eCryptfs: use page_alloc not kmalloc to get a page of memory
[linux-2.6/mini2440.git] / kernel / relay.c
blob04006ef970b818b01d6cb152c5a5997896a06478
1 /*
2 * Public API and common code for kernel->userspace relay file support.
4 * See Documentation/filesystems/relay.txt for an overview.
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
13 * This file is released under the GPL.
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
31 * close() vm_op implementation for relay file mapping.
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
35 struct rchan_buf *buf = vma->vm_private_data;
36 buf->chan->cb->buf_unmapped(buf, vma->vm_file);
40 * fault() vm_op implementation for relay file mapping.
42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
44 struct page *page;
45 struct rchan_buf *buf = vma->vm_private_data;
46 pgoff_t pgoff = vmf->pgoff;
48 if (!buf)
49 return VM_FAULT_OOM;
51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 if (!page)
53 return VM_FAULT_SIGBUS;
54 get_page(page);
55 vmf->page = page;
57 return 0;
61 * vm_ops for relay file mappings.
63 static struct vm_operations_struct relay_file_mmap_ops = {
64 .fault = relay_buf_fault,
65 .close = relay_file_mmap_close,
69 * allocate an array of pointers of struct page
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
73 struct page **array;
74 size_t pa_size = n_pages * sizeof(struct page *);
76 if (pa_size > PAGE_SIZE) {
77 array = vmalloc(pa_size);
78 if (array)
79 memset(array, 0, pa_size);
80 } else {
81 array = kzalloc(pa_size, GFP_KERNEL);
83 return array;
87 * free an array of pointers of struct page
89 static void relay_free_page_array(struct page **array)
91 if (is_vmalloc_addr(array))
92 vfree(array);
93 else
94 kfree(array);
97 /**
98 * relay_mmap_buf: - mmap channel buffer to process address space
99 * @buf: relay channel buffer
100 * @vma: vm_area_struct describing memory to be mapped
102 * Returns 0 if ok, negative on error
104 * Caller should already have grabbed mmap_sem.
106 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
108 unsigned long length = vma->vm_end - vma->vm_start;
109 struct file *filp = vma->vm_file;
111 if (!buf)
112 return -EBADF;
114 if (length != (unsigned long)buf->chan->alloc_size)
115 return -EINVAL;
117 vma->vm_ops = &relay_file_mmap_ops;
118 vma->vm_flags |= VM_DONTEXPAND;
119 vma->vm_private_data = buf;
120 buf->chan->cb->buf_mapped(buf, filp);
122 return 0;
126 * relay_alloc_buf - allocate a channel buffer
127 * @buf: the buffer struct
128 * @size: total size of the buffer
130 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
131 * passed in size will get page aligned, if it isn't already.
133 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
135 void *mem;
136 unsigned int i, j, n_pages;
138 *size = PAGE_ALIGN(*size);
139 n_pages = *size >> PAGE_SHIFT;
141 buf->page_array = relay_alloc_page_array(n_pages);
142 if (!buf->page_array)
143 return NULL;
145 for (i = 0; i < n_pages; i++) {
146 buf->page_array[i] = alloc_page(GFP_KERNEL);
147 if (unlikely(!buf->page_array[i]))
148 goto depopulate;
149 set_page_private(buf->page_array[i], (unsigned long)buf);
151 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
152 if (!mem)
153 goto depopulate;
155 memset(mem, 0, *size);
156 buf->page_count = n_pages;
157 return mem;
159 depopulate:
160 for (j = 0; j < i; j++)
161 __free_page(buf->page_array[j]);
162 relay_free_page_array(buf->page_array);
163 return NULL;
167 * relay_create_buf - allocate and initialize a channel buffer
168 * @chan: the relay channel
170 * Returns channel buffer if successful, %NULL otherwise.
172 static struct rchan_buf *relay_create_buf(struct rchan *chan)
174 struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
175 if (!buf)
176 return NULL;
178 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
179 if (!buf->padding)
180 goto free_buf;
182 buf->start = relay_alloc_buf(buf, &chan->alloc_size);
183 if (!buf->start)
184 goto free_buf;
186 buf->chan = chan;
187 kref_get(&buf->chan->kref);
188 return buf;
190 free_buf:
191 kfree(buf->padding);
192 kfree(buf);
193 return NULL;
197 * relay_destroy_channel - free the channel struct
198 * @kref: target kernel reference that contains the relay channel
200 * Should only be called from kref_put().
202 static void relay_destroy_channel(struct kref *kref)
204 struct rchan *chan = container_of(kref, struct rchan, kref);
205 kfree(chan);
209 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
210 * @buf: the buffer struct
212 static void relay_destroy_buf(struct rchan_buf *buf)
214 struct rchan *chan = buf->chan;
215 unsigned int i;
217 if (likely(buf->start)) {
218 vunmap(buf->start);
219 for (i = 0; i < buf->page_count; i++)
220 __free_page(buf->page_array[i]);
221 relay_free_page_array(buf->page_array);
223 chan->buf[buf->cpu] = NULL;
224 kfree(buf->padding);
225 kfree(buf);
226 kref_put(&chan->kref, relay_destroy_channel);
230 * relay_remove_buf - remove a channel buffer
231 * @kref: target kernel reference that contains the relay buffer
233 * Removes the file from the fileystem, which also frees the
234 * rchan_buf_struct and the channel buffer. Should only be called from
235 * kref_put().
237 static void relay_remove_buf(struct kref *kref)
239 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
240 buf->chan->cb->remove_buf_file(buf->dentry);
241 relay_destroy_buf(buf);
245 * relay_buf_empty - boolean, is the channel buffer empty?
246 * @buf: channel buffer
248 * Returns 1 if the buffer is empty, 0 otherwise.
250 static int relay_buf_empty(struct rchan_buf *buf)
252 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
256 * relay_buf_full - boolean, is the channel buffer full?
257 * @buf: channel buffer
259 * Returns 1 if the buffer is full, 0 otherwise.
261 int relay_buf_full(struct rchan_buf *buf)
263 size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
264 return (ready >= buf->chan->n_subbufs) ? 1 : 0;
266 EXPORT_SYMBOL_GPL(relay_buf_full);
269 * High-level relay kernel API and associated functions.
273 * rchan_callback implementations defining default channel behavior. Used
274 * in place of corresponding NULL values in client callback struct.
278 * subbuf_start() default callback. Does nothing.
280 static int subbuf_start_default_callback (struct rchan_buf *buf,
281 void *subbuf,
282 void *prev_subbuf,
283 size_t prev_padding)
285 if (relay_buf_full(buf))
286 return 0;
288 return 1;
292 * buf_mapped() default callback. Does nothing.
294 static void buf_mapped_default_callback(struct rchan_buf *buf,
295 struct file *filp)
300 * buf_unmapped() default callback. Does nothing.
302 static void buf_unmapped_default_callback(struct rchan_buf *buf,
303 struct file *filp)
308 * create_buf_file_create() default callback. Does nothing.
310 static struct dentry *create_buf_file_default_callback(const char *filename,
311 struct dentry *parent,
312 int mode,
313 struct rchan_buf *buf,
314 int *is_global)
316 return NULL;
320 * remove_buf_file() default callback. Does nothing.
322 static int remove_buf_file_default_callback(struct dentry *dentry)
324 return -EINVAL;
327 /* relay channel default callbacks */
328 static struct rchan_callbacks default_channel_callbacks = {
329 .subbuf_start = subbuf_start_default_callback,
330 .buf_mapped = buf_mapped_default_callback,
331 .buf_unmapped = buf_unmapped_default_callback,
332 .create_buf_file = create_buf_file_default_callback,
333 .remove_buf_file = remove_buf_file_default_callback,
337 * wakeup_readers - wake up readers waiting on a channel
338 * @data: contains the channel buffer
340 * This is the timer function used to defer reader waking.
342 static void wakeup_readers(unsigned long data)
344 struct rchan_buf *buf = (struct rchan_buf *)data;
345 wake_up_interruptible(&buf->read_wait);
349 * __relay_reset - reset a channel buffer
350 * @buf: the channel buffer
351 * @init: 1 if this is a first-time initialization
353 * See relay_reset() for description of effect.
355 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
357 size_t i;
359 if (init) {
360 init_waitqueue_head(&buf->read_wait);
361 kref_init(&buf->kref);
362 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
363 } else
364 del_timer_sync(&buf->timer);
366 buf->subbufs_produced = 0;
367 buf->subbufs_consumed = 0;
368 buf->bytes_consumed = 0;
369 buf->finalized = 0;
370 buf->data = buf->start;
371 buf->offset = 0;
373 for (i = 0; i < buf->chan->n_subbufs; i++)
374 buf->padding[i] = 0;
376 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
380 * relay_reset - reset the channel
381 * @chan: the channel
383 * This has the effect of erasing all data from all channel buffers
384 * and restarting the channel in its initial state. The buffers
385 * are not freed, so any mappings are still in effect.
387 * NOTE. Care should be taken that the channel isn't actually
388 * being used by anything when this call is made.
390 void relay_reset(struct rchan *chan)
392 unsigned int i;
394 if (!chan)
395 return;
397 if (chan->is_global && chan->buf[0]) {
398 __relay_reset(chan->buf[0], 0);
399 return;
402 mutex_lock(&relay_channels_mutex);
403 for_each_online_cpu(i)
404 if (chan->buf[i])
405 __relay_reset(chan->buf[i], 0);
406 mutex_unlock(&relay_channels_mutex);
408 EXPORT_SYMBOL_GPL(relay_reset);
410 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
411 struct dentry *dentry)
413 buf->dentry = dentry;
414 buf->dentry->d_inode->i_size = buf->early_bytes;
417 static struct dentry *relay_create_buf_file(struct rchan *chan,
418 struct rchan_buf *buf,
419 unsigned int cpu)
421 struct dentry *dentry;
422 char *tmpname;
424 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
425 if (!tmpname)
426 return NULL;
427 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
429 /* Create file in fs */
430 dentry = chan->cb->create_buf_file(tmpname, chan->parent,
431 S_IRUSR, buf,
432 &chan->is_global);
434 kfree(tmpname);
436 return dentry;
440 * relay_open_buf - create a new relay channel buffer
442 * used by relay_open() and CPU hotplug.
444 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
446 struct rchan_buf *buf = NULL;
447 struct dentry *dentry;
449 if (chan->is_global)
450 return chan->buf[0];
452 buf = relay_create_buf(chan);
453 if (!buf)
454 return NULL;
456 if (chan->has_base_filename) {
457 dentry = relay_create_buf_file(chan, buf, cpu);
458 if (!dentry)
459 goto free_buf;
460 relay_set_buf_dentry(buf, dentry);
463 buf->cpu = cpu;
464 __relay_reset(buf, 1);
466 if(chan->is_global) {
467 chan->buf[0] = buf;
468 buf->cpu = 0;
471 return buf;
473 free_buf:
474 relay_destroy_buf(buf);
475 return NULL;
479 * relay_close_buf - close a channel buffer
480 * @buf: channel buffer
482 * Marks the buffer finalized and restores the default callbacks.
483 * The channel buffer and channel buffer data structure are then freed
484 * automatically when the last reference is given up.
486 static void relay_close_buf(struct rchan_buf *buf)
488 buf->finalized = 1;
489 del_timer_sync(&buf->timer);
490 kref_put(&buf->kref, relay_remove_buf);
493 static void setup_callbacks(struct rchan *chan,
494 struct rchan_callbacks *cb)
496 if (!cb) {
497 chan->cb = &default_channel_callbacks;
498 return;
501 if (!cb->subbuf_start)
502 cb->subbuf_start = subbuf_start_default_callback;
503 if (!cb->buf_mapped)
504 cb->buf_mapped = buf_mapped_default_callback;
505 if (!cb->buf_unmapped)
506 cb->buf_unmapped = buf_unmapped_default_callback;
507 if (!cb->create_buf_file)
508 cb->create_buf_file = create_buf_file_default_callback;
509 if (!cb->remove_buf_file)
510 cb->remove_buf_file = remove_buf_file_default_callback;
511 chan->cb = cb;
515 * relay_hotcpu_callback - CPU hotplug callback
516 * @nb: notifier block
517 * @action: hotplug action to take
518 * @hcpu: CPU number
520 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
522 static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
523 unsigned long action,
524 void *hcpu)
526 unsigned int hotcpu = (unsigned long)hcpu;
527 struct rchan *chan;
529 switch(action) {
530 case CPU_UP_PREPARE:
531 case CPU_UP_PREPARE_FROZEN:
532 mutex_lock(&relay_channels_mutex);
533 list_for_each_entry(chan, &relay_channels, list) {
534 if (chan->buf[hotcpu])
535 continue;
536 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
537 if(!chan->buf[hotcpu]) {
538 printk(KERN_ERR
539 "relay_hotcpu_callback: cpu %d buffer "
540 "creation failed\n", hotcpu);
541 mutex_unlock(&relay_channels_mutex);
542 return NOTIFY_BAD;
545 mutex_unlock(&relay_channels_mutex);
546 break;
547 case CPU_DEAD:
548 case CPU_DEAD_FROZEN:
549 /* No need to flush the cpu : will be flushed upon
550 * final relay_flush() call. */
551 break;
553 return NOTIFY_OK;
557 * relay_open - create a new relay channel
558 * @base_filename: base name of files to create, %NULL for buffering only
559 * @parent: dentry of parent directory, %NULL for root directory or buffer
560 * @subbuf_size: size of sub-buffers
561 * @n_subbufs: number of sub-buffers
562 * @cb: client callback functions
563 * @private_data: user-defined data
565 * Returns channel pointer if successful, %NULL otherwise.
567 * Creates a channel buffer for each cpu using the sizes and
568 * attributes specified. The created channel buffer files
569 * will be named base_filename0...base_filenameN-1. File
570 * permissions will be %S_IRUSR.
572 struct rchan *relay_open(const char *base_filename,
573 struct dentry *parent,
574 size_t subbuf_size,
575 size_t n_subbufs,
576 struct rchan_callbacks *cb,
577 void *private_data)
579 unsigned int i;
580 struct rchan *chan;
582 if (!(subbuf_size && n_subbufs))
583 return NULL;
585 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
586 if (!chan)
587 return NULL;
589 chan->version = RELAYFS_CHANNEL_VERSION;
590 chan->n_subbufs = n_subbufs;
591 chan->subbuf_size = subbuf_size;
592 chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
593 chan->parent = parent;
594 chan->private_data = private_data;
595 if (base_filename) {
596 chan->has_base_filename = 1;
597 strlcpy(chan->base_filename, base_filename, NAME_MAX);
599 setup_callbacks(chan, cb);
600 kref_init(&chan->kref);
602 mutex_lock(&relay_channels_mutex);
603 for_each_online_cpu(i) {
604 chan->buf[i] = relay_open_buf(chan, i);
605 if (!chan->buf[i])
606 goto free_bufs;
608 list_add(&chan->list, &relay_channels);
609 mutex_unlock(&relay_channels_mutex);
611 return chan;
613 free_bufs:
614 for_each_online_cpu(i) {
615 if (!chan->buf[i])
616 break;
617 relay_close_buf(chan->buf[i]);
620 kref_put(&chan->kref, relay_destroy_channel);
621 mutex_unlock(&relay_channels_mutex);
622 return NULL;
624 EXPORT_SYMBOL_GPL(relay_open);
626 struct rchan_percpu_buf_dispatcher {
627 struct rchan_buf *buf;
628 struct dentry *dentry;
631 /* Called in atomic context. */
632 static void __relay_set_buf_dentry(void *info)
634 struct rchan_percpu_buf_dispatcher *p = info;
636 relay_set_buf_dentry(p->buf, p->dentry);
640 * relay_late_setup_files - triggers file creation
641 * @chan: channel to operate on
642 * @base_filename: base name of files to create
643 * @parent: dentry of parent directory, %NULL for root directory
645 * Returns 0 if successful, non-zero otherwise.
647 * Use to setup files for a previously buffer-only channel.
648 * Useful to do early tracing in kernel, before VFS is up, for example.
650 int relay_late_setup_files(struct rchan *chan,
651 const char *base_filename,
652 struct dentry *parent)
654 int err = 0;
655 unsigned int i, curr_cpu;
656 unsigned long flags;
657 struct dentry *dentry;
658 struct rchan_percpu_buf_dispatcher disp;
660 if (!chan || !base_filename)
661 return -EINVAL;
663 strlcpy(chan->base_filename, base_filename, NAME_MAX);
665 mutex_lock(&relay_channels_mutex);
666 /* Is chan already set up? */
667 if (unlikely(chan->has_base_filename))
668 return -EEXIST;
669 chan->has_base_filename = 1;
670 chan->parent = parent;
671 curr_cpu = get_cpu();
673 * The CPU hotplug notifier ran before us and created buffers with
674 * no files associated. So it's safe to call relay_setup_buf_file()
675 * on all currently online CPUs.
677 for_each_online_cpu(i) {
678 if (unlikely(!chan->buf[i])) {
679 printk(KERN_ERR "relay_late_setup_files: CPU %u "
680 "has no buffer, it must have!\n", i);
681 BUG();
682 err = -EINVAL;
683 break;
686 dentry = relay_create_buf_file(chan, chan->buf[i], i);
687 if (unlikely(!dentry)) {
688 err = -EINVAL;
689 break;
692 if (curr_cpu == i) {
693 local_irq_save(flags);
694 relay_set_buf_dentry(chan->buf[i], dentry);
695 local_irq_restore(flags);
696 } else {
697 disp.buf = chan->buf[i];
698 disp.dentry = dentry;
699 smp_mb();
700 /* relay_channels_mutex must be held, so wait. */
701 err = smp_call_function_single(i,
702 __relay_set_buf_dentry,
703 &disp, 1);
705 if (unlikely(err))
706 break;
708 put_cpu();
709 mutex_unlock(&relay_channels_mutex);
711 return err;
715 * relay_switch_subbuf - switch to a new sub-buffer
716 * @buf: channel buffer
717 * @length: size of current event
719 * Returns either the length passed in or 0 if full.
721 * Performs sub-buffer-switch tasks such as invoking callbacks,
722 * updating padding counts, waking up readers, etc.
724 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
726 void *old, *new;
727 size_t old_subbuf, new_subbuf;
729 if (unlikely(length > buf->chan->subbuf_size))
730 goto toobig;
732 if (buf->offset != buf->chan->subbuf_size + 1) {
733 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
734 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
735 buf->padding[old_subbuf] = buf->prev_padding;
736 buf->subbufs_produced++;
737 if (buf->dentry)
738 buf->dentry->d_inode->i_size +=
739 buf->chan->subbuf_size -
740 buf->padding[old_subbuf];
741 else
742 buf->early_bytes += buf->chan->subbuf_size -
743 buf->padding[old_subbuf];
744 smp_mb();
745 if (waitqueue_active(&buf->read_wait))
747 * Calling wake_up_interruptible() from here
748 * will deadlock if we happen to be logging
749 * from the scheduler (trying to re-grab
750 * rq->lock), so defer it.
752 __mod_timer(&buf->timer, jiffies + 1);
755 old = buf->data;
756 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
757 new = buf->start + new_subbuf * buf->chan->subbuf_size;
758 buf->offset = 0;
759 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
760 buf->offset = buf->chan->subbuf_size + 1;
761 return 0;
763 buf->data = new;
764 buf->padding[new_subbuf] = 0;
766 if (unlikely(length + buf->offset > buf->chan->subbuf_size))
767 goto toobig;
769 return length;
771 toobig:
772 buf->chan->last_toobig = length;
773 return 0;
775 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
778 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
779 * @chan: the channel
780 * @cpu: the cpu associated with the channel buffer to update
781 * @subbufs_consumed: number of sub-buffers to add to current buf's count
783 * Adds to the channel buffer's consumed sub-buffer count.
784 * subbufs_consumed should be the number of sub-buffers newly consumed,
785 * not the total consumed.
787 * NOTE. Kernel clients don't need to call this function if the channel
788 * mode is 'overwrite'.
790 void relay_subbufs_consumed(struct rchan *chan,
791 unsigned int cpu,
792 size_t subbufs_consumed)
794 struct rchan_buf *buf;
796 if (!chan)
797 return;
799 if (cpu >= NR_CPUS || !chan->buf[cpu])
800 return;
802 buf = chan->buf[cpu];
803 buf->subbufs_consumed += subbufs_consumed;
804 if (buf->subbufs_consumed > buf->subbufs_produced)
805 buf->subbufs_consumed = buf->subbufs_produced;
807 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
810 * relay_close - close the channel
811 * @chan: the channel
813 * Closes all channel buffers and frees the channel.
815 void relay_close(struct rchan *chan)
817 unsigned int i;
819 if (!chan)
820 return;
822 mutex_lock(&relay_channels_mutex);
823 if (chan->is_global && chan->buf[0])
824 relay_close_buf(chan->buf[0]);
825 else
826 for_each_possible_cpu(i)
827 if (chan->buf[i])
828 relay_close_buf(chan->buf[i]);
830 if (chan->last_toobig)
831 printk(KERN_WARNING "relay: one or more items not logged "
832 "[item size (%Zd) > sub-buffer size (%Zd)]\n",
833 chan->last_toobig, chan->subbuf_size);
835 list_del(&chan->list);
836 kref_put(&chan->kref, relay_destroy_channel);
837 mutex_unlock(&relay_channels_mutex);
839 EXPORT_SYMBOL_GPL(relay_close);
842 * relay_flush - close the channel
843 * @chan: the channel
845 * Flushes all channel buffers, i.e. forces buffer switch.
847 void relay_flush(struct rchan *chan)
849 unsigned int i;
851 if (!chan)
852 return;
854 if (chan->is_global && chan->buf[0]) {
855 relay_switch_subbuf(chan->buf[0], 0);
856 return;
859 mutex_lock(&relay_channels_mutex);
860 for_each_possible_cpu(i)
861 if (chan->buf[i])
862 relay_switch_subbuf(chan->buf[i], 0);
863 mutex_unlock(&relay_channels_mutex);
865 EXPORT_SYMBOL_GPL(relay_flush);
868 * relay_file_open - open file op for relay files
869 * @inode: the inode
870 * @filp: the file
872 * Increments the channel buffer refcount.
874 static int relay_file_open(struct inode *inode, struct file *filp)
876 struct rchan_buf *buf = inode->i_private;
877 kref_get(&buf->kref);
878 filp->private_data = buf;
880 return nonseekable_open(inode, filp);
884 * relay_file_mmap - mmap file op for relay files
885 * @filp: the file
886 * @vma: the vma describing what to map
888 * Calls upon relay_mmap_buf() to map the file into user space.
890 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
892 struct rchan_buf *buf = filp->private_data;
893 return relay_mmap_buf(buf, vma);
897 * relay_file_poll - poll file op for relay files
898 * @filp: the file
899 * @wait: poll table
901 * Poll implemention.
903 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
905 unsigned int mask = 0;
906 struct rchan_buf *buf = filp->private_data;
908 if (buf->finalized)
909 return POLLERR;
911 if (filp->f_mode & FMODE_READ) {
912 poll_wait(filp, &buf->read_wait, wait);
913 if (!relay_buf_empty(buf))
914 mask |= POLLIN | POLLRDNORM;
917 return mask;
921 * relay_file_release - release file op for relay files
922 * @inode: the inode
923 * @filp: the file
925 * Decrements the channel refcount, as the filesystem is
926 * no longer using it.
928 static int relay_file_release(struct inode *inode, struct file *filp)
930 struct rchan_buf *buf = filp->private_data;
931 kref_put(&buf->kref, relay_remove_buf);
933 return 0;
937 * relay_file_read_consume - update the consumed count for the buffer
939 static void relay_file_read_consume(struct rchan_buf *buf,
940 size_t read_pos,
941 size_t bytes_consumed)
943 size_t subbuf_size = buf->chan->subbuf_size;
944 size_t n_subbufs = buf->chan->n_subbufs;
945 size_t read_subbuf;
947 if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
948 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
949 buf->bytes_consumed = 0;
952 buf->bytes_consumed += bytes_consumed;
953 if (!read_pos)
954 read_subbuf = buf->subbufs_consumed % n_subbufs;
955 else
956 read_subbuf = read_pos / buf->chan->subbuf_size;
957 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
958 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
959 (buf->offset == subbuf_size))
960 return;
961 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
962 buf->bytes_consumed = 0;
967 * relay_file_read_avail - boolean, are there unconsumed bytes available?
969 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
971 size_t subbuf_size = buf->chan->subbuf_size;
972 size_t n_subbufs = buf->chan->n_subbufs;
973 size_t produced = buf->subbufs_produced;
974 size_t consumed = buf->subbufs_consumed;
976 relay_file_read_consume(buf, read_pos, 0);
978 if (unlikely(buf->offset > subbuf_size)) {
979 if (produced == consumed)
980 return 0;
981 return 1;
984 if (unlikely(produced - consumed >= n_subbufs)) {
985 consumed = produced - n_subbufs + 1;
986 buf->subbufs_consumed = consumed;
987 buf->bytes_consumed = 0;
990 produced = (produced % n_subbufs) * subbuf_size + buf->offset;
991 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
993 if (consumed > produced)
994 produced += n_subbufs * subbuf_size;
996 if (consumed == produced)
997 return 0;
999 return 1;
1003 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
1004 * @read_pos: file read position
1005 * @buf: relay channel buffer
1007 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1008 struct rchan_buf *buf)
1010 size_t padding, avail = 0;
1011 size_t read_subbuf, read_offset, write_subbuf, write_offset;
1012 size_t subbuf_size = buf->chan->subbuf_size;
1014 write_subbuf = (buf->data - buf->start) / subbuf_size;
1015 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1016 read_subbuf = read_pos / subbuf_size;
1017 read_offset = read_pos % subbuf_size;
1018 padding = buf->padding[read_subbuf];
1020 if (read_subbuf == write_subbuf) {
1021 if (read_offset + padding < write_offset)
1022 avail = write_offset - (read_offset + padding);
1023 } else
1024 avail = (subbuf_size - padding) - read_offset;
1026 return avail;
1030 * relay_file_read_start_pos - find the first available byte to read
1031 * @read_pos: file read position
1032 * @buf: relay channel buffer
1034 * If the @read_pos is in the middle of padding, return the
1035 * position of the first actually available byte, otherwise
1036 * return the original value.
1038 static size_t relay_file_read_start_pos(size_t read_pos,
1039 struct rchan_buf *buf)
1041 size_t read_subbuf, padding, padding_start, padding_end;
1042 size_t subbuf_size = buf->chan->subbuf_size;
1043 size_t n_subbufs = buf->chan->n_subbufs;
1044 size_t consumed = buf->subbufs_consumed % n_subbufs;
1046 if (!read_pos)
1047 read_pos = consumed * subbuf_size + buf->bytes_consumed;
1048 read_subbuf = read_pos / subbuf_size;
1049 padding = buf->padding[read_subbuf];
1050 padding_start = (read_subbuf + 1) * subbuf_size - padding;
1051 padding_end = (read_subbuf + 1) * subbuf_size;
1052 if (read_pos >= padding_start && read_pos < padding_end) {
1053 read_subbuf = (read_subbuf + 1) % n_subbufs;
1054 read_pos = read_subbuf * subbuf_size;
1057 return read_pos;
1061 * relay_file_read_end_pos - return the new read position
1062 * @read_pos: file read position
1063 * @buf: relay channel buffer
1064 * @count: number of bytes to be read
1066 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1067 size_t read_pos,
1068 size_t count)
1070 size_t read_subbuf, padding, end_pos;
1071 size_t subbuf_size = buf->chan->subbuf_size;
1072 size_t n_subbufs = buf->chan->n_subbufs;
1074 read_subbuf = read_pos / subbuf_size;
1075 padding = buf->padding[read_subbuf];
1076 if (read_pos % subbuf_size + count + padding == subbuf_size)
1077 end_pos = (read_subbuf + 1) * subbuf_size;
1078 else
1079 end_pos = read_pos + count;
1080 if (end_pos >= subbuf_size * n_subbufs)
1081 end_pos = 0;
1083 return end_pos;
1087 * subbuf_read_actor - read up to one subbuf's worth of data
1089 static int subbuf_read_actor(size_t read_start,
1090 struct rchan_buf *buf,
1091 size_t avail,
1092 read_descriptor_t *desc,
1093 read_actor_t actor)
1095 void *from;
1096 int ret = 0;
1098 from = buf->start + read_start;
1099 ret = avail;
1100 if (copy_to_user(desc->arg.buf, from, avail)) {
1101 desc->error = -EFAULT;
1102 ret = 0;
1104 desc->arg.data += ret;
1105 desc->written += ret;
1106 desc->count -= ret;
1108 return ret;
1111 typedef int (*subbuf_actor_t) (size_t read_start,
1112 struct rchan_buf *buf,
1113 size_t avail,
1114 read_descriptor_t *desc,
1115 read_actor_t actor);
1118 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1120 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1121 subbuf_actor_t subbuf_actor,
1122 read_actor_t actor,
1123 read_descriptor_t *desc)
1125 struct rchan_buf *buf = filp->private_data;
1126 size_t read_start, avail;
1127 int ret;
1129 if (!desc->count)
1130 return 0;
1132 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
1133 do {
1134 if (!relay_file_read_avail(buf, *ppos))
1135 break;
1137 read_start = relay_file_read_start_pos(*ppos, buf);
1138 avail = relay_file_read_subbuf_avail(read_start, buf);
1139 if (!avail)
1140 break;
1142 avail = min(desc->count, avail);
1143 ret = subbuf_actor(read_start, buf, avail, desc, actor);
1144 if (desc->error < 0)
1145 break;
1147 if (ret) {
1148 relay_file_read_consume(buf, read_start, ret);
1149 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1151 } while (desc->count && ret);
1152 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1154 return desc->written;
1157 static ssize_t relay_file_read(struct file *filp,
1158 char __user *buffer,
1159 size_t count,
1160 loff_t *ppos)
1162 read_descriptor_t desc;
1163 desc.written = 0;
1164 desc.count = count;
1165 desc.arg.buf = buffer;
1166 desc.error = 0;
1167 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1168 NULL, &desc);
1171 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1173 rbuf->bytes_consumed += bytes_consumed;
1175 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1176 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1177 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1181 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1182 struct pipe_buffer *buf)
1184 struct rchan_buf *rbuf;
1186 rbuf = (struct rchan_buf *)page_private(buf->page);
1187 relay_consume_bytes(rbuf, buf->private);
1190 static struct pipe_buf_operations relay_pipe_buf_ops = {
1191 .can_merge = 0,
1192 .map = generic_pipe_buf_map,
1193 .unmap = generic_pipe_buf_unmap,
1194 .confirm = generic_pipe_buf_confirm,
1195 .release = relay_pipe_buf_release,
1196 .steal = generic_pipe_buf_steal,
1197 .get = generic_pipe_buf_get,
1200 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1205 * subbuf_splice_actor - splice up to one subbuf's worth of data
1207 static int subbuf_splice_actor(struct file *in,
1208 loff_t *ppos,
1209 struct pipe_inode_info *pipe,
1210 size_t len,
1211 unsigned int flags,
1212 int *nonpad_ret)
1214 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages, ret;
1215 struct rchan_buf *rbuf = in->private_data;
1216 unsigned int subbuf_size = rbuf->chan->subbuf_size;
1217 uint64_t pos = (uint64_t) *ppos;
1218 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1219 size_t read_start = (size_t) do_div(pos, alloc_size);
1220 size_t read_subbuf = read_start / subbuf_size;
1221 size_t padding = rbuf->padding[read_subbuf];
1222 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1223 struct page *pages[PIPE_BUFFERS];
1224 struct partial_page partial[PIPE_BUFFERS];
1225 struct splice_pipe_desc spd = {
1226 .pages = pages,
1227 .nr_pages = 0,
1228 .partial = partial,
1229 .flags = flags,
1230 .ops = &relay_pipe_buf_ops,
1231 .spd_release = relay_page_release,
1234 if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1235 return 0;
1238 * Adjust read len, if longer than what is available
1240 if (len > (subbuf_size - read_start % subbuf_size))
1241 len = subbuf_size - read_start % subbuf_size;
1243 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1244 pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1245 poff = read_start & ~PAGE_MASK;
1246 nr_pages = min_t(unsigned int, subbuf_pages, PIPE_BUFFERS);
1248 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1249 unsigned int this_len, this_end, private;
1250 unsigned int cur_pos = read_start + total_len;
1252 if (!len)
1253 break;
1255 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1256 private = this_len;
1258 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1259 spd.partial[spd.nr_pages].offset = poff;
1261 this_end = cur_pos + this_len;
1262 if (this_end >= nonpad_end) {
1263 this_len = nonpad_end - cur_pos;
1264 private = this_len + padding;
1266 spd.partial[spd.nr_pages].len = this_len;
1267 spd.partial[spd.nr_pages].private = private;
1269 len -= this_len;
1270 total_len += this_len;
1271 poff = 0;
1272 pidx = (pidx + 1) % subbuf_pages;
1274 if (this_end >= nonpad_end) {
1275 spd.nr_pages++;
1276 break;
1280 if (!spd.nr_pages)
1281 return 0;
1283 ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1284 if (ret < 0 || ret < total_len)
1285 return ret;
1287 if (read_start + ret == nonpad_end)
1288 ret += padding;
1290 return ret;
1293 static ssize_t relay_file_splice_read(struct file *in,
1294 loff_t *ppos,
1295 struct pipe_inode_info *pipe,
1296 size_t len,
1297 unsigned int flags)
1299 ssize_t spliced;
1300 int ret;
1301 int nonpad_ret = 0;
1303 ret = 0;
1304 spliced = 0;
1306 while (len && !spliced) {
1307 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1308 if (ret < 0)
1309 break;
1310 else if (!ret) {
1311 if (spliced)
1312 break;
1313 if (flags & SPLICE_F_NONBLOCK) {
1314 ret = -EAGAIN;
1315 break;
1319 *ppos += ret;
1320 if (ret > len)
1321 len = 0;
1322 else
1323 len -= ret;
1324 spliced += nonpad_ret;
1325 nonpad_ret = 0;
1328 if (spliced)
1329 return spliced;
1331 return ret;
1334 const struct file_operations relay_file_operations = {
1335 .open = relay_file_open,
1336 .poll = relay_file_poll,
1337 .mmap = relay_file_mmap,
1338 .read = relay_file_read,
1339 .llseek = no_llseek,
1340 .release = relay_file_release,
1341 .splice_read = relay_file_splice_read,
1343 EXPORT_SYMBOL_GPL(relay_file_operations);
1345 static __init int relay_init(void)
1348 hotcpu_notifier(relay_hotcpu_callback, 0);
1349 return 0;
1352 early_initcall(relay_init);