eCryptfs: use page_alloc not kmalloc to get a page of memory
[linux-2.6/mini2440.git] / kernel / stop_machine.c
blobe446c7c7d6a9230dc1205cb73dd0370568696ed0
1 /* Copyright 2008, 2005 Rusty Russell rusty@rustcorp.com.au IBM Corporation.
2 * GPL v2 and any later version.
3 */
4 #include <linux/cpu.h>
5 #include <linux/err.h>
6 #include <linux/kthread.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/stop_machine.h>
10 #include <linux/syscalls.h>
11 #include <linux/interrupt.h>
13 #include <asm/atomic.h>
14 #include <asm/uaccess.h>
16 /* This controls the threads on each CPU. */
17 enum stopmachine_state {
18 /* Dummy starting state for thread. */
19 STOPMACHINE_NONE,
20 /* Awaiting everyone to be scheduled. */
21 STOPMACHINE_PREPARE,
22 /* Disable interrupts. */
23 STOPMACHINE_DISABLE_IRQ,
24 /* Run the function */
25 STOPMACHINE_RUN,
26 /* Exit */
27 STOPMACHINE_EXIT,
29 static enum stopmachine_state state;
31 struct stop_machine_data {
32 int (*fn)(void *);
33 void *data;
34 int fnret;
37 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
38 static unsigned int num_threads;
39 static atomic_t thread_ack;
40 static struct completion finished;
41 static DEFINE_MUTEX(lock);
43 static void set_state(enum stopmachine_state newstate)
45 /* Reset ack counter. */
46 atomic_set(&thread_ack, num_threads);
47 smp_wmb();
48 state = newstate;
51 /* Last one to ack a state moves to the next state. */
52 static void ack_state(void)
54 if (atomic_dec_and_test(&thread_ack)) {
55 /* If we're the last one to ack the EXIT, we're finished. */
56 if (state == STOPMACHINE_EXIT)
57 complete(&finished);
58 else
59 set_state(state + 1);
63 /* This is the actual thread which stops the CPU. It exits by itself rather
64 * than waiting for kthread_stop(), because it's easier for hotplug CPU. */
65 static int stop_cpu(struct stop_machine_data *smdata)
67 enum stopmachine_state curstate = STOPMACHINE_NONE;
68 int uninitialized_var(ret);
70 /* Simple state machine */
71 do {
72 /* Chill out and ensure we re-read stopmachine_state. */
73 cpu_relax();
74 if (state != curstate) {
75 curstate = state;
76 switch (curstate) {
77 case STOPMACHINE_DISABLE_IRQ:
78 local_irq_disable();
79 hard_irq_disable();
80 break;
81 case STOPMACHINE_RUN:
82 /* |= allows error detection if functions on
83 * multiple CPUs. */
84 smdata->fnret |= smdata->fn(smdata->data);
85 break;
86 default:
87 break;
89 ack_state();
91 } while (curstate != STOPMACHINE_EXIT);
93 local_irq_enable();
94 do_exit(0);
97 /* Callback for CPUs which aren't supposed to do anything. */
98 static int chill(void *unused)
100 return 0;
103 int __stop_machine(int (*fn)(void *), void *data, const cpumask_t *cpus)
105 int i, err;
106 struct stop_machine_data active, idle;
107 struct task_struct **threads;
109 active.fn = fn;
110 active.data = data;
111 active.fnret = 0;
112 idle.fn = chill;
113 idle.data = NULL;
115 /* This could be too big for stack on large machines. */
116 threads = kcalloc(NR_CPUS, sizeof(threads[0]), GFP_KERNEL);
117 if (!threads)
118 return -ENOMEM;
120 /* Set up initial state. */
121 mutex_lock(&lock);
122 init_completion(&finished);
123 num_threads = num_online_cpus();
124 set_state(STOPMACHINE_PREPARE);
126 for_each_online_cpu(i) {
127 struct stop_machine_data *smdata = &idle;
128 struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
130 if (!cpus) {
131 if (i == first_cpu(cpu_online_map))
132 smdata = &active;
133 } else {
134 if (cpu_isset(i, *cpus))
135 smdata = &active;
138 threads[i] = kthread_create((void *)stop_cpu, smdata, "kstop%u",
140 if (IS_ERR(threads[i])) {
141 err = PTR_ERR(threads[i]);
142 threads[i] = NULL;
143 goto kill_threads;
146 /* Place it onto correct cpu. */
147 kthread_bind(threads[i], i);
149 /* Make it highest prio. */
150 if (sched_setscheduler_nocheck(threads[i], SCHED_FIFO, &param))
151 BUG();
154 /* We've created all the threads. Wake them all: hold this CPU so one
155 * doesn't hit this CPU until we're ready. */
156 get_cpu();
157 for_each_online_cpu(i)
158 wake_up_process(threads[i]);
160 /* This will release the thread on our CPU. */
161 put_cpu();
162 wait_for_completion(&finished);
163 mutex_unlock(&lock);
165 kfree(threads);
167 return active.fnret;
169 kill_threads:
170 for_each_online_cpu(i)
171 if (threads[i])
172 kthread_stop(threads[i]);
173 mutex_unlock(&lock);
175 kfree(threads);
176 return err;
179 int stop_machine(int (*fn)(void *), void *data, const cpumask_t *cpus)
181 int ret;
183 /* No CPUs can come up or down during this. */
184 get_online_cpus();
185 ret = __stop_machine(fn, data, cpus);
186 put_online_cpus();
188 return ret;
190 EXPORT_SYMBOL_GPL(stop_machine);