eCryptfs: use page_alloc not kmalloc to get a page of memory
[linux-2.6/mini2440.git] / mm / vmscan.c
blob8f71761bc4b756e755f2717b8ac850c644c5dd22
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
43 #include <asm/tlbflush.h>
44 #include <asm/div64.h>
46 #include <linux/swapops.h>
48 #include "internal.h"
50 struct scan_control {
51 /* Incremented by the number of inactive pages that were scanned */
52 unsigned long nr_scanned;
54 /* This context's GFP mask */
55 gfp_t gfp_mask;
57 int may_writepage;
59 /* Can pages be swapped as part of reclaim? */
60 int may_swap;
62 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
63 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
64 * In this context, it doesn't matter that we scan the
65 * whole list at once. */
66 int swap_cluster_max;
68 int swappiness;
70 int all_unreclaimable;
72 int order;
74 /* Which cgroup do we reclaim from */
75 struct mem_cgroup *mem_cgroup;
77 /* Pluggable isolate pages callback */
78 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
79 unsigned long *scanned, int order, int mode,
80 struct zone *z, struct mem_cgroup *mem_cont,
81 int active);
84 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
86 #ifdef ARCH_HAS_PREFETCH
87 #define prefetch_prev_lru_page(_page, _base, _field) \
88 do { \
89 if ((_page)->lru.prev != _base) { \
90 struct page *prev; \
92 prev = lru_to_page(&(_page->lru)); \
93 prefetch(&prev->_field); \
94 } \
95 } while (0)
96 #else
97 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
98 #endif
100 #ifdef ARCH_HAS_PREFETCHW
101 #define prefetchw_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetchw(&prev->_field); \
109 } while (0)
110 #else
111 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
112 #endif
115 * From 0 .. 100. Higher means more swappy.
117 int vm_swappiness = 60;
118 long vm_total_pages; /* The total number of pages which the VM controls */
120 static LIST_HEAD(shrinker_list);
121 static DECLARE_RWSEM(shrinker_rwsem);
123 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
124 #define scan_global_lru(sc) (!(sc)->mem_cgroup)
125 #else
126 #define scan_global_lru(sc) (1)
127 #endif
130 * Add a shrinker callback to be called from the vm
132 void register_shrinker(struct shrinker *shrinker)
134 shrinker->nr = 0;
135 down_write(&shrinker_rwsem);
136 list_add_tail(&shrinker->list, &shrinker_list);
137 up_write(&shrinker_rwsem);
139 EXPORT_SYMBOL(register_shrinker);
142 * Remove one
144 void unregister_shrinker(struct shrinker *shrinker)
146 down_write(&shrinker_rwsem);
147 list_del(&shrinker->list);
148 up_write(&shrinker_rwsem);
150 EXPORT_SYMBOL(unregister_shrinker);
152 #define SHRINK_BATCH 128
154 * Call the shrink functions to age shrinkable caches
156 * Here we assume it costs one seek to replace a lru page and that it also
157 * takes a seek to recreate a cache object. With this in mind we age equal
158 * percentages of the lru and ageable caches. This should balance the seeks
159 * generated by these structures.
161 * If the vm encountered mapped pages on the LRU it increase the pressure on
162 * slab to avoid swapping.
164 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
166 * `lru_pages' represents the number of on-LRU pages in all the zones which
167 * are eligible for the caller's allocation attempt. It is used for balancing
168 * slab reclaim versus page reclaim.
170 * Returns the number of slab objects which we shrunk.
172 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
173 unsigned long lru_pages)
175 struct shrinker *shrinker;
176 unsigned long ret = 0;
178 if (scanned == 0)
179 scanned = SWAP_CLUSTER_MAX;
181 if (!down_read_trylock(&shrinker_rwsem))
182 return 1; /* Assume we'll be able to shrink next time */
184 list_for_each_entry(shrinker, &shrinker_list, list) {
185 unsigned long long delta;
186 unsigned long total_scan;
187 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
189 delta = (4 * scanned) / shrinker->seeks;
190 delta *= max_pass;
191 do_div(delta, lru_pages + 1);
192 shrinker->nr += delta;
193 if (shrinker->nr < 0) {
194 printk(KERN_ERR "%s: nr=%ld\n",
195 __func__, shrinker->nr);
196 shrinker->nr = max_pass;
200 * Avoid risking looping forever due to too large nr value:
201 * never try to free more than twice the estimate number of
202 * freeable entries.
204 if (shrinker->nr > max_pass * 2)
205 shrinker->nr = max_pass * 2;
207 total_scan = shrinker->nr;
208 shrinker->nr = 0;
210 while (total_scan >= SHRINK_BATCH) {
211 long this_scan = SHRINK_BATCH;
212 int shrink_ret;
213 int nr_before;
215 nr_before = (*shrinker->shrink)(0, gfp_mask);
216 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
217 if (shrink_ret == -1)
218 break;
219 if (shrink_ret < nr_before)
220 ret += nr_before - shrink_ret;
221 count_vm_events(SLABS_SCANNED, this_scan);
222 total_scan -= this_scan;
224 cond_resched();
227 shrinker->nr += total_scan;
229 up_read(&shrinker_rwsem);
230 return ret;
233 /* Called without lock on whether page is mapped, so answer is unstable */
234 static inline int page_mapping_inuse(struct page *page)
236 struct address_space *mapping;
238 /* Page is in somebody's page tables. */
239 if (page_mapped(page))
240 return 1;
242 /* Be more reluctant to reclaim swapcache than pagecache */
243 if (PageSwapCache(page))
244 return 1;
246 mapping = page_mapping(page);
247 if (!mapping)
248 return 0;
250 /* File is mmap'd by somebody? */
251 return mapping_mapped(mapping);
254 static inline int is_page_cache_freeable(struct page *page)
256 return page_count(page) - !!PagePrivate(page) == 2;
259 static int may_write_to_queue(struct backing_dev_info *bdi)
261 if (current->flags & PF_SWAPWRITE)
262 return 1;
263 if (!bdi_write_congested(bdi))
264 return 1;
265 if (bdi == current->backing_dev_info)
266 return 1;
267 return 0;
271 * We detected a synchronous write error writing a page out. Probably
272 * -ENOSPC. We need to propagate that into the address_space for a subsequent
273 * fsync(), msync() or close().
275 * The tricky part is that after writepage we cannot touch the mapping: nothing
276 * prevents it from being freed up. But we have a ref on the page and once
277 * that page is locked, the mapping is pinned.
279 * We're allowed to run sleeping lock_page() here because we know the caller has
280 * __GFP_FS.
282 static void handle_write_error(struct address_space *mapping,
283 struct page *page, int error)
285 lock_page(page);
286 if (page_mapping(page) == mapping)
287 mapping_set_error(mapping, error);
288 unlock_page(page);
291 /* Request for sync pageout. */
292 enum pageout_io {
293 PAGEOUT_IO_ASYNC,
294 PAGEOUT_IO_SYNC,
297 /* possible outcome of pageout() */
298 typedef enum {
299 /* failed to write page out, page is locked */
300 PAGE_KEEP,
301 /* move page to the active list, page is locked */
302 PAGE_ACTIVATE,
303 /* page has been sent to the disk successfully, page is unlocked */
304 PAGE_SUCCESS,
305 /* page is clean and locked */
306 PAGE_CLEAN,
307 } pageout_t;
310 * pageout is called by shrink_page_list() for each dirty page.
311 * Calls ->writepage().
313 static pageout_t pageout(struct page *page, struct address_space *mapping,
314 enum pageout_io sync_writeback)
317 * If the page is dirty, only perform writeback if that write
318 * will be non-blocking. To prevent this allocation from being
319 * stalled by pagecache activity. But note that there may be
320 * stalls if we need to run get_block(). We could test
321 * PagePrivate for that.
323 * If this process is currently in generic_file_write() against
324 * this page's queue, we can perform writeback even if that
325 * will block.
327 * If the page is swapcache, write it back even if that would
328 * block, for some throttling. This happens by accident, because
329 * swap_backing_dev_info is bust: it doesn't reflect the
330 * congestion state of the swapdevs. Easy to fix, if needed.
331 * See swapfile.c:page_queue_congested().
333 if (!is_page_cache_freeable(page))
334 return PAGE_KEEP;
335 if (!mapping) {
337 * Some data journaling orphaned pages can have
338 * page->mapping == NULL while being dirty with clean buffers.
340 if (PagePrivate(page)) {
341 if (try_to_free_buffers(page)) {
342 ClearPageDirty(page);
343 printk("%s: orphaned page\n", __func__);
344 return PAGE_CLEAN;
347 return PAGE_KEEP;
349 if (mapping->a_ops->writepage == NULL)
350 return PAGE_ACTIVATE;
351 if (!may_write_to_queue(mapping->backing_dev_info))
352 return PAGE_KEEP;
354 if (clear_page_dirty_for_io(page)) {
355 int res;
356 struct writeback_control wbc = {
357 .sync_mode = WB_SYNC_NONE,
358 .nr_to_write = SWAP_CLUSTER_MAX,
359 .range_start = 0,
360 .range_end = LLONG_MAX,
361 .nonblocking = 1,
362 .for_reclaim = 1,
365 SetPageReclaim(page);
366 res = mapping->a_ops->writepage(page, &wbc);
367 if (res < 0)
368 handle_write_error(mapping, page, res);
369 if (res == AOP_WRITEPAGE_ACTIVATE) {
370 ClearPageReclaim(page);
371 return PAGE_ACTIVATE;
375 * Wait on writeback if requested to. This happens when
376 * direct reclaiming a large contiguous area and the
377 * first attempt to free a range of pages fails.
379 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
380 wait_on_page_writeback(page);
382 if (!PageWriteback(page)) {
383 /* synchronous write or broken a_ops? */
384 ClearPageReclaim(page);
386 inc_zone_page_state(page, NR_VMSCAN_WRITE);
387 return PAGE_SUCCESS;
390 return PAGE_CLEAN;
394 * Same as remove_mapping, but if the page is removed from the mapping, it
395 * gets returned with a refcount of 0.
397 static int __remove_mapping(struct address_space *mapping, struct page *page)
399 BUG_ON(!PageLocked(page));
400 BUG_ON(mapping != page_mapping(page));
402 spin_lock_irq(&mapping->tree_lock);
404 * The non racy check for a busy page.
406 * Must be careful with the order of the tests. When someone has
407 * a ref to the page, it may be possible that they dirty it then
408 * drop the reference. So if PageDirty is tested before page_count
409 * here, then the following race may occur:
411 * get_user_pages(&page);
412 * [user mapping goes away]
413 * write_to(page);
414 * !PageDirty(page) [good]
415 * SetPageDirty(page);
416 * put_page(page);
417 * !page_count(page) [good, discard it]
419 * [oops, our write_to data is lost]
421 * Reversing the order of the tests ensures such a situation cannot
422 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
423 * load is not satisfied before that of page->_count.
425 * Note that if SetPageDirty is always performed via set_page_dirty,
426 * and thus under tree_lock, then this ordering is not required.
428 if (!page_freeze_refs(page, 2))
429 goto cannot_free;
430 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
431 if (unlikely(PageDirty(page))) {
432 page_unfreeze_refs(page, 2);
433 goto cannot_free;
436 if (PageSwapCache(page)) {
437 swp_entry_t swap = { .val = page_private(page) };
438 __delete_from_swap_cache(page);
439 spin_unlock_irq(&mapping->tree_lock);
440 swap_free(swap);
441 } else {
442 __remove_from_page_cache(page);
443 spin_unlock_irq(&mapping->tree_lock);
446 return 1;
448 cannot_free:
449 spin_unlock_irq(&mapping->tree_lock);
450 return 0;
454 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
455 * someone else has a ref on the page, abort and return 0. If it was
456 * successfully detached, return 1. Assumes the caller has a single ref on
457 * this page.
459 int remove_mapping(struct address_space *mapping, struct page *page)
461 if (__remove_mapping(mapping, page)) {
463 * Unfreezing the refcount with 1 rather than 2 effectively
464 * drops the pagecache ref for us without requiring another
465 * atomic operation.
467 page_unfreeze_refs(page, 1);
468 return 1;
470 return 0;
474 * shrink_page_list() returns the number of reclaimed pages
476 static unsigned long shrink_page_list(struct list_head *page_list,
477 struct scan_control *sc,
478 enum pageout_io sync_writeback)
480 LIST_HEAD(ret_pages);
481 struct pagevec freed_pvec;
482 int pgactivate = 0;
483 unsigned long nr_reclaimed = 0;
485 cond_resched();
487 pagevec_init(&freed_pvec, 1);
488 while (!list_empty(page_list)) {
489 struct address_space *mapping;
490 struct page *page;
491 int may_enter_fs;
492 int referenced;
494 cond_resched();
496 page = lru_to_page(page_list);
497 list_del(&page->lru);
499 if (TestSetPageLocked(page))
500 goto keep;
502 VM_BUG_ON(PageActive(page));
504 sc->nr_scanned++;
506 if (!sc->may_swap && page_mapped(page))
507 goto keep_locked;
509 /* Double the slab pressure for mapped and swapcache pages */
510 if (page_mapped(page) || PageSwapCache(page))
511 sc->nr_scanned++;
513 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
514 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
516 if (PageWriteback(page)) {
518 * Synchronous reclaim is performed in two passes,
519 * first an asynchronous pass over the list to
520 * start parallel writeback, and a second synchronous
521 * pass to wait for the IO to complete. Wait here
522 * for any page for which writeback has already
523 * started.
525 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
526 wait_on_page_writeback(page);
527 else
528 goto keep_locked;
531 referenced = page_referenced(page, 1, sc->mem_cgroup);
532 /* In active use or really unfreeable? Activate it. */
533 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
534 referenced && page_mapping_inuse(page))
535 goto activate_locked;
537 #ifdef CONFIG_SWAP
539 * Anonymous process memory has backing store?
540 * Try to allocate it some swap space here.
542 if (PageAnon(page) && !PageSwapCache(page))
543 if (!add_to_swap(page, GFP_ATOMIC))
544 goto activate_locked;
545 #endif /* CONFIG_SWAP */
547 mapping = page_mapping(page);
550 * The page is mapped into the page tables of one or more
551 * processes. Try to unmap it here.
553 if (page_mapped(page) && mapping) {
554 switch (try_to_unmap(page, 0)) {
555 case SWAP_FAIL:
556 goto activate_locked;
557 case SWAP_AGAIN:
558 goto keep_locked;
559 case SWAP_SUCCESS:
560 ; /* try to free the page below */
564 if (PageDirty(page)) {
565 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
566 goto keep_locked;
567 if (!may_enter_fs)
568 goto keep_locked;
569 if (!sc->may_writepage)
570 goto keep_locked;
572 /* Page is dirty, try to write it out here */
573 switch (pageout(page, mapping, sync_writeback)) {
574 case PAGE_KEEP:
575 goto keep_locked;
576 case PAGE_ACTIVATE:
577 goto activate_locked;
578 case PAGE_SUCCESS:
579 if (PageWriteback(page) || PageDirty(page))
580 goto keep;
582 * A synchronous write - probably a ramdisk. Go
583 * ahead and try to reclaim the page.
585 if (TestSetPageLocked(page))
586 goto keep;
587 if (PageDirty(page) || PageWriteback(page))
588 goto keep_locked;
589 mapping = page_mapping(page);
590 case PAGE_CLEAN:
591 ; /* try to free the page below */
596 * If the page has buffers, try to free the buffer mappings
597 * associated with this page. If we succeed we try to free
598 * the page as well.
600 * We do this even if the page is PageDirty().
601 * try_to_release_page() does not perform I/O, but it is
602 * possible for a page to have PageDirty set, but it is actually
603 * clean (all its buffers are clean). This happens if the
604 * buffers were written out directly, with submit_bh(). ext3
605 * will do this, as well as the blockdev mapping.
606 * try_to_release_page() will discover that cleanness and will
607 * drop the buffers and mark the page clean - it can be freed.
609 * Rarely, pages can have buffers and no ->mapping. These are
610 * the pages which were not successfully invalidated in
611 * truncate_complete_page(). We try to drop those buffers here
612 * and if that worked, and the page is no longer mapped into
613 * process address space (page_count == 1) it can be freed.
614 * Otherwise, leave the page on the LRU so it is swappable.
616 if (PagePrivate(page)) {
617 if (!try_to_release_page(page, sc->gfp_mask))
618 goto activate_locked;
619 if (!mapping && page_count(page) == 1) {
620 unlock_page(page);
621 if (put_page_testzero(page))
622 goto free_it;
623 else {
625 * rare race with speculative reference.
626 * the speculative reference will free
627 * this page shortly, so we may
628 * increment nr_reclaimed here (and
629 * leave it off the LRU).
631 nr_reclaimed++;
632 continue;
637 if (!mapping || !__remove_mapping(mapping, page))
638 goto keep_locked;
640 unlock_page(page);
641 free_it:
642 nr_reclaimed++;
643 if (!pagevec_add(&freed_pvec, page)) {
644 __pagevec_free(&freed_pvec);
645 pagevec_reinit(&freed_pvec);
647 continue;
649 activate_locked:
650 SetPageActive(page);
651 pgactivate++;
652 keep_locked:
653 unlock_page(page);
654 keep:
655 list_add(&page->lru, &ret_pages);
656 VM_BUG_ON(PageLRU(page));
658 list_splice(&ret_pages, page_list);
659 if (pagevec_count(&freed_pvec))
660 __pagevec_free(&freed_pvec);
661 count_vm_events(PGACTIVATE, pgactivate);
662 return nr_reclaimed;
665 /* LRU Isolation modes. */
666 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
667 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
668 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
671 * Attempt to remove the specified page from its LRU. Only take this page
672 * if it is of the appropriate PageActive status. Pages which are being
673 * freed elsewhere are also ignored.
675 * page: page to consider
676 * mode: one of the LRU isolation modes defined above
678 * returns 0 on success, -ve errno on failure.
680 int __isolate_lru_page(struct page *page, int mode)
682 int ret = -EINVAL;
684 /* Only take pages on the LRU. */
685 if (!PageLRU(page))
686 return ret;
689 * When checking the active state, we need to be sure we are
690 * dealing with comparible boolean values. Take the logical not
691 * of each.
693 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
694 return ret;
696 ret = -EBUSY;
697 if (likely(get_page_unless_zero(page))) {
699 * Be careful not to clear PageLRU until after we're
700 * sure the page is not being freed elsewhere -- the
701 * page release code relies on it.
703 ClearPageLRU(page);
704 ret = 0;
707 return ret;
711 * zone->lru_lock is heavily contended. Some of the functions that
712 * shrink the lists perform better by taking out a batch of pages
713 * and working on them outside the LRU lock.
715 * For pagecache intensive workloads, this function is the hottest
716 * spot in the kernel (apart from copy_*_user functions).
718 * Appropriate locks must be held before calling this function.
720 * @nr_to_scan: The number of pages to look through on the list.
721 * @src: The LRU list to pull pages off.
722 * @dst: The temp list to put pages on to.
723 * @scanned: The number of pages that were scanned.
724 * @order: The caller's attempted allocation order
725 * @mode: One of the LRU isolation modes
727 * returns how many pages were moved onto *@dst.
729 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
730 struct list_head *src, struct list_head *dst,
731 unsigned long *scanned, int order, int mode)
733 unsigned long nr_taken = 0;
734 unsigned long scan;
736 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
737 struct page *page;
738 unsigned long pfn;
739 unsigned long end_pfn;
740 unsigned long page_pfn;
741 int zone_id;
743 page = lru_to_page(src);
744 prefetchw_prev_lru_page(page, src, flags);
746 VM_BUG_ON(!PageLRU(page));
748 switch (__isolate_lru_page(page, mode)) {
749 case 0:
750 list_move(&page->lru, dst);
751 nr_taken++;
752 break;
754 case -EBUSY:
755 /* else it is being freed elsewhere */
756 list_move(&page->lru, src);
757 continue;
759 default:
760 BUG();
763 if (!order)
764 continue;
767 * Attempt to take all pages in the order aligned region
768 * surrounding the tag page. Only take those pages of
769 * the same active state as that tag page. We may safely
770 * round the target page pfn down to the requested order
771 * as the mem_map is guarenteed valid out to MAX_ORDER,
772 * where that page is in a different zone we will detect
773 * it from its zone id and abort this block scan.
775 zone_id = page_zone_id(page);
776 page_pfn = page_to_pfn(page);
777 pfn = page_pfn & ~((1 << order) - 1);
778 end_pfn = pfn + (1 << order);
779 for (; pfn < end_pfn; pfn++) {
780 struct page *cursor_page;
782 /* The target page is in the block, ignore it. */
783 if (unlikely(pfn == page_pfn))
784 continue;
786 /* Avoid holes within the zone. */
787 if (unlikely(!pfn_valid_within(pfn)))
788 break;
790 cursor_page = pfn_to_page(pfn);
791 /* Check that we have not crossed a zone boundary. */
792 if (unlikely(page_zone_id(cursor_page) != zone_id))
793 continue;
794 switch (__isolate_lru_page(cursor_page, mode)) {
795 case 0:
796 list_move(&cursor_page->lru, dst);
797 nr_taken++;
798 scan++;
799 break;
801 case -EBUSY:
802 /* else it is being freed elsewhere */
803 list_move(&cursor_page->lru, src);
804 default:
805 break;
810 *scanned = scan;
811 return nr_taken;
814 static unsigned long isolate_pages_global(unsigned long nr,
815 struct list_head *dst,
816 unsigned long *scanned, int order,
817 int mode, struct zone *z,
818 struct mem_cgroup *mem_cont,
819 int active)
821 if (active)
822 return isolate_lru_pages(nr, &z->active_list, dst,
823 scanned, order, mode);
824 else
825 return isolate_lru_pages(nr, &z->inactive_list, dst,
826 scanned, order, mode);
830 * clear_active_flags() is a helper for shrink_active_list(), clearing
831 * any active bits from the pages in the list.
833 static unsigned long clear_active_flags(struct list_head *page_list)
835 int nr_active = 0;
836 struct page *page;
838 list_for_each_entry(page, page_list, lru)
839 if (PageActive(page)) {
840 ClearPageActive(page);
841 nr_active++;
844 return nr_active;
848 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
849 * of reclaimed pages
851 static unsigned long shrink_inactive_list(unsigned long max_scan,
852 struct zone *zone, struct scan_control *sc)
854 LIST_HEAD(page_list);
855 struct pagevec pvec;
856 unsigned long nr_scanned = 0;
857 unsigned long nr_reclaimed = 0;
859 pagevec_init(&pvec, 1);
861 lru_add_drain();
862 spin_lock_irq(&zone->lru_lock);
863 do {
864 struct page *page;
865 unsigned long nr_taken;
866 unsigned long nr_scan;
867 unsigned long nr_freed;
868 unsigned long nr_active;
870 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
871 &page_list, &nr_scan, sc->order,
872 (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
873 ISOLATE_BOTH : ISOLATE_INACTIVE,
874 zone, sc->mem_cgroup, 0);
875 nr_active = clear_active_flags(&page_list);
876 __count_vm_events(PGDEACTIVATE, nr_active);
878 __mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
879 __mod_zone_page_state(zone, NR_INACTIVE,
880 -(nr_taken - nr_active));
881 if (scan_global_lru(sc))
882 zone->pages_scanned += nr_scan;
883 spin_unlock_irq(&zone->lru_lock);
885 nr_scanned += nr_scan;
886 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
889 * If we are direct reclaiming for contiguous pages and we do
890 * not reclaim everything in the list, try again and wait
891 * for IO to complete. This will stall high-order allocations
892 * but that should be acceptable to the caller
894 if (nr_freed < nr_taken && !current_is_kswapd() &&
895 sc->order > PAGE_ALLOC_COSTLY_ORDER) {
896 congestion_wait(WRITE, HZ/10);
899 * The attempt at page out may have made some
900 * of the pages active, mark them inactive again.
902 nr_active = clear_active_flags(&page_list);
903 count_vm_events(PGDEACTIVATE, nr_active);
905 nr_freed += shrink_page_list(&page_list, sc,
906 PAGEOUT_IO_SYNC);
909 nr_reclaimed += nr_freed;
910 local_irq_disable();
911 if (current_is_kswapd()) {
912 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
913 __count_vm_events(KSWAPD_STEAL, nr_freed);
914 } else if (scan_global_lru(sc))
915 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
917 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
919 if (nr_taken == 0)
920 goto done;
922 spin_lock(&zone->lru_lock);
924 * Put back any unfreeable pages.
926 while (!list_empty(&page_list)) {
927 page = lru_to_page(&page_list);
928 VM_BUG_ON(PageLRU(page));
929 SetPageLRU(page);
930 list_del(&page->lru);
931 if (PageActive(page))
932 add_page_to_active_list(zone, page);
933 else
934 add_page_to_inactive_list(zone, page);
935 if (!pagevec_add(&pvec, page)) {
936 spin_unlock_irq(&zone->lru_lock);
937 __pagevec_release(&pvec);
938 spin_lock_irq(&zone->lru_lock);
941 } while (nr_scanned < max_scan);
942 spin_unlock(&zone->lru_lock);
943 done:
944 local_irq_enable();
945 pagevec_release(&pvec);
946 return nr_reclaimed;
950 * We are about to scan this zone at a certain priority level. If that priority
951 * level is smaller (ie: more urgent) than the previous priority, then note
952 * that priority level within the zone. This is done so that when the next
953 * process comes in to scan this zone, it will immediately start out at this
954 * priority level rather than having to build up its own scanning priority.
955 * Here, this priority affects only the reclaim-mapped threshold.
957 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
959 if (priority < zone->prev_priority)
960 zone->prev_priority = priority;
963 static inline int zone_is_near_oom(struct zone *zone)
965 return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
966 + zone_page_state(zone, NR_INACTIVE))*3;
970 * Determine we should try to reclaim mapped pages.
971 * This is called only when sc->mem_cgroup is NULL.
973 static int calc_reclaim_mapped(struct scan_control *sc, struct zone *zone,
974 int priority)
976 long mapped_ratio;
977 long distress;
978 long swap_tendency;
979 long imbalance;
980 int reclaim_mapped = 0;
981 int prev_priority;
983 if (scan_global_lru(sc) && zone_is_near_oom(zone))
984 return 1;
986 * `distress' is a measure of how much trouble we're having
987 * reclaiming pages. 0 -> no problems. 100 -> great trouble.
989 if (scan_global_lru(sc))
990 prev_priority = zone->prev_priority;
991 else
992 prev_priority = mem_cgroup_get_reclaim_priority(sc->mem_cgroup);
994 distress = 100 >> min(prev_priority, priority);
997 * The point of this algorithm is to decide when to start
998 * reclaiming mapped memory instead of just pagecache. Work out
999 * how much memory
1000 * is mapped.
1002 if (scan_global_lru(sc))
1003 mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
1004 global_page_state(NR_ANON_PAGES)) * 100) /
1005 vm_total_pages;
1006 else
1007 mapped_ratio = mem_cgroup_calc_mapped_ratio(sc->mem_cgroup);
1010 * Now decide how much we really want to unmap some pages. The
1011 * mapped ratio is downgraded - just because there's a lot of
1012 * mapped memory doesn't necessarily mean that page reclaim
1013 * isn't succeeding.
1015 * The distress ratio is important - we don't want to start
1016 * going oom.
1018 * A 100% value of vm_swappiness overrides this algorithm
1019 * altogether.
1021 swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
1024 * If there's huge imbalance between active and inactive
1025 * (think active 100 times larger than inactive) we should
1026 * become more permissive, or the system will take too much
1027 * cpu before it start swapping during memory pressure.
1028 * Distress is about avoiding early-oom, this is about
1029 * making swappiness graceful despite setting it to low
1030 * values.
1032 * Avoid div by zero with nr_inactive+1, and max resulting
1033 * value is vm_total_pages.
1035 if (scan_global_lru(sc)) {
1036 imbalance = zone_page_state(zone, NR_ACTIVE);
1037 imbalance /= zone_page_state(zone, NR_INACTIVE) + 1;
1038 } else
1039 imbalance = mem_cgroup_reclaim_imbalance(sc->mem_cgroup);
1042 * Reduce the effect of imbalance if swappiness is low,
1043 * this means for a swappiness very low, the imbalance
1044 * must be much higher than 100 for this logic to make
1045 * the difference.
1047 * Max temporary value is vm_total_pages*100.
1049 imbalance *= (vm_swappiness + 1);
1050 imbalance /= 100;
1053 * If not much of the ram is mapped, makes the imbalance
1054 * less relevant, it's high priority we refill the inactive
1055 * list with mapped pages only in presence of high ratio of
1056 * mapped pages.
1058 * Max temporary value is vm_total_pages*100.
1060 imbalance *= mapped_ratio;
1061 imbalance /= 100;
1063 /* apply imbalance feedback to swap_tendency */
1064 swap_tendency += imbalance;
1067 * Now use this metric to decide whether to start moving mapped
1068 * memory onto the inactive list.
1070 if (swap_tendency >= 100)
1071 reclaim_mapped = 1;
1073 return reclaim_mapped;
1077 * This moves pages from the active list to the inactive list.
1079 * We move them the other way if the page is referenced by one or more
1080 * processes, from rmap.
1082 * If the pages are mostly unmapped, the processing is fast and it is
1083 * appropriate to hold zone->lru_lock across the whole operation. But if
1084 * the pages are mapped, the processing is slow (page_referenced()) so we
1085 * should drop zone->lru_lock around each page. It's impossible to balance
1086 * this, so instead we remove the pages from the LRU while processing them.
1087 * It is safe to rely on PG_active against the non-LRU pages in here because
1088 * nobody will play with that bit on a non-LRU page.
1090 * The downside is that we have to touch page->_count against each page.
1091 * But we had to alter page->flags anyway.
1095 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1096 struct scan_control *sc, int priority)
1098 unsigned long pgmoved;
1099 int pgdeactivate = 0;
1100 unsigned long pgscanned;
1101 LIST_HEAD(l_hold); /* The pages which were snipped off */
1102 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
1103 LIST_HEAD(l_active); /* Pages to go onto the active_list */
1104 struct page *page;
1105 struct pagevec pvec;
1106 int reclaim_mapped = 0;
1108 if (sc->may_swap)
1109 reclaim_mapped = calc_reclaim_mapped(sc, zone, priority);
1111 lru_add_drain();
1112 spin_lock_irq(&zone->lru_lock);
1113 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1114 ISOLATE_ACTIVE, zone,
1115 sc->mem_cgroup, 1);
1117 * zone->pages_scanned is used for detect zone's oom
1118 * mem_cgroup remembers nr_scan by itself.
1120 if (scan_global_lru(sc))
1121 zone->pages_scanned += pgscanned;
1123 __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
1124 spin_unlock_irq(&zone->lru_lock);
1126 while (!list_empty(&l_hold)) {
1127 cond_resched();
1128 page = lru_to_page(&l_hold);
1129 list_del(&page->lru);
1130 if (page_mapped(page)) {
1131 if (!reclaim_mapped ||
1132 (total_swap_pages == 0 && PageAnon(page)) ||
1133 page_referenced(page, 0, sc->mem_cgroup)) {
1134 list_add(&page->lru, &l_active);
1135 continue;
1138 list_add(&page->lru, &l_inactive);
1141 pagevec_init(&pvec, 1);
1142 pgmoved = 0;
1143 spin_lock_irq(&zone->lru_lock);
1144 while (!list_empty(&l_inactive)) {
1145 page = lru_to_page(&l_inactive);
1146 prefetchw_prev_lru_page(page, &l_inactive, flags);
1147 VM_BUG_ON(PageLRU(page));
1148 SetPageLRU(page);
1149 VM_BUG_ON(!PageActive(page));
1150 ClearPageActive(page);
1152 list_move(&page->lru, &zone->inactive_list);
1153 mem_cgroup_move_lists(page, false);
1154 pgmoved++;
1155 if (!pagevec_add(&pvec, page)) {
1156 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1157 spin_unlock_irq(&zone->lru_lock);
1158 pgdeactivate += pgmoved;
1159 pgmoved = 0;
1160 if (buffer_heads_over_limit)
1161 pagevec_strip(&pvec);
1162 __pagevec_release(&pvec);
1163 spin_lock_irq(&zone->lru_lock);
1166 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1167 pgdeactivate += pgmoved;
1168 if (buffer_heads_over_limit) {
1169 spin_unlock_irq(&zone->lru_lock);
1170 pagevec_strip(&pvec);
1171 spin_lock_irq(&zone->lru_lock);
1174 pgmoved = 0;
1175 while (!list_empty(&l_active)) {
1176 page = lru_to_page(&l_active);
1177 prefetchw_prev_lru_page(page, &l_active, flags);
1178 VM_BUG_ON(PageLRU(page));
1179 SetPageLRU(page);
1180 VM_BUG_ON(!PageActive(page));
1182 list_move(&page->lru, &zone->active_list);
1183 mem_cgroup_move_lists(page, true);
1184 pgmoved++;
1185 if (!pagevec_add(&pvec, page)) {
1186 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1187 pgmoved = 0;
1188 spin_unlock_irq(&zone->lru_lock);
1189 __pagevec_release(&pvec);
1190 spin_lock_irq(&zone->lru_lock);
1193 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1195 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1196 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1197 spin_unlock_irq(&zone->lru_lock);
1199 pagevec_release(&pvec);
1203 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1205 static unsigned long shrink_zone(int priority, struct zone *zone,
1206 struct scan_control *sc)
1208 unsigned long nr_active;
1209 unsigned long nr_inactive;
1210 unsigned long nr_to_scan;
1211 unsigned long nr_reclaimed = 0;
1213 if (scan_global_lru(sc)) {
1215 * Add one to nr_to_scan just to make sure that the kernel
1216 * will slowly sift through the active list.
1218 zone->nr_scan_active +=
1219 (zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
1220 nr_active = zone->nr_scan_active;
1221 zone->nr_scan_inactive +=
1222 (zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
1223 nr_inactive = zone->nr_scan_inactive;
1224 if (nr_inactive >= sc->swap_cluster_max)
1225 zone->nr_scan_inactive = 0;
1226 else
1227 nr_inactive = 0;
1229 if (nr_active >= sc->swap_cluster_max)
1230 zone->nr_scan_active = 0;
1231 else
1232 nr_active = 0;
1233 } else {
1235 * This reclaim occurs not because zone memory shortage but
1236 * because memory controller hits its limit.
1237 * Then, don't modify zone reclaim related data.
1239 nr_active = mem_cgroup_calc_reclaim_active(sc->mem_cgroup,
1240 zone, priority);
1242 nr_inactive = mem_cgroup_calc_reclaim_inactive(sc->mem_cgroup,
1243 zone, priority);
1247 while (nr_active || nr_inactive) {
1248 if (nr_active) {
1249 nr_to_scan = min(nr_active,
1250 (unsigned long)sc->swap_cluster_max);
1251 nr_active -= nr_to_scan;
1252 shrink_active_list(nr_to_scan, zone, sc, priority);
1255 if (nr_inactive) {
1256 nr_to_scan = min(nr_inactive,
1257 (unsigned long)sc->swap_cluster_max);
1258 nr_inactive -= nr_to_scan;
1259 nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
1260 sc);
1264 throttle_vm_writeout(sc->gfp_mask);
1265 return nr_reclaimed;
1269 * This is the direct reclaim path, for page-allocating processes. We only
1270 * try to reclaim pages from zones which will satisfy the caller's allocation
1271 * request.
1273 * We reclaim from a zone even if that zone is over pages_high. Because:
1274 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1275 * allocation or
1276 * b) The zones may be over pages_high but they must go *over* pages_high to
1277 * satisfy the `incremental min' zone defense algorithm.
1279 * Returns the number of reclaimed pages.
1281 * If a zone is deemed to be full of pinned pages then just give it a light
1282 * scan then give up on it.
1284 static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
1285 struct scan_control *sc)
1287 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1288 unsigned long nr_reclaimed = 0;
1289 struct zoneref *z;
1290 struct zone *zone;
1292 sc->all_unreclaimable = 1;
1293 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1294 if (!populated_zone(zone))
1295 continue;
1297 * Take care memory controller reclaiming has small influence
1298 * to global LRU.
1300 if (scan_global_lru(sc)) {
1301 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1302 continue;
1303 note_zone_scanning_priority(zone, priority);
1305 if (zone_is_all_unreclaimable(zone) &&
1306 priority != DEF_PRIORITY)
1307 continue; /* Let kswapd poll it */
1308 sc->all_unreclaimable = 0;
1309 } else {
1311 * Ignore cpuset limitation here. We just want to reduce
1312 * # of used pages by us regardless of memory shortage.
1314 sc->all_unreclaimable = 0;
1315 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1316 priority);
1319 nr_reclaimed += shrink_zone(priority, zone, sc);
1322 return nr_reclaimed;
1326 * This is the main entry point to direct page reclaim.
1328 * If a full scan of the inactive list fails to free enough memory then we
1329 * are "out of memory" and something needs to be killed.
1331 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1332 * high - the zone may be full of dirty or under-writeback pages, which this
1333 * caller can't do much about. We kick pdflush and take explicit naps in the
1334 * hope that some of these pages can be written. But if the allocating task
1335 * holds filesystem locks which prevent writeout this might not work, and the
1336 * allocation attempt will fail.
1338 * returns: 0, if no pages reclaimed
1339 * else, the number of pages reclaimed
1341 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1342 struct scan_control *sc)
1344 int priority;
1345 unsigned long ret = 0;
1346 unsigned long total_scanned = 0;
1347 unsigned long nr_reclaimed = 0;
1348 struct reclaim_state *reclaim_state = current->reclaim_state;
1349 unsigned long lru_pages = 0;
1350 struct zoneref *z;
1351 struct zone *zone;
1352 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1354 delayacct_freepages_start();
1356 if (scan_global_lru(sc))
1357 count_vm_event(ALLOCSTALL);
1359 * mem_cgroup will not do shrink_slab.
1361 if (scan_global_lru(sc)) {
1362 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1364 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1365 continue;
1367 lru_pages += zone_page_state(zone, NR_ACTIVE)
1368 + zone_page_state(zone, NR_INACTIVE);
1372 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1373 sc->nr_scanned = 0;
1374 if (!priority)
1375 disable_swap_token();
1376 nr_reclaimed += shrink_zones(priority, zonelist, sc);
1378 * Don't shrink slabs when reclaiming memory from
1379 * over limit cgroups
1381 if (scan_global_lru(sc)) {
1382 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1383 if (reclaim_state) {
1384 nr_reclaimed += reclaim_state->reclaimed_slab;
1385 reclaim_state->reclaimed_slab = 0;
1388 total_scanned += sc->nr_scanned;
1389 if (nr_reclaimed >= sc->swap_cluster_max) {
1390 ret = nr_reclaimed;
1391 goto out;
1395 * Try to write back as many pages as we just scanned. This
1396 * tends to cause slow streaming writers to write data to the
1397 * disk smoothly, at the dirtying rate, which is nice. But
1398 * that's undesirable in laptop mode, where we *want* lumpy
1399 * writeout. So in laptop mode, write out the whole world.
1401 if (total_scanned > sc->swap_cluster_max +
1402 sc->swap_cluster_max / 2) {
1403 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1404 sc->may_writepage = 1;
1407 /* Take a nap, wait for some writeback to complete */
1408 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1409 congestion_wait(WRITE, HZ/10);
1411 /* top priority shrink_caches still had more to do? don't OOM, then */
1412 if (!sc->all_unreclaimable && scan_global_lru(sc))
1413 ret = nr_reclaimed;
1414 out:
1416 * Now that we've scanned all the zones at this priority level, note
1417 * that level within the zone so that the next thread which performs
1418 * scanning of this zone will immediately start out at this priority
1419 * level. This affects only the decision whether or not to bring
1420 * mapped pages onto the inactive list.
1422 if (priority < 0)
1423 priority = 0;
1425 if (scan_global_lru(sc)) {
1426 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1428 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1429 continue;
1431 zone->prev_priority = priority;
1433 } else
1434 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1436 delayacct_freepages_end();
1438 return ret;
1441 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1442 gfp_t gfp_mask)
1444 struct scan_control sc = {
1445 .gfp_mask = gfp_mask,
1446 .may_writepage = !laptop_mode,
1447 .swap_cluster_max = SWAP_CLUSTER_MAX,
1448 .may_swap = 1,
1449 .swappiness = vm_swappiness,
1450 .order = order,
1451 .mem_cgroup = NULL,
1452 .isolate_pages = isolate_pages_global,
1455 return do_try_to_free_pages(zonelist, &sc);
1458 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1460 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1461 gfp_t gfp_mask)
1463 struct scan_control sc = {
1464 .may_writepage = !laptop_mode,
1465 .may_swap = 1,
1466 .swap_cluster_max = SWAP_CLUSTER_MAX,
1467 .swappiness = vm_swappiness,
1468 .order = 0,
1469 .mem_cgroup = mem_cont,
1470 .isolate_pages = mem_cgroup_isolate_pages,
1472 struct zonelist *zonelist;
1474 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1475 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1476 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1477 return do_try_to_free_pages(zonelist, &sc);
1479 #endif
1482 * For kswapd, balance_pgdat() will work across all this node's zones until
1483 * they are all at pages_high.
1485 * Returns the number of pages which were actually freed.
1487 * There is special handling here for zones which are full of pinned pages.
1488 * This can happen if the pages are all mlocked, or if they are all used by
1489 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1490 * What we do is to detect the case where all pages in the zone have been
1491 * scanned twice and there has been zero successful reclaim. Mark the zone as
1492 * dead and from now on, only perform a short scan. Basically we're polling
1493 * the zone for when the problem goes away.
1495 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1496 * zones which have free_pages > pages_high, but once a zone is found to have
1497 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1498 * of the number of free pages in the lower zones. This interoperates with
1499 * the page allocator fallback scheme to ensure that aging of pages is balanced
1500 * across the zones.
1502 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1504 int all_zones_ok;
1505 int priority;
1506 int i;
1507 unsigned long total_scanned;
1508 unsigned long nr_reclaimed;
1509 struct reclaim_state *reclaim_state = current->reclaim_state;
1510 struct scan_control sc = {
1511 .gfp_mask = GFP_KERNEL,
1512 .may_swap = 1,
1513 .swap_cluster_max = SWAP_CLUSTER_MAX,
1514 .swappiness = vm_swappiness,
1515 .order = order,
1516 .mem_cgroup = NULL,
1517 .isolate_pages = isolate_pages_global,
1520 * temp_priority is used to remember the scanning priority at which
1521 * this zone was successfully refilled to free_pages == pages_high.
1523 int temp_priority[MAX_NR_ZONES];
1525 loop_again:
1526 total_scanned = 0;
1527 nr_reclaimed = 0;
1528 sc.may_writepage = !laptop_mode;
1529 count_vm_event(PAGEOUTRUN);
1531 for (i = 0; i < pgdat->nr_zones; i++)
1532 temp_priority[i] = DEF_PRIORITY;
1534 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1535 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1536 unsigned long lru_pages = 0;
1538 /* The swap token gets in the way of swapout... */
1539 if (!priority)
1540 disable_swap_token();
1542 all_zones_ok = 1;
1545 * Scan in the highmem->dma direction for the highest
1546 * zone which needs scanning
1548 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1549 struct zone *zone = pgdat->node_zones + i;
1551 if (!populated_zone(zone))
1552 continue;
1554 if (zone_is_all_unreclaimable(zone) &&
1555 priority != DEF_PRIORITY)
1556 continue;
1558 if (!zone_watermark_ok(zone, order, zone->pages_high,
1559 0, 0)) {
1560 end_zone = i;
1561 break;
1564 if (i < 0)
1565 goto out;
1567 for (i = 0; i <= end_zone; i++) {
1568 struct zone *zone = pgdat->node_zones + i;
1570 lru_pages += zone_page_state(zone, NR_ACTIVE)
1571 + zone_page_state(zone, NR_INACTIVE);
1575 * Now scan the zone in the dma->highmem direction, stopping
1576 * at the last zone which needs scanning.
1578 * We do this because the page allocator works in the opposite
1579 * direction. This prevents the page allocator from allocating
1580 * pages behind kswapd's direction of progress, which would
1581 * cause too much scanning of the lower zones.
1583 for (i = 0; i <= end_zone; i++) {
1584 struct zone *zone = pgdat->node_zones + i;
1585 int nr_slab;
1587 if (!populated_zone(zone))
1588 continue;
1590 if (zone_is_all_unreclaimable(zone) &&
1591 priority != DEF_PRIORITY)
1592 continue;
1594 if (!zone_watermark_ok(zone, order, zone->pages_high,
1595 end_zone, 0))
1596 all_zones_ok = 0;
1597 temp_priority[i] = priority;
1598 sc.nr_scanned = 0;
1599 note_zone_scanning_priority(zone, priority);
1601 * We put equal pressure on every zone, unless one
1602 * zone has way too many pages free already.
1604 if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1605 end_zone, 0))
1606 nr_reclaimed += shrink_zone(priority, zone, &sc);
1607 reclaim_state->reclaimed_slab = 0;
1608 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1609 lru_pages);
1610 nr_reclaimed += reclaim_state->reclaimed_slab;
1611 total_scanned += sc.nr_scanned;
1612 if (zone_is_all_unreclaimable(zone))
1613 continue;
1614 if (nr_slab == 0 && zone->pages_scanned >=
1615 (zone_page_state(zone, NR_ACTIVE)
1616 + zone_page_state(zone, NR_INACTIVE)) * 6)
1617 zone_set_flag(zone,
1618 ZONE_ALL_UNRECLAIMABLE);
1620 * If we've done a decent amount of scanning and
1621 * the reclaim ratio is low, start doing writepage
1622 * even in laptop mode
1624 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1625 total_scanned > nr_reclaimed + nr_reclaimed / 2)
1626 sc.may_writepage = 1;
1628 if (all_zones_ok)
1629 break; /* kswapd: all done */
1631 * OK, kswapd is getting into trouble. Take a nap, then take
1632 * another pass across the zones.
1634 if (total_scanned && priority < DEF_PRIORITY - 2)
1635 congestion_wait(WRITE, HZ/10);
1638 * We do this so kswapd doesn't build up large priorities for
1639 * example when it is freeing in parallel with allocators. It
1640 * matches the direct reclaim path behaviour in terms of impact
1641 * on zone->*_priority.
1643 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1644 break;
1646 out:
1648 * Note within each zone the priority level at which this zone was
1649 * brought into a happy state. So that the next thread which scans this
1650 * zone will start out at that priority level.
1652 for (i = 0; i < pgdat->nr_zones; i++) {
1653 struct zone *zone = pgdat->node_zones + i;
1655 zone->prev_priority = temp_priority[i];
1657 if (!all_zones_ok) {
1658 cond_resched();
1660 try_to_freeze();
1662 goto loop_again;
1665 return nr_reclaimed;
1669 * The background pageout daemon, started as a kernel thread
1670 * from the init process.
1672 * This basically trickles out pages so that we have _some_
1673 * free memory available even if there is no other activity
1674 * that frees anything up. This is needed for things like routing
1675 * etc, where we otherwise might have all activity going on in
1676 * asynchronous contexts that cannot page things out.
1678 * If there are applications that are active memory-allocators
1679 * (most normal use), this basically shouldn't matter.
1681 static int kswapd(void *p)
1683 unsigned long order;
1684 pg_data_t *pgdat = (pg_data_t*)p;
1685 struct task_struct *tsk = current;
1686 DEFINE_WAIT(wait);
1687 struct reclaim_state reclaim_state = {
1688 .reclaimed_slab = 0,
1690 node_to_cpumask_ptr(cpumask, pgdat->node_id);
1692 if (!cpus_empty(*cpumask))
1693 set_cpus_allowed_ptr(tsk, cpumask);
1694 current->reclaim_state = &reclaim_state;
1697 * Tell the memory management that we're a "memory allocator",
1698 * and that if we need more memory we should get access to it
1699 * regardless (see "__alloc_pages()"). "kswapd" should
1700 * never get caught in the normal page freeing logic.
1702 * (Kswapd normally doesn't need memory anyway, but sometimes
1703 * you need a small amount of memory in order to be able to
1704 * page out something else, and this flag essentially protects
1705 * us from recursively trying to free more memory as we're
1706 * trying to free the first piece of memory in the first place).
1708 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1709 set_freezable();
1711 order = 0;
1712 for ( ; ; ) {
1713 unsigned long new_order;
1715 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1716 new_order = pgdat->kswapd_max_order;
1717 pgdat->kswapd_max_order = 0;
1718 if (order < new_order) {
1720 * Don't sleep if someone wants a larger 'order'
1721 * allocation
1723 order = new_order;
1724 } else {
1725 if (!freezing(current))
1726 schedule();
1728 order = pgdat->kswapd_max_order;
1730 finish_wait(&pgdat->kswapd_wait, &wait);
1732 if (!try_to_freeze()) {
1733 /* We can speed up thawing tasks if we don't call
1734 * balance_pgdat after returning from the refrigerator
1736 balance_pgdat(pgdat, order);
1739 return 0;
1743 * A zone is low on free memory, so wake its kswapd task to service it.
1745 void wakeup_kswapd(struct zone *zone, int order)
1747 pg_data_t *pgdat;
1749 if (!populated_zone(zone))
1750 return;
1752 pgdat = zone->zone_pgdat;
1753 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1754 return;
1755 if (pgdat->kswapd_max_order < order)
1756 pgdat->kswapd_max_order = order;
1757 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1758 return;
1759 if (!waitqueue_active(&pgdat->kswapd_wait))
1760 return;
1761 wake_up_interruptible(&pgdat->kswapd_wait);
1764 #ifdef CONFIG_PM
1766 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
1767 * from LRU lists system-wide, for given pass and priority, and returns the
1768 * number of reclaimed pages
1770 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1772 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1773 int pass, struct scan_control *sc)
1775 struct zone *zone;
1776 unsigned long nr_to_scan, ret = 0;
1778 for_each_zone(zone) {
1780 if (!populated_zone(zone))
1781 continue;
1783 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
1784 continue;
1786 /* For pass = 0 we don't shrink the active list */
1787 if (pass > 0) {
1788 zone->nr_scan_active +=
1789 (zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
1790 if (zone->nr_scan_active >= nr_pages || pass > 3) {
1791 zone->nr_scan_active = 0;
1792 nr_to_scan = min(nr_pages,
1793 zone_page_state(zone, NR_ACTIVE));
1794 shrink_active_list(nr_to_scan, zone, sc, prio);
1798 zone->nr_scan_inactive +=
1799 (zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
1800 if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1801 zone->nr_scan_inactive = 0;
1802 nr_to_scan = min(nr_pages,
1803 zone_page_state(zone, NR_INACTIVE));
1804 ret += shrink_inactive_list(nr_to_scan, zone, sc);
1805 if (ret >= nr_pages)
1806 return ret;
1810 return ret;
1813 static unsigned long count_lru_pages(void)
1815 return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
1819 * Try to free `nr_pages' of memory, system-wide, and return the number of
1820 * freed pages.
1822 * Rather than trying to age LRUs the aim is to preserve the overall
1823 * LRU order by reclaiming preferentially
1824 * inactive > active > active referenced > active mapped
1826 unsigned long shrink_all_memory(unsigned long nr_pages)
1828 unsigned long lru_pages, nr_slab;
1829 unsigned long ret = 0;
1830 int pass;
1831 struct reclaim_state reclaim_state;
1832 struct scan_control sc = {
1833 .gfp_mask = GFP_KERNEL,
1834 .may_swap = 0,
1835 .swap_cluster_max = nr_pages,
1836 .may_writepage = 1,
1837 .swappiness = vm_swappiness,
1838 .isolate_pages = isolate_pages_global,
1841 current->reclaim_state = &reclaim_state;
1843 lru_pages = count_lru_pages();
1844 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1845 /* If slab caches are huge, it's better to hit them first */
1846 while (nr_slab >= lru_pages) {
1847 reclaim_state.reclaimed_slab = 0;
1848 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1849 if (!reclaim_state.reclaimed_slab)
1850 break;
1852 ret += reclaim_state.reclaimed_slab;
1853 if (ret >= nr_pages)
1854 goto out;
1856 nr_slab -= reclaim_state.reclaimed_slab;
1860 * We try to shrink LRUs in 5 passes:
1861 * 0 = Reclaim from inactive_list only
1862 * 1 = Reclaim from active list but don't reclaim mapped
1863 * 2 = 2nd pass of type 1
1864 * 3 = Reclaim mapped (normal reclaim)
1865 * 4 = 2nd pass of type 3
1867 for (pass = 0; pass < 5; pass++) {
1868 int prio;
1870 /* Force reclaiming mapped pages in the passes #3 and #4 */
1871 if (pass > 2) {
1872 sc.may_swap = 1;
1873 sc.swappiness = 100;
1876 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1877 unsigned long nr_to_scan = nr_pages - ret;
1879 sc.nr_scanned = 0;
1880 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1881 if (ret >= nr_pages)
1882 goto out;
1884 reclaim_state.reclaimed_slab = 0;
1885 shrink_slab(sc.nr_scanned, sc.gfp_mask,
1886 count_lru_pages());
1887 ret += reclaim_state.reclaimed_slab;
1888 if (ret >= nr_pages)
1889 goto out;
1891 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1892 congestion_wait(WRITE, HZ / 10);
1897 * If ret = 0, we could not shrink LRUs, but there may be something
1898 * in slab caches
1900 if (!ret) {
1901 do {
1902 reclaim_state.reclaimed_slab = 0;
1903 shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
1904 ret += reclaim_state.reclaimed_slab;
1905 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1908 out:
1909 current->reclaim_state = NULL;
1911 return ret;
1913 #endif
1915 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1916 not required for correctness. So if the last cpu in a node goes
1917 away, we get changed to run anywhere: as the first one comes back,
1918 restore their cpu bindings. */
1919 static int __devinit cpu_callback(struct notifier_block *nfb,
1920 unsigned long action, void *hcpu)
1922 int nid;
1924 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1925 for_each_node_state(nid, N_HIGH_MEMORY) {
1926 pg_data_t *pgdat = NODE_DATA(nid);
1927 node_to_cpumask_ptr(mask, pgdat->node_id);
1929 if (any_online_cpu(*mask) < nr_cpu_ids)
1930 /* One of our CPUs online: restore mask */
1931 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1934 return NOTIFY_OK;
1938 * This kswapd start function will be called by init and node-hot-add.
1939 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1941 int kswapd_run(int nid)
1943 pg_data_t *pgdat = NODE_DATA(nid);
1944 int ret = 0;
1946 if (pgdat->kswapd)
1947 return 0;
1949 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1950 if (IS_ERR(pgdat->kswapd)) {
1951 /* failure at boot is fatal */
1952 BUG_ON(system_state == SYSTEM_BOOTING);
1953 printk("Failed to start kswapd on node %d\n",nid);
1954 ret = -1;
1956 return ret;
1959 static int __init kswapd_init(void)
1961 int nid;
1963 swap_setup();
1964 for_each_node_state(nid, N_HIGH_MEMORY)
1965 kswapd_run(nid);
1966 hotcpu_notifier(cpu_callback, 0);
1967 return 0;
1970 module_init(kswapd_init)
1972 #ifdef CONFIG_NUMA
1974 * Zone reclaim mode
1976 * If non-zero call zone_reclaim when the number of free pages falls below
1977 * the watermarks.
1979 int zone_reclaim_mode __read_mostly;
1981 #define RECLAIM_OFF 0
1982 #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
1983 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
1984 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
1987 * Priority for ZONE_RECLAIM. This determines the fraction of pages
1988 * of a node considered for each zone_reclaim. 4 scans 1/16th of
1989 * a zone.
1991 #define ZONE_RECLAIM_PRIORITY 4
1994 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1995 * occur.
1997 int sysctl_min_unmapped_ratio = 1;
2000 * If the number of slab pages in a zone grows beyond this percentage then
2001 * slab reclaim needs to occur.
2003 int sysctl_min_slab_ratio = 5;
2006 * Try to free up some pages from this zone through reclaim.
2008 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2010 /* Minimum pages needed in order to stay on node */
2011 const unsigned long nr_pages = 1 << order;
2012 struct task_struct *p = current;
2013 struct reclaim_state reclaim_state;
2014 int priority;
2015 unsigned long nr_reclaimed = 0;
2016 struct scan_control sc = {
2017 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2018 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2019 .swap_cluster_max = max_t(unsigned long, nr_pages,
2020 SWAP_CLUSTER_MAX),
2021 .gfp_mask = gfp_mask,
2022 .swappiness = vm_swappiness,
2023 .isolate_pages = isolate_pages_global,
2025 unsigned long slab_reclaimable;
2027 disable_swap_token();
2028 cond_resched();
2030 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2031 * and we also need to be able to write out pages for RECLAIM_WRITE
2032 * and RECLAIM_SWAP.
2034 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2035 reclaim_state.reclaimed_slab = 0;
2036 p->reclaim_state = &reclaim_state;
2038 if (zone_page_state(zone, NR_FILE_PAGES) -
2039 zone_page_state(zone, NR_FILE_MAPPED) >
2040 zone->min_unmapped_pages) {
2042 * Free memory by calling shrink zone with increasing
2043 * priorities until we have enough memory freed.
2045 priority = ZONE_RECLAIM_PRIORITY;
2046 do {
2047 note_zone_scanning_priority(zone, priority);
2048 nr_reclaimed += shrink_zone(priority, zone, &sc);
2049 priority--;
2050 } while (priority >= 0 && nr_reclaimed < nr_pages);
2053 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2054 if (slab_reclaimable > zone->min_slab_pages) {
2056 * shrink_slab() does not currently allow us to determine how
2057 * many pages were freed in this zone. So we take the current
2058 * number of slab pages and shake the slab until it is reduced
2059 * by the same nr_pages that we used for reclaiming unmapped
2060 * pages.
2062 * Note that shrink_slab will free memory on all zones and may
2063 * take a long time.
2065 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2066 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2067 slab_reclaimable - nr_pages)
2071 * Update nr_reclaimed by the number of slab pages we
2072 * reclaimed from this zone.
2074 nr_reclaimed += slab_reclaimable -
2075 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2078 p->reclaim_state = NULL;
2079 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2080 return nr_reclaimed >= nr_pages;
2083 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2085 int node_id;
2086 int ret;
2089 * Zone reclaim reclaims unmapped file backed pages and
2090 * slab pages if we are over the defined limits.
2092 * A small portion of unmapped file backed pages is needed for
2093 * file I/O otherwise pages read by file I/O will be immediately
2094 * thrown out if the zone is overallocated. So we do not reclaim
2095 * if less than a specified percentage of the zone is used by
2096 * unmapped file backed pages.
2098 if (zone_page_state(zone, NR_FILE_PAGES) -
2099 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2100 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2101 <= zone->min_slab_pages)
2102 return 0;
2104 if (zone_is_all_unreclaimable(zone))
2105 return 0;
2108 * Do not scan if the allocation should not be delayed.
2110 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2111 return 0;
2114 * Only run zone reclaim on the local zone or on zones that do not
2115 * have associated processors. This will favor the local processor
2116 * over remote processors and spread off node memory allocations
2117 * as wide as possible.
2119 node_id = zone_to_nid(zone);
2120 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2121 return 0;
2123 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2124 return 0;
2125 ret = __zone_reclaim(zone, gfp_mask, order);
2126 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2128 return ret;
2130 #endif