getgeo = cciss_getgeo,
212 #ifdef CONFIG_COMPAT
213 .compat_ioctl = cciss_compat_ioctl,
214 #endif
215 .revalidate_disk = cciss_revalidate,
219 * Enqueuing and dequeuing functions for cmdlists.
221 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
223 hlist_add_head(&c->list, list);
226 static inline void removeQ(CommandList_struct *c)
228 if (WARN_ON(hlist_unhashed(&c->list)))
229 return;
231 hlist_del_init(&c->list);
234 #include "cciss_scsi.c" /* For SCSI tape support */
236 #define RAID_UNKNOWN 6
238 #ifdef CONFIG_PROC_FS
241 * Report information about this controller.
243 #define ENG_GIG 1000000000
244 #define ENG_GIG_FACTOR (ENG_GIG/512)
245 #define ENGAGE_SCSI "engage scsi"
246 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
247 "UNKNOWN"
250 static struct proc_dir_entry *proc_cciss;
252 static void cciss_seq_show_header(struct seq_file *seq)
254 ctlr_info_t *h = seq->private;
256 seq_printf(seq, "%s: HP %s Controller\n"
257 "Board ID: 0x%08lx\n"
258 "Firmware Version: %c%c%c%c\n"
259 "IRQ: %d\n"
260 "Logical drives: %d\n"
261 "Current Q depth: %d\n"
262 "Current # commands on controller: %d\n"
263 "Max Q depth since init: %d\n"
264 "Max # commands on controller since init: %d\n"
265 "Max SG entries since init: %d\n",
266 h->devname,
267 h->product_name,
268 (unsigned long)h->board_id,
269 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
270 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
271 h->num_luns,
272 h->Qdepth, h->commands_outstanding,
273 h->maxQsinceinit, h->max_outstanding, h->maxSG);
275 #ifdef CONFIG_CISS_SCSI_TAPE
276 cciss_seq_tape_report(seq, h->ctlr);
277 #endif /* CONFIG_CISS_SCSI_TAPE */
280 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
282 ctlr_info_t *h = seq->private;
283 unsigned ctlr = h->ctlr;
284 unsigned long flags;
286 /* prevent displaying bogus info during configuration
287 * or deconfiguration of a logical volume
289 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
290 if (h->busy_configuring) {
291 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
292 return ERR_PTR(-EBUSY);
294 h->busy_configuring = 1;
295 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
297 if (*pos == 0)
298 cciss_seq_show_header(seq);
300 return pos;
303 static int cciss_seq_show(struct seq_file *seq, void *v)
305 sector_t vol_sz, vol_sz_frac;
306 ctlr_info_t *h = seq->private;
307 unsigned ctlr = h->ctlr;
308 loff_t *pos = v;
309 drive_info_struct *drv = &h->drv[*pos];
311 if (*pos > h->highest_lun)
312 return 0;
314 if (drv->heads == 0)
315 return 0;
317 vol_sz = drv->nr_blocks;
318 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
319 vol_sz_frac *= 100;
320 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
322 if (drv->raid_level > 5)
323 drv->raid_level = RAID_UNKNOWN;
324 seq_printf(seq, "cciss/c%dd%d:"
325 "\t%4u.%02uGB\tRAID %s\n",
326 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
327 raid_label[drv->raid_level]);
328 return 0;
331 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
333 ctlr_info_t *h = seq->private;
335 if (*pos > h->highest_lun)
336 return NULL;
337 *pos += 1;
339 return pos;
342 static void cciss_seq_stop(struct seq_file *seq, void *v)
344 ctlr_info_t *h = seq->private;
346 /* Only reset h->busy_configuring if we succeeded in setting
347 * it during cciss_seq_start. */
348 if (v == ERR_PTR(-EBUSY))
349 return;
351 h->busy_configuring = 0;
354 static struct seq_operations cciss_seq_ops = {
355 .start = cciss_seq_start,
356 .show = cciss_seq_show,
357 .next = cciss_seq_next,
358 .stop = cciss_seq_stop,
361 static int cciss_seq_open(struct inode *inode, struct file *file)
363 int ret = seq_open(file, &cciss_seq_ops);
364 struct seq_file *seq = file->private_data;
366 if (!ret)
367 seq->private = PDE(inode)->data;
369 return ret;
372 static ssize_t
373 cciss_proc_write(struct file *file, const char __user *buf,
374 size_t length, loff_t *ppos)
376 int err;
377 char *buffer;
379 #ifndef CONFIG_CISS_SCSI_TAPE
380 return -EINVAL;
381 #endif
383 if (!buf || length > PAGE_SIZE - 1)
384 return -EINVAL;
386 buffer = (char *)__get_free_page(GFP_KERNEL);
387 if (!buffer)
388 return -ENOMEM;
390 err = -EFAULT;
391 if (copy_from_user(buffer, buf, length))
392 goto out;
393 buffer[length] = '\0';
395 #ifdef CONFIG_CISS_SCSI_TAPE
396 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
397 struct seq_file *seq = file->private_data;
398 ctlr_info_t *h = seq->private;
399 int rc;
401 rc = cciss_engage_scsi(h->ctlr);
402 if (rc != 0)
403 err = -rc;
404 else
405 err = length;
406 } else
407 #endif /* CONFIG_CISS_SCSI_TAPE */
408 err = -EINVAL;
409 /* might be nice to have "disengage" too, but it's not
410 safely possible. (only 1 module use count, lock issues.) */
412 out:
413 free_page((unsigned long)buffer);
414 return err;
417 static struct file_operations cciss_proc_fops = {
418 .owner = THIS_MODULE,
419 .open = cciss_seq_open,
420 .read = seq_read,
421 .llseek = seq_lseek,
422 .release = seq_release,
423 .write = cciss_proc_write,
426 static void __devinit cciss_procinit(int i)
428 struct proc_dir_entry *pde;
430 if (proc_cciss == NULL)
431 proc_cciss = proc_mkdir("driver/cciss", NULL);
432 if (!proc_cciss)
433 return;
434 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
435 S_IROTH, proc_cciss,
436 &cciss_proc_fops, hba[i]);
438 #endif /* CONFIG_PROC_FS */
440 #define MAX_PRODUCT_NAME_LEN 19
442 #define to_hba(n) container_of(n, struct ctlr_info, dev)
443 #define to_drv(n) container_of(n, drive_info_struct, dev)
445 static struct device_type cciss_host_type = {
446 .name = "cciss_host",
449 static ssize_t dev_show_unique_id(struct device *dev,
450 struct device_attribute *attr,
451 char *buf)
453 drive_info_struct *drv = to_drv(dev);
454 struct ctlr_info *h = to_hba(drv->dev.parent);
455 __u8 sn[16];
456 unsigned long flags;
457 int ret = 0;
459 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
460 if (h->busy_configuring)
461 ret = -EBUSY;
462 else
463 memcpy(sn, drv->serial_no, sizeof(sn));
464 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
466 if (ret)
467 return ret;
468 else
469 return snprintf(buf, 16 * 2 + 2,
470 "%02X%02X%02X%02X%02X%02X%02X%02X"
471 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
472 sn[0], sn[1], sn[2], sn[3],
473 sn[4], sn[5], sn[6], sn[7],
474 sn[8], sn[9], sn[10], sn[11],
475 sn[12], sn[13], sn[14], sn[15]);
477 DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
479 static ssize_t dev_show_vendor(struct device *dev,
480 struct device_attribute *attr,
481 char *buf)
483 drive_info_struct *drv = to_drv(dev);
484 struct ctlr_info *h = to_hba(drv->dev.parent);
485 char vendor[VENDOR_LEN + 1];
486 unsigned long flags;
487 int ret = 0;
489 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
490 if (h->busy_configuring)
491 ret = -EBUSY;
492 else
493 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
494 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
496 if (ret)
497 return ret;
498 else
499 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
501 DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
503 static ssize_t dev_show_model(struct device *dev,
504 struct device_attribute *attr,
505 char *buf)
507 drive_info_struct *drv = to_drv(dev);
508 struct ctlr_info *h = to_hba(drv->dev.parent);
509 char model[MODEL_LEN + 1];
510 unsigned long flags;
511 int ret = 0;
513 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
514 if (h->busy_configuring)
515 ret = -EBUSY;
516 else
517 memcpy(model, drv->model, MODEL_LEN + 1);
518 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
520 if (ret)
521 return ret;
522 else
523 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
525 DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
527 static ssize_t dev_show_rev(struct device *dev,
528 struct device_attribute *attr,
529 char *buf)
531 drive_info_struct *drv = to_drv(dev);
532 struct ctlr_info *h = to_hba(drv->dev.parent);
533 char rev[REV_LEN + 1];
534 unsigned long flags;
535 int ret = 0;
537 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
538 if (h->busy_configuring)
539 ret = -EBUSY;
540 else
541 memcpy(rev, drv->rev, REV_LEN + 1);
542 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
544 if (ret)
545 return ret;
546 else
547 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
549 DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
551 static struct attribute *cciss_dev_attrs[] = {
552 &dev_attr_unique_id.attr,
553 &dev_attr_model.attr,
554 &dev_attr_vendor.attr,
555 &dev_attr_rev.attr,
556 NULL
559 static struct attribute_group cciss_dev_attr_group = {
560 .attrs = cciss_dev_attrs,
563 static struct attribute_group *cciss_dev_attr_groups[] = {
564 &cciss_dev_attr_group,
565 NULL
568 static struct device_type cciss_dev_type = {
569 .name = "cciss_device",
570 .groups = cciss_dev_attr_groups,
573 static struct bus_type cciss_bus_type = {
574 .name = "cciss",
579 * Initialize sysfs entry for each controller. This sets up and registers
580 * the 'cciss#' directory for each individual controller under
581 * /sys/bus/pci/devices/<dev>/.
583 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
585 device_initialize(&h->dev);
586 h->dev.type = &cciss_host_type;
587 h->dev.bus = &cciss_bus_type;
588 dev_set_name(&h->dev, "%s", h->devname);
589 h->dev.parent = &h->pdev->dev;
591 return device_add(&h->dev);
595 * Remove sysfs entries for an hba.
597 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
599 device_del(&h->dev);
603 * Initialize sysfs for each logical drive. This sets up and registers
604 * the 'c#d#' directory for each individual logical drive under
605 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
606 * /sys/block/cciss!c#d# to this entry.
608 static int cciss_create_ld_sysfs_entry(struct ctlr_info *h,
609 drive_info_struct *drv,
610 int drv_index)
612 device_initialize(&drv->dev);
613 drv->dev.type = &cciss_dev_type;
614 drv->dev.bus = &cciss_bus_type;
615 dev_set_name(&drv->dev, "c%dd%d", h->ctlr, drv_index);
616 drv->dev.parent = &h->dev;
617 return device_add(&drv->dev);
621 * Remove sysfs entries for a logical drive.
623 static void cciss_destroy_ld_sysfs_entry(drive_info_struct *drv)
625 device_del(&drv->dev);
629 * For operations that cannot sleep, a command block is allocated at init,
630 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
631 * which ones are free or in use. For operations that can wait for kmalloc
632 * to possible sleep, this routine can be called with get_from_pool set to 0.
633 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
635 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
637 CommandList_struct *c;
638 int i;
639 u64bit temp64;
640 dma_addr_t cmd_dma_handle, err_dma_handle;
642 if (!get_from_pool) {
643 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
644 sizeof(CommandList_struct), &cmd_dma_handle);
645 if (c == NULL)
646 return NULL;
647 memset(c, 0, sizeof(CommandList_struct));
649 c->cmdindex = -1;
651 c->err_info = (ErrorInfo_struct *)
652 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
653 &err_dma_handle);
655 if (c->err_info == NULL) {
656 pci_free_consistent(h->pdev,
657 sizeof(CommandList_struct), c, cmd_dma_handle);
658 return NULL;
660 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
661 } else { /* get it out of the controllers pool */
663 do {
664 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
665 if (i == h->nr_cmds)
666 return NULL;
667 } while (test_and_set_bit
668 (i & (BITS_PER_LONG - 1),
669 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
670 #ifdef CCISS_DEBUG
671 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
672 #endif
673 c = h->cmd_pool + i;
674 memset(c, 0, sizeof(CommandList_struct));
675 cmd_dma_handle = h->cmd_pool_dhandle
676 + i * sizeof(CommandList_struct);
677 c->err_info = h->errinfo_pool + i;
678 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
679 err_dma_handle = h->errinfo_pool_dhandle
680 + i * sizeof(ErrorInfo_struct);
681 h->nr_allocs++;
683 c->cmdindex = i;
686 INIT_HLIST_NODE(&c->list);
687 c->busaddr = (__u32) cmd_dma_handle;
688 temp64.val = (__u64) err_dma_handle;
689 c->ErrDesc.Addr.lower = temp64.val32.lower;
690 c->ErrDesc.Addr.upper = temp64.val32.upper;
691 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
693 c->ctlr = h->ctlr;
694 return c;
698 * Frees a command block that was previously allocated with cmd_alloc().
700 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
702 int i;
703 u64bit temp64;
705 if (!got_from_pool) {
706 temp64.val32.lower = c->ErrDesc.Addr.lower;
707 temp64.val32.upper = c->ErrDesc.Addr.upper;
708 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
709 c->err_info, (dma_addr_t) temp64.val);
710 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
711 c, (dma_addr_t) c->busaddr);
712 } else {
713 i = c - h->cmd_pool;
714 clear_bit(i & (BITS_PER_LONG - 1),
715 h->cmd_pool_bits + (i / BITS_PER_LONG));
716 h->nr_frees++;
720 static inline ctlr_info_t *get_host(struct gendisk *disk)
722 return disk->queue->queuedata;
725 static inline drive_info_struct *get_drv(struct gendisk *disk)
727 return disk->private_data;
731 * Open. Make sure the device is really there.
733 static int cciss_open(struct block_device *bdev, fmode_t mode)
735 ctlr_info_t *host = get_host(bdev->bd_disk);
736 drive_info_struct *drv = get_drv(bdev->bd_disk);
738 #ifdef CCISS_DEBUG
739 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
740 #endif /* CCISS_DEBUG */
742 if (host->busy_initializing || drv->busy_configuring)
743 return -EBUSY;
745 * Root is allowed to open raw volume zero even if it's not configured
746 * so array config can still work. Root is also allowed to open any
747 * volume that has a LUN ID, so it can issue IOCTL to reread the
748 * disk information. I don't think I really like this
749 * but I'm already using way to many device nodes to claim another one
750 * for "raw controller".
752 if (drv->heads == 0) {
753 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
754 /* if not node 0 make sure it is a partition = 0 */
755 if (MINOR(bdev->bd_dev) & 0x0f) {
756 return -ENXIO;
757 /* if it is, make sure we have a LUN ID */
758 } else if (drv->LunID == 0) {
759 return -ENXIO;
762 if (!capable(CAP_SYS_ADMIN))
763 return -EPERM;
765 drv->usage_count++;
766 host->usage_count++;
767 return 0;
771 * Close. Sync first.
773 static int cciss_release(struct gendisk *disk, fmode_t mode)
775 ctlr_info_t *host = get_host(disk);
776 drive_info_struct *drv = get_drv(disk);
778 #ifdef CCISS_DEBUG
779 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
780 #endif /* CCISS_DEBUG */
782 drv->usage_count--;
783 host->usage_count--;
784 return 0;
787 #ifdef CONFIG_COMPAT
789 static int do_ioctl(struct block_device *bdev, fmode_t mode,
790 unsigned cmd, unsigned long arg)
792 int ret;
793 lock_kernel();
794 ret = cciss_ioctl(bdev, mode, cmd, arg);
795 unlock_kernel();
796 return ret;
799 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
800 unsigned cmd, unsigned long arg);
801 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
802 unsigned cmd, unsigned long arg);
804 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
805 unsigned cmd, unsigned long arg)
807 switch (cmd) {
808 case CCISS_GETPCIINFO:
809 case CCISS_GETINTINFO:
810 case CCISS_SETINTINFO:
811 case CCISS_GETNODENAME:
812 case CCISS_SETNODENAME:
813 case CCISS_GETHEARTBEAT:
814 case CCISS_GETBUSTYPES:
815 case CCISS_GETFIRMVER:
816 case CCISS_GETDRIVVER:
817 case CCISS_REVALIDVOLS:
818 case CCISS_DEREGDISK:
819 case CCISS_REGNEWDISK:
820 case CCISS_REGNEWD:
821 case CCISS_RESCANDISK:
822 case CCISS_GETLUNINFO:
823 return do_ioctl(bdev, mode, cmd, arg);
825 case CCISS_PASSTHRU32:
826 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
827 case CCISS_BIG_PASSTHRU32:
828 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
830 default:
831 return -ENOIOCTLCMD;
835 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
836 unsigned cmd, unsigned long arg)
838 IOCTL32_Command_struct __user *arg32 =
839 (IOCTL32_Command_struct __user *) arg;
840 IOCTL_Command_struct arg64;
841 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
842 int err;
843 u32 cp;
845 err = 0;
846 err |=
847 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
848 sizeof(arg64.LUN_info));
849 err |=
850 copy_from_user(&arg64.Request, &arg32->Request,
851 sizeof(arg64.Request));
852 err |=
853 copy_from_user(&arg64.error_info, &arg32->error_info,
854 sizeof(arg64.error_info));
855 err |= get_user(arg64.buf_size, &arg32->buf_size);
856 err |= get_user(cp, &arg32->buf);
857 arg64.buf = compat_ptr(cp);
858 err |= copy_to_user(p, &arg64, sizeof(arg64));
860 if (err)
861 return -EFAULT;
863 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
864 if (err)
865 return err;
866 err |=
867 copy_in_user(&arg32->error_info, &p->error_info,
868 sizeof(arg32->error_info));
869 if (err)
870 return -EFAULT;
871 return err;
874 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
875 unsigned cmd, unsigned long arg)
877 BIG_IOCTL32_Command_struct __user *arg32 =
878 (BIG_IOCTL32_Command_struct __user *) arg;
879 BIG_IOCTL_Command_struct arg64;
880 BIG_IOCTL_Command_struct __user *p =
881 compat_alloc_user_space(sizeof(arg64));
882 int err;
883 u32 cp;
885 err = 0;
886 err |=
887 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
888 sizeof(arg64.LUN_info));
889 err |=
890 copy_from_user(&arg64.Request, &arg32->Request,
891 sizeof(arg64.Request));
892 err |=
893 copy_from_user(&arg64.error_info, &arg32->error_info,
894 sizeof(arg64.error_info));
895 err |= get_user(arg64.buf_size, &arg32->buf_size);
896 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
897 err |= get_user(cp, &arg32->buf);
898 arg64.buf = compat_ptr(cp);
899 err |= copy_to_user(p, &arg64, sizeof(arg64));
901 if (err)
902 return -EFAULT;
904 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
905 if (err)
906 return err;
907 err |=
908 copy_in_user(&arg32->error_info, &p->error_info,
909 sizeof(arg32->error_info));
910 if (err)
911 return -EFAULT;
912 return err;
914 #endif
916 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
918 drive_info_struct *drv = get_drv(bdev->bd_disk);
920 if (!drv->cylinders)
921 return -ENXIO;
923 geo->heads = drv->heads;
924 geo->sectors = drv->sectors;
925 geo->cylinders = drv->cylinders;
926 return 0;
929 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
931 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
932 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
933 (void)check_for_unit_attention(host, c);
936 * ioctl
938 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
939 unsigned int cmd, unsigned long arg)
941 struct gendisk *disk = bdev->bd_disk;
942 ctlr_info_t *host = get_host(disk);
943 drive_info_struct *drv = get_drv(disk);
944 int ctlr = host->ctlr;
945 void __user *argp = (void __user *)arg;
947 #ifdef CCISS_DEBUG
948 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
949 #endif /* CCISS_DEBUG */
951 switch (cmd) {
952 case CCISS_GETPCIINFO:
954 cciss_pci_info_struct pciinfo;
956 if (!arg)
957 return -EINVAL;
958 pciinfo.domain = pci_domain_nr(host->pdev->bus);
959 pciinfo.bus = host->pdev->bus->number;
960 pciinfo.dev_fn = host->pdev->devfn;
961 pciinfo.board_id = host->board_id;
962 if (copy_to_user
963 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
964 return -EFAULT;
965 return 0;
967 case CCISS_GETINTINFO:
969 cciss_coalint_struct intinfo;
970 if (!arg)
971 return -EINVAL;
972 intinfo.delay =
973 readl(&host->cfgtable->HostWrite.CoalIntDelay);
974 intinfo.count =
975 readl(&host->cfgtable->HostWrite.CoalIntCount);
976 if (copy_to_user
977 (argp, &intinfo, sizeof(cciss_coalint_struct)))
978 return -EFAULT;
979 return 0;
981 case CCISS_SETINTINFO:
983 cciss_coalint_struct intinfo;
984 unsigned long flags;
985 int i;
987 if (!arg)
988 return -EINVAL;
989 if (!capable(CAP_SYS_ADMIN))
990 return -EPERM;
991 if (copy_from_user
992 (&intinfo, argp, sizeof(cciss_coalint_struct)))
993 return -EFAULT;
994 if ((intinfo.delay == 0) && (intinfo.count == 0))
996 // printk("cciss_ioctl: delay and count cannot be 0\n");
997 return -EINVAL;
999 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1000 /* Update the field, and then ring the doorbell */
1001 writel(intinfo.delay,
1002 &(host->cfgtable->HostWrite.CoalIntDelay));
1003 writel(intinfo.count,
1004 &(host->cfgtable->HostWrite.CoalIntCount));
1005 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1007 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1008 if (!(readl(host->vaddr + SA5_DOORBELL)
1009 & CFGTBL_ChangeReq))
1010 break;
1011 /* delay and try again */
1012 udelay(1000);
1014 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1015 if (i >= MAX_IOCTL_CONFIG_WAIT)
1016 return -EAGAIN;
1017 return 0;
1019 case CCISS_GETNODENAME:
1021 NodeName_type NodeName;
1022 int i;
1024 if (!arg)
1025 return -EINVAL;
1026 for (i = 0; i < 16; i++)
1027 NodeName[i] =
1028 readb(&host->cfgtable->ServerName[i]);
1029 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1030 return -EFAULT;
1031 return 0;
1033 case CCISS_SETNODENAME:
1035 NodeName_type NodeName;
1036 unsigned long flags;
1037 int i;
1039 if (!arg)
1040 return -EINVAL;
1041 if (!capable(CAP_SYS_ADMIN))
1042 return -EPERM;
1044 if (copy_from_user
1045 (NodeName, argp, sizeof(NodeName_type)))
1046 return -EFAULT;
1048 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1050 /* Update the field, and then ring the doorbell */
1051 for (i = 0; i < 16; i++)
1052 writeb(NodeName[i],
1053 &host->cfgtable->ServerName[i]);
1055 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1057 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1058 if (!(readl(host->vaddr + SA5_DOORBELL)
1059 & CFGTBL_ChangeReq))
1060 break;
1061 /* delay and try again */
1062 udelay(1000);
1064 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1065 if (i >= MAX_IOCTL_CONFIG_WAIT)
1066 return -EAGAIN;
1067 return 0;
1070 case CCISS_GETHEARTBEAT:
1072 Heartbeat_type heartbeat;
1074 if (!arg)
1075 return -EINVAL;
1076 heartbeat = readl(&host->cfgtable->HeartBeat);
1077 if (copy_to_user
1078 (argp, &heartbeat, sizeof(Heartbeat_type)))
1079 return -EFAULT;
1080 return 0;
1082 case CCISS_GETBUSTYPES:
1084 BusTypes_type BusTypes;
1086 if (!arg)
1087 return -EINVAL;
1088 BusTypes = readl(&host->cfgtable->BusTypes);
1089 if (copy_to_user
1090 (argp, &BusTypes, sizeof(BusTypes_type)))
1091 return -EFAULT;
1092 return 0;
1094 case CCISS_GETFIRMVER:
1096 FirmwareVer_type firmware;
1098 if (!arg)
1099 return -EINVAL;
1100 memcpy(firmware, host->firm_ver, 4);
1102 if (copy_to_user
1103 (argp, firmware, sizeof(FirmwareVer_type)))
1104 return -EFAULT;
1105 return 0;
1107 case CCISS_GETDRIVVER:
1109 DriverVer_type DriverVer = DRIVER_VERSION;
1111 if (!arg)
1112 return -EINVAL;
1114 if (copy_to_user
1115 (argp, &DriverVer, sizeof(DriverVer_type)))
1116 return -EFAULT;
1117 return 0;
1120 case CCISS_DEREGDISK:
1121 case CCISS_REGNEWD:
1122 case CCISS_REVALIDVOLS:
1123 return rebuild_lun_table(host, 0);
1125 case CCISS_GETLUNINFO:{
1126 LogvolInfo_struct luninfo;
1128 luninfo.LunID = drv->LunID;
1129 luninfo.num_opens = drv->usage_count;
1130 luninfo.num_parts = 0;
1131 if (copy_to_user(argp, &luninfo,
1132 sizeof(LogvolInfo_struct)))
1133 return -EFAULT;
1134 return 0;
1136 case CCISS_PASSTHRU:
1138 IOCTL_Command_struct iocommand;
1139 CommandList_struct *c;
1140 char *buff = NULL;
1141 u64bit temp64;
1142 unsigned long flags;
1143 DECLARE_COMPLETION_ONSTACK(wait);
1145 if (!arg)
1146 return -EINVAL;
1148 if (!capable(CAP_SYS_RAWIO))
1149 return -EPERM;
1151 if (copy_from_user
1152 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1153 return -EFAULT;
1154 if ((iocommand.buf_size < 1) &&
1155 (iocommand.Request.Type.Direction != XFER_NONE)) {
1156 return -EINVAL;
1158 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1159 /* Check kmalloc limits */
1160 if (iocommand.buf_size > 128000)
1161 return -EINVAL;
1162 #endif
1163 if (iocommand.buf_size > 0) {
1164 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1165 if (buff == NULL)
1166 return -EFAULT;
1168 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1169 /* Copy the data into the buffer we created */
1170 if (copy_from_user
1171 (buff, iocommand.buf, iocommand.buf_size)) {
1172 kfree(buff);
1173 return -EFAULT;
1175 } else {
1176 memset(buff, 0, iocommand.buf_size);
1178 if ((c = cmd_alloc(host, 0)) == NULL) {
1179 kfree(buff);
1180 return -ENOMEM;
1182 // Fill in the command type
1183 c->cmd_type = CMD_IOCTL_PEND;
1184 // Fill in Command Header
1185 c->Header.ReplyQueue = 0; // unused in simple mode
1186 if (iocommand.buf_size > 0) // buffer to fill
1188 c->Header.SGList = 1;
1189 c->Header.SGTotal = 1;
1190 } else // no buffers to fill
1192 c->Header.SGList = 0;
1193 c->Header.SGTotal = 0;
1195 c->Header.LUN = iocommand.LUN_info;
1196 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
1198 // Fill in Request block
1199 c->Request = iocommand.Request;
1201 // Fill in the scatter gather information
1202 if (iocommand.buf_size > 0) {
1203 temp64.val = pci_map_single(host->pdev, buff,
1204 iocommand.buf_size,
1205 PCI_DMA_BIDIRECTIONAL);
1206 c->SG[0].Addr.lower = temp64.val32.lower;
1207 c->SG[0].Addr.upper = temp64.val32.upper;
1208 c->SG[0].Len = iocommand.buf_size;
1209 c->SG[0].Ext = 0; // we are not chaining
1211 c->waiting = &wait;
1213 /* Put the request on the tail of the request queue */
1214 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1215 addQ(&host->reqQ, c);
1216 host->Qdepth++;
1217 start_io(host);
1218 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1220 wait_for_completion(&wait);
1222 /* unlock the buffers from DMA */
1223 temp64.val32.lower = c->SG[0].Addr.lower;
1224 temp64.val32.upper = c->SG[0].Addr.upper;
1225 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1226 iocommand.buf_size,
1227 PCI_DMA_BIDIRECTIONAL);
1229 check_ioctl_unit_attention(host, c);
1231 /* Copy the error information out */
1232 iocommand.error_info = *(c->err_info);
1233 if (copy_to_user
1234 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1235 kfree(buff);
1236 cmd_free(host, c, 0);
1237 return -EFAULT;
1240 if (iocommand.Request.Type.Direction == XFER_READ) {
1241 /* Copy the data out of the buffer we created */
1242 if (copy_to_user
1243 (iocommand.buf, buff, iocommand.buf_size)) {
1244 kfree(buff);
1245 cmd_free(host, c, 0);
1246 return -EFAULT;
1249 kfree(buff);
1250 cmd_free(host, c, 0);
1251 return 0;
1253 case CCISS_BIG_PASSTHRU:{
1254 BIG_IOCTL_Command_struct *ioc;
1255 CommandList_struct *c;
1256 unsigned char **buff = NULL;
1257 int *buff_size = NULL;
1258 u64bit temp64;
1259 unsigned long flags;
1260 BYTE sg_used = 0;
1261 int status = 0;
1262 int i;
1263 DECLARE_COMPLETION_ONSTACK(wait);
1264 __u32 left;
1265 __u32 sz;
1266 BYTE __user *data_ptr;
1268 if (!arg)
1269 return -EINVAL;
1270 if (!capable(CAP_SYS_RAWIO))
1271 return -EPERM;
1272 ioc = (BIG_IOCTL_Command_struct *)
1273 kmalloc(sizeof(*ioc), GFP_KERNEL);
1274 if (!ioc) {
1275 status = -ENOMEM;
1276 goto cleanup1;
1278 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1279 status = -EFAULT;
1280 goto cleanup1;
1282 if ((ioc->buf_size < 1) &&
1283 (ioc->Request.Type.Direction != XFER_NONE)) {
1284 status = -EINVAL;
1285 goto cleanup1;
1287 /* Check kmalloc limits using all SGs */
1288 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1289 status = -EINVAL;
1290 goto cleanup1;
1292 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1293 status = -EINVAL;
1294 goto cleanup1;
1296 buff =
1297 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1298 if (!buff) {
1299 status = -ENOMEM;
1300 goto cleanup1;
1302 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1303 GFP_KERNEL);
1304 if (!buff_size) {
1305 status = -ENOMEM;
1306 goto cleanup1;
1308 left = ioc->buf_size;
1309 data_ptr = ioc->buf;
1310 while (left) {
1311 sz = (left >
1312 ioc->malloc_size) ? ioc->
1313 malloc_size : left;
1314 buff_size[sg_used] = sz;
1315 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1316 if (buff[sg_used] == NULL) {
1317 status = -ENOMEM;
1318 goto cleanup1;
1320 if (ioc->Request.Type.Direction == XFER_WRITE) {
1321 if (copy_from_user
1322 (buff[sg_used], data_ptr, sz)) {
1323 status = -EFAULT;
1324 goto cleanup1;
1326 } else {
1327 memset(buff[sg_used], 0, sz);
1329 left -= sz;
1330 data_ptr += sz;
1331 sg_used++;
1333 if ((c = cmd_alloc(host, 0)) == NULL) {
1334 status = -ENOMEM;
1335 goto cleanup1;
1337 c->cmd_type = CMD_IOCTL_PEND;
1338 c->Header.ReplyQueue = 0;
1340 if (ioc->buf_size > 0) {
1341 c->Header.SGList = sg_used;
1342 c->Header.SGTotal = sg_used;
1343 } else {
1344 c->Header.SGList = 0;
1345 c->Header.SGTotal = 0;
1347 c->Header.LUN = ioc->LUN_info;
1348 c->Header.Tag.lower = c->busaddr;
1350 c->Request = ioc->Request;
1351 if (ioc->buf_size > 0) {
1352 int i;
1353 for (i = 0; i < sg_used; i++) {
1354 temp64.val =
1355 pci_map_single(host->pdev, buff[i],
1356 buff_size[i],
1357 PCI_DMA_BIDIRECTIONAL);
1358 c->SG[i].Addr.lower =
1359 temp64.val32.lower;
1360 c->SG[i].Addr.upper =
1361 temp64.val32.upper;
1362 c->SG[i].Len = buff_size[i];
1363 c->SG[i].Ext = 0; /* we are not chaining */
1366 c->waiting = &wait;
1367 /* Put the request on the tail of the request queue */
1368 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1369 addQ(&host->reqQ, c);
1370 host->Qdepth++;
1371 start_io(host);
1372 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1373 wait_for_completion(&wait);
1374 /* unlock the buffers from DMA */
1375 for (i = 0; i < sg_used; i++) {
1376 temp64.val32.lower = c->SG[i].Addr.lower;
1377 temp64.val32.upper = c->SG[i].Addr.upper;
1378 pci_unmap_single(host->pdev,
1379 (dma_addr_t) temp64.val, buff_size[i],
1380 PCI_DMA_BIDIRECTIONAL);
1382 check_ioctl_unit_attention(host, c);
1383 /* Copy the error information out */
1384 ioc->error_info = *(c->err_info);
1385 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1386 cmd_free(host, c, 0);
1387 status = -EFAULT;
1388 goto cleanup1;
1390 if (ioc->Request.Type.Direction == XFER_READ) {
1391 /* Copy the data out of the buffer we created */
1392 BYTE __user *ptr = ioc->buf;
1393 for (i = 0; i < sg_used; i++) {
1394 if (copy_to_user
1395 (ptr, buff[i], buff_size[i])) {
1396 cmd_free(host, c, 0);
1397 status = -EFAULT;
1398 goto cleanup1;
1400 ptr += buff_size[i];
1403 cmd_free(host, c, 0);
1404 status = 0;
1405 cleanup1:
1406 if (buff) {
1407 for (i = 0; i < sg_used; i++)
1408 kfree(buff[i]);
1409 kfree(buff);
1411 kfree(buff_size);
1412 kfree(ioc);
1413 return status;
1416 /* scsi_cmd_ioctl handles these, below, though some are not */
1417 /* very meaningful for cciss. SG_IO is the main one people want. */
1419 case SG_GET_VERSION_NUM:
1420 case SG_SET_TIMEOUT:
1421 case SG_GET_TIMEOUT:
1422 case SG_GET_RESERVED_SIZE:
1423 case SG_SET_RESERVED_SIZE:
1424 case SG_EMULATED_HOST:
1425 case SG_IO:
1426 case SCSI_IOCTL_SEND_COMMAND:
1427 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1429 /* scsi_cmd_ioctl would normally handle these, below, but */
1430 /* they aren't a good fit for cciss, as CD-ROMs are */
1431 /* not supported, and we don't have any bus/target/lun */
1432 /* which we present to the kernel. */
1434 case CDROM_SEND_PACKET:
1435 case CDROMCLOSETRAY:
1436 case CDROMEJECT:
1437 case SCSI_IOCTL_GET_IDLUN:
1438 case SCSI_IOCTL_GET_BUS_NUMBER:
1439 default:
1440 return -ENOTTY;
1444 static void cciss_check_queues(ctlr_info_t *h)
1446 int start_queue = h->next_to_run;
1447 int i;
1449 /* check to see if we have maxed out the number of commands that can
1450 * be placed on the queue. If so then exit. We do this check here
1451 * in case the interrupt we serviced was from an ioctl and did not
1452 * free any new commands.
1454 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1455 return;
1457 /* We have room on the queue for more commands. Now we need to queue
1458 * them up. We will also keep track of the next queue to run so
1459 * that every queue gets a chance to be started first.
1461 for (i = 0; i < h->highest_lun + 1; i++) {
1462 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1463 /* make sure the disk has been added and the drive is real
1464 * because this can be called from the middle of init_one.
1466 if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1467 continue;
1468 blk_start_queue(h->gendisk[curr_queue]->queue);
1470 /* check to see if we have maxed out the number of commands
1471 * that can be placed on the queue.
1473 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1474 if (curr_queue == start_queue) {
1475 h->next_to_run =
1476 (start_queue + 1) % (h->highest_lun + 1);
1477 break;
1478 } else {
1479 h->next_to_run = curr_queue;
1480 break;
1486 static void cciss_softirq_done(struct request *rq)
1488 CommandList_struct *cmd = rq->completion_data;
1489 ctlr_info_t *h = hba[cmd->ctlr];
1490 unsigned long flags;
1491 u64bit temp64;
1492 int i, ddir;
1494 if (cmd->Request.Type.Direction == XFER_READ)
1495 ddir = PCI_DMA_FROMDEVICE;
1496 else
1497 ddir = PCI_DMA_TODEVICE;
1499 /* command did not need to be retried */
1500 /* unmap the DMA mapping for all the scatter gather elements */
1501 for (i = 0; i < cmd->Header.SGList; i++) {
1502 temp64.val32.lower = cmd->SG[i].Addr.lower;
1503 temp64.val32.upper = cmd->SG[i].Addr.upper;
1504 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1507 #ifdef CCISS_DEBUG
1508 printk("Done with %p\n", rq);
1509 #endif /* CCISS_DEBUG */
1511 /* set the residual count for pc requests */
1512 if (blk_pc_request(rq))
1513 rq->resid_len = cmd->err_info->ResidualCnt;
1515 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1517 spin_lock_irqsave(&h->lock, flags);
1518 cmd_free(h, cmd, 1);
1519 cciss_check_queues(h);
1520 spin_unlock_irqrestore(&h->lock, flags);
1523 /* This function gets the SCSI vendor, model, and revision of a logical drive
1524 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1525 * they cannot be read.
1527 static void cciss_get_device_descr(int ctlr, int logvol, int withirq,
1528 char *vendor, char *model, char *rev)
1530 int rc;
1531 InquiryData_struct *inq_buf;
1533 *vendor = '\0';
1534 *model = '\0';
1535 *rev = '\0';
1537 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1538 if (!inq_buf)
1539 return;
1541 if (withirq)
1542 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf,
1543 sizeof(InquiryData_struct), 1, logvol,
1544 0, TYPE_CMD);
1545 else
1546 rc = sendcmd(CISS_INQUIRY, ctlr, inq_buf,
1547 sizeof(InquiryData_struct), 1, logvol, 0, NULL,
1548 TYPE_CMD);
1549 if (rc == IO_OK) {
1550 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1551 vendor[VENDOR_LEN] = '\0';
1552 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1553 model[MODEL_LEN] = '\0';
1554 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1555 rev[REV_LEN] = '\0';
1558 kfree(inq_buf);
1559 return;
1562 /* This function gets the serial number of a logical drive via
1563 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1564 * number cannot be had, for whatever reason, 16 bytes of 0xff
1565 * are returned instead.
1567 static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
1568 unsigned char *serial_no, int buflen)
1570 #define PAGE_83_INQ_BYTES 64
1571 int rc;
1572 unsigned char *buf;
1574 if (buflen > 16)
1575 buflen = 16;
1576 memset(serial_no, 0xff, buflen);
1577 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1578 if (!buf)
1579 return;
1580 memset(serial_no, 0, buflen);
1581 if (withirq)
1582 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1583 PAGE_83_INQ_BYTES, 1, logvol, 0x83, TYPE_CMD);
1584 else
1585 rc = sendcmd(CISS_INQUIRY, ctlr, buf,
1586 PAGE_83_INQ_BYTES, 1, logvol, 0x83, NULL, TYPE_CMD);
1587 if (rc == IO_OK)
1588 memcpy(serial_no, &buf[8], buflen);
1589 kfree(buf);
1590 return;
1593 static void cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1594 int drv_index)
1596 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1597 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1598 disk->major = h->major;
1599 disk->first_minor = drv_index << NWD_SHIFT;
1600 disk->fops = &cciss_fops;
1601 disk->private_data = &h->drv[drv_index];
1602 disk->driverfs_dev = &h->drv[drv_index].dev;
1604 /* Set up queue information */
1605 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1607 /* This is a hardware imposed limit. */
1608 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1610 /* This is a limit in the driver and could be eliminated. */
1611 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1613 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1615 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1617 disk->queue->queuedata = h;
1619 blk_queue_logical_block_size(disk->queue,
1620 h->drv[drv_index].block_size);
1622 /* Make sure all queue data is written out before */
1623 /* setting h->drv[drv_index].queue, as setting this */
1624 /* allows the interrupt handler to start the queue */
1625 wmb();
1626 h->drv[drv_index].queue = disk->queue;
1627 add_disk(disk);
1630 /* This function will check the usage_count of the drive to be updated/added.
1631 * If the usage_count is zero and it is a heretofore unknown drive, or,
1632 * the drive's capacity, geometry, or serial number has changed,
1633 * then the drive information will be updated and the disk will be
1634 * re-registered with the kernel. If these conditions don't hold,
1635 * then it will be left alone for the next reboot. The exception to this
1636 * is disk 0 which will always be left registered with the kernel since it
1637 * is also the controller node. Any changes to disk 0 will show up on
1638 * the next reboot.
1640 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time)
1642 ctlr_info_t *h = hba[ctlr];
1643 struct gendisk *disk;
1644 InquiryData_struct *inq_buff = NULL;
1645 unsigned int block_size;
1646 sector_t total_size;
1647 unsigned long flags = 0;
1648 int ret = 0;
1649 drive_info_struct *drvinfo;
1650 int was_only_controller_node;
1652 /* Get information about the disk and modify the driver structure */
1653 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1654 drvinfo = kmalloc(sizeof(*drvinfo), GFP_KERNEL);
1655 if (inq_buff == NULL || drvinfo == NULL)
1656 goto mem_msg;
1658 /* See if we're trying to update the "controller node"
1659 * this will happen the when the first logical drive gets
1660 * created by ACU.
1662 was_only_controller_node = (drv_index == 0 &&
1663 h->drv[0].raid_level == -1);
1665 /* testing to see if 16-byte CDBs are already being used */
1666 if (h->cciss_read == CCISS_READ_16) {
1667 cciss_read_capacity_16(h->ctlr, drv_index, 1,
1668 &total_size, &block_size);
1670 } else {
1671 cciss_read_capacity(ctlr, drv_index, 1,
1672 &total_size, &block_size);
1674 /* if read_capacity returns all F's this volume is >2TB */
1675 /* in size so we switch to 16-byte CDB's for all */
1676 /* read/write ops */
1677 if (total_size == 0xFFFFFFFFULL) {
1678 cciss_read_capacity_16(ctlr, drv_index, 1,
1679 &total_size, &block_size);
1680 h->cciss_read = CCISS_READ_16;
1681 h->cciss_write = CCISS_WRITE_16;
1682 } else {
1683 h->cciss_read = CCISS_READ_10;
1684 h->cciss_write = CCISS_WRITE_10;
1688 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1689 inq_buff, drvinfo);
1690 drvinfo->block_size = block_size;
1691 drvinfo->nr_blocks = total_size + 1;
1693 cciss_get_device_descr(ctlr, drv_index, 1, drvinfo->vendor,
1694 drvinfo->model, drvinfo->rev);
1695 cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
1696 sizeof(drvinfo->serial_no));
1698 /* Is it the same disk we already know, and nothing's changed? */
1699 if (h->drv[drv_index].raid_level != -1 &&
1700 ((memcmp(drvinfo->serial_no,
1701 h->drv[drv_index].serial_no, 16) == 0) &&
1702 drvinfo->block_size == h->drv[drv_index].block_size &&
1703 drvinfo->nr_blocks == h->drv[drv_index].nr_blocks &&
1704 drvinfo->heads == h->drv[drv_index].heads &&
1705 drvinfo->sectors == h->drv[drv_index].sectors &&
1706 drvinfo->cylinders == h->drv[drv_index].cylinders))
1707 /* The disk is unchanged, nothing to update */
1708 goto freeret;
1710 /* If we get here it's not the same disk, or something's changed,
1711 * so we need to * deregister it, and re-register it, if it's not
1712 * in use.
1713 * If the disk already exists then deregister it before proceeding
1714 * (unless it's the first disk (for the controller node).
1716 if (h->drv[drv_index].raid_level != -1 && drv_index != 0) {
1717 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1718 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1719 h->drv[drv_index].busy_configuring = 1;
1720 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1722 /* deregister_disk sets h->drv[drv_index].queue = NULL
1723 * which keeps the interrupt handler from starting
1724 * the queue.
1726 ret = deregister_disk(h, drv_index, 0);
1727 h->drv[drv_index].busy_configuring = 0;
1730 /* If the disk is in use return */
1731 if (ret)
1732 goto freeret;
1734 /* Save the new information from cciss_geometry_inquiry
1735 * and serial number inquiry.
1737 h->drv[drv_index].block_size = drvinfo->block_size;
1738 h->drv[drv_index].nr_blocks = drvinfo->nr_blocks;
1739 h->drv[drv_index].heads = drvinfo->heads;
1740 h->drv[drv_index].sectors = drvinfo->sectors;
1741 h->drv[drv_index].cylinders = drvinfo->cylinders;
1742 h->drv[drv_index].raid_level = drvinfo->raid_level;
1743 memcpy(h->drv[drv_index].serial_no, drvinfo->serial_no, 16);
1744 memcpy(h->drv[drv_index].vendor, drvinfo->vendor, VENDOR_LEN + 1);
1745 memcpy(h->drv[drv_index].model, drvinfo->model, MODEL_LEN + 1);
1746 memcpy(h->drv[drv_index].rev, drvinfo->rev, REV_LEN + 1);
1748 ++h->num_luns;
1749 disk = h->gendisk[drv_index];
1750 set_capacity(disk, h->drv[drv_index].nr_blocks);
1752 /* If it's not disk 0 (drv_index != 0)
1753 * or if it was disk 0, but there was previously
1754 * no actual corresponding configured logical drive
1755 * (raid_leve == -1) then we want to update the
1756 * logical drive's information.
1758 if (drv_index || first_time)
1759 cciss_add_disk(h, disk, drv_index);
1761 freeret:
1762 kfree(inq_buff);
1763 kfree(drvinfo);
1764 return;
1765 mem_msg:
1766 printk(KERN_ERR "cciss: out of memory\n");
1767 goto freeret;
1770 /* This function will find the first index of the controllers drive array
1771 * that has a -1 for the raid_level and will return that index. This is
1772 * where new drives will be added. If the index to be returned is greater
1773 * than the highest_lun index for the controller then highest_lun is set
1774 * to this new index. If there are no available indexes then -1 is returned.
1775 * "controller_node" is used to know if this is a real logical drive, or just
1776 * the controller node, which determines if this counts towards highest_lun.
1778 static int cciss_find_free_drive_index(int ctlr, int controller_node)
1780 int i;
1782 for (i = 0; i < CISS_MAX_LUN; i++) {
1783 if (hba[ctlr]->drv[i].raid_level == -1) {
1784 if (i > hba[ctlr]->highest_lun)
1785 if (!controller_node)
1786 hba[ctlr]->highest_lun = i;
1787 return i;
1790 return -1;
1793 /* cciss_add_gendisk finds a free hba[]->drv structure
1794 * and allocates a gendisk if needed, and sets the lunid
1795 * in the drvinfo structure. It returns the index into
1796 * the ->drv[] array, or -1 if none are free.
1797 * is_controller_node indicates whether highest_lun should
1798 * count this disk, or if it's only being added to provide
1799 * a means to talk to the controller in case no logical
1800 * drives have yet been configured.
1802 static int cciss_add_gendisk(ctlr_info_t *h, __u32 lunid, int controller_node)
1804 int drv_index;
1806 drv_index = cciss_find_free_drive_index(h->ctlr, controller_node);
1807 if (drv_index == -1)
1808 return -1;
1809 /*Check if the gendisk needs to be allocated */
1810 if (!h->gendisk[drv_index]) {
1811 h->gendisk[drv_index] =
1812 alloc_disk(1 << NWD_SHIFT);
1813 if (!h->gendisk[drv_index]) {
1814 printk(KERN_ERR "cciss%d: could not "
1815 "allocate a new disk %d\n",
1816 h->ctlr, drv_index);
1817 return -1;
1820 h->drv[drv_index].LunID = lunid;
1821 if (cciss_create_ld_sysfs_entry(h, &h->drv[drv_index], drv_index))
1822 goto err_free_disk;
1824 /* Don't need to mark this busy because nobody */
1825 /* else knows about this disk yet to contend */
1826 /* for access to it. */
1827 h->drv[drv_index].busy_configuring = 0;
1828 wmb();
1829 return drv_index;
1831 err_free_disk:
1832 put_disk(h->gendisk[drv_index]);
1833 h->gendisk[drv_index] = NULL;
1834 return -1;
1837 /* This is for the special case of a controller which
1838 * has no logical drives. In this case, we still need
1839 * to register a disk so the controller can be accessed
1840 * by the Array Config Utility.
1842 static void cciss_add_controller_node(ctlr_info_t *h)
1844 struct gendisk *disk;
1845 int drv_index;
1847 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
1848 return;
1850 drv_index = cciss_add_gendisk(h, 0, 1);
1851 if (drv_index == -1) {
1852 printk(KERN_WARNING "cciss%d: could not "
1853 "add disk 0.\n", h->ctlr);
1854 return;
1856 h->drv[drv_index].block_size = 512;
1857 h->drv[drv_index].nr_blocks = 0;
1858 h->drv[drv_index].heads = 0;
1859 h->drv[drv_index].sectors = 0;
1860 h->drv[drv_index].cylinders = 0;
1861 h->drv[drv_index].raid_level = -1;
1862 memset(h->drv[drv_index].serial_no, 0, 16);
1863 disk = h->gendisk[drv_index];
1864 cciss_add_disk(h, disk, drv_index);
1867 /* This function will add and remove logical drives from the Logical
1868 * drive array of the controller and maintain persistency of ordering
1869 * so that mount points are preserved until the next reboot. This allows
1870 * for the removal of logical drives in the middle of the drive array
1871 * without a re-ordering of those drives.
1872 * INPUT
1873 * h = The controller to perform the operations on
1875 static int rebuild_lun_table(ctlr_info_t *h, int first_time)
1877 int ctlr = h->ctlr;
1878 int num_luns;
1879 ReportLunData_struct *ld_buff = NULL;
1880 int return_code;
1881 int listlength = 0;
1882 int i;
1883 int drv_found;
1884 int drv_index = 0;
1885 __u32 lunid = 0;
1886 unsigned long flags;
1888 if (!capable(CAP_SYS_RAWIO))
1889 return -EPERM;
1891 /* Set busy_configuring flag for this operation */
1892 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1893 if (h->busy_configuring) {
1894 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1895 return -EBUSY;
1897 h->busy_configuring = 1;
1898 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1900 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1901 if (ld_buff == NULL)
1902 goto mem_msg;
1904 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1905 sizeof(ReportLunData_struct), 0,
1906 0, 0, TYPE_CMD);
1908 if (return_code == IO_OK)
1909 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
1910 else { /* reading number of logical volumes failed */
1911 printk(KERN_WARNING "cciss: report logical volume"
1912 " command failed\n");
1913 listlength = 0;
1914 goto freeret;
1917 num_luns = listlength / 8; /* 8 bytes per entry */
1918 if (num_luns > CISS_MAX_LUN) {
1919 num_luns = CISS_MAX_LUN;
1920 printk(KERN_WARNING "cciss: more luns configured"
1921 " on controller than can be handled by"
1922 " this driver.\n");
1925 if (num_luns == 0)
1926 cciss_add_controller_node(h);
1928 /* Compare controller drive array to driver's drive array
1929 * to see if any drives are missing on the controller due
1930 * to action of Array Config Utility (user deletes drive)
1931 * and deregister logical drives which have disappeared.
1933 for (i = 0; i <= h->highest_lun; i++) {
1934 int j;
1935 drv_found = 0;
1937 /* skip holes in the array from already deleted drives */
1938 if (h->drv[i].raid_level == -1)
1939 continue;
1941 for (j = 0; j < num_luns; j++) {
1942 memcpy(&lunid, &ld_buff->LUN[j][0], 4);
1943 lunid = le32_to_cpu(lunid);
1944 if (h->drv[i].LunID == lunid) {
1945 drv_found = 1;
1946 break;
1949 if (!drv_found) {
1950 /* Deregister it from the OS, it's gone. */
1951 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1952 h->drv[i].busy_configuring = 1;
1953 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1954 return_code = deregister_disk(h, i, 1);
1955 cciss_destroy_ld_sysfs_entry(&h->drv[i]);
1956 h->drv[i].busy_configuring = 0;
1960 /* Compare controller drive array to driver's drive array.
1961 * Check for updates in the drive information and any new drives
1962 * on the controller due to ACU adding logical drives, or changing
1963 * a logical drive's size, etc. Reregister any new/changed drives
1965 for (i = 0; i < num_luns; i++) {
1966 int j;
1968 drv_found = 0;
1970 memcpy(&lunid, &ld_buff->LUN[i][0], 4);
1971 lunid = le32_to_cpu(lunid);
1973 /* Find if the LUN is already in the drive array
1974 * of the driver. If so then update its info
1975 * if not in use. If it does not exist then find
1976 * the first free index and add it.
1978 for (j = 0; j <= h->highest_lun; j++) {
1979 if (h->drv[j].raid_level != -1 &&
1980 h->drv[j].LunID == lunid) {
1981 drv_index = j;
1982 drv_found = 1;
1983 break;
1987 /* check if the drive was found already in the array */
1988 if (!drv_found) {
1989 drv_index = cciss_add_gendisk(h, lunid, 0);
1990 if (drv_index == -1)
1991 goto freeret;
1993 cciss_update_drive_info(ctlr, drv_index, first_time);
1994 } /* end for */
1996 freeret:
1997 kfree(ld_buff);
1998 h->busy_configuring = 0;
1999 /* We return -1 here to tell the ACU that we have registered/updated
2000 * all of the drives that we can and to keep it from calling us
2001 * additional times.
2003 return -1;
2004 mem_msg:
2005 printk(KERN_ERR "cciss: out of memory\n");
2006 h->busy_configuring = 0;
2007 goto freeret;
2010 /* This function will deregister the disk and it's queue from the
2011 * kernel. It must be called with the controller lock held and the
2012 * drv structures busy_configuring flag set. It's parameters are:
2014 * disk = This is the disk to be deregistered
2015 * drv = This is the drive_info_struct associated with the disk to be
2016 * deregistered. It contains information about the disk used
2017 * by the driver.
2018 * clear_all = This flag determines whether or not the disk information
2019 * is going to be completely cleared out and the highest_lun
2020 * reset. Sometimes we want to clear out information about
2021 * the disk in preparation for re-adding it. In this case
2022 * the highest_lun should be left unchanged and the LunID
2023 * should not be cleared.
2025 static int deregister_disk(ctlr_info_t *h, int drv_index,
2026 int clear_all)
2028 int i;
2029 struct gendisk *disk;
2030 drive_info_struct *drv;
2032 if (!capable(CAP_SYS_RAWIO))
2033 return -EPERM;
2035 drv = &h->drv[drv_index];
2036 disk = h->gendisk[drv_index];
2038 /* make sure logical volume is NOT is use */
2039 if (clear_all || (h->gendisk[0] == disk)) {
2040 if (drv->usage_count > 1)
2041 return -EBUSY;
2042 } else if (drv->usage_count > 0)
2043 return -EBUSY;
2045 /* invalidate the devices and deregister the disk. If it is disk
2046 * zero do not deregister it but just zero out it's values. This
2047 * allows us to delete disk zero but keep the controller registered.
2049 if (h->gendisk[0] != disk) {
2050 struct request_queue *q = disk->queue;
2051 if (disk->flags & GENHD_FL_UP)
2052 del_gendisk(disk);
2053 if (q) {
2054 blk_cleanup_queue(q);
2055 /* Set drv->queue to NULL so that we do not try
2056 * to call blk_start_queue on this queue in the
2057 * interrupt handler
2059 drv->queue = NULL;
2061 /* If clear_all is set then we are deleting the logical
2062 * drive, not just refreshing its info. For drives
2063 * other than disk 0 we will call put_disk. We do not
2064 * do this for disk 0 as we need it to be able to
2065 * configure the controller.
2067 if (clear_all){
2068 /* This isn't pretty, but we need to find the
2069 * disk in our array and NULL our the pointer.
2070 * This is so that we will call alloc_disk if
2071 * this index is used again later.
2073 for (i=0; i < CISS_MAX_LUN; i++){
2074 if (h->gendisk[i] == disk) {
2075 h->gendisk[i] = NULL;
2076 break;
2079 put_disk(disk);
2081 } else {
2082 set_capacity(disk, 0);
2085 --h->num_luns;
2086 /* zero out the disk size info */
2087 drv->nr_blocks = 0;
2088 drv->block_size = 0;
2089 drv->heads = 0;
2090 drv->sectors = 0;
2091 drv->cylinders = 0;
2092 drv->raid_level = -1; /* This can be used as a flag variable to
2093 * indicate that this element of the drive
2094 * array is free.
2097 if (clear_all) {
2098 /* check to see if it was the last disk */
2099 if (drv == h->drv + h->highest_lun) {
2100 /* if so, find the new hightest lun */
2101 int i, newhighest = -1;
2102 for (i = 0; i <= h->highest_lun; i++) {
2103 /* if the disk has size > 0, it is available */
2104 if (h->drv[i].heads)
2105 newhighest = i;
2107 h->highest_lun = newhighest;
2110 drv->LunID = 0;
2112 return 0;
2115 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff, size_t size, unsigned int use_unit_num, /* 0: address the controller,
2116 1: address logical volume log_unit,
2117 2: periph device address is scsi3addr */
2118 unsigned int log_unit, __u8 page_code,
2119 unsigned char *scsi3addr, int cmd_type)
2121 ctlr_info_t *h = hba[ctlr];
2122 u64bit buff_dma_handle;
2123 int status = IO_OK;
2125 c->cmd_type = CMD_IOCTL_PEND;
2126 c->Header.ReplyQueue = 0;
2127 if (buff != NULL) {
2128 c->Header.SGList = 1;
2129 c->Header.SGTotal = 1;
2130 } else {
2131 c->Header.SGList = 0;
2132 c->Header.SGTotal = 0;
2134 c->Header.Tag.lower = c->busaddr;
2136 c->Request.Type.Type = cmd_type;
2137 if (cmd_type == TYPE_CMD) {
2138 switch (cmd) {
2139 case CISS_INQUIRY:
2140 /* If the logical unit number is 0 then, this is going
2141 to controller so It's a physical command
2142 mode = 0 target = 0. So we have nothing to write.
2143 otherwise, if use_unit_num == 1,
2144 mode = 1(volume set addressing) target = LUNID
2145 otherwise, if use_unit_num == 2,
2146 mode = 0(periph dev addr) target = scsi3addr */
2147 if (use_unit_num == 1) {
2148 c->Header.LUN.LogDev.VolId =
2149 h->drv[log_unit].LunID;
2150 c->Header.LUN.LogDev.Mode = 1;
2151 } else if (use_unit_num == 2) {
2152 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr,
2154 c->Header.LUN.LogDev.Mode = 0;
2156 /* are we trying to read a vital product page */
2157 if (page_code != 0) {
2158 c->Request.CDB[1] = 0x01;
2159 c->Request.CDB[2] = page_code;
2161 c->Request.CDBLen = 6;
2162 c->Request.Type.Attribute = ATTR_SIMPLE;
2163 c->Request.Type.Direction = XFER_READ;
2164 c->Request.Timeout = 0;
2165 c->Request.CDB[0] = CISS_INQUIRY;
2166 c->Request.CDB[4] = size & 0xFF;
2167 break;
2168 case CISS_REPORT_LOG:
2169 case CISS_REPORT_PHYS:
2170 /* Talking to controller so It's a physical command
2171 mode = 00 target = 0. Nothing to write.
2173 c->Request.CDBLen = 12;
2174 c->Request.Type.Attribute = ATTR_SIMPLE;
2175 c->Request.Type.Direction = XFER_READ;
2176 c->Request.Timeout = 0;
2177 c->Request.CDB[0] = cmd;
2178 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
2179 c->Request.CDB[7] = (size >> 16) & 0xFF;
2180 c->Request.CDB[8] = (size >> 8) & 0xFF;
2181 c->Request.CDB[9] = size & 0xFF;
2182 break;
2184 case CCISS_READ_CAPACITY:
2185 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
2186 c->Header.LUN.LogDev.Mode = 1;
2187 c->Request.CDBLen = 10;
2188 c->Request.Type.Attribute = ATTR_SIMPLE;
2189 c->Request.Type.Direction = XFER_READ;
2190 c->Request.Timeout = 0;
2191 c->Request.CDB[0] = cmd;
2192 break;
2193 case CCISS_READ_CAPACITY_16:
2194 c->Header.LUN.LogDev.VolId = h->drv[log_unit].LunID;
2195 c->Header.LUN.LogDev.Mode = 1;
2196 c->Request.CDBLen = 16;
2197 c->Request.Type.Attribute = ATTR_SIMPLE;
2198 c->Request.Type.Direction = XFER_READ;
2199 c->Request.Timeout = 0;
2200 c->Request.CDB[0] = cmd;
2201 c->Request.CDB[1] = 0x10;
2202 c->Request.CDB[10] = (size >> 24) & 0xFF;
2203 c->Request.CDB[11] = (size >> 16) & 0xFF;
2204 c->Request.CDB[12] = (size >> 8) & 0xFF;
2205 c->Request.CDB[13] = size & 0xFF;
2206 c->Request.Timeout = 0;
2207 c->Request.CDB[0] = cmd;
2208 break;
2209 case CCISS_CACHE_FLUSH:
2210 c->Request.CDBLen = 12;
2211 c->Request.Type.Attribute = ATTR_SIMPLE;
2212 c->Request.Type.Direction = XFER_WRITE;
2213 c->Request.Timeout = 0;
2214 c->Request.CDB[0] = BMIC_WRITE;
2215 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2216 break;
2217 case TEST_UNIT_READY:
2218 memcpy(c->Header. LUN.LunAddrBytes, scsi3addr, 8);
2219 c->Request.CDBLen = 6;
2220 c->Request.Type.Attribute = ATTR_SIMPLE;
2221 c->Request.Type.Direction = XFER_NONE;
2222 c->Request.Timeout = 0;
2223 break;
2224 default:
2225 printk(KERN_WARNING
2226 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
2227 return IO_ERROR;
2229 } else if (cmd_type == TYPE_MSG) {
2230 switch (cmd) {
2231 case 0: /* ABORT message */
2232 c->Request.CDBLen = 12;
2233 c->Request.Type.Attribute = ATTR_SIMPLE;
2234 c->Request.Type.Direction = XFER_WRITE;
2235 c->Request.Timeout = 0;
2236 c->Request.CDB[0] = cmd; /* abort */
2237 c->Request.CDB[1] = 0; /* abort a command */
2238 /* buff contains the tag of the command to abort */
2239 memcpy(&c->Request.CDB[4], buff, 8);
2240 break;
2241 case 1: /* RESET message */
2242 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2243 c->Request.CDBLen = 16;
2244 c->Request.Type.Attribute = ATTR_SIMPLE;
2245 c->Request.Type.Direction = XFER_NONE;
2246 c->Request.Timeout = 0;
2247 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2248 c->Request.CDB[0] = cmd; /* reset */
2249 c->Request.CDB[1] = 0x03; /* reset a target */
2250 break;
2251 case 3: /* No-Op message */
2252 c->Request.CDBLen = 1;
2253 c->Request.Type.Attribute = ATTR_SIMPLE;
2254 c->Request.Type.Direction = XFER_WRITE;
2255 c->Request.Timeout = 0;
2256 c->Request.CDB[0] = cmd;
2257 break;
2258 default:
2259 printk(KERN_WARNING
2260 "cciss%d: unknown message type %d\n", ctlr, cmd);
2261 return IO_ERROR;
2263 } else {
2264 printk(KERN_WARNING
2265 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2266 return IO_ERROR;
2268 /* Fill in the scatter gather information */
2269 if (size > 0) {
2270 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2271 buff, size,
2272 PCI_DMA_BIDIRECTIONAL);
2273 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2274 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2275 c->SG[0].Len = size;
2276 c->SG[0].Ext = 0; /* we are not chaining */
2278 return status;
2281 static int sendcmd_withirq(__u8 cmd,
2282 int ctlr,
2283 void *buff,
2284 size_t size,
2285 unsigned int use_unit_num,
2286 unsigned int log_unit, __u8 page_code, int cmd_type)
2288 ctlr_info_t *h = hba[ctlr];
2289 CommandList_struct *c;
2290 u64bit buff_dma_handle;
2291 unsigned long flags;
2292 int return_status;
2293 DECLARE_COMPLETION_ONSTACK(wait);
2295 if ((c = cmd_alloc(h, 0)) == NULL)
2296 return -ENOMEM;
2297 return_status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2298 log_unit, page_code, NULL, cmd_type);
2299 if (return_status != IO_OK) {
2300 cmd_free(h, c, 0);
2301 return return_status;
2303 resend_cmd2:
2304 c->waiting = &wait;
2306 /* Put the request on the tail of the queue and send it */
2307 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
2308 addQ(&h->reqQ, c);
2309 h->Qdepth++;
2310 start_io(h);
2311 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
2313 wait_for_completion(&wait);
2315 if (c->err_info->CommandStatus != 0) { /* an error has occurred */
2316 switch (c->err_info->CommandStatus) {
2317 case CMD_TARGET_STATUS:
2318 printk(KERN_WARNING "cciss: cmd %p has "
2319 " completed with errors\n", c);
2320 if (c->err_info->ScsiStatus) {
2321 printk(KERN_WARNING "cciss: cmd %p "
2322 "has SCSI Status = %x\n",
2323 c, c->err_info->ScsiStatus);
2326 break;
2327 case CMD_DATA_UNDERRUN:
2328 case CMD_DATA_OVERRUN:
2329 /* expected for inquire and report lun commands */
2330 break;
2331 case CMD_INVALID:
2332 printk(KERN_WARNING "cciss: Cmd %p is "
2333 "reported invalid\n", c);
2334 return_status = IO_ERROR;
2335 break;
2336 case CMD_PROTOCOL_ERR:
2337 printk(KERN_WARNING "cciss: cmd %p has "
2338 "protocol error \n", c);
2339 return_status = IO_ERROR;
2340 break;
2341 case CMD_HARDWARE_ERR:
2342 printk(KERN_WARNING "cciss: cmd %p had "
2343 " hardware error\n", c);
2344 return_status = IO_ERROR;
2345 break;
2346 case CMD_CONNECTION_LOST:
2347 printk(KERN_WARNING "cciss: cmd %p had "
2348 "connection lost\n", c);
2349 return_status = IO_ERROR;
2350 break;
2351 case CMD_ABORTED:
2352 printk(KERN_WARNING "cciss: cmd %p was "
2353 "aborted\n", c);
2354 return_status = IO_ERROR;
2355 break;
2356 case CMD_ABORT_FAILED:
2357 printk(KERN_WARNING "cciss: cmd %p reports "
2358 "abort failed\n", c);
2359 return_status = IO_ERROR;
2360 break;
2361 case CMD_UNSOLICITED_ABORT:
2362 printk(KERN_WARNING
2363 "cciss%d: unsolicited abort %p\n", ctlr, c);
2364 if (c->retry_count < MAX_CMD_RETRIES) {
2365 printk(KERN_WARNING
2366 "cciss%d: retrying %p\n", ctlr, c);
2367 c->retry_count++;
2368 /* erase the old error information */
2369 memset(c->err_info, 0,
2370 sizeof(ErrorInfo_struct));
2371 return_status = IO_OK;
2372 INIT_COMPLETION(wait);
2373 goto resend_cmd2;
2375 return_status = IO_ERROR;
2376 break;
2377 default:
2378 printk(KERN_WARNING "cciss: cmd %p returned "
2379 "unknown status %x\n", c,
2380 c->err_info->CommandStatus);
2381 return_status = IO_ERROR;
2384 /* unlock the buffers from DMA */
2385 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2386 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2387 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2388 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2389 cmd_free(h, c, 0);
2390 return return_status;
2393 static void cciss_geometry_inquiry(int ctlr, int logvol,
2394 int withirq, sector_t total_size,
2395 unsigned int block_size,
2396 InquiryData_struct *inq_buff,
2397 drive_info_struct *drv)
2399 int return_code;
2400 unsigned long t;
2402 memset(inq_buff, 0, sizeof(InquiryData_struct));
2403 if (withirq)
2404 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
2405 inq_buff, sizeof(*inq_buff), 1,
2406 logvol, 0xC1, TYPE_CMD);
2407 else
2408 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
2409 sizeof(*inq_buff), 1, logvol, 0xC1, NULL,
2410 TYPE_CMD);
2411 if (return_code == IO_OK) {
2412 if (inq_buff->data_byte[8] == 0xFF) {
2413 printk(KERN_WARNING
2414 "cciss: reading geometry failed, volume "
2415 "does not support reading geometry\n");
2416 drv->heads = 255;
2417 drv->sectors = 32; // Sectors per track
2418 drv->cylinders = total_size + 1;
2419 drv->raid_level = RAID_UNKNOWN;
2420 } else {
2421 drv->heads = inq_buff->data_byte[6];
2422 drv->sectors = inq_buff->data_byte[7];
2423 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2424 drv->cylinders += inq_buff->data_byte[5];
2425 drv->raid_level = inq_buff->data_byte[8];
2427 drv->block_size = block_size;
2428 drv->nr_blocks = total_size + 1;
2429 t = drv->heads * drv->sectors;
2430 if (t > 1) {
2431 sector_t real_size = total_size + 1;
2432 unsigned long rem = sector_div(real_size, t);
2433 if (rem)
2434 real_size++;
2435 drv->cylinders = real_size;
2437 } else { /* Get geometry failed */
2438 printk(KERN_WARNING "cciss: reading geometry failed\n");
2440 printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
2441 drv->heads, drv->sectors, drv->cylinders);
2444 static void
2445 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
2446 unsigned int *block_size)
2448 ReadCapdata_struct *buf;
2449 int return_code;
2451 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2452 if (!buf) {
2453 printk(KERN_WARNING "cciss: out of memory\n");
2454 return;
2457 if (withirq)
2458 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
2459 ctlr, buf, sizeof(ReadCapdata_struct),
2460 1, logvol, 0, TYPE_CMD);
2461 else
2462 return_code = sendcmd(CCISS_READ_CAPACITY,
2463 ctlr, buf, sizeof(ReadCapdata_struct),
2464 1, logvol, 0, NULL, TYPE_CMD);
2465 if (return_code == IO_OK) {
2466 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2467 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2468 } else { /* read capacity command failed */
2469 printk(KERN_WARNING "cciss: read capacity failed\n");
2470 *total_size = 0;
2471 *block_size = BLOCK_SIZE;
2473 if (*total_size != 0)
2474 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2475 (unsigned long long)*total_size+1, *block_size);
2476 kfree(buf);
2479 static void
2480 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
2482 ReadCapdata_struct_16 *buf;
2483 int return_code;
2485 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2486 if (!buf) {
2487 printk(KERN_WARNING "cciss: out of memory\n");
2488 return;
2491 if (withirq) {
2492 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2493 ctlr, buf, sizeof(ReadCapdata_struct_16),
2494 1, logvol, 0, TYPE_CMD);
2496 else {
2497 return_code = sendcmd(CCISS_READ_CAPACITY_16,
2498 ctlr, buf, sizeof(ReadCapdata_struct_16),
2499 1, logvol, 0, NULL, TYPE_CMD);
2501 if (return_code == IO_OK) {
2502 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2503 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2504 } else { /* read capacity command failed */
2505 printk(KERN_WARNING "cciss: read capacity failed\n");
2506 *total_size = 0;
2507 *block_size = BLOCK_SIZE;
2509 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2510 (unsigned long long)*total_size+1, *block_size);
2511 kfree(buf);
2514 static int cciss_revalidate(struct gendisk *disk)
2516 ctlr_info_t *h = get_host(disk);
2517 drive_info_struct *drv = get_drv(disk);
2518 int logvol;
2519 int FOUND = 0;
2520 unsigned int block_size;
2521 sector_t total_size;
2522 InquiryData_struct *inq_buff = NULL;
2524 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2525 if (h->drv[logvol].LunID == drv->LunID) {
2526 FOUND = 1;
2527 break;
2531 if (!FOUND)
2532 return 1;
2534 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2535 if (inq_buff == NULL) {
2536 printk(KERN_WARNING "cciss: out of memory\n");
2537 return 1;
2539 if (h->cciss_read == CCISS_READ_10) {
2540 cciss_read_capacity(h->ctlr, logvol, 1,
2541 &total_size, &block_size);
2542 } else {
2543 cciss_read_capacity_16(h->ctlr, logvol, 1,
2544 &total_size, &block_size);
2546 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2547 inq_buff, drv);
2549 blk_queue_logical_block_size(drv->queue, drv->block_size);
2550 set_capacity(disk, drv->nr_blocks);
2552 kfree(inq_buff);
2553 return 0;
2557 * Wait polling for a command to complete.
2558 * The memory mapped FIFO is polled for the completion.
2559 * Used only at init time, interrupts from the HBA are disabled.
2561 static unsigned long pollcomplete(int ctlr)
2563 unsigned long done;
2564 int i;
2566 /* Wait (up to 20 seconds) for a command to complete */
2568 for (i = 20 * HZ; i > 0; i--) {
2569 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2570 if (done == FIFO_EMPTY)
2571 schedule_timeout_uninterruptible(1);
2572 else
2573 return done;
2575 /* Invalid address to tell caller we ran out of time */
2576 return 1;
2579 static int add_sendcmd_reject(__u8 cmd, int ctlr, unsigned long complete)
2581 /* We get in here if sendcmd() is polling for completions
2582 and gets some command back that it wasn't expecting --
2583 something other than that which it just sent down.
2584 Ordinarily, that shouldn't happen, but it can happen when
2585 the scsi tape stuff gets into error handling mode, and
2586 starts using sendcmd() to try to abort commands and
2587 reset tape drives. In that case, sendcmd may pick up
2588 completions of commands that were sent to logical drives
2589 through the block i/o system, or cciss ioctls completing, etc.
2590 In that case, we need to save those completions for later
2591 processing by the interrupt handler.
2594 #ifdef CONFIG_CISS_SCSI_TAPE
2595 struct sendcmd_reject_list *srl = &hba[ctlr]->scsi_rejects;
2597 /* If it's not the scsi tape stuff doing error handling, (abort */
2598 /* or reset) then we don't expect anything weird. */
2599 if (cmd != CCISS_RESET_MSG && cmd != CCISS_ABORT_MSG) {
2600 #endif
2601 printk(KERN_WARNING "cciss cciss%d: SendCmd "
2602 "Invalid command list address returned! (%lx)\n",
2603 ctlr, complete);
2604 /* not much we can do. */
2605 #ifdef CONFIG_CISS_SCSI_TAPE
2606 return 1;
2609 /* We've sent down an abort or reset, but something else
2610 has completed */
2611 if (srl->ncompletions >= (hba[ctlr]->nr_cmds + 2)) {
2612 /* Uh oh. No room to save it for later... */
2613 printk(KERN_WARNING "cciss%d: Sendcmd: Invalid command addr, "
2614 "reject list overflow, command lost!\n", ctlr);
2615 return 1;
2617 /* Save it for later */
2618 srl->complete[srl->ncompletions] = complete;
2619 srl->ncompletions++;
2620 #endif
2621 return 0;
2624 /* Send command c to controller h and poll for it to complete.
2625 * Turns interrupts off on the board. Used at driver init time
2626 * and during SCSI error recovery.
2628 static int sendcmd_core(ctlr_info_t *h, CommandList_struct *c)
2630 int i;
2631 unsigned long complete;
2632 int status = IO_ERROR;
2633 u64bit buff_dma_handle;
2635 resend_cmd1:
2637 /* Disable interrupt on the board. */
2638 h->access.set_intr_mask(h, CCISS_INTR_OFF);
2640 /* Make sure there is room in the command FIFO */
2641 /* Actually it should be completely empty at this time */
2642 /* unless we are in here doing error handling for the scsi */
2643 /* tape side of the driver. */
2644 for (i = 200000; i > 0; i--) {
2645 /* if fifo isn't full go */
2646 if (!(h->access.fifo_full(h)))
2647 break;
2648 udelay(10);
2649 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2650 " waiting!\n", h->ctlr);
2652 h->access.submit_command(h, c); /* Send the cmd */
2653 do {
2654 complete = pollcomplete(h->ctlr);
2656 #ifdef CCISS_DEBUG
2657 printk(KERN_DEBUG "cciss: command completed\n");
2658 #endif /* CCISS_DEBUG */
2660 if (complete == 1) {
2661 printk(KERN_WARNING
2662 "cciss cciss%d: SendCmd Timeout out, "
2663 "No command list address returned!\n", h->ctlr);
2664 status = IO_ERROR;
2665 break;
2668 /* If it's not the cmd we're looking for, save it for later */
2669 if ((complete & ~CISS_ERROR_BIT) != c->busaddr) {
2670 if (add_sendcmd_reject(c->Request.CDB[0],
2671 h->ctlr, complete) != 0)
2672 BUG(); /* we are hosed if we get here. */
2673 continue;
2676 /* It is our command. If no error, we're done. */
2677 if (!(complete & CISS_ERROR_BIT)) {
2678 status = IO_OK;
2679 break;
2682 /* There is an error... */
2684 /* if data overrun or underun on Report command ignore it */
2685 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2686 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2687 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2688 ((c->err_info->CommandStatus == CMD_DATA_OVERRUN) ||
2689 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN))) {
2690 complete = c->busaddr;
2691 status = IO_OK;
2692 break;
2695 if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) {
2696 printk(KERN_WARNING "cciss%d: unsolicited abort %p\n",
2697 h->ctlr, c);
2698 if (c->retry_count < MAX_CMD_RETRIES) {
2699 printk(KERN_WARNING "cciss%d: retrying %p\n",
2700 h->ctlr, c);
2701 c->retry_count++;
2702 /* erase the old error information */
2703 memset(c->err_info, 0, sizeof(c->err_info));
2704 goto resend_cmd1;
2706 printk(KERN_WARNING "cciss%d: retried %p too many "
2707 "times\n", h->ctlr, c);
2708 status = IO_ERROR;
2709 goto cleanup1;
2712 if (c->err_info->CommandStatus == CMD_UNABORTABLE) {
2713 printk(KERN_WARNING "cciss%d: command could not be "
2714 "aborted.\n", h->ctlr);
2715 status = IO_ERROR;
2716 goto cleanup1;
2719 printk(KERN_WARNING "cciss%d: sendcmd error\n", h->ctlr);
2720 printk(KERN_WARNING "cmd = 0x%02x, CommandStatus = 0x%02x\n",
2721 c->Request.CDB[0], c->err_info->CommandStatus);
2722 if (c->err_info->CommandStatus == CMD_TARGET_STATUS) {
2723 printk(KERN_WARNING "Target status = 0x%02x\n",
2724 c->err_info->ScsiStatus);
2725 if (c->err_info->ScsiStatus == 2) /* chk cond */
2726 printk(KERN_WARNING "Sense key = 0x%02x\n",
2727 0xf & c->err_info->SenseInfo[2]);
2730 status = IO_ERROR;
2731 goto cleanup1;
2733 } while (1);
2735 cleanup1:
2736 /* unlock the data buffer from DMA */
2737 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2738 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2739 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2740 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2741 #ifdef CONFIG_CISS_SCSI_TAPE
2742 /* if we saved some commands for later, process them now. */
2743 if (h->scsi_rejects.ncompletions > 0)
2744 do_cciss_intr(0, h);
2745 #endif
2746 return status;
2750 * Send a command to the controller, and wait for it to complete.
2751 * Used at init time, and during SCSI error recovery.
2753 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
2754 unsigned int use_unit_num,/* 0: address the controller,
2755 1: address logical volume log_unit,
2756 2: periph device address is scsi3addr */
2757 unsigned int log_unit,
2758 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2760 CommandList_struct *c;
2761 int status;
2763 c = cmd_alloc(hba[ctlr], 1);
2764 if (!c) {
2765 printk(KERN_WARNING "cciss: unable to get memory");
2766 return IO_ERROR;
2768 status = fill_cmd(c, cmd, ctlr, buff, size, use_unit_num,
2769 log_unit, page_code, scsi3addr, cmd_type);
2770 if (status == IO_OK)
2771 status = sendcmd_core(hba[ctlr], c);
2772 cmd_free(hba[ctlr], c, 1);
2773 return status;
2777 * Map (physical) PCI mem into (virtual) kernel space
2779 static void __iomem *remap_pci_mem(ulong base, ulong size)
2781 ulong page_base = ((ulong) base) & PAGE_MASK;
2782 ulong page_offs = ((ulong) base) - page_base;
2783 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2785 return page_remapped ? (page_remapped + page_offs) : NULL;
2789 * Takes jobs of the Q and sends them to the hardware, then puts it on
2790 * the Q to wait for completion.
2792 static void start_io(ctlr_info_t *h)
2794 CommandList_struct *c;
2796 while (!hlist_empty(&h->reqQ)) {
2797 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2798 /* can't do anything if fifo is full */
2799 if ((h->access.fifo_full(h))) {
2800 printk(KERN_WARNING "cciss: fifo full\n");
2801 break;
2804 /* Get the first entry from the Request Q */
2805 removeQ(c);
2806 h->Qdepth--;
2808 /* Tell the controller execute command */
2809 h->access.submit_command(h, c);
2811 /* Put job onto the completed Q */
2812 addQ(&h->cmpQ, c);
2816 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2817 /* Zeros out the error record and then resends the command back */
2818 /* to the controller */
2819 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2821 /* erase the old error information */
2822 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2824 /* add it to software queue and then send it to the controller */
2825 addQ(&h->reqQ, c);
2826 h->Qdepth++;
2827 if (h->Qdepth > h->maxQsinceinit)
2828 h->maxQsinceinit = h->Qdepth;
2830 start_io(h);
2833 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2834 unsigned int msg_byte, unsigned int host_byte,
2835 unsigned int driver_byte)
2837 /* inverse of macros in scsi.h */
2838 return (scsi_status_byte & 0xff) |
2839 ((msg_byte & 0xff) << 8) |
2840 ((host_byte & 0xff) << 16) |
2841 ((driver_byte & 0xff) << 24);
2844 static inline int evaluate_target_status(ctlr_info_t *h,
2845 CommandList_struct *cmd, int *retry_cmd)
2847 unsigned char sense_key;
2848 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2849 int error_value;
2851 *retry_cmd = 0;
2852 /* If we get in here, it means we got "target status", that is, scsi status */
2853 status_byte = cmd->err_info->ScsiStatus;
2854 driver_byte = DRIVER_OK;
2855 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2857 if (blk_pc_request(cmd->rq))
2858 host_byte = DID_PASSTHROUGH;
2859 else
2860 host_byte = DID_OK;
2862 error_value = make_status_bytes(status_byte, msg_byte,
2863 host_byte, driver_byte);
2865 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2866 if (!blk_pc_request(cmd->rq))
2867 printk(KERN_WARNING "cciss: cmd %p "
2868 "has SCSI Status 0x%x\n",
2869 cmd, cmd->err_info->ScsiStatus);
2870 return error_value;
2873 /* check the sense key */
2874 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2875 /* no status or recovered error */
2876 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2877 error_value = 0;
2879 if (check_for_unit_attention(h, cmd)) {
2880 *retry_cmd = !blk_pc_request(cmd->rq);
2881 return 0;
2884 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2885 if (error_value != 0)
2886 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2887 " sense key = 0x%x\n", cmd, sense_key);
2888 return error_value;
2891 /* SG_IO or similar, copy sense data back */
2892 if (cmd->rq->sense) {
2893 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2894 cmd->rq->sense_len = cmd->err_info->SenseLen;
2895 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2896 cmd->rq->sense_len);
2897 } else
2898 cmd->rq->sense_len = 0;
2900 return error_value;
2903 /* checks the status of the job and calls complete buffers to mark all
2904 * buffers for the completed job. Note that this function does not need
2905 * to hold the hba/queue lock.
2907 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2908 int timeout)
2910 int retry_cmd = 0;
2911 struct request *rq = cmd->rq;
2913 rq->errors = 0;
2915 if (timeout)
2916 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
2918 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
2919 goto after_error_processing;
2921 switch (cmd->err_info->CommandStatus) {
2922 case CMD_TARGET_STATUS:
2923 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
2924 break;
2925 case CMD_DATA_UNDERRUN:
2926 if (blk_fs_request(cmd->rq)) {
2927 printk(KERN_WARNING "cciss: cmd %p has"
2928 " completed with data underrun "
2929 "reported\n", cmd);
2930 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
2932 break;
2933 case CMD_DATA_OVERRUN:
2934 if (blk_fs_request(cmd->rq))
2935 printk(KERN_WARNING "cciss: cmd %p has"
2936 " completed with data overrun "
2937 "reported\n", cmd);
2938 break;
2939 case CMD_INVALID:
2940 printk(KERN_WARNING "cciss: cmd %p is "
2941 "reported invalid\n", cmd);
2942 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2943 cmd->err_info->CommandStatus, DRIVER_OK,
2944 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2945 break;
2946 case CMD_PROTOCOL_ERR:
2947 printk(KERN_WARNING "cciss: cmd %p has "
2948 "protocol error \n", cmd);
2949 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2950 cmd->err_info->CommandStatus, DRIVER_OK,
2951 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2952 break;
2953 case CMD_HARDWARE_ERR:
2954 printk(KERN_WARNING "cciss: cmd %p had "
2955 " hardware error\n", cmd);
2956 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2957 cmd->err_info->CommandStatus, DRIVER_OK,
2958 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2959 break;
2960 case CMD_CONNECTION_LOST:
2961 printk(KERN_WARNING "cciss: cmd %p had "
2962 "connection lost\n", cmd);
2963 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2964 cmd->err_info->CommandStatus, DRIVER_OK,
2965 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2966 break;
2967 case CMD_ABORTED:
2968 printk(KERN_WARNING "cciss: cmd %p was "
2969 "aborted\n", cmd);
2970 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2971 cmd->err_info->CommandStatus, DRIVER_OK,
2972 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2973 break;
2974 case CMD_ABORT_FAILED:
2975 printk(KERN_WARNING "cciss: cmd %p reports "
2976 "abort failed\n", cmd);
2977 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2978 cmd->err_info->CommandStatus, DRIVER_OK,
2979 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2980 break;
2981 case CMD_UNSOLICITED_ABORT:
2982 printk(KERN_WARNING "cciss%d: unsolicited "
2983 "abort %p\n", h->ctlr, cmd);
2984 if (cmd->retry_count < MAX_CMD_RETRIES) {
2985 retry_cmd = 1;
2986 printk(KERN_WARNING
2987 "cciss%d: retrying %p\n", h->ctlr, cmd);
2988 cmd->retry_count++;
2989 } else
2990 printk(KERN_WARNING
2991 "cciss%d: %p retried too "
2992 "many times\n", h->ctlr, cmd);
2993 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2994 cmd->err_info->CommandStatus, DRIVER_OK,
2995 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2996 break;
2997 case CMD_TIMEOUT:
2998 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
2999 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3000 cmd->err_info->CommandStatus, DRIVER_OK,
3001 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3002 break;
3003 default:
3004 printk(KERN_WARNING "cciss: cmd %p returned "
3005 "unknown status %x\n", cmd,
3006 cmd->err_info->CommandStatus);
3007 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3008 cmd->err_info->CommandStatus, DRIVER_OK,
3009 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3012 after_error_processing:
3014 /* We need to return this command */
3015 if (retry_cmd) {
3016 resend_cciss_cmd(h, cmd);
3017 return;
3019 cmd->rq->completion_data = cmd;
3020 blk_complete_request(cmd->rq);
3024 * Get a request and submit it to the controller.
3026 static void do_cciss_request(struct request_queue *q)
3028 ctlr_info_t *h = q->queuedata;
3029 CommandList_struct *c;
3030 sector_t start_blk;
3031 int seg;
3032 struct request *creq;
3033 u64bit temp64;
3034 struct scatterlist tmp_sg[MAXSGENTRIES];
3035 drive_info_struct *drv;
3036 int i, dir;
3038 /* We call start_io here in case there is a command waiting on the
3039 * queue that has not been sent.
3041 if (blk_queue_plugged(q))
3042 goto startio;
3044 queue:
3045 creq = blk_peek_request(q);
3046 if (!creq)
3047 goto startio;
3049 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
3051 if ((c = cmd_alloc(h, 1)) == NULL)
3052 goto full;
3054 blk_start_request(creq);
3056 spin_unlock_irq(q->queue_lock);
3058 c->cmd_type = CMD_RWREQ;
3059 c->rq = creq;
3061 /* fill in the request */
3062 drv = creq->rq_disk->private_data;
3063 c->Header.ReplyQueue = 0; // unused in simple mode
3064 /* got command from pool, so use the command block index instead */
3065 /* for direct lookups. */
3066 /* The first 2 bits are reserved for controller error reporting. */
3067 c->Header.Tag.lower = (c->cmdindex << 3);
3068 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
3069 c->Header.LUN.LogDev.VolId = drv->LunID;
3070 c->Header.LUN.LogDev.Mode = 1;
3071 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
3072 c->Request.Type.Type = TYPE_CMD; // It is a command.
3073 c->Request.Type.Attribute = ATTR_SIMPLE;
3074 c->Request.Type.Direction =
3075 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3076 c->Request.Timeout = 0; // Don't time out
3077 c->Request.CDB[0] =
3078 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3079 start_blk = blk_rq_pos(creq);
3080 #ifdef CCISS_DEBUG
3081 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3082 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3083 #endif /* CCISS_DEBUG */
3085 sg_init_table(tmp_sg, MAXSGENTRIES);
3086 seg = blk_rq_map_sg(q, creq, tmp_sg);
3088 /* get the DMA records for the setup */
3089 if (c->Request.Type.Direction == XFER_READ)
3090 dir = PCI_DMA_FROMDEVICE;
3091 else
3092 dir = PCI_DMA_TODEVICE;
3094 for (i = 0; i < seg; i++) {
3095 c->SG[i].Len = tmp_sg[i].length;
3096 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3097 tmp_sg[i].offset,
3098 tmp_sg[i].length, dir);
3099 c->SG[i].Addr.lower = temp64.val32.lower;
3100 c->SG[i].Addr.upper = temp64.val32.upper;
3101 c->SG[i].Ext = 0; // we are not chaining
3103 /* track how many SG entries we are using */
3104 if (seg > h->maxSG)
3105 h->maxSG = seg;
3107 #ifdef CCISS_DEBUG
3108 printk(KERN_DEBUG "cciss: Submitting %u sectors in %d segments\n",
3109 blk_rq_sectors(creq), seg);
3110 #endif /* CCISS_DEBUG */
3112 c->Header.SGList = c->Header.SGTotal = seg;
3113 if (likely(blk_fs_request(creq))) {
3114 if(h->cciss_read == CCISS_READ_10) {
3115 c->Request.CDB[1] = 0;
3116 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
3117 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3118 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3119 c->Request.CDB[5] = start_blk & 0xff;
3120 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
3121 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3122 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3123 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3124 } else {
3125 u32 upper32 = upper_32_bits(start_blk);
3127 c->Request.CDBLen = 16;
3128 c->Request.CDB[1]= 0;
3129 c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
3130 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3131 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3132 c->Request.CDB[5]= upper32 & 0xff;
3133 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3134 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3135 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3136 c->Request.CDB[9]= start_blk & 0xff;
3137 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3138 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3139 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3140 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3141 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3143 } else if (blk_pc_request(creq)) {
3144 c->Request.CDBLen = creq->cmd_len;
3145 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3146 } else {
3147 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3148 BUG();
3151 spin_lock_irq(q->queue_lock);
3153 addQ(&h->reqQ, c);
3154 h->Qdepth++;
3155 if (h->Qdepth > h->maxQsinceinit)
3156 h->maxQsinceinit = h->Qdepth;
3158 goto queue;
3159 full:
3160 blk_stop_queue(q);
3161 startio:
3162 /* We will already have the driver lock here so not need
3163 * to lock it.
3165 start_io(h);
3168 static inline unsigned long get_next_completion(ctlr_info_t *h)
3170 #ifdef CONFIG_CISS_SCSI_TAPE
3171 /* Any rejects from sendcmd() lying around? Process them first */
3172 if (h->scsi_rejects.ncompletions == 0)
3173 return h->access.command_completed(h);
3174 else {
3175 struct sendcmd_reject_list *srl;
3176 int n;
3177 srl = &h->scsi_rejects;
3178 n = --srl->ncompletions;
3179 /* printk("cciss%d: processing saved reject\n", h->ctlr); */
3180 printk("p");
3181 return srl->complete[n];
3183 #else
3184 return h->access.command_completed(h);
3185 #endif
3188 static inline int interrupt_pending(ctlr_info_t *h)
3190 #ifdef CONFIG_CISS_SCSI_TAPE
3191 return (h->access.intr_pending(h)
3192 || (h->scsi_rejects.ncompletions > 0));
3193 #else
3194 return h->access.intr_pending(h);
3195 #endif
3198 static inline long interrupt_not_for_us(ctlr_info_t *h)
3200 #ifdef CONFIG_CISS_SCSI_TAPE
3201 return (((h->access.intr_pending(h) == 0) ||
3202 (h->interrupts_enabled == 0))
3203 && (h->scsi_rejects.ncompletions == 0));
3204 #else
3205 return (((h->access.intr_pending(h) == 0) ||
3206 (h->interrupts_enabled == 0)));
3207 #endif
3210 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
3212 ctlr_info_t *h = dev_id;
3213 CommandList_struct *c;
3214 unsigned long flags;
3215 __u32 a, a1, a2;
3217 if (interrupt_not_for_us(h))
3218 return IRQ_NONE;
3220 * If there are completed commands in the completion queue,
3221 * we had better do something about it.
3223 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3224 while (interrupt_pending(h)) {
3225 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
3226 a1 = a;
3227 if ((a & 0x04)) {
3228 a2 = (a >> 3);
3229 if (a2 >= h->nr_cmds) {
3230 printk(KERN_WARNING
3231 "cciss: controller cciss%d failed, stopping.\n",
3232 h->ctlr);
3233 fail_all_cmds(h->ctlr);
3234 return IRQ_HANDLED;
3237 c = h->cmd_pool + a2;
3238 a = c->busaddr;
3240 } else {
3241 struct hlist_node *tmp;
3243 a &= ~3;
3244 c = NULL;
3245 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3246 if (c->busaddr == a)
3247 break;
3251 * If we've found the command, take it off the
3252 * completion Q and free it
3254 if (c && c->busaddr == a) {
3255 removeQ(c);
3256 if (c->cmd_type == CMD_RWREQ) {
3257 complete_command(h, c, 0);
3258 } else if (c->cmd_type == CMD_IOCTL_PEND) {
3259 complete(c->waiting);
3261 # ifdef CONFIG_CISS_SCSI_TAPE
3262 else if (c->cmd_type == CMD_SCSI)
3263 complete_scsi_command(c, 0, a1);
3264 # endif
3265 continue;
3270 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3271 return IRQ_HANDLED;
3274 static int scan_thread(void *data)
3276 ctlr_info_t *h = data;
3277 int rc;
3278 DECLARE_COMPLETION_ONSTACK(wait);
3279 h->rescan_wait = &wait;
3281 for (;;) {
3282 rc = wait_for_completion_interruptible(&wait);
3283 if (kthread_should_stop())
3284 break;
3285 if (!rc)
3286 rebuild_lun_table(h, 0);
3288 return 0;
3291 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3293 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3294 return 0;
3296 switch (c->err_info->SenseInfo[12]) {
3297 case STATE_CHANGED:
3298 printk(KERN_WARNING "cciss%d: a state change "
3299 "detected, command retried\n", h->ctlr);
3300 return 1;
3301 break;
3302 case LUN_FAILED:
3303 printk(KERN_WARNING "cciss%d: LUN failure "
3304 "detected, action required\n", h->ctlr);
3305 return 1;
3306 break;
3307 case REPORT_LUNS_CHANGED:
3308 printk(KERN_WARNING "cciss%d: report LUN data "
3309 "changed\n", h->ctlr);
3310 if (h->rescan_wait)
3311 complete(h->rescan_wait);
3312 return 1;
3313 break;
3314 case POWER_OR_RESET:
3315 printk(KERN_WARNING "cciss%d: a power on "
3316 "or device reset detected\n", h->ctlr);
3317 return 1;
3318 break;
3319 case UNIT_ATTENTION_CLEARED:
3320 printk(KERN_WARNING "cciss%d: unit attention "
3321 "cleared by another initiator\n", h->ctlr);
3322 return 1;
3323 break;
3324 default:
3325 printk(KERN_WARNING "cciss%d: unknown "
3326 "unit attention detected\n", h->ctlr);
3327 return 1;
3332 * We cannot read the structure directly, for portability we must use
3333 * the io functions.
3334 * This is for debug only.
3336 #ifdef CCISS_DEBUG
3337 static void print_cfg_table(CfgTable_struct *tb)
3339 int i;
3340 char temp_name[17];
3342 printk("Controller Configuration information\n");
3343 printk("------------------------------------\n");
3344 for (i = 0; i < 4; i++)
3345 temp_name[i] = readb(&(tb->Signature[i]));
3346 temp_name[4] = '\0';
3347 printk(" Signature = %s\n", temp_name);
3348 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3349 printk(" Transport methods supported = 0x%x\n",
3350 readl(&(tb->TransportSupport)));
3351 printk(" Transport methods active = 0x%x\n",
3352 readl(&(tb->TransportActive)));
3353 printk(" Requested transport Method = 0x%x\n",
3354 readl(&(tb->HostWrite.TransportRequest)));
3355 printk(" Coalesce Interrupt Delay = 0x%x\n",
3356 readl(&(tb->HostWrite.CoalIntDelay)));
3357 printk(" Coalesce Interrupt Count = 0x%x\n",
3358 readl(&(tb->HostWrite.CoalIntCount)));
3359 printk(" Max outstanding commands = 0x%d\n",
3360 readl(&(tb->CmdsOutMax)));
3361 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3362 for (i = 0; i < 16; i++)
3363 temp_name[i] = readb(&(tb->ServerName[i]));
3364 temp_name[16] = '\0';
3365 printk(" Server Name = %s\n", temp_name);
3366 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3368 #endif /* CCISS_DEBUG */
3370 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3372 int i, offset, mem_type, bar_type;
3373 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3374 return 0;
3375 offset = 0;
3376 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3377 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3378 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3379 offset += 4;
3380 else {
3381 mem_type = pci_resource_flags(pdev, i) &
3382 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3383 switch (mem_type) {
3384 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3385 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3386 offset += 4; /* 32 bit */
3387 break;
3388 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3389 offset += 8;
3390 break;
3391 default: /* reserved in PCI 2.2 */
3392 printk(KERN_WARNING
3393 "Base address is invalid\n");
3394 return -1;
3395 break;
3398 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3399 return i + 1;
3401 return -1;
3404 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3405 * controllers that are capable. If not, we use IO-APIC mode.
3408 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3409 struct pci_dev *pdev, __u32 board_id)
3411 #ifdef CONFIG_PCI_MSI
3412 int err;
3413 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3414 {0, 2}, {0, 3}
3417 /* Some boards advertise MSI but don't really support it */
3418 if ((board_id == 0x40700E11) ||
3419 (board_id == 0x40800E11) ||
3420 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3421 goto default_int_mode;
3423 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3424 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3425 if (!err) {
3426 c->intr[0] = cciss_msix_entries[0].vector;
3427 c->intr[1] = cciss_msix_entries[1].vector;
3428 c->intr[2] = cciss_msix_entries[2].vector;
3429 c->intr[3] = cciss_msix_entries[3].vector;
3430 c->msix_vector = 1;
3431 return;
3433 if (err > 0) {
3434 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3435 "available\n", err);
3436 goto default_int_mode;
3437 } else {
3438 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3439 err);
3440 goto default_int_mode;
3443 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3444 if (!pci_enable_msi(pdev)) {
3445 c->msi_vector = 1;
3446 } else {
3447 printk(KERN_WARNING "cciss: MSI init failed\n");
3450 default_int_mode:
3451 #endif /* CONFIG_PCI_MSI */
3452 /* if we get here we're going to use the default interrupt mode */
3453 c->intr[SIMPLE_MODE_INT] = pdev->irq;
3454 return;
3457 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3459 ushort subsystem_vendor_id, subsystem_device_id, command;
3460 __u32 board_id, scratchpad = 0;
3461 __u64 cfg_offset;
3462 __u32 cfg_base_addr;
3463 __u64 cfg_base_addr_index;
3464 int i, err;
3466 /* check to see if controller has been disabled */
3467 /* BEFORE trying to enable it */
3468 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3469 if (!(command & 0x02)) {
3470 printk(KERN_WARNING
3471 "cciss: controller appears to be disabled\n");
3472 return -ENODEV;
3475 err = pci_enable_device(pdev);
3476 if (err) {
3477 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3478 return err;
3481 err = pci_request_regions(pdev, "cciss");
3482 if (err) {
3483 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3484 "aborting\n");
3485 return err;
3488 subsystem_vendor_id = pdev->subsystem_vendor;
3489 subsystem_device_id = pdev->subsystem_device;
3490 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3491 subsystem_vendor_id);
3493 #ifdef CCISS_DEBUG
3494 printk("command = %x\n", command);
3495 printk("irq = %x\n", pdev->irq);
3496 printk("board_id = %x\n", board_id);
3497 #endif /* CCISS_DEBUG */
3499 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3500 * else we use the IO-APIC interrupt assigned to us by system ROM.
3502 cciss_interrupt_mode(c, pdev, board_id);
3504 /* find the memory BAR */
3505 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3506 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3507 break;
3509 if (i == DEVICE_COUNT_RESOURCE) {
3510 printk(KERN_WARNING "cciss: No memory BAR found\n");
3511 err = -ENODEV;
3512 goto err_out_free_res;
3515 c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3516 * already removed
3519 #ifdef CCISS_DEBUG
3520 printk("address 0 = %lx\n", c->paddr);
3521 #endif /* CCISS_DEBUG */
3522 c->vaddr = remap_pci_mem(c->paddr, 0x250);
3524 /* Wait for the board to become ready. (PCI hotplug needs this.)
3525 * We poll for up to 120 secs, once per 100ms. */
3526 for (i = 0; i < 1200; i++) {
3527 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3528 if (scratchpad == CCISS_FIRMWARE_READY)
3529 break;
3530 set_current_state(TASK_INTERRUPTIBLE);
3531 schedule_timeout(HZ / 10); /* wait 100ms */
3533 if (scratchpad != CCISS_FIRMWARE_READY) {
3534 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
3535 err = -ENODEV;
3536 goto err_out_free_res;
3539 /* get the address index number */
3540 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3541 cfg_base_addr &= (__u32) 0x0000ffff;
3542 #ifdef CCISS_DEBUG
3543 printk("cfg base address = %x\n", cfg_base_addr);
3544 #endif /* CCISS_DEBUG */
3545 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3546 #ifdef CCISS_DEBUG
3547 printk("cfg base address index = %llx\n",
3548 (unsigned long long)cfg_base_addr_index);
3549 #endif /* CCISS_DEBUG */
3550 if (cfg_base_addr_index == -1) {
3551 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3552 err = -ENODEV;
3553 goto err_out_free_res;
3556 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3557 #ifdef CCISS_DEBUG
3558 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3559 #endif /* CCISS_DEBUG */
3560 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3561 cfg_base_addr_index) +
3562 cfg_offset, sizeof(CfgTable_struct));
3563 c->board_id = board_id;
3565 #ifdef CCISS_DEBUG
3566 print_cfg_table(c->cfgtable);
3567 #endif /* CCISS_DEBUG */
3569 /* Some controllers support Zero Memory Raid (ZMR).
3570 * When configured in ZMR mode the number of supported
3571 * commands drops to 64. So instead of just setting an
3572 * arbitrary value we make the driver a little smarter.
3573 * We read the config table to tell us how many commands
3574 * are supported on the controller then subtract 4 to
3575 * leave a little room for ioctl calls.
3577 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3578 for (i = 0; i < ARRAY_SIZE(products); i++) {
3579 if (board_id == products[i].board_id) {
3580 c->product_name = products[i].product_name;
3581 c->access = *(products[i].access);
3582 c->nr_cmds = c->max_commands - 4;
3583 break;
3586 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3587 (readb(&c->cfgtable->Signature[1]) != 'I') ||
3588 (readb(&c->cfgtable->Signature[2]) != 'S') ||
3589 (readb(&c->cfgtable->Signature[3]) != 'S')) {
3590 printk("Does not appear to be a valid CISS config table\n");
3591 err = -ENODEV;
3592 goto err_out_free_res;
3594 /* We didn't find the controller in our list. We know the
3595 * signature is valid. If it's an HP device let's try to
3596 * bind to the device and fire it up. Otherwise we bail.
3598 if (i == ARRAY_SIZE(products)) {
3599 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3600 c->product_name = products[i-1].product_name;
3601 c->access = *(products[i-1].access);
3602 c->nr_cmds = c->max_commands - 4;
3603 printk(KERN_WARNING "cciss: This is an unknown "
3604 "Smart Array controller.\n"
3605 "cciss: Please update to the latest driver "
3606 "available from www.hp.com.\n");
3607 } else {
3608 printk(KERN_WARNING "cciss: Sorry, I don't know how"
3609 " to access the Smart Array controller %08lx\n"
3610 , (unsigned long)board_id);
3611 err = -ENODEV;
3612 goto err_out_free_res;
3615 #ifdef CONFIG_X86
3617 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3618 __u32 prefetch;
3619 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3620 prefetch |= 0x100;
3621 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3623 #endif
3625 /* Disabling DMA prefetch and refetch for the P600.
3626 * An ASIC bug may result in accesses to invalid memory addresses.
3627 * We've disabled prefetch for some time now. Testing with XEN
3628 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3630 if(board_id == 0x3225103C) {
3631 __u32 dma_prefetch;
3632 __u32 dma_refetch;
3633 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3634 dma_prefetch |= 0x8000;
3635 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3636 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3637 dma_refetch |= 0x1;
3638 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3641 #ifdef CCISS_DEBUG
3642 printk("Trying to put board into Simple mode\n");
3643 #endif /* CCISS_DEBUG */
3644 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3645 /* Update the field, and then ring the doorbell */
3646 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3647 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3649 /* under certain very rare conditions, this can take awhile.
3650 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3651 * as we enter this code.) */
3652 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3653 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3654 break;
3655 /* delay and try again */
3656 set_current_state(TASK_INTERRUPTIBLE);
3657 schedule_timeout(10);
3660 #ifdef CCISS_DEBUG
3661 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3662 readl(c->vaddr + SA5_DOORBELL));
3663 #endif /* CCISS_DEBUG */
3664 #ifdef CCISS_DEBUG
3665 print_cfg_table(c->cfgtable);
3666 #endif /* CCISS_DEBUG */
3668 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3669 printk(KERN_WARNING "cciss: unable to get board into"
3670 " simple mode\n");
3671 err = -ENODEV;
3672 goto err_out_free_res;
3674 return 0;
3676 err_out_free_res:
3678 * Deliberately omit pci_disable_device(): it does something nasty to
3679 * Smart Array controllers that pci_enable_device does not undo
3681 pci_release_regions(pdev);
3682 return err;
3685 /* Function to find the first free pointer into our hba[] array
3686 * Returns -1 if no free entries are left.
3688 static int alloc_cciss_hba(void)
3690 int i;
3692 for (i = 0; i < MAX_CTLR; i++) {
3693 if (!hba[i]) {
3694 ctlr_info_t *p;
3696 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3697 if (!p)
3698 goto Enomem;
3699 hba[i] = p;
3700 return i;
3703 printk(KERN_WARNING "cciss: This driver supports a maximum"
3704 " of %d controllers.\n", MAX_CTLR);
3705 return -1;
3706 Enomem:
3707 printk(KERN_ERR "cciss: out of memory.\n");
3708 return -1;
3711 static void free_hba(int i)
3713 ctlr_info_t *p = hba[i];
3714 int n;
3716 hba[i] = NULL;
3717 for (n = 0; n < CISS_MAX_LUN; n++)
3718 put_disk(p->gendisk[n]);
3719 kfree(p);
3722 /* Send a message CDB to the firmware. */
3723 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
3725 typedef struct {
3726 CommandListHeader_struct CommandHeader;
3727 RequestBlock_struct Request;
3728 ErrDescriptor_struct ErrorDescriptor;
3729 } Command;
3730 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
3731 Command *cmd;
3732 dma_addr_t paddr64;
3733 uint32_t paddr32, tag;
3734 void __iomem *vaddr;
3735 int i, err;
3737 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
3738 if (vaddr == NULL)
3739 return -ENOMEM;
3741 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3742 CCISS commands, so they must be allocated from the lower 4GiB of
3743 memory. */
3744 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3745 if (err) {
3746 iounmap(vaddr);
3747 return -ENOMEM;
3750 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3751 if (cmd == NULL) {
3752 iounmap(vaddr);
3753 return -ENOMEM;
3756 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3757 although there's no guarantee, we assume that the address is at
3758 least 4-byte aligned (most likely, it's page-aligned). */
3759 paddr32 = paddr64;
3761 cmd->CommandHeader.ReplyQueue = 0;
3762 cmd->CommandHeader.SGList = 0;
3763 cmd->CommandHeader.SGTotal = 0;
3764 cmd->CommandHeader.Tag.lower = paddr32;
3765 cmd->CommandHeader.Tag.upper = 0;
3766 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3768 cmd->Request.CDBLen = 16;
3769 cmd->Request.Type.Type = TYPE_MSG;
3770 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3771 cmd->Request.Type.Direction = XFER_NONE;
3772 cmd->Request.Timeout = 0; /* Don't time out */
3773 cmd->Request.CDB[0] = opcode;
3774 cmd->Request.CDB[1] = type;
3775 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
3777 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
3778 cmd->ErrorDescriptor.Addr.upper = 0;
3779 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
3781 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3783 for (i = 0; i < 10; i++) {
3784 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3785 if ((tag & ~3) == paddr32)
3786 break;
3787 schedule_timeout_uninterruptible(HZ);
3790 iounmap(vaddr);
3792 /* we leak the DMA buffer here ... no choice since the controller could
3793 still complete the command. */
3794 if (i == 10) {
3795 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
3796 opcode, type);
3797 return -ETIMEDOUT;
3800 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3802 if (tag & 2) {
3803 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
3804 opcode, type);
3805 return -EIO;
3808 printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
3809 opcode, type);
3810 return 0;
3813 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
3814 #define cciss_noop(p) cciss_message(p, 3, 0)
3816 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
3818 /* the #defines are stolen from drivers/pci/msi.h. */
3819 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
3820 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
3822 int pos;
3823 u16 control = 0;
3825 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3826 if (pos) {
3827 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3828 if (control & PCI_MSI_FLAGS_ENABLE) {
3829 printk(KERN_INFO "cciss: resetting MSI\n");
3830 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
3834 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3835 if (pos) {
3836 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3837 if (control & PCI_MSIX_FLAGS_ENABLE) {
3838 printk(KERN_INFO "cciss: resetting MSI-X\n");
3839 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
3843 return 0;
3846 /* This does a hard reset of the controller using PCI power management
3847 * states. */
3848 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
3850 u16 pmcsr, saved_config_space[32];
3851 int i, pos;
3853 printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
3855 /* This is very nearly the same thing as
3857 pci_save_state(pci_dev);
3858 pci_set_power_state(pci_dev, PCI_D3hot);
3859 pci_set_power_state(pci_dev, PCI_D0);
3860 pci_restore_state(pci_dev);
3862 but we can't use these nice canned kernel routines on
3863 kexec, because they also check the MSI/MSI-X state in PCI
3864 configuration space and do the wrong thing when it is
3865 set/cleared. Also, the pci_save/restore_state functions
3866 violate the ordering requirements for restoring the
3867 configuration space from the CCISS document (see the
3868 comment below). So we roll our own .... */
3870 for (i = 0; i < 32; i++)
3871 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3873 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3874 if (pos == 0) {
3875 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
3876 return -ENODEV;
3879 /* Quoting from the Open CISS Specification: "The Power
3880 * Management Control/Status Register (CSR) controls the power
3881 * state of the device. The normal operating state is D0,
3882 * CSR=00h. The software off state is D3, CSR=03h. To reset
3883 * the controller, place the interface device in D3 then to
3884 * D0, this causes a secondary PCI reset which will reset the
3885 * controller." */
3887 /* enter the D3hot power management state */
3888 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3889 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3890 pmcsr |= PCI_D3hot;
3891 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3893 schedule_timeout_uninterruptible(HZ >> 1);
3895 /* enter the D0 power management state */
3896 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3897 pmcsr |= PCI_D0;
3898 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3900 schedule_timeout_uninterruptible(HZ >> 1);
3902 /* Restore the PCI configuration space. The Open CISS
3903 * Specification says, "Restore the PCI Configuration
3904 * Registers, offsets 00h through 60h. It is important to
3905 * restore the command register, 16-bits at offset 04h,
3906 * last. Do not restore the configuration status register,
3907 * 16-bits at offset 06h." Note that the offset is 2*i. */
3908 for (i = 0; i < 32; i++) {
3909 if (i == 2 || i == 3)
3910 continue;
3911 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3913 wmb();
3914 pci_write_config_word(pdev, 4, saved_config_space[2]);
3916 return 0;
3920 * This is it. Find all the controllers and register them. I really hate
3921 * stealing all these major device numbers.
3922 * returns the number of block devices registered.
3924 static int __devinit cciss_init_one(struct pci_dev *pdev,
3925 const struct pci_device_id *ent)
3927 int i;
3928 int j = 0;
3929 int rc;
3930 int dac, return_code;
3931 InquiryData_struct *inq_buff = NULL;
3933 if (reset_devices) {
3934 /* Reset the controller with a PCI power-cycle */
3935 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
3936 return -ENODEV;
3938 /* Now try to get the controller to respond to a no-op. Some
3939 devices (notably the HP Smart Array 5i Controller) need
3940 up to 30 seconds to respond. */
3941 for (i=0; i<30; i++) {
3942 if (cciss_noop(pdev) == 0)
3943 break;
3945 schedule_timeout_uninterruptible(HZ);
3947 if (i == 30) {
3948 printk(KERN_ERR "cciss: controller seems dead\n");
3949 return -EBUSY;
3953 i = alloc_cciss_hba();
3954 if (i < 0)
3955 return -1;
3957 hba[i]->busy_initializing = 1;
3958 INIT_HLIST_HEAD(&hba[i]->cmpQ);
3959 INIT_HLIST_HEAD(&hba[i]->reqQ);
3961 if (cciss_pci_init(hba[i], pdev) != 0)
3962 goto clean0;
3964 sprintf(hba[i]->devname, "cciss%d", i);
3965 hba[i]->ctlr = i;
3966 hba[i]->pdev = pdev;
3968 if (cciss_create_hba_sysfs_entry(hba[i]))
3969 goto clean0;
3971 /* configure PCI DMA stuff */
3972 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
3973 dac = 1;
3974 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
3975 dac = 0;
3976 else {
3977 printk(KERN_ERR "cciss: no suitable DMA available\n");
3978 goto clean1;
3982 * register with the major number, or get a dynamic major number
3983 * by passing 0 as argument. This is done for greater than
3984 * 8 controller support.
3986 if (i < MAX_CTLR_ORIG)
3987 hba[i]->major = COMPAQ_CISS_MAJOR + i;
3988 rc = register_blkdev(hba[i]->major, hba[i]->devname);
3989 if (rc == -EBUSY || rc == -EINVAL) {
3990 printk(KERN_ERR
3991 "cciss: Unable to get major number %d for %s "
3992 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
3993 goto clean1;
3994 } else {
3995 if (i >= MAX_CTLR_ORIG)
3996 hba[i]->major = rc;
3999 /* make sure the board interrupts are off */
4000 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4001 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
4002 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
4003 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4004 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
4005 goto clean2;
4008 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4009 hba[i]->devname, pdev->device, pci_name(pdev),
4010 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
4012 hba[i]->cmd_pool_bits =
4013 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4014 * sizeof(unsigned long), GFP_KERNEL);
4015 hba[i]->cmd_pool = (CommandList_struct *)
4016 pci_alloc_consistent(hba[i]->pdev,
4017 hba[i]->nr_cmds * sizeof(CommandList_struct),
4018 &(hba[i]->cmd_pool_dhandle));
4019 hba[i]->errinfo_pool = (ErrorInfo_struct *)
4020 pci_alloc_consistent(hba[i]->pdev,
4021 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4022 &(hba[i]->errinfo_pool_dhandle));
4023 if ((hba[i]->cmd_pool_bits == NULL)
4024 || (hba[i]->cmd_pool == NULL)
4025 || (hba[i]->errinfo_pool == NULL)) {
4026 printk(KERN_ERR "cciss: out of memory");
4027 goto clean4;
4029 #ifdef CONFIG_CISS_SCSI_TAPE
4030 hba[i]->scsi_rejects.complete =
4031 kmalloc(sizeof(hba[i]->scsi_rejects.complete[0]) *
4032 (hba[i]->nr_cmds + 5), GFP_KERNEL);
4033 if (hba[i]->scsi_rejects.complete == NULL) {
4034 printk(KERN_ERR "cciss: out of memory");
4035 goto clean4;
4037 #endif
4038 spin_lock_init(&hba[i]->lock);
4040 /* Initialize the pdev driver private data.
4041 have it point to hba[i]. */
4042 pci_set_drvdata(pdev, hba[i]);
4043 /* command and error info recs zeroed out before
4044 they are used */
4045 memset(hba[i]->cmd_pool_bits, 0,
4046 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4047 * sizeof(unsigned long));
4049 hba[i]->num_luns = 0;
4050 hba[i]->highest_lun = -1;
4051 for (j = 0; j < CISS_MAX_LUN; j++) {
4052 hba[i]->drv[j].raid_level = -1;
4053 hba[i]->drv[j].queue = NULL;
4054 hba[i]->gendisk[j] = NULL;
4057 cciss_scsi_setup(i);
4059 /* Turn the interrupts on so we can service requests */
4060 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4062 /* Get the firmware version */
4063 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4064 if (inq_buff == NULL) {
4065 printk(KERN_ERR "cciss: out of memory\n");
4066 goto clean4;
4069 return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4070 sizeof(InquiryData_struct), 0, 0 , 0, TYPE_CMD);
4071 if (return_code == IO_OK) {
4072 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4073 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4074 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4075 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4076 } else { /* send command failed */
4077 printk(KERN_WARNING "cciss: unable to determine firmware"
4078 " version of controller\n");
4081 cciss_procinit(i);
4083 hba[i]->cciss_max_sectors = 2048;
4085 hba[i]->busy_initializing = 0;
4087 rebuild_lun_table(hba[i], 1);
4088 hba[i]->cciss_scan_thread = kthread_run(scan_thread, hba[i],
4089 "cciss_scan%02d", i);
4090 if (IS_ERR(hba[i]->cciss_scan_thread))
4091 return PTR_ERR(hba[i]->cciss_scan_thread);
4093 return 1;
4095 clean4:
4096 kfree(inq_buff);
4097 #ifdef CONFIG_CISS_SCSI_TAPE
4098 kfree(hba[i]->scsi_rejects.complete);
4099 #endif
4100 kfree(hba[i]->cmd_pool_bits);
4101 if (hba[i]->cmd_pool)
4102 pci_free_consistent(hba[i]->pdev,
4103 hba[i]->nr_cmds * sizeof(CommandList_struct),
4104 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4105 if (hba[i]->errinfo_pool)
4106 pci_free_consistent(hba[i]->pdev,
4107 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4108 hba[i]->errinfo_pool,
4109 hba[i]->errinfo_pool_dhandle);
4110 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
4111 clean2:
4112 unregister_blkdev(hba[i]->major, hba[i]->devname);
4113 clean1:
4114 cciss_destroy_hba_sysfs_entry(hba[i]);
4115 clean0:
4116 hba[i]->busy_initializing = 0;
4117 /* cleanup any queues that may have been initialized */
4118 for (j=0; j <= hba[i]->highest_lun; j++){
4119 drive_info_struct *drv = &(hba[i]->drv[j]);
4120 if (drv->queue)
4121 blk_cleanup_queue(drv->queue);
4124 * Deliberately omit pci_disable_device(): it does something nasty to
4125 * Smart Array controllers that pci_enable_device does not undo
4127 pci_release_regions(pdev);
4128 pci_set_drvdata(pdev, NULL);
4129 free_hba(i);
4130 return -1;
4133 static void cciss_shutdown(struct pci_dev *pdev)
4135 ctlr_info_t *tmp_ptr;
4136 int i;
4137 char flush_buf[4];
4138 int return_code;
4140 tmp_ptr = pci_get_drvdata(pdev);
4141 if (tmp_ptr == NULL)
4142 return;
4143 i = tmp_ptr->ctlr;
4144 if (hba[i] == NULL)
4145 return;
4147 /* Turn board interrupts off and send the flush cache command */
4148 /* sendcmd will turn off interrupt, and send the flush...
4149 * To write all data in the battery backed cache to disks */
4150 memset(flush_buf, 0, 4);
4151 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0, 0, 0, NULL,
4152 TYPE_CMD);
4153 if (return_code == IO_OK) {
4154 printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
4155 } else {
4156 printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
4158 free_irq(hba[i]->intr[2], hba[i]);
4161 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4163 ctlr_info_t *tmp_ptr;
4164 int i, j;
4166 if (pci_get_drvdata(pdev) == NULL) {
4167 printk(KERN_ERR "cciss: Unable to remove device \n");
4168 return;
4171 tmp_ptr = pci_get_drvdata(pdev);
4172 i = tmp_ptr->ctlr;
4173 if (hba[i] == NULL) {
4174 printk(KERN_ERR "cciss: device appears to "
4175 "already be removed \n");
4176 return;
4179 kthread_stop(hba[i]->cciss_scan_thread);
4181 remove_proc_entry(hba[i]->devname, proc_cciss);
4182 unregister_blkdev(hba[i]->major, hba[i]->devname);
4184 /* remove it from the disk list */
4185 for (j = 0; j < CISS_MAX_LUN; j++) {
4186 struct gendisk *disk = hba[i]->gendisk[j];
4187 if (disk) {
4188 struct request_queue *q = disk->queue;
4190 if (disk->flags & GENHD_FL_UP)
4191 del_gendisk(disk);
4192 if (q)
4193 blk_cleanup_queue(q);
4197 #ifdef CONFIG_CISS_SCSI_TAPE
4198 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
4199 #endif
4201 cciss_shutdown(pdev);
4203 #ifdef CONFIG_PCI_MSI
4204 if (hba[i]->msix_vector)
4205 pci_disable_msix(hba[i]->pdev);
4206 else if (hba[i]->msi_vector)
4207 pci_disable_msi(hba[i]->pdev);
4208 #endif /* CONFIG_PCI_MSI */
4210 iounmap(hba[i]->vaddr);
4212 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4213 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4214 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4215 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4216 kfree(hba[i]->cmd_pool_bits);
4217 #ifdef CONFIG_CISS_SCSI_TAPE
4218 kfree(hba[i]->scsi_rejects.complete);
4219 #endif
4221 * Deliberately omit pci_disable_device(): it does something nasty to
4222 * Smart Array controllers that pci_enable_device does not undo
4224 pci_release_regions(pdev);
4225 pci_set_drvdata(pdev, NULL);
4226 cciss_destroy_hba_sysfs_entry(hba[i]);
4227 free_hba(i);
4230 static struct pci_driver cciss_pci_driver = {
4231 .name = "cciss",
4232 .probe = cciss_init_one,
4233 .remove = __devexit_p(cciss_remove_one),
4234 .id_table = cciss_pci_device_id, /* id_table */
4235 .shutdown = cciss_shutdown,
4239 * This is it. Register the PCI driver information for the cards we control
4240 * the OS will call our registered routines when it finds one of our cards.
4242 static int __init cciss_init(void)
4244 int err;
4247 * The hardware requires that commands are aligned on a 64-bit
4248 * boundary. Given that we use pci_alloc_consistent() to allocate an
4249 * array of them, the size must be a multiple of 8 bytes.
4251 BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
4253 printk(KERN_INFO DRIVER_NAME "\n");
4255 err = bus_register(&cciss_bus_type);
4256 if (err)
4257 return err;
4259 /* Register for our PCI devices */
4260 err = pci_register_driver(&cciss_pci_driver);
4261 if (err)
4262 goto err_bus_register;
4264 return 0;
4266 err_bus_register:
4267 bus_unregister(&cciss_bus_type);
4268 return err;
4271 static void __exit cciss_cleanup(void)
4273 int i;
4275 pci_unregister_driver(&cciss_pci_driver);
4276 /* double check that all controller entrys have been removed */
4277 for (i = 0; i < MAX_CTLR; i++) {
4278 if (hba[i] != NULL) {
4279 printk(KERN_WARNING "cciss: had to remove"
4280 " controller %d\n", i);
4281 cciss_remove_one(hba[i]->pdev);
4284 remove_proc_entry("driver/cciss", NULL);
4285 bus_unregister(&cciss_bus_type);
4288 static void fail_all_cmds(unsigned long ctlr)
4290 /* If we get here, the board is apparently dead. */
4291 ctlr_info_t *h = hba[ctlr];
4292 CommandList_struct *c;
4293 unsigned long flags;
4295 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
4296 h->alive = 0; /* the controller apparently died... */
4298 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
4300 pci_disable_device(h->pdev); /* Make sure it is really dead. */
4302 /* move everything off the request queue onto the completed queue */
4303 while (!hlist_empty(&h->reqQ)) {
4304 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
4305 removeQ(c);
4306 h->Qdepth--;
4307 addQ(&h->cmpQ, c);
4310 /* Now, fail everything on the completed queue with a HW error */
4311 while (!hlist_empty(&h->cmpQ)) {
4312 c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
4313 removeQ(c);
4314 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4315 if (c->cmd_type == CMD_RWREQ) {
4316 complete_command(h, c, 0);
4317 } else if (c->cmd_type == CMD_IOCTL_PEND)
4318 complete(c->waiting);
4319 #ifdef CONFIG_CISS_SCSI_TAPE
4320 else if (c->cmd_type == CMD_SCSI)
4321 complete_scsi_command(c, 0, 0);
4322 #endif
4324 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
4325 return;
4328 module_init(cciss_init);
4329 module_exit(cciss_cleanup);