2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
35 #include <asm/system.h>
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
42 #include "fw-transaction.h"
44 #define DESCRIPTOR_OUTPUT_MORE 0
45 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
46 #define DESCRIPTOR_INPUT_MORE (2 << 12)
47 #define DESCRIPTOR_INPUT_LAST (3 << 12)
48 #define DESCRIPTOR_STATUS (1 << 11)
49 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
50 #define DESCRIPTOR_PING (1 << 7)
51 #define DESCRIPTOR_YY (1 << 6)
52 #define DESCRIPTOR_NO_IRQ (0 << 4)
53 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
54 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
55 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
56 #define DESCRIPTOR_WAIT (3 << 0)
62 __le32 branch_address
;
64 __le16 transfer_status
;
65 } __attribute__((aligned(16)));
67 struct db_descriptor
{
70 __le16 second_req_count
;
71 __le16 first_req_count
;
72 __le32 branch_address
;
73 __le16 second_res_count
;
74 __le16 first_res_count
;
79 } __attribute__((aligned(16)));
81 #define CONTROL_SET(regs) (regs)
82 #define CONTROL_CLEAR(regs) ((regs) + 4)
83 #define COMMAND_PTR(regs) ((regs) + 12)
84 #define CONTEXT_MATCH(regs) ((regs) + 16)
87 struct descriptor descriptor
;
88 struct ar_buffer
*next
;
94 struct ar_buffer
*current_buffer
;
95 struct ar_buffer
*last_buffer
;
98 struct tasklet_struct tasklet
;
103 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
104 struct descriptor
*d
,
105 struct descriptor
*last
);
108 * A buffer that contains a block of DMA-able coherent memory used for
109 * storing a portion of a DMA descriptor program.
111 struct descriptor_buffer
{
112 struct list_head list
;
113 dma_addr_t buffer_bus
;
116 struct descriptor buffer
[0];
120 struct fw_ohci
*ohci
;
122 int total_allocation
;
125 * List of page-sized buffers for storing DMA descriptors.
126 * Head of list contains buffers in use and tail of list contains
129 struct list_head buffer_list
;
132 * Pointer to a buffer inside buffer_list that contains the tail
133 * end of the current DMA program.
135 struct descriptor_buffer
*buffer_tail
;
138 * The descriptor containing the branch address of the first
139 * descriptor that has not yet been filled by the device.
141 struct descriptor
*last
;
144 * The last descriptor in the DMA program. It contains the branch
145 * address that must be updated upon appending a new descriptor.
147 struct descriptor
*prev
;
149 descriptor_callback_t callback
;
151 struct tasklet_struct tasklet
;
154 #define IT_HEADER_SY(v) ((v) << 0)
155 #define IT_HEADER_TCODE(v) ((v) << 4)
156 #define IT_HEADER_CHANNEL(v) ((v) << 8)
157 #define IT_HEADER_TAG(v) ((v) << 14)
158 #define IT_HEADER_SPEED(v) ((v) << 16)
159 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
162 struct fw_iso_context base
;
163 struct context context
;
166 size_t header_length
;
169 #define CONFIG_ROM_SIZE 1024
175 __iomem
char *registers
;
176 dma_addr_t self_id_bus
;
178 struct tasklet_struct bus_reset_tasklet
;
181 int request_generation
; /* for timestamping incoming requests */
184 bool bus_reset_packet_quirk
;
187 * Spinlock for accessing fw_ohci data. Never call out of
188 * this driver with this lock held.
191 u32 self_id_buffer
[512];
193 /* Config rom buffers */
195 dma_addr_t config_rom_bus
;
196 __be32
*next_config_rom
;
197 dma_addr_t next_config_rom_bus
;
200 struct ar_context ar_request_ctx
;
201 struct ar_context ar_response_ctx
;
202 struct context at_request_ctx
;
203 struct context at_response_ctx
;
206 struct iso_context
*it_context_list
;
208 struct iso_context
*ir_context_list
;
211 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
213 return container_of(card
, struct fw_ohci
, card
);
216 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
217 #define IR_CONTEXT_BUFFER_FILL 0x80000000
218 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
219 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
220 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
221 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
223 #define CONTEXT_RUN 0x8000
224 #define CONTEXT_WAKE 0x1000
225 #define CONTEXT_DEAD 0x0800
226 #define CONTEXT_ACTIVE 0x0400
228 #define OHCI1394_MAX_AT_REQ_RETRIES 0x2
229 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
230 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
232 #define FW_OHCI_MAJOR 240
233 #define OHCI1394_REGISTER_SIZE 0x800
234 #define OHCI_LOOP_COUNT 500
235 #define OHCI1394_PCI_HCI_Control 0x40
236 #define SELF_ID_BUF_SIZE 0x800
237 #define OHCI_TCODE_PHY_PACKET 0x0e
238 #define OHCI_VERSION_1_1 0x010010
240 static char ohci_driver_name
[] = KBUILD_MODNAME
;
242 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
244 #define OHCI_PARAM_DEBUG_AT_AR 1
245 #define OHCI_PARAM_DEBUG_SELFIDS 2
246 #define OHCI_PARAM_DEBUG_IRQS 4
247 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
249 static int param_debug
;
250 module_param_named(debug
, param_debug
, int, 0644);
251 MODULE_PARM_DESC(debug
, "Verbose logging (default = 0"
252 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR
)
253 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS
)
254 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS
)
255 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS
)
256 ", or a combination, or all = -1)");
258 static void log_irqs(u32 evt
)
260 if (likely(!(param_debug
&
261 (OHCI_PARAM_DEBUG_IRQS
| OHCI_PARAM_DEBUG_BUSRESETS
))))
264 if (!(param_debug
& OHCI_PARAM_DEBUG_IRQS
) &&
265 !(evt
& OHCI1394_busReset
))
268 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt
,
269 evt
& OHCI1394_selfIDComplete
? " selfID" : "",
270 evt
& OHCI1394_RQPkt
? " AR_req" : "",
271 evt
& OHCI1394_RSPkt
? " AR_resp" : "",
272 evt
& OHCI1394_reqTxComplete
? " AT_req" : "",
273 evt
& OHCI1394_respTxComplete
? " AT_resp" : "",
274 evt
& OHCI1394_isochRx
? " IR" : "",
275 evt
& OHCI1394_isochTx
? " IT" : "",
276 evt
& OHCI1394_postedWriteErr
? " postedWriteErr" : "",
277 evt
& OHCI1394_cycleTooLong
? " cycleTooLong" : "",
278 evt
& OHCI1394_cycle64Seconds
? " cycle64Seconds" : "",
279 evt
& OHCI1394_regAccessFail
? " regAccessFail" : "",
280 evt
& OHCI1394_busReset
? " busReset" : "",
281 evt
& ~(OHCI1394_selfIDComplete
| OHCI1394_RQPkt
|
282 OHCI1394_RSPkt
| OHCI1394_reqTxComplete
|
283 OHCI1394_respTxComplete
| OHCI1394_isochRx
|
284 OHCI1394_isochTx
| OHCI1394_postedWriteErr
|
285 OHCI1394_cycleTooLong
| OHCI1394_cycle64Seconds
|
286 OHCI1394_regAccessFail
| OHCI1394_busReset
)
290 static const char *speed
[] = {
291 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
293 static const char *power
[] = {
294 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
295 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
297 static const char port
[] = { '.', '-', 'p', 'c', };
299 static char _p(u32
*s
, int shift
)
301 return port
[*s
>> shift
& 3];
304 static void log_selfids(int node_id
, int generation
, int self_id_count
, u32
*s
)
306 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_SELFIDS
)))
309 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
310 self_id_count
, generation
, node_id
);
312 for (; self_id_count
--; ++s
)
313 if ((*s
& 1 << 23) == 0)
314 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
315 "%s gc=%d %s %s%s%s\n",
316 *s
, *s
>> 24 & 63, _p(s
, 6), _p(s
, 4), _p(s
, 2),
317 speed
[*s
>> 14 & 3], *s
>> 16 & 63,
318 power
[*s
>> 8 & 7], *s
>> 22 & 1 ? "L" : "",
319 *s
>> 11 & 1 ? "c" : "", *s
& 2 ? "i" : "");
321 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
323 _p(s
, 16), _p(s
, 14), _p(s
, 12), _p(s
, 10),
324 _p(s
, 8), _p(s
, 6), _p(s
, 4), _p(s
, 2));
327 static const char *evts
[] = {
328 [0x00] = "evt_no_status", [0x01] = "-reserved-",
329 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
330 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
331 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
332 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
333 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
334 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
335 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
336 [0x10] = "-reserved-", [0x11] = "ack_complete",
337 [0x12] = "ack_pending ", [0x13] = "-reserved-",
338 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
339 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
340 [0x18] = "-reserved-", [0x19] = "-reserved-",
341 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
342 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
343 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
344 [0x20] = "pending/cancelled",
346 static const char *tcodes
[] = {
347 [0x0] = "QW req", [0x1] = "BW req",
348 [0x2] = "W resp", [0x3] = "-reserved-",
349 [0x4] = "QR req", [0x5] = "BR req",
350 [0x6] = "QR resp", [0x7] = "BR resp",
351 [0x8] = "cycle start", [0x9] = "Lk req",
352 [0xa] = "async stream packet", [0xb] = "Lk resp",
353 [0xc] = "-reserved-", [0xd] = "-reserved-",
354 [0xe] = "link internal", [0xf] = "-reserved-",
356 static const char *phys
[] = {
357 [0x0] = "phy config packet", [0x1] = "link-on packet",
358 [0x2] = "self-id packet", [0x3] = "-reserved-",
361 static void log_ar_at_event(char dir
, int speed
, u32
*header
, int evt
)
363 int tcode
= header
[0] >> 4 & 0xf;
366 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_AT_AR
)))
369 if (unlikely(evt
>= ARRAY_SIZE(evts
)))
372 if (evt
== OHCI1394_evt_bus_reset
) {
373 fw_notify("A%c evt_bus_reset, generation %d\n",
374 dir
, (header
[2] >> 16) & 0xff);
378 if (header
[0] == ~header
[1]) {
379 fw_notify("A%c %s, %s, %08x\n",
380 dir
, evts
[evt
], phys
[header
[0] >> 30 & 0x3], header
[0]);
385 case 0x0: case 0x6: case 0x8:
386 snprintf(specific
, sizeof(specific
), " = %08x",
387 be32_to_cpu((__force __be32
)header
[3]));
389 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
390 snprintf(specific
, sizeof(specific
), " %x,%x",
391 header
[3] >> 16, header
[3] & 0xffff);
399 fw_notify("A%c %s, %s\n", dir
, evts
[evt
], tcodes
[tcode
]);
401 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
402 fw_notify("A%c spd %x tl %02x, "
405 dir
, speed
, header
[0] >> 10 & 0x3f,
406 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
407 tcodes
[tcode
], header
[1] & 0xffff, header
[2], specific
);
410 fw_notify("A%c spd %x tl %02x, "
413 dir
, speed
, header
[0] >> 10 & 0x3f,
414 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
415 tcodes
[tcode
], specific
);
421 #define log_irqs(evt)
422 #define log_selfids(node_id, generation, self_id_count, sid)
423 #define log_ar_at_event(dir, speed, header, evt)
425 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
427 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
429 writel(data
, ohci
->registers
+ offset
);
432 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
434 return readl(ohci
->registers
+ offset
);
437 static inline void flush_writes(const struct fw_ohci
*ohci
)
439 /* Do a dummy read to flush writes. */
440 reg_read(ohci
, OHCI1394_Version
);
444 ohci_update_phy_reg(struct fw_card
*card
, int addr
,
445 int clear_bits
, int set_bits
)
447 struct fw_ohci
*ohci
= fw_ohci(card
);
450 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
453 val
= reg_read(ohci
, OHCI1394_PhyControl
);
454 if ((val
& OHCI1394_PhyControl_ReadDone
) == 0) {
455 fw_error("failed to set phy reg bits.\n");
459 old
= OHCI1394_PhyControl_ReadData(val
);
460 old
= (old
& ~clear_bits
) | set_bits
;
461 reg_write(ohci
, OHCI1394_PhyControl
,
462 OHCI1394_PhyControl_Write(addr
, old
));
467 static int ar_context_add_page(struct ar_context
*ctx
)
469 struct device
*dev
= ctx
->ohci
->card
.device
;
470 struct ar_buffer
*ab
;
471 dma_addr_t
uninitialized_var(ab_bus
);
474 ab
= dma_alloc_coherent(dev
, PAGE_SIZE
, &ab_bus
, GFP_ATOMIC
);
478 memset(&ab
->descriptor
, 0, sizeof(ab
->descriptor
));
479 ab
->descriptor
.control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
481 DESCRIPTOR_BRANCH_ALWAYS
);
482 offset
= offsetof(struct ar_buffer
, data
);
483 ab
->descriptor
.req_count
= cpu_to_le16(PAGE_SIZE
- offset
);
484 ab
->descriptor
.data_address
= cpu_to_le32(ab_bus
+ offset
);
485 ab
->descriptor
.res_count
= cpu_to_le16(PAGE_SIZE
- offset
);
486 ab
->descriptor
.branch_address
= 0;
488 ctx
->last_buffer
->descriptor
.branch_address
= cpu_to_le32(ab_bus
| 1);
489 ctx
->last_buffer
->next
= ab
;
490 ctx
->last_buffer
= ab
;
492 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
493 flush_writes(ctx
->ohci
);
498 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
499 #define cond_le32_to_cpu(v) \
500 (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
502 #define cond_le32_to_cpu(v) le32_to_cpu(v)
505 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
507 struct fw_ohci
*ohci
= ctx
->ohci
;
509 u32 status
, length
, tcode
;
512 p
.header
[0] = cond_le32_to_cpu(buffer
[0]);
513 p
.header
[1] = cond_le32_to_cpu(buffer
[1]);
514 p
.header
[2] = cond_le32_to_cpu(buffer
[2]);
516 tcode
= (p
.header
[0] >> 4) & 0x0f;
518 case TCODE_WRITE_QUADLET_REQUEST
:
519 case TCODE_READ_QUADLET_RESPONSE
:
520 p
.header
[3] = (__force __u32
) buffer
[3];
521 p
.header_length
= 16;
522 p
.payload_length
= 0;
525 case TCODE_READ_BLOCK_REQUEST
:
526 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
527 p
.header_length
= 16;
528 p
.payload_length
= 0;
531 case TCODE_WRITE_BLOCK_REQUEST
:
532 case TCODE_READ_BLOCK_RESPONSE
:
533 case TCODE_LOCK_REQUEST
:
534 case TCODE_LOCK_RESPONSE
:
535 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
536 p
.header_length
= 16;
537 p
.payload_length
= p
.header
[3] >> 16;
540 case TCODE_WRITE_RESPONSE
:
541 case TCODE_READ_QUADLET_REQUEST
:
542 case OHCI_TCODE_PHY_PACKET
:
543 p
.header_length
= 12;
544 p
.payload_length
= 0;
548 /* FIXME: Stop context, discard everything, and restart? */
550 p
.payload_length
= 0;
553 p
.payload
= (void *) buffer
+ p
.header_length
;
555 /* FIXME: What to do about evt_* errors? */
556 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
557 status
= cond_le32_to_cpu(buffer
[length
]);
558 evt
= (status
>> 16) & 0x1f;
561 p
.speed
= (status
>> 21) & 0x7;
562 p
.timestamp
= status
& 0xffff;
563 p
.generation
= ohci
->request_generation
;
565 log_ar_at_event('R', p
.speed
, p
.header
, evt
);
568 * The OHCI bus reset handler synthesizes a phy packet with
569 * the new generation number when a bus reset happens (see
570 * section 8.4.2.3). This helps us determine when a request
571 * was received and make sure we send the response in the same
572 * generation. We only need this for requests; for responses
573 * we use the unique tlabel for finding the matching
576 * Alas some chips sometimes emit bus reset packets with a
577 * wrong generation. We set the correct generation for these
578 * at a slightly incorrect time (in bus_reset_tasklet).
580 if (evt
== OHCI1394_evt_bus_reset
) {
581 if (!ohci
->bus_reset_packet_quirk
)
582 ohci
->request_generation
= (p
.header
[2] >> 16) & 0xff;
583 } else if (ctx
== &ohci
->ar_request_ctx
) {
584 fw_core_handle_request(&ohci
->card
, &p
);
586 fw_core_handle_response(&ohci
->card
, &p
);
589 return buffer
+ length
+ 1;
592 static void ar_context_tasklet(unsigned long data
)
594 struct ar_context
*ctx
= (struct ar_context
*)data
;
595 struct fw_ohci
*ohci
= ctx
->ohci
;
596 struct ar_buffer
*ab
;
597 struct descriptor
*d
;
600 ab
= ctx
->current_buffer
;
603 if (d
->res_count
== 0) {
604 size_t size
, rest
, offset
;
605 dma_addr_t start_bus
;
609 * This descriptor is finished and we may have a
610 * packet split across this and the next buffer. We
611 * reuse the page for reassembling the split packet.
614 offset
= offsetof(struct ar_buffer
, data
);
616 start_bus
= le32_to_cpu(ab
->descriptor
.data_address
) - offset
;
620 size
= buffer
+ PAGE_SIZE
- ctx
->pointer
;
621 rest
= le16_to_cpu(d
->req_count
) - le16_to_cpu(d
->res_count
);
622 memmove(buffer
, ctx
->pointer
, size
);
623 memcpy(buffer
+ size
, ab
->data
, rest
);
624 ctx
->current_buffer
= ab
;
625 ctx
->pointer
= (void *) ab
->data
+ rest
;
626 end
= buffer
+ size
+ rest
;
629 buffer
= handle_ar_packet(ctx
, buffer
);
631 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
633 ar_context_add_page(ctx
);
635 buffer
= ctx
->pointer
;
637 (void *) ab
+ PAGE_SIZE
- le16_to_cpu(d
->res_count
);
640 buffer
= handle_ar_packet(ctx
, buffer
);
645 ar_context_init(struct ar_context
*ctx
, struct fw_ohci
*ohci
, u32 regs
)
651 ctx
->last_buffer
= &ab
;
652 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
654 ar_context_add_page(ctx
);
655 ar_context_add_page(ctx
);
656 ctx
->current_buffer
= ab
.next
;
657 ctx
->pointer
= ctx
->current_buffer
->data
;
662 static void ar_context_run(struct ar_context
*ctx
)
664 struct ar_buffer
*ab
= ctx
->current_buffer
;
668 offset
= offsetof(struct ar_buffer
, data
);
669 ab_bus
= le32_to_cpu(ab
->descriptor
.data_address
) - offset
;
671 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ab_bus
| 1);
672 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
673 flush_writes(ctx
->ohci
);
676 static struct descriptor
*
677 find_branch_descriptor(struct descriptor
*d
, int z
)
681 b
= (le16_to_cpu(d
->control
) & DESCRIPTOR_BRANCH_ALWAYS
) >> 2;
682 key
= (le16_to_cpu(d
->control
) & DESCRIPTOR_KEY_IMMEDIATE
) >> 8;
684 /* figure out which descriptor the branch address goes in */
685 if (z
== 2 && (b
== 3 || key
== 2))
691 static void context_tasklet(unsigned long data
)
693 struct context
*ctx
= (struct context
*) data
;
694 struct descriptor
*d
, *last
;
697 struct descriptor_buffer
*desc
;
699 desc
= list_entry(ctx
->buffer_list
.next
,
700 struct descriptor_buffer
, list
);
702 while (last
->branch_address
!= 0) {
703 struct descriptor_buffer
*old_desc
= desc
;
704 address
= le32_to_cpu(last
->branch_address
);
708 /* If the branch address points to a buffer outside of the
709 * current buffer, advance to the next buffer. */
710 if (address
< desc
->buffer_bus
||
711 address
>= desc
->buffer_bus
+ desc
->used
)
712 desc
= list_entry(desc
->list
.next
,
713 struct descriptor_buffer
, list
);
714 d
= desc
->buffer
+ (address
- desc
->buffer_bus
) / sizeof(*d
);
715 last
= find_branch_descriptor(d
, z
);
717 if (!ctx
->callback(ctx
, d
, last
))
720 if (old_desc
!= desc
) {
721 /* If we've advanced to the next buffer, move the
722 * previous buffer to the free list. */
725 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
726 list_move_tail(&old_desc
->list
, &ctx
->buffer_list
);
727 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
734 * Allocate a new buffer and add it to the list of free buffers for this
735 * context. Must be called with ohci->lock held.
738 context_add_buffer(struct context
*ctx
)
740 struct descriptor_buffer
*desc
;
741 dma_addr_t
uninitialized_var(bus_addr
);
745 * 16MB of descriptors should be far more than enough for any DMA
746 * program. This will catch run-away userspace or DoS attacks.
748 if (ctx
->total_allocation
>= 16*1024*1024)
751 desc
= dma_alloc_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
752 &bus_addr
, GFP_ATOMIC
);
756 offset
= (void *)&desc
->buffer
- (void *)desc
;
757 desc
->buffer_size
= PAGE_SIZE
- offset
;
758 desc
->buffer_bus
= bus_addr
+ offset
;
761 list_add_tail(&desc
->list
, &ctx
->buffer_list
);
762 ctx
->total_allocation
+= PAGE_SIZE
;
768 context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
769 u32 regs
, descriptor_callback_t callback
)
773 ctx
->total_allocation
= 0;
775 INIT_LIST_HEAD(&ctx
->buffer_list
);
776 if (context_add_buffer(ctx
) < 0)
779 ctx
->buffer_tail
= list_entry(ctx
->buffer_list
.next
,
780 struct descriptor_buffer
, list
);
782 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
783 ctx
->callback
= callback
;
786 * We put a dummy descriptor in the buffer that has a NULL
787 * branch address and looks like it's been sent. That way we
788 * have a descriptor to append DMA programs to.
790 memset(ctx
->buffer_tail
->buffer
, 0, sizeof(*ctx
->buffer_tail
->buffer
));
791 ctx
->buffer_tail
->buffer
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
792 ctx
->buffer_tail
->buffer
->transfer_status
= cpu_to_le16(0x8011);
793 ctx
->buffer_tail
->used
+= sizeof(*ctx
->buffer_tail
->buffer
);
794 ctx
->last
= ctx
->buffer_tail
->buffer
;
795 ctx
->prev
= ctx
->buffer_tail
->buffer
;
801 context_release(struct context
*ctx
)
803 struct fw_card
*card
= &ctx
->ohci
->card
;
804 struct descriptor_buffer
*desc
, *tmp
;
806 list_for_each_entry_safe(desc
, tmp
, &ctx
->buffer_list
, list
)
807 dma_free_coherent(card
->device
, PAGE_SIZE
, desc
,
809 ((void *)&desc
->buffer
- (void *)desc
));
812 /* Must be called with ohci->lock held */
813 static struct descriptor
*
814 context_get_descriptors(struct context
*ctx
, int z
, dma_addr_t
*d_bus
)
816 struct descriptor
*d
= NULL
;
817 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
819 if (z
* sizeof(*d
) > desc
->buffer_size
)
822 if (z
* sizeof(*d
) > desc
->buffer_size
- desc
->used
) {
823 /* No room for the descriptor in this buffer, so advance to the
826 if (desc
->list
.next
== &ctx
->buffer_list
) {
827 /* If there is no free buffer next in the list,
829 if (context_add_buffer(ctx
) < 0)
832 desc
= list_entry(desc
->list
.next
,
833 struct descriptor_buffer
, list
);
834 ctx
->buffer_tail
= desc
;
837 d
= desc
->buffer
+ desc
->used
/ sizeof(*d
);
838 memset(d
, 0, z
* sizeof(*d
));
839 *d_bus
= desc
->buffer_bus
+ desc
->used
;
844 static void context_run(struct context
*ctx
, u32 extra
)
846 struct fw_ohci
*ohci
= ctx
->ohci
;
848 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
849 le32_to_cpu(ctx
->last
->branch_address
));
850 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
851 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
855 static void context_append(struct context
*ctx
,
856 struct descriptor
*d
, int z
, int extra
)
859 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
861 d_bus
= desc
->buffer_bus
+ (d
- desc
->buffer
) * sizeof(*d
);
863 desc
->used
+= (z
+ extra
) * sizeof(*d
);
864 ctx
->prev
->branch_address
= cpu_to_le32(d_bus
| z
);
865 ctx
->prev
= find_branch_descriptor(d
, z
);
867 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
868 flush_writes(ctx
->ohci
);
871 static void context_stop(struct context
*ctx
)
876 reg_write(ctx
->ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
877 flush_writes(ctx
->ohci
);
879 for (i
= 0; i
< 10; i
++) {
880 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
881 if ((reg
& CONTEXT_ACTIVE
) == 0)
884 fw_notify("context_stop: still active (0x%08x)\n", reg
);
890 struct fw_packet
*packet
;
894 * This function apppends a packet to the DMA queue for transmission.
895 * Must always be called with the ochi->lock held to ensure proper
896 * generation handling and locking around packet queue manipulation.
899 at_context_queue_packet(struct context
*ctx
, struct fw_packet
*packet
)
901 struct fw_ohci
*ohci
= ctx
->ohci
;
902 dma_addr_t d_bus
, uninitialized_var(payload_bus
);
903 struct driver_data
*driver_data
;
904 struct descriptor
*d
, *last
;
909 d
= context_get_descriptors(ctx
, 4, &d_bus
);
911 packet
->ack
= RCODE_SEND_ERROR
;
915 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
916 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
919 * The DMA format for asyncronous link packets is different
920 * from the IEEE1394 layout, so shift the fields around
921 * accordingly. If header_length is 8, it's a PHY packet, to
922 * which we need to prepend an extra quadlet.
925 header
= (__le32
*) &d
[1];
926 if (packet
->header_length
> 8) {
927 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
928 (packet
->speed
<< 16));
929 header
[1] = cpu_to_le32((packet
->header
[1] & 0xffff) |
930 (packet
->header
[0] & 0xffff0000));
931 header
[2] = cpu_to_le32(packet
->header
[2]);
933 tcode
= (packet
->header
[0] >> 4) & 0x0f;
934 if (TCODE_IS_BLOCK_PACKET(tcode
))
935 header
[3] = cpu_to_le32(packet
->header
[3]);
937 header
[3] = (__force __le32
) packet
->header
[3];
939 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
941 header
[0] = cpu_to_le32((OHCI1394_phy_tcode
<< 4) |
942 (packet
->speed
<< 16));
943 header
[1] = cpu_to_le32(packet
->header
[0]);
944 header
[2] = cpu_to_le32(packet
->header
[1]);
945 d
[0].req_count
= cpu_to_le16(12);
948 driver_data
= (struct driver_data
*) &d
[3];
949 driver_data
->packet
= packet
;
950 packet
->driver_data
= driver_data
;
952 if (packet
->payload_length
> 0) {
954 dma_map_single(ohci
->card
.device
, packet
->payload
,
955 packet
->payload_length
, DMA_TO_DEVICE
);
956 if (dma_mapping_error(ohci
->card
.device
, payload_bus
)) {
957 packet
->ack
= RCODE_SEND_ERROR
;
961 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
962 d
[2].data_address
= cpu_to_le32(payload_bus
);
970 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
971 DESCRIPTOR_IRQ_ALWAYS
|
972 DESCRIPTOR_BRANCH_ALWAYS
);
975 * If the controller and packet generations don't match, we need to
976 * bail out and try again. If IntEvent.busReset is set, the AT context
977 * is halted, so appending to the context and trying to run it is
978 * futile. Most controllers do the right thing and just flush the AT
979 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
980 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
981 * up stalling out. So we just bail out in software and try again
982 * later, and everyone is happy.
983 * FIXME: Document how the locking works.
985 if (ohci
->generation
!= packet
->generation
||
986 reg_read(ohci
, OHCI1394_IntEventSet
) & OHCI1394_busReset
) {
987 if (packet
->payload_length
> 0)
988 dma_unmap_single(ohci
->card
.device
, payload_bus
,
989 packet
->payload_length
, DMA_TO_DEVICE
);
990 packet
->ack
= RCODE_GENERATION
;
994 context_append(ctx
, d
, z
, 4 - z
);
996 /* If the context isn't already running, start it up. */
997 reg
= reg_read(ctx
->ohci
, CONTROL_SET(ctx
->regs
));
998 if ((reg
& CONTEXT_RUN
) == 0)
1004 static int handle_at_packet(struct context
*context
,
1005 struct descriptor
*d
,
1006 struct descriptor
*last
)
1008 struct driver_data
*driver_data
;
1009 struct fw_packet
*packet
;
1010 struct fw_ohci
*ohci
= context
->ohci
;
1011 dma_addr_t payload_bus
;
1014 if (last
->transfer_status
== 0)
1015 /* This descriptor isn't done yet, stop iteration. */
1018 driver_data
= (struct driver_data
*) &d
[3];
1019 packet
= driver_data
->packet
;
1021 /* This packet was cancelled, just continue. */
1024 payload_bus
= le32_to_cpu(last
->data_address
);
1025 if (payload_bus
!= 0)
1026 dma_unmap_single(ohci
->card
.device
, payload_bus
,
1027 packet
->payload_length
, DMA_TO_DEVICE
);
1029 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
1030 packet
->timestamp
= le16_to_cpu(last
->res_count
);
1032 log_ar_at_event('T', packet
->speed
, packet
->header
, evt
);
1035 case OHCI1394_evt_timeout
:
1036 /* Async response transmit timed out. */
1037 packet
->ack
= RCODE_CANCELLED
;
1040 case OHCI1394_evt_flushed
:
1042 * The packet was flushed should give same error as
1043 * when we try to use a stale generation count.
1045 packet
->ack
= RCODE_GENERATION
;
1048 case OHCI1394_evt_missing_ack
:
1050 * Using a valid (current) generation count, but the
1051 * node is not on the bus or not sending acks.
1053 packet
->ack
= RCODE_NO_ACK
;
1056 case ACK_COMPLETE
+ 0x10:
1057 case ACK_PENDING
+ 0x10:
1058 case ACK_BUSY_X
+ 0x10:
1059 case ACK_BUSY_A
+ 0x10:
1060 case ACK_BUSY_B
+ 0x10:
1061 case ACK_DATA_ERROR
+ 0x10:
1062 case ACK_TYPE_ERROR
+ 0x10:
1063 packet
->ack
= evt
- 0x10;
1067 packet
->ack
= RCODE_SEND_ERROR
;
1071 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1076 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1077 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1078 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1079 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1080 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1083 handle_local_rom(struct fw_ohci
*ohci
, struct fw_packet
*packet
, u32 csr
)
1085 struct fw_packet response
;
1086 int tcode
, length
, i
;
1088 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1089 if (TCODE_IS_BLOCK_PACKET(tcode
))
1090 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1094 i
= csr
- CSR_CONFIG_ROM
;
1095 if (i
+ length
> CONFIG_ROM_SIZE
) {
1096 fw_fill_response(&response
, packet
->header
,
1097 RCODE_ADDRESS_ERROR
, NULL
, 0);
1098 } else if (!TCODE_IS_READ_REQUEST(tcode
)) {
1099 fw_fill_response(&response
, packet
->header
,
1100 RCODE_TYPE_ERROR
, NULL
, 0);
1102 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
1103 (void *) ohci
->config_rom
+ i
, length
);
1106 fw_core_handle_response(&ohci
->card
, &response
);
1110 handle_local_lock(struct fw_ohci
*ohci
, struct fw_packet
*packet
, u32 csr
)
1112 struct fw_packet response
;
1113 int tcode
, length
, ext_tcode
, sel
;
1114 __be32
*payload
, lock_old
;
1115 u32 lock_arg
, lock_data
;
1117 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1118 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1119 payload
= packet
->payload
;
1120 ext_tcode
= HEADER_GET_EXTENDED_TCODE(packet
->header
[3]);
1122 if (tcode
== TCODE_LOCK_REQUEST
&&
1123 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
1124 lock_arg
= be32_to_cpu(payload
[0]);
1125 lock_data
= be32_to_cpu(payload
[1]);
1126 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
1130 fw_fill_response(&response
, packet
->header
,
1131 RCODE_TYPE_ERROR
, NULL
, 0);
1135 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
1136 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
1137 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
1138 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
1140 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000)
1141 lock_old
= cpu_to_be32(reg_read(ohci
, OHCI1394_CSRData
));
1143 fw_notify("swap not done yet\n");
1145 fw_fill_response(&response
, packet
->header
,
1146 RCODE_COMPLETE
, &lock_old
, sizeof(lock_old
));
1148 fw_core_handle_response(&ohci
->card
, &response
);
1152 handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
1157 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
1158 packet
->ack
= ACK_PENDING
;
1159 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1163 ((unsigned long long)
1164 HEADER_GET_OFFSET_HIGH(packet
->header
[1]) << 32) |
1166 csr
= offset
- CSR_REGISTER_BASE
;
1168 /* Handle config rom reads. */
1169 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
1170 handle_local_rom(ctx
->ohci
, packet
, csr
);
1172 case CSR_BUS_MANAGER_ID
:
1173 case CSR_BANDWIDTH_AVAILABLE
:
1174 case CSR_CHANNELS_AVAILABLE_HI
:
1175 case CSR_CHANNELS_AVAILABLE_LO
:
1176 handle_local_lock(ctx
->ohci
, packet
, csr
);
1179 if (ctx
== &ctx
->ohci
->at_request_ctx
)
1180 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
1182 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
1186 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
1187 packet
->ack
= ACK_COMPLETE
;
1188 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1193 at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
1195 unsigned long flags
;
1198 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1200 if (HEADER_GET_DESTINATION(packet
->header
[0]) == ctx
->ohci
->node_id
&&
1201 ctx
->ohci
->generation
== packet
->generation
) {
1202 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1203 handle_local_request(ctx
, packet
);
1207 retval
= at_context_queue_packet(ctx
, packet
);
1208 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1211 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1215 static void bus_reset_tasklet(unsigned long data
)
1217 struct fw_ohci
*ohci
= (struct fw_ohci
*)data
;
1218 int self_id_count
, i
, j
, reg
;
1219 int generation
, new_generation
;
1220 unsigned long flags
;
1221 void *free_rom
= NULL
;
1222 dma_addr_t free_rom_bus
= 0;
1224 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1225 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1226 fw_notify("node ID not valid, new bus reset in progress\n");
1229 if ((reg
& OHCI1394_NodeID_nodeNumber
) == 63) {
1230 fw_notify("malconfigured bus\n");
1233 ohci
->node_id
= reg
& (OHCI1394_NodeID_busNumber
|
1234 OHCI1394_NodeID_nodeNumber
);
1236 reg
= reg_read(ohci
, OHCI1394_SelfIDCount
);
1237 if (reg
& OHCI1394_SelfIDCount_selfIDError
) {
1238 fw_notify("inconsistent self IDs\n");
1242 * The count in the SelfIDCount register is the number of
1243 * bytes in the self ID receive buffer. Since we also receive
1244 * the inverted quadlets and a header quadlet, we shift one
1245 * bit extra to get the actual number of self IDs.
1247 self_id_count
= (reg
>> 3) & 0x3ff;
1248 if (self_id_count
== 0) {
1249 fw_notify("inconsistent self IDs\n");
1252 generation
= (cond_le32_to_cpu(ohci
->self_id_cpu
[0]) >> 16) & 0xff;
1255 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
1256 if (ohci
->self_id_cpu
[i
] != ~ohci
->self_id_cpu
[i
+ 1]) {
1257 fw_notify("inconsistent self IDs\n");
1260 ohci
->self_id_buffer
[j
] =
1261 cond_le32_to_cpu(ohci
->self_id_cpu
[i
]);
1266 * Check the consistency of the self IDs we just read. The
1267 * problem we face is that a new bus reset can start while we
1268 * read out the self IDs from the DMA buffer. If this happens,
1269 * the DMA buffer will be overwritten with new self IDs and we
1270 * will read out inconsistent data. The OHCI specification
1271 * (section 11.2) recommends a technique similar to
1272 * linux/seqlock.h, where we remember the generation of the
1273 * self IDs in the buffer before reading them out and compare
1274 * it to the current generation after reading them out. If
1275 * the two generations match we know we have a consistent set
1279 new_generation
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 16) & 0xff;
1280 if (new_generation
!= generation
) {
1281 fw_notify("recursive bus reset detected, "
1282 "discarding self ids\n");
1286 /* FIXME: Document how the locking works. */
1287 spin_lock_irqsave(&ohci
->lock
, flags
);
1289 ohci
->generation
= generation
;
1290 context_stop(&ohci
->at_request_ctx
);
1291 context_stop(&ohci
->at_response_ctx
);
1292 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
1294 if (ohci
->bus_reset_packet_quirk
)
1295 ohci
->request_generation
= generation
;
1298 * This next bit is unrelated to the AT context stuff but we
1299 * have to do it under the spinlock also. If a new config rom
1300 * was set up before this reset, the old one is now no longer
1301 * in use and we can free it. Update the config rom pointers
1302 * to point to the current config rom and clear the
1303 * next_config_rom pointer so a new udpate can take place.
1306 if (ohci
->next_config_rom
!= NULL
) {
1307 if (ohci
->next_config_rom
!= ohci
->config_rom
) {
1308 free_rom
= ohci
->config_rom
;
1309 free_rom_bus
= ohci
->config_rom_bus
;
1311 ohci
->config_rom
= ohci
->next_config_rom
;
1312 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
1313 ohci
->next_config_rom
= NULL
;
1316 * Restore config_rom image and manually update
1317 * config_rom registers. Writing the header quadlet
1318 * will indicate that the config rom is ready, so we
1321 reg_write(ohci
, OHCI1394_BusOptions
,
1322 be32_to_cpu(ohci
->config_rom
[2]));
1323 ohci
->config_rom
[0] = cpu_to_be32(ohci
->next_header
);
1324 reg_write(ohci
, OHCI1394_ConfigROMhdr
, ohci
->next_header
);
1327 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1328 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, ~0);
1329 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, ~0);
1332 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1335 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1336 free_rom
, free_rom_bus
);
1338 log_selfids(ohci
->node_id
, generation
,
1339 self_id_count
, ohci
->self_id_buffer
);
1341 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
1342 self_id_count
, ohci
->self_id_buffer
);
1345 static irqreturn_t
irq_handler(int irq
, void *data
)
1347 struct fw_ohci
*ohci
= data
;
1348 u32 event
, iso_event
, cycle_time
;
1351 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
1353 if (!event
|| !~event
)
1356 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1357 reg_write(ohci
, OHCI1394_IntEventClear
, event
& ~OHCI1394_busReset
);
1360 if (event
& OHCI1394_selfIDComplete
)
1361 tasklet_schedule(&ohci
->bus_reset_tasklet
);
1363 if (event
& OHCI1394_RQPkt
)
1364 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
1366 if (event
& OHCI1394_RSPkt
)
1367 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
1369 if (event
& OHCI1394_reqTxComplete
)
1370 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
1372 if (event
& OHCI1394_respTxComplete
)
1373 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
1375 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
1376 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
1379 i
= ffs(iso_event
) - 1;
1380 tasklet_schedule(&ohci
->ir_context_list
[i
].context
.tasklet
);
1381 iso_event
&= ~(1 << i
);
1384 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
1385 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
1388 i
= ffs(iso_event
) - 1;
1389 tasklet_schedule(&ohci
->it_context_list
[i
].context
.tasklet
);
1390 iso_event
&= ~(1 << i
);
1393 if (unlikely(event
& OHCI1394_regAccessFail
))
1394 fw_error("Register access failure - "
1395 "please notify linux1394-devel@lists.sf.net\n");
1397 if (unlikely(event
& OHCI1394_postedWriteErr
))
1398 fw_error("PCI posted write error\n");
1400 if (unlikely(event
& OHCI1394_cycleTooLong
)) {
1401 if (printk_ratelimit())
1402 fw_notify("isochronous cycle too long\n");
1403 reg_write(ohci
, OHCI1394_LinkControlSet
,
1404 OHCI1394_LinkControl_cycleMaster
);
1407 if (event
& OHCI1394_cycle64Seconds
) {
1408 cycle_time
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1409 if ((cycle_time
& 0x80000000) == 0)
1410 ohci
->bus_seconds
++;
1416 static int software_reset(struct fw_ohci
*ohci
)
1420 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
1422 for (i
= 0; i
< OHCI_LOOP_COUNT
; i
++) {
1423 if ((reg_read(ohci
, OHCI1394_HCControlSet
) &
1424 OHCI1394_HCControl_softReset
) == 0)
1432 static int ohci_enable(struct fw_card
*card
, u32
*config_rom
, size_t length
)
1434 struct fw_ohci
*ohci
= fw_ohci(card
);
1435 struct pci_dev
*dev
= to_pci_dev(card
->device
);
1439 if (software_reset(ohci
)) {
1440 fw_error("Failed to reset ohci card.\n");
1445 * Now enable LPS, which we need in order to start accessing
1446 * most of the registers. In fact, on some cards (ALI M5251),
1447 * accessing registers in the SClk domain without LPS enabled
1448 * will lock up the machine. Wait 50msec to make sure we have
1449 * full link enabled. However, with some cards (well, at least
1450 * a JMicron PCIe card), we have to try again sometimes.
1452 reg_write(ohci
, OHCI1394_HCControlSet
,
1453 OHCI1394_HCControl_LPS
|
1454 OHCI1394_HCControl_postedWriteEnable
);
1457 for (lps
= 0, i
= 0; !lps
&& i
< 3; i
++) {
1459 lps
= reg_read(ohci
, OHCI1394_HCControlSet
) &
1460 OHCI1394_HCControl_LPS
;
1464 fw_error("Failed to set Link Power Status\n");
1468 reg_write(ohci
, OHCI1394_HCControlClear
,
1469 OHCI1394_HCControl_noByteSwapData
);
1471 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
1472 reg_write(ohci
, OHCI1394_LinkControlClear
,
1473 OHCI1394_LinkControl_rcvPhyPkt
);
1474 reg_write(ohci
, OHCI1394_LinkControlSet
,
1475 OHCI1394_LinkControl_rcvSelfID
|
1476 OHCI1394_LinkControl_cycleTimerEnable
|
1477 OHCI1394_LinkControl_cycleMaster
);
1479 reg_write(ohci
, OHCI1394_ATRetries
,
1480 OHCI1394_MAX_AT_REQ_RETRIES
|
1481 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
1482 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8));
1484 ar_context_run(&ohci
->ar_request_ctx
);
1485 ar_context_run(&ohci
->ar_response_ctx
);
1487 reg_write(ohci
, OHCI1394_PhyUpperBound
, 0x00010000);
1488 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
1489 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
1490 reg_write(ohci
, OHCI1394_IntMaskSet
,
1491 OHCI1394_selfIDComplete
|
1492 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
1493 OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
1494 OHCI1394_isochRx
| OHCI1394_isochTx
|
1495 OHCI1394_postedWriteErr
| OHCI1394_cycleTooLong
|
1496 OHCI1394_cycle64Seconds
| OHCI1394_regAccessFail
|
1497 OHCI1394_masterIntEnable
);
1498 if (param_debug
& OHCI_PARAM_DEBUG_BUSRESETS
)
1499 reg_write(ohci
, OHCI1394_IntMaskSet
, OHCI1394_busReset
);
1501 /* Activate link_on bit and contender bit in our self ID packets.*/
1502 if (ohci_update_phy_reg(card
, 4, 0,
1503 PHY_LINK_ACTIVE
| PHY_CONTENDER
) < 0)
1507 * When the link is not yet enabled, the atomic config rom
1508 * update mechanism described below in ohci_set_config_rom()
1509 * is not active. We have to update ConfigRomHeader and
1510 * BusOptions manually, and the write to ConfigROMmap takes
1511 * effect immediately. We tie this to the enabling of the
1512 * link, so we have a valid config rom before enabling - the
1513 * OHCI requires that ConfigROMhdr and BusOptions have valid
1514 * values before enabling.
1516 * However, when the ConfigROMmap is written, some controllers
1517 * always read back quadlets 0 and 2 from the config rom to
1518 * the ConfigRomHeader and BusOptions registers on bus reset.
1519 * They shouldn't do that in this initial case where the link
1520 * isn't enabled. This means we have to use the same
1521 * workaround here, setting the bus header to 0 and then write
1522 * the right values in the bus reset tasklet.
1526 ohci
->next_config_rom
=
1527 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1528 &ohci
->next_config_rom_bus
,
1530 if (ohci
->next_config_rom
== NULL
)
1533 memset(ohci
->next_config_rom
, 0, CONFIG_ROM_SIZE
);
1534 fw_memcpy_to_be32(ohci
->next_config_rom
, config_rom
, length
* 4);
1537 * In the suspend case, config_rom is NULL, which
1538 * means that we just reuse the old config rom.
1540 ohci
->next_config_rom
= ohci
->config_rom
;
1541 ohci
->next_config_rom_bus
= ohci
->config_rom_bus
;
1544 ohci
->next_header
= be32_to_cpu(ohci
->next_config_rom
[0]);
1545 ohci
->next_config_rom
[0] = 0;
1546 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
1547 reg_write(ohci
, OHCI1394_BusOptions
,
1548 be32_to_cpu(ohci
->next_config_rom
[2]));
1549 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
1551 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
1553 if (request_irq(dev
->irq
, irq_handler
,
1554 IRQF_SHARED
, ohci_driver_name
, ohci
)) {
1555 fw_error("Failed to allocate shared interrupt %d.\n",
1557 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1558 ohci
->config_rom
, ohci
->config_rom_bus
);
1562 reg_write(ohci
, OHCI1394_HCControlSet
,
1563 OHCI1394_HCControl_linkEnable
|
1564 OHCI1394_HCControl_BIBimageValid
);
1568 * We are ready to go, initiate bus reset to finish the
1572 fw_core_initiate_bus_reset(&ohci
->card
, 1);
1578 ohci_set_config_rom(struct fw_card
*card
, u32
*config_rom
, size_t length
)
1580 struct fw_ohci
*ohci
;
1581 unsigned long flags
;
1582 int retval
= -EBUSY
;
1583 __be32
*next_config_rom
;
1584 dma_addr_t
uninitialized_var(next_config_rom_bus
);
1586 ohci
= fw_ohci(card
);
1589 * When the OHCI controller is enabled, the config rom update
1590 * mechanism is a bit tricky, but easy enough to use. See
1591 * section 5.5.6 in the OHCI specification.
1593 * The OHCI controller caches the new config rom address in a
1594 * shadow register (ConfigROMmapNext) and needs a bus reset
1595 * for the changes to take place. When the bus reset is
1596 * detected, the controller loads the new values for the
1597 * ConfigRomHeader and BusOptions registers from the specified
1598 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1599 * shadow register. All automatically and atomically.
1601 * Now, there's a twist to this story. The automatic load of
1602 * ConfigRomHeader and BusOptions doesn't honor the
1603 * noByteSwapData bit, so with a be32 config rom, the
1604 * controller will load be32 values in to these registers
1605 * during the atomic update, even on litte endian
1606 * architectures. The workaround we use is to put a 0 in the
1607 * header quadlet; 0 is endian agnostic and means that the
1608 * config rom isn't ready yet. In the bus reset tasklet we
1609 * then set up the real values for the two registers.
1611 * We use ohci->lock to avoid racing with the code that sets
1612 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1616 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1617 &next_config_rom_bus
, GFP_KERNEL
);
1618 if (next_config_rom
== NULL
)
1621 spin_lock_irqsave(&ohci
->lock
, flags
);
1623 if (ohci
->next_config_rom
== NULL
) {
1624 ohci
->next_config_rom
= next_config_rom
;
1625 ohci
->next_config_rom_bus
= next_config_rom_bus
;
1627 memset(ohci
->next_config_rom
, 0, CONFIG_ROM_SIZE
);
1628 fw_memcpy_to_be32(ohci
->next_config_rom
, config_rom
,
1631 ohci
->next_header
= config_rom
[0];
1632 ohci
->next_config_rom
[0] = 0;
1634 reg_write(ohci
, OHCI1394_ConfigROMmap
,
1635 ohci
->next_config_rom_bus
);
1639 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1642 * Now initiate a bus reset to have the changes take
1643 * effect. We clean up the old config rom memory and DMA
1644 * mappings in the bus reset tasklet, since the OHCI
1645 * controller could need to access it before the bus reset
1649 fw_core_initiate_bus_reset(&ohci
->card
, 1);
1651 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1652 next_config_rom
, next_config_rom_bus
);
1657 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
1659 struct fw_ohci
*ohci
= fw_ohci(card
);
1661 at_context_transmit(&ohci
->at_request_ctx
, packet
);
1664 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
1666 struct fw_ohci
*ohci
= fw_ohci(card
);
1668 at_context_transmit(&ohci
->at_response_ctx
, packet
);
1671 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
1673 struct fw_ohci
*ohci
= fw_ohci(card
);
1674 struct context
*ctx
= &ohci
->at_request_ctx
;
1675 struct driver_data
*driver_data
= packet
->driver_data
;
1676 int retval
= -ENOENT
;
1678 tasklet_disable(&ctx
->tasklet
);
1680 if (packet
->ack
!= 0)
1683 log_ar_at_event('T', packet
->speed
, packet
->header
, 0x20);
1684 driver_data
->packet
= NULL
;
1685 packet
->ack
= RCODE_CANCELLED
;
1686 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1690 tasklet_enable(&ctx
->tasklet
);
1696 ohci_enable_phys_dma(struct fw_card
*card
, int node_id
, int generation
)
1698 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1701 struct fw_ohci
*ohci
= fw_ohci(card
);
1702 unsigned long flags
;
1706 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1707 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1710 spin_lock_irqsave(&ohci
->lock
, flags
);
1712 if (ohci
->generation
!= generation
) {
1718 * Note, if the node ID contains a non-local bus ID, physical DMA is
1719 * enabled for _all_ nodes on remote buses.
1722 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
1724 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
1726 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
1730 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1732 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1736 ohci_get_bus_time(struct fw_card
*card
)
1738 struct fw_ohci
*ohci
= fw_ohci(card
);
1742 cycle_time
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1743 bus_time
= ((u64
) ohci
->bus_seconds
<< 32) | cycle_time
;
1748 static int handle_ir_dualbuffer_packet(struct context
*context
,
1749 struct descriptor
*d
,
1750 struct descriptor
*last
)
1752 struct iso_context
*ctx
=
1753 container_of(context
, struct iso_context
, context
);
1754 struct db_descriptor
*db
= (struct db_descriptor
*) d
;
1756 size_t header_length
;
1760 if (db
->first_res_count
!= 0 && db
->second_res_count
!= 0) {
1761 if (ctx
->excess_bytes
<= le16_to_cpu(db
->second_req_count
)) {
1762 /* This descriptor isn't done yet, stop iteration. */
1765 ctx
->excess_bytes
-= le16_to_cpu(db
->second_req_count
);
1768 header_length
= le16_to_cpu(db
->first_req_count
) -
1769 le16_to_cpu(db
->first_res_count
);
1771 i
= ctx
->header_length
;
1773 end
= p
+ header_length
;
1774 while (p
< end
&& i
+ ctx
->base
.header_size
<= PAGE_SIZE
) {
1776 * The iso header is byteswapped to little endian by
1777 * the controller, but the remaining header quadlets
1778 * are big endian. We want to present all the headers
1779 * as big endian, so we have to swap the first
1782 *(u32
*) (ctx
->header
+ i
) = __swab32(*(u32
*) (p
+ 4));
1783 memcpy(ctx
->header
+ i
+ 4, p
+ 8, ctx
->base
.header_size
- 4);
1784 i
+= ctx
->base
.header_size
;
1785 ctx
->excess_bytes
+=
1786 (le32_to_cpu(*(__le32
*)(p
+ 4)) >> 16) & 0xffff;
1787 p
+= ctx
->base
.header_size
+ 4;
1789 ctx
->header_length
= i
;
1791 ctx
->excess_bytes
-= le16_to_cpu(db
->second_req_count
) -
1792 le16_to_cpu(db
->second_res_count
);
1794 if (le16_to_cpu(db
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
1795 ir_header
= (__le32
*) (db
+ 1);
1796 ctx
->base
.callback(&ctx
->base
,
1797 le32_to_cpu(ir_header
[0]) & 0xffff,
1798 ctx
->header_length
, ctx
->header
,
1799 ctx
->base
.callback_data
);
1800 ctx
->header_length
= 0;
1806 static int handle_ir_packet_per_buffer(struct context
*context
,
1807 struct descriptor
*d
,
1808 struct descriptor
*last
)
1810 struct iso_context
*ctx
=
1811 container_of(context
, struct iso_context
, context
);
1812 struct descriptor
*pd
;
1817 for (pd
= d
; pd
<= last
; pd
++) {
1818 if (pd
->transfer_status
)
1822 /* Descriptor(s) not done yet, stop iteration */
1825 i
= ctx
->header_length
;
1828 if (ctx
->base
.header_size
> 0 &&
1829 i
+ ctx
->base
.header_size
<= PAGE_SIZE
) {
1831 * The iso header is byteswapped to little endian by
1832 * the controller, but the remaining header quadlets
1833 * are big endian. We want to present all the headers
1834 * as big endian, so we have to swap the first quadlet.
1836 *(u32
*) (ctx
->header
+ i
) = __swab32(*(u32
*) (p
+ 4));
1837 memcpy(ctx
->header
+ i
+ 4, p
+ 8, ctx
->base
.header_size
- 4);
1838 ctx
->header_length
+= ctx
->base
.header_size
;
1841 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
) {
1842 ir_header
= (__le32
*) p
;
1843 ctx
->base
.callback(&ctx
->base
,
1844 le32_to_cpu(ir_header
[0]) & 0xffff,
1845 ctx
->header_length
, ctx
->header
,
1846 ctx
->base
.callback_data
);
1847 ctx
->header_length
= 0;
1853 static int handle_it_packet(struct context
*context
,
1854 struct descriptor
*d
,
1855 struct descriptor
*last
)
1857 struct iso_context
*ctx
=
1858 container_of(context
, struct iso_context
, context
);
1860 if (last
->transfer_status
== 0)
1861 /* This descriptor isn't done yet, stop iteration. */
1864 if (le16_to_cpu(last
->control
) & DESCRIPTOR_IRQ_ALWAYS
)
1865 ctx
->base
.callback(&ctx
->base
, le16_to_cpu(last
->res_count
),
1866 0, NULL
, ctx
->base
.callback_data
);
1871 static struct fw_iso_context
*
1872 ohci_allocate_iso_context(struct fw_card
*card
, int type
, size_t header_size
)
1874 struct fw_ohci
*ohci
= fw_ohci(card
);
1875 struct iso_context
*ctx
, *list
;
1876 descriptor_callback_t callback
;
1878 unsigned long flags
;
1879 int index
, retval
= -ENOMEM
;
1881 if (type
== FW_ISO_CONTEXT_TRANSMIT
) {
1882 mask
= &ohci
->it_context_mask
;
1883 list
= ohci
->it_context_list
;
1884 callback
= handle_it_packet
;
1886 mask
= &ohci
->ir_context_mask
;
1887 list
= ohci
->ir_context_list
;
1888 if (ohci
->version
>= OHCI_VERSION_1_1
)
1889 callback
= handle_ir_dualbuffer_packet
;
1891 callback
= handle_ir_packet_per_buffer
;
1894 spin_lock_irqsave(&ohci
->lock
, flags
);
1895 index
= ffs(*mask
) - 1;
1897 *mask
&= ~(1 << index
);
1898 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1901 return ERR_PTR(-EBUSY
);
1903 if (type
== FW_ISO_CONTEXT_TRANSMIT
)
1904 regs
= OHCI1394_IsoXmitContextBase(index
);
1906 regs
= OHCI1394_IsoRcvContextBase(index
);
1909 memset(ctx
, 0, sizeof(*ctx
));
1910 ctx
->header_length
= 0;
1911 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
1912 if (ctx
->header
== NULL
)
1915 retval
= context_init(&ctx
->context
, ohci
, regs
, callback
);
1917 goto out_with_header
;
1922 free_page((unsigned long)ctx
->header
);
1924 spin_lock_irqsave(&ohci
->lock
, flags
);
1925 *mask
|= 1 << index
;
1926 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1928 return ERR_PTR(retval
);
1931 static int ohci_start_iso(struct fw_iso_context
*base
,
1932 s32 cycle
, u32 sync
, u32 tags
)
1934 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1935 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
1939 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
1940 index
= ctx
- ohci
->it_context_list
;
1943 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
1944 (cycle
& 0x7fff) << 16;
1946 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
1947 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
1948 context_run(&ctx
->context
, match
);
1950 index
= ctx
- ohci
->ir_context_list
;
1951 control
= IR_CONTEXT_ISOCH_HEADER
;
1952 if (ohci
->version
>= OHCI_VERSION_1_1
)
1953 control
|= IR_CONTEXT_DUAL_BUFFER_MODE
;
1954 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
1956 match
|= (cycle
& 0x07fff) << 12;
1957 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
1960 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
1961 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
1962 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
1963 context_run(&ctx
->context
, control
);
1969 static int ohci_stop_iso(struct fw_iso_context
*base
)
1971 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
1972 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1975 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
1976 index
= ctx
- ohci
->it_context_list
;
1977 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
1979 index
= ctx
- ohci
->ir_context_list
;
1980 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
1983 context_stop(&ctx
->context
);
1988 static void ohci_free_iso_context(struct fw_iso_context
*base
)
1990 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
1991 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
1992 unsigned long flags
;
1995 ohci_stop_iso(base
);
1996 context_release(&ctx
->context
);
1997 free_page((unsigned long)ctx
->header
);
1999 spin_lock_irqsave(&ohci
->lock
, flags
);
2001 if (ctx
->base
.type
== FW_ISO_CONTEXT_TRANSMIT
) {
2002 index
= ctx
- ohci
->it_context_list
;
2003 ohci
->it_context_mask
|= 1 << index
;
2005 index
= ctx
- ohci
->ir_context_list
;
2006 ohci
->ir_context_mask
|= 1 << index
;
2009 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2013 ohci_queue_iso_transmit(struct fw_iso_context
*base
,
2014 struct fw_iso_packet
*packet
,
2015 struct fw_iso_buffer
*buffer
,
2016 unsigned long payload
)
2018 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2019 struct descriptor
*d
, *last
, *pd
;
2020 struct fw_iso_packet
*p
;
2022 dma_addr_t d_bus
, page_bus
;
2023 u32 z
, header_z
, payload_z
, irq
;
2024 u32 payload_index
, payload_end_index
, next_page_index
;
2025 int page
, end_page
, i
, length
, offset
;
2028 * FIXME: Cycle lost behavior should be configurable: lose
2029 * packet, retransmit or terminate..
2033 payload_index
= payload
;
2039 if (p
->header_length
> 0)
2042 /* Determine the first page the payload isn't contained in. */
2043 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
2044 if (p
->payload_length
> 0)
2045 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
2051 /* Get header size in number of descriptors. */
2052 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
2054 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
2059 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
2060 d
[0].req_count
= cpu_to_le16(8);
2062 header
= (__le32
*) &d
[1];
2063 header
[0] = cpu_to_le32(IT_HEADER_SY(p
->sy
) |
2064 IT_HEADER_TAG(p
->tag
) |
2065 IT_HEADER_TCODE(TCODE_STREAM_DATA
) |
2066 IT_HEADER_CHANNEL(ctx
->base
.channel
) |
2067 IT_HEADER_SPEED(ctx
->base
.speed
));
2069 cpu_to_le32(IT_HEADER_DATA_LENGTH(p
->header_length
+
2070 p
->payload_length
));
2073 if (p
->header_length
> 0) {
2074 d
[2].req_count
= cpu_to_le16(p
->header_length
);
2075 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
2076 memcpy(&d
[z
], p
->header
, p
->header_length
);
2079 pd
= d
+ z
- payload_z
;
2080 payload_end_index
= payload_index
+ p
->payload_length
;
2081 for (i
= 0; i
< payload_z
; i
++) {
2082 page
= payload_index
>> PAGE_SHIFT
;
2083 offset
= payload_index
& ~PAGE_MASK
;
2084 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
2086 min(next_page_index
, payload_end_index
) - payload_index
;
2087 pd
[i
].req_count
= cpu_to_le16(length
);
2089 page_bus
= page_private(buffer
->pages
[page
]);
2090 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
2092 payload_index
+= length
;
2096 irq
= DESCRIPTOR_IRQ_ALWAYS
;
2098 irq
= DESCRIPTOR_NO_IRQ
;
2100 last
= z
== 2 ? d
: d
+ z
- 1;
2101 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
2103 DESCRIPTOR_BRANCH_ALWAYS
|
2106 context_append(&ctx
->context
, d
, z
, header_z
);
2112 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context
*base
,
2113 struct fw_iso_packet
*packet
,
2114 struct fw_iso_buffer
*buffer
,
2115 unsigned long payload
)
2117 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2118 struct db_descriptor
*db
= NULL
;
2119 struct descriptor
*d
;
2120 struct fw_iso_packet
*p
;
2121 dma_addr_t d_bus
, page_bus
;
2122 u32 z
, header_z
, length
, rest
;
2123 int page
, offset
, packet_count
, header_size
;
2126 * FIXME: Cycle lost behavior should be configurable: lose
2127 * packet, retransmit or terminate..
2134 * The OHCI controller puts the status word in the header
2135 * buffer too, so we need 4 extra bytes per packet.
2137 packet_count
= p
->header_length
/ ctx
->base
.header_size
;
2138 header_size
= packet_count
* (ctx
->base
.header_size
+ 4);
2140 /* Get header size in number of descriptors. */
2141 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
2142 page
= payload
>> PAGE_SHIFT
;
2143 offset
= payload
& ~PAGE_MASK
;
2144 rest
= p
->payload_length
;
2146 /* FIXME: make packet-per-buffer/dual-buffer a context option */
2148 d
= context_get_descriptors(&ctx
->context
,
2149 z
+ header_z
, &d_bus
);
2153 db
= (struct db_descriptor
*) d
;
2154 db
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2155 DESCRIPTOR_BRANCH_ALWAYS
);
2156 db
->first_size
= cpu_to_le16(ctx
->base
.header_size
+ 4);
2157 if (p
->skip
&& rest
== p
->payload_length
) {
2158 db
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
2159 db
->first_req_count
= db
->first_size
;
2161 db
->first_req_count
= cpu_to_le16(header_size
);
2163 db
->first_res_count
= db
->first_req_count
;
2164 db
->first_buffer
= cpu_to_le32(d_bus
+ sizeof(*db
));
2166 if (p
->skip
&& rest
== p
->payload_length
)
2168 else if (offset
+ rest
< PAGE_SIZE
)
2171 length
= PAGE_SIZE
- offset
;
2173 db
->second_req_count
= cpu_to_le16(length
);
2174 db
->second_res_count
= db
->second_req_count
;
2175 page_bus
= page_private(buffer
->pages
[page
]);
2176 db
->second_buffer
= cpu_to_le32(page_bus
+ offset
);
2178 if (p
->interrupt
&& length
== rest
)
2179 db
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
2181 context_append(&ctx
->context
, d
, z
, header_z
);
2182 offset
= (offset
+ length
) & ~PAGE_MASK
;
2192 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context
*base
,
2193 struct fw_iso_packet
*packet
,
2194 struct fw_iso_buffer
*buffer
,
2195 unsigned long payload
)
2197 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2198 struct descriptor
*d
= NULL
, *pd
= NULL
;
2199 struct fw_iso_packet
*p
= packet
;
2200 dma_addr_t d_bus
, page_bus
;
2201 u32 z
, header_z
, rest
;
2203 int page
, offset
, packet_count
, header_size
, payload_per_buffer
;
2206 * The OHCI controller puts the status word in the
2207 * buffer too, so we need 4 extra bytes per packet.
2209 packet_count
= p
->header_length
/ ctx
->base
.header_size
;
2210 header_size
= ctx
->base
.header_size
+ 4;
2212 /* Get header size in number of descriptors. */
2213 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
2214 page
= payload
>> PAGE_SHIFT
;
2215 offset
= payload
& ~PAGE_MASK
;
2216 payload_per_buffer
= p
->payload_length
/ packet_count
;
2218 for (i
= 0; i
< packet_count
; i
++) {
2219 /* d points to the header descriptor */
2220 z
= DIV_ROUND_UP(payload_per_buffer
+ offset
, PAGE_SIZE
) + 1;
2221 d
= context_get_descriptors(&ctx
->context
,
2222 z
+ header_z
, &d_bus
);
2226 d
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2227 DESCRIPTOR_INPUT_MORE
);
2228 if (p
->skip
&& i
== 0)
2229 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
2230 d
->req_count
= cpu_to_le16(header_size
);
2231 d
->res_count
= d
->req_count
;
2232 d
->transfer_status
= 0;
2233 d
->data_address
= cpu_to_le32(d_bus
+ (z
* sizeof(*d
)));
2235 rest
= payload_per_buffer
;
2236 for (j
= 1; j
< z
; j
++) {
2238 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2239 DESCRIPTOR_INPUT_MORE
);
2241 if (offset
+ rest
< PAGE_SIZE
)
2244 length
= PAGE_SIZE
- offset
;
2245 pd
->req_count
= cpu_to_le16(length
);
2246 pd
->res_count
= pd
->req_count
;
2247 pd
->transfer_status
= 0;
2249 page_bus
= page_private(buffer
->pages
[page
]);
2250 pd
->data_address
= cpu_to_le32(page_bus
+ offset
);
2252 offset
= (offset
+ length
) & ~PAGE_MASK
;
2257 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
2258 DESCRIPTOR_INPUT_LAST
|
2259 DESCRIPTOR_BRANCH_ALWAYS
);
2260 if (p
->interrupt
&& i
== packet_count
- 1)
2261 pd
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
2263 context_append(&ctx
->context
, d
, z
, header_z
);
2270 ohci_queue_iso(struct fw_iso_context
*base
,
2271 struct fw_iso_packet
*packet
,
2272 struct fw_iso_buffer
*buffer
,
2273 unsigned long payload
)
2275 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2276 unsigned long flags
;
2279 spin_lock_irqsave(&ctx
->context
.ohci
->lock
, flags
);
2280 if (base
->type
== FW_ISO_CONTEXT_TRANSMIT
)
2281 retval
= ohci_queue_iso_transmit(base
, packet
, buffer
, payload
);
2282 else if (ctx
->context
.ohci
->version
>= OHCI_VERSION_1_1
)
2283 retval
= ohci_queue_iso_receive_dualbuffer(base
, packet
,
2286 retval
= ohci_queue_iso_receive_packet_per_buffer(base
, packet
,
2289 spin_unlock_irqrestore(&ctx
->context
.ohci
->lock
, flags
);
2294 static const struct fw_card_driver ohci_driver
= {
2295 .enable
= ohci_enable
,
2296 .update_phy_reg
= ohci_update_phy_reg
,
2297 .set_config_rom
= ohci_set_config_rom
,
2298 .send_request
= ohci_send_request
,
2299 .send_response
= ohci_send_response
,
2300 .cancel_packet
= ohci_cancel_packet
,
2301 .enable_phys_dma
= ohci_enable_phys_dma
,
2302 .get_bus_time
= ohci_get_bus_time
,
2304 .allocate_iso_context
= ohci_allocate_iso_context
,
2305 .free_iso_context
= ohci_free_iso_context
,
2306 .queue_iso
= ohci_queue_iso
,
2307 .start_iso
= ohci_start_iso
,
2308 .stop_iso
= ohci_stop_iso
,
2311 #ifdef CONFIG_PPC_PMAC
2312 static void ohci_pmac_on(struct pci_dev
*dev
)
2314 if (machine_is(powermac
)) {
2315 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
2318 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 1);
2319 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 1);
2324 static void ohci_pmac_off(struct pci_dev
*dev
)
2326 if (machine_is(powermac
)) {
2327 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
2330 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 0);
2331 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 0);
2336 #define ohci_pmac_on(dev)
2337 #define ohci_pmac_off(dev)
2338 #endif /* CONFIG_PPC_PMAC */
2340 static int __devinit
2341 pci_probe(struct pci_dev
*dev
, const struct pci_device_id
*ent
)
2343 struct fw_ohci
*ohci
;
2344 u32 bus_options
, max_receive
, link_speed
;
2349 ohci
= kzalloc(sizeof(*ohci
), GFP_KERNEL
);
2351 fw_error("Could not malloc fw_ohci data.\n");
2355 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
2359 err
= pci_enable_device(dev
);
2361 fw_error("Failed to enable OHCI hardware.\n");
2365 pci_set_master(dev
);
2366 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
2367 pci_set_drvdata(dev
, ohci
);
2369 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2370 ohci
->old_uninorth
= dev
->vendor
== PCI_VENDOR_ID_APPLE
&&
2371 dev
->device
== PCI_DEVICE_ID_APPLE_UNI_N_FW
;
2373 ohci
->bus_reset_packet_quirk
= dev
->vendor
== PCI_VENDOR_ID_TI
;
2375 spin_lock_init(&ohci
->lock
);
2377 tasklet_init(&ohci
->bus_reset_tasklet
,
2378 bus_reset_tasklet
, (unsigned long)ohci
);
2380 err
= pci_request_region(dev
, 0, ohci_driver_name
);
2382 fw_error("MMIO resource unavailable\n");
2386 ohci
->registers
= pci_iomap(dev
, 0, OHCI1394_REGISTER_SIZE
);
2387 if (ohci
->registers
== NULL
) {
2388 fw_error("Failed to remap registers\n");
2393 ar_context_init(&ohci
->ar_request_ctx
, ohci
,
2394 OHCI1394_AsReqRcvContextControlSet
);
2396 ar_context_init(&ohci
->ar_response_ctx
, ohci
,
2397 OHCI1394_AsRspRcvContextControlSet
);
2399 context_init(&ohci
->at_request_ctx
, ohci
,
2400 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
2402 context_init(&ohci
->at_response_ctx
, ohci
,
2403 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
2405 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
2406 ohci
->it_context_mask
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
2407 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
2408 size
= sizeof(struct iso_context
) * hweight32(ohci
->it_context_mask
);
2409 ohci
->it_context_list
= kzalloc(size
, GFP_KERNEL
);
2411 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
2412 ohci
->ir_context_mask
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
2413 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
2414 size
= sizeof(struct iso_context
) * hweight32(ohci
->ir_context_mask
);
2415 ohci
->ir_context_list
= kzalloc(size
, GFP_KERNEL
);
2417 if (ohci
->it_context_list
== NULL
|| ohci
->ir_context_list
== NULL
) {
2418 fw_error("Out of memory for it/ir contexts.\n");
2420 goto fail_registers
;
2423 /* self-id dma buffer allocation */
2424 ohci
->self_id_cpu
= dma_alloc_coherent(ohci
->card
.device
,
2428 if (ohci
->self_id_cpu
== NULL
) {
2429 fw_error("Out of memory for self ID buffer.\n");
2431 goto fail_registers
;
2434 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
2435 max_receive
= (bus_options
>> 12) & 0xf;
2436 link_speed
= bus_options
& 0x7;
2437 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
2438 reg_read(ohci
, OHCI1394_GUIDLo
);
2440 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
);
2444 ohci
->version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
2445 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2446 dev
->dev
.bus_id
, ohci
->version
>> 16, ohci
->version
& 0xff);
2450 dma_free_coherent(ohci
->card
.device
, SELF_ID_BUF_SIZE
,
2451 ohci
->self_id_cpu
, ohci
->self_id_bus
);
2453 kfree(ohci
->it_context_list
);
2454 kfree(ohci
->ir_context_list
);
2455 pci_iounmap(dev
, ohci
->registers
);
2457 pci_release_region(dev
, 0);
2459 pci_disable_device(dev
);
2467 static void pci_remove(struct pci_dev
*dev
)
2469 struct fw_ohci
*ohci
;
2471 ohci
= pci_get_drvdata(dev
);
2472 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
2474 fw_core_remove_card(&ohci
->card
);
2477 * FIXME: Fail all pending packets here, now that the upper
2478 * layers can't queue any more.
2481 software_reset(ohci
);
2482 free_irq(dev
->irq
, ohci
);
2483 dma_free_coherent(ohci
->card
.device
, SELF_ID_BUF_SIZE
,
2484 ohci
->self_id_cpu
, ohci
->self_id_bus
);
2485 kfree(ohci
->it_context_list
);
2486 kfree(ohci
->ir_context_list
);
2487 pci_iounmap(dev
, ohci
->registers
);
2488 pci_release_region(dev
, 0);
2489 pci_disable_device(dev
);
2493 fw_notify("Removed fw-ohci device.\n");
2497 static int pci_suspend(struct pci_dev
*dev
, pm_message_t state
)
2499 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
2502 software_reset(ohci
);
2503 free_irq(dev
->irq
, ohci
);
2504 err
= pci_save_state(dev
);
2506 fw_error("pci_save_state failed\n");
2509 err
= pci_set_power_state(dev
, pci_choose_state(dev
, state
));
2511 fw_error("pci_set_power_state failed with %d\n", err
);
2517 static int pci_resume(struct pci_dev
*dev
)
2519 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
2523 pci_set_power_state(dev
, PCI_D0
);
2524 pci_restore_state(dev
);
2525 err
= pci_enable_device(dev
);
2527 fw_error("pci_enable_device failed\n");
2531 return ohci_enable(&ohci
->card
, NULL
, 0);
2535 static struct pci_device_id pci_table
[] = {
2536 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
2540 MODULE_DEVICE_TABLE(pci
, pci_table
);
2542 static struct pci_driver fw_ohci_pci_driver
= {
2543 .name
= ohci_driver_name
,
2544 .id_table
= pci_table
,
2546 .remove
= pci_remove
,
2548 .resume
= pci_resume
,
2549 .suspend
= pci_suspend
,
2553 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2554 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2555 MODULE_LICENSE("GPL");
2557 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2558 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2559 MODULE_ALIAS("ohci1394");
2562 static int __init
fw_ohci_init(void)
2564 return pci_register_driver(&fw_ohci_pci_driver
);
2567 static void __exit
fw_ohci_cleanup(void)
2569 pci_unregister_driver(&fw_ohci_pci_driver
);
2572 module_init(fw_ohci_init
);
2573 module_exit(fw_ohci_cleanup
);