memcg: avoid deadlock caused by race between oom and cpuset_attach
[linux-2.6/mini2440.git] / mm / shmem.c
blobbbb7b043c986c276eda32d9525598baaa7432bce
1 /*
2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2005 Hugh Dickins.
10 * Copyright (C) 2002-2005 VERITAS Software Corporation.
11 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 * Extended attribute support for tmpfs:
14 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 * tiny-shmem:
18 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 * This file is released under the GPL.
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/swap.h>
32 static struct vfsmount *shm_mnt;
34 #ifdef CONFIG_SHMEM
36 * This virtual memory filesystem is heavily based on the ramfs. It
37 * extends ramfs by the ability to use swap and honor resource limits
38 * which makes it a completely usable filesystem.
41 #include <linux/xattr.h>
42 #include <linux/exportfs.h>
43 #include <linux/generic_acl.h>
44 #include <linux/mman.h>
45 #include <linux/pagemap.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/backing-dev.h>
49 #include <linux/shmem_fs.h>
50 #include <linux/writeback.h>
51 #include <linux/vfs.h>
52 #include <linux/blkdev.h>
53 #include <linux/security.h>
54 #include <linux/swapops.h>
55 #include <linux/mempolicy.h>
56 #include <linux/namei.h>
57 #include <linux/ctype.h>
58 #include <linux/migrate.h>
59 #include <linux/highmem.h>
60 #include <linux/seq_file.h>
61 #include <linux/magic.h>
63 #include <asm/uaccess.h>
64 #include <asm/div64.h>
65 #include <asm/pgtable.h>
67 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
68 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
69 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
71 #define SHMEM_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
72 #define SHMEM_MAX_BYTES ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
76 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
77 #define SHMEM_PAGEIN VM_READ
78 #define SHMEM_TRUNCATE VM_WRITE
80 /* Definition to limit shmem_truncate's steps between cond_rescheds */
81 #define LATENCY_LIMIT 64
83 /* Pretend that each entry is of this size in directory's i_size */
84 #define BOGO_DIRENT_SIZE 20
86 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
87 enum sgp_type {
88 SGP_READ, /* don't exceed i_size, don't allocate page */
89 SGP_CACHE, /* don't exceed i_size, may allocate page */
90 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
91 SGP_WRITE, /* may exceed i_size, may allocate page */
94 #ifdef CONFIG_TMPFS
95 static unsigned long shmem_default_max_blocks(void)
97 return totalram_pages / 2;
100 static unsigned long shmem_default_max_inodes(void)
102 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
104 #endif
106 static int shmem_getpage(struct inode *inode, unsigned long idx,
107 struct page **pagep, enum sgp_type sgp, int *type);
109 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
112 * The above definition of ENTRIES_PER_PAGE, and the use of
113 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
114 * might be reconsidered if it ever diverges from PAGE_SIZE.
116 * Mobility flags are masked out as swap vectors cannot move
118 return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
119 PAGE_CACHE_SHIFT-PAGE_SHIFT);
122 static inline void shmem_dir_free(struct page *page)
124 __free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
127 static struct page **shmem_dir_map(struct page *page)
129 return (struct page **)kmap_atomic(page, KM_USER0);
132 static inline void shmem_dir_unmap(struct page **dir)
134 kunmap_atomic(dir, KM_USER0);
137 static swp_entry_t *shmem_swp_map(struct page *page)
139 return (swp_entry_t *)kmap_atomic(page, KM_USER1);
142 static inline void shmem_swp_balance_unmap(void)
145 * When passing a pointer to an i_direct entry, to code which
146 * also handles indirect entries and so will shmem_swp_unmap,
147 * we must arrange for the preempt count to remain in balance.
148 * What kmap_atomic of a lowmem page does depends on config
149 * and architecture, so pretend to kmap_atomic some lowmem page.
151 (void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
154 static inline void shmem_swp_unmap(swp_entry_t *entry)
156 kunmap_atomic(entry, KM_USER1);
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
161 return sb->s_fs_info;
165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166 * for shared memory and for shared anonymous (/dev/zero) mappings
167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168 * consistent with the pre-accounting of private mappings ...
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
172 return (flags & VM_ACCOUNT) ?
173 security_vm_enough_memory_kern(VM_ACCT(size)) : 0;
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
178 if (flags & VM_ACCOUNT)
179 vm_unacct_memory(VM_ACCT(size));
183 * ... whereas tmpfs objects are accounted incrementally as
184 * pages are allocated, in order to allow huge sparse files.
185 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
186 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
188 static inline int shmem_acct_block(unsigned long flags)
190 return (flags & VM_ACCOUNT) ?
191 0 : security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE));
194 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
196 if (!(flags & VM_ACCOUNT))
197 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
200 static const struct super_operations shmem_ops;
201 static const struct address_space_operations shmem_aops;
202 static const struct file_operations shmem_file_operations;
203 static const struct inode_operations shmem_inode_operations;
204 static const struct inode_operations shmem_dir_inode_operations;
205 static const struct inode_operations shmem_special_inode_operations;
206 static struct vm_operations_struct shmem_vm_ops;
208 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
209 .ra_pages = 0, /* No readahead */
210 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
211 .unplug_io_fn = default_unplug_io_fn,
214 static LIST_HEAD(shmem_swaplist);
215 static DEFINE_MUTEX(shmem_swaplist_mutex);
217 static void shmem_free_blocks(struct inode *inode, long pages)
219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220 if (sbinfo->max_blocks) {
221 spin_lock(&sbinfo->stat_lock);
222 sbinfo->free_blocks += pages;
223 inode->i_blocks -= pages*BLOCKS_PER_PAGE;
224 spin_unlock(&sbinfo->stat_lock);
228 static int shmem_reserve_inode(struct super_block *sb)
230 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
231 if (sbinfo->max_inodes) {
232 spin_lock(&sbinfo->stat_lock);
233 if (!sbinfo->free_inodes) {
234 spin_unlock(&sbinfo->stat_lock);
235 return -ENOSPC;
237 sbinfo->free_inodes--;
238 spin_unlock(&sbinfo->stat_lock);
240 return 0;
243 static void shmem_free_inode(struct super_block *sb)
245 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246 if (sbinfo->max_inodes) {
247 spin_lock(&sbinfo->stat_lock);
248 sbinfo->free_inodes++;
249 spin_unlock(&sbinfo->stat_lock);
254 * shmem_recalc_inode - recalculate the size of an inode
255 * @inode: inode to recalc
257 * We have to calculate the free blocks since the mm can drop
258 * undirtied hole pages behind our back.
260 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
261 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
263 * It has to be called with the spinlock held.
265 static void shmem_recalc_inode(struct inode *inode)
267 struct shmem_inode_info *info = SHMEM_I(inode);
268 long freed;
270 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
271 if (freed > 0) {
272 info->alloced -= freed;
273 shmem_unacct_blocks(info->flags, freed);
274 shmem_free_blocks(inode, freed);
279 * shmem_swp_entry - find the swap vector position in the info structure
280 * @info: info structure for the inode
281 * @index: index of the page to find
282 * @page: optional page to add to the structure. Has to be preset to
283 * all zeros
285 * If there is no space allocated yet it will return NULL when
286 * page is NULL, else it will use the page for the needed block,
287 * setting it to NULL on return to indicate that it has been used.
289 * The swap vector is organized the following way:
291 * There are SHMEM_NR_DIRECT entries directly stored in the
292 * shmem_inode_info structure. So small files do not need an addional
293 * allocation.
295 * For pages with index > SHMEM_NR_DIRECT there is the pointer
296 * i_indirect which points to a page which holds in the first half
297 * doubly indirect blocks, in the second half triple indirect blocks:
299 * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
300 * following layout (for SHMEM_NR_DIRECT == 16):
302 * i_indirect -> dir --> 16-19
303 * | +-> 20-23
305 * +-->dir2 --> 24-27
306 * | +-> 28-31
307 * | +-> 32-35
308 * | +-> 36-39
310 * +-->dir3 --> 40-43
311 * +-> 44-47
312 * +-> 48-51
313 * +-> 52-55
315 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
317 unsigned long offset;
318 struct page **dir;
319 struct page *subdir;
321 if (index < SHMEM_NR_DIRECT) {
322 shmem_swp_balance_unmap();
323 return info->i_direct+index;
325 if (!info->i_indirect) {
326 if (page) {
327 info->i_indirect = *page;
328 *page = NULL;
330 return NULL; /* need another page */
333 index -= SHMEM_NR_DIRECT;
334 offset = index % ENTRIES_PER_PAGE;
335 index /= ENTRIES_PER_PAGE;
336 dir = shmem_dir_map(info->i_indirect);
338 if (index >= ENTRIES_PER_PAGE/2) {
339 index -= ENTRIES_PER_PAGE/2;
340 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
341 index %= ENTRIES_PER_PAGE;
342 subdir = *dir;
343 if (!subdir) {
344 if (page) {
345 *dir = *page;
346 *page = NULL;
348 shmem_dir_unmap(dir);
349 return NULL; /* need another page */
351 shmem_dir_unmap(dir);
352 dir = shmem_dir_map(subdir);
355 dir += index;
356 subdir = *dir;
357 if (!subdir) {
358 if (!page || !(subdir = *page)) {
359 shmem_dir_unmap(dir);
360 return NULL; /* need a page */
362 *dir = subdir;
363 *page = NULL;
365 shmem_dir_unmap(dir);
366 return shmem_swp_map(subdir) + offset;
369 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
371 long incdec = value? 1: -1;
373 entry->val = value;
374 info->swapped += incdec;
375 if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
376 struct page *page = kmap_atomic_to_page(entry);
377 set_page_private(page, page_private(page) + incdec);
382 * shmem_swp_alloc - get the position of the swap entry for the page.
383 * @info: info structure for the inode
384 * @index: index of the page to find
385 * @sgp: check and recheck i_size? skip allocation?
387 * If the entry does not exist, allocate it.
389 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
391 struct inode *inode = &info->vfs_inode;
392 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
393 struct page *page = NULL;
394 swp_entry_t *entry;
396 if (sgp != SGP_WRITE &&
397 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
398 return ERR_PTR(-EINVAL);
400 while (!(entry = shmem_swp_entry(info, index, &page))) {
401 if (sgp == SGP_READ)
402 return shmem_swp_map(ZERO_PAGE(0));
404 * Test free_blocks against 1 not 0, since we have 1 data
405 * page (and perhaps indirect index pages) yet to allocate:
406 * a waste to allocate index if we cannot allocate data.
408 if (sbinfo->max_blocks) {
409 spin_lock(&sbinfo->stat_lock);
410 if (sbinfo->free_blocks <= 1) {
411 spin_unlock(&sbinfo->stat_lock);
412 return ERR_PTR(-ENOSPC);
414 sbinfo->free_blocks--;
415 inode->i_blocks += BLOCKS_PER_PAGE;
416 spin_unlock(&sbinfo->stat_lock);
419 spin_unlock(&info->lock);
420 page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
421 if (page)
422 set_page_private(page, 0);
423 spin_lock(&info->lock);
425 if (!page) {
426 shmem_free_blocks(inode, 1);
427 return ERR_PTR(-ENOMEM);
429 if (sgp != SGP_WRITE &&
430 ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
431 entry = ERR_PTR(-EINVAL);
432 break;
434 if (info->next_index <= index)
435 info->next_index = index + 1;
437 if (page) {
438 /* another task gave its page, or truncated the file */
439 shmem_free_blocks(inode, 1);
440 shmem_dir_free(page);
442 if (info->next_index <= index && !IS_ERR(entry))
443 info->next_index = index + 1;
444 return entry;
448 * shmem_free_swp - free some swap entries in a directory
449 * @dir: pointer to the directory
450 * @edir: pointer after last entry of the directory
451 * @punch_lock: pointer to spinlock when needed for the holepunch case
453 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
454 spinlock_t *punch_lock)
456 spinlock_t *punch_unlock = NULL;
457 swp_entry_t *ptr;
458 int freed = 0;
460 for (ptr = dir; ptr < edir; ptr++) {
461 if (ptr->val) {
462 if (unlikely(punch_lock)) {
463 punch_unlock = punch_lock;
464 punch_lock = NULL;
465 spin_lock(punch_unlock);
466 if (!ptr->val)
467 continue;
469 free_swap_and_cache(*ptr);
470 *ptr = (swp_entry_t){0};
471 freed++;
474 if (punch_unlock)
475 spin_unlock(punch_unlock);
476 return freed;
479 static int shmem_map_and_free_swp(struct page *subdir, int offset,
480 int limit, struct page ***dir, spinlock_t *punch_lock)
482 swp_entry_t *ptr;
483 int freed = 0;
485 ptr = shmem_swp_map(subdir);
486 for (; offset < limit; offset += LATENCY_LIMIT) {
487 int size = limit - offset;
488 if (size > LATENCY_LIMIT)
489 size = LATENCY_LIMIT;
490 freed += shmem_free_swp(ptr+offset, ptr+offset+size,
491 punch_lock);
492 if (need_resched()) {
493 shmem_swp_unmap(ptr);
494 if (*dir) {
495 shmem_dir_unmap(*dir);
496 *dir = NULL;
498 cond_resched();
499 ptr = shmem_swp_map(subdir);
502 shmem_swp_unmap(ptr);
503 return freed;
506 static void shmem_free_pages(struct list_head *next)
508 struct page *page;
509 int freed = 0;
511 do {
512 page = container_of(next, struct page, lru);
513 next = next->next;
514 shmem_dir_free(page);
515 freed++;
516 if (freed >= LATENCY_LIMIT) {
517 cond_resched();
518 freed = 0;
520 } while (next);
523 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
525 struct shmem_inode_info *info = SHMEM_I(inode);
526 unsigned long idx;
527 unsigned long size;
528 unsigned long limit;
529 unsigned long stage;
530 unsigned long diroff;
531 struct page **dir;
532 struct page *topdir;
533 struct page *middir;
534 struct page *subdir;
535 swp_entry_t *ptr;
536 LIST_HEAD(pages_to_free);
537 long nr_pages_to_free = 0;
538 long nr_swaps_freed = 0;
539 int offset;
540 int freed;
541 int punch_hole;
542 spinlock_t *needs_lock;
543 spinlock_t *punch_lock;
544 unsigned long upper_limit;
546 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
547 idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
548 if (idx >= info->next_index)
549 return;
551 spin_lock(&info->lock);
552 info->flags |= SHMEM_TRUNCATE;
553 if (likely(end == (loff_t) -1)) {
554 limit = info->next_index;
555 upper_limit = SHMEM_MAX_INDEX;
556 info->next_index = idx;
557 needs_lock = NULL;
558 punch_hole = 0;
559 } else {
560 if (end + 1 >= inode->i_size) { /* we may free a little more */
561 limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
562 PAGE_CACHE_SHIFT;
563 upper_limit = SHMEM_MAX_INDEX;
564 } else {
565 limit = (end + 1) >> PAGE_CACHE_SHIFT;
566 upper_limit = limit;
568 needs_lock = &info->lock;
569 punch_hole = 1;
572 topdir = info->i_indirect;
573 if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
574 info->i_indirect = NULL;
575 nr_pages_to_free++;
576 list_add(&topdir->lru, &pages_to_free);
578 spin_unlock(&info->lock);
580 if (info->swapped && idx < SHMEM_NR_DIRECT) {
581 ptr = info->i_direct;
582 size = limit;
583 if (size > SHMEM_NR_DIRECT)
584 size = SHMEM_NR_DIRECT;
585 nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
589 * If there are no indirect blocks or we are punching a hole
590 * below indirect blocks, nothing to be done.
592 if (!topdir || limit <= SHMEM_NR_DIRECT)
593 goto done2;
596 * The truncation case has already dropped info->lock, and we're safe
597 * because i_size and next_index have already been lowered, preventing
598 * access beyond. But in the punch_hole case, we still need to take
599 * the lock when updating the swap directory, because there might be
600 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
601 * shmem_writepage. However, whenever we find we can remove a whole
602 * directory page (not at the misaligned start or end of the range),
603 * we first NULLify its pointer in the level above, and then have no
604 * need to take the lock when updating its contents: needs_lock and
605 * punch_lock (either pointing to info->lock or NULL) manage this.
608 upper_limit -= SHMEM_NR_DIRECT;
609 limit -= SHMEM_NR_DIRECT;
610 idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
611 offset = idx % ENTRIES_PER_PAGE;
612 idx -= offset;
614 dir = shmem_dir_map(topdir);
615 stage = ENTRIES_PER_PAGEPAGE/2;
616 if (idx < ENTRIES_PER_PAGEPAGE/2) {
617 middir = topdir;
618 diroff = idx/ENTRIES_PER_PAGE;
619 } else {
620 dir += ENTRIES_PER_PAGE/2;
621 dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
622 while (stage <= idx)
623 stage += ENTRIES_PER_PAGEPAGE;
624 middir = *dir;
625 if (*dir) {
626 diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
627 ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
628 if (!diroff && !offset && upper_limit >= stage) {
629 if (needs_lock) {
630 spin_lock(needs_lock);
631 *dir = NULL;
632 spin_unlock(needs_lock);
633 needs_lock = NULL;
634 } else
635 *dir = NULL;
636 nr_pages_to_free++;
637 list_add(&middir->lru, &pages_to_free);
639 shmem_dir_unmap(dir);
640 dir = shmem_dir_map(middir);
641 } else {
642 diroff = 0;
643 offset = 0;
644 idx = stage;
648 for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
649 if (unlikely(idx == stage)) {
650 shmem_dir_unmap(dir);
651 dir = shmem_dir_map(topdir) +
652 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
653 while (!*dir) {
654 dir++;
655 idx += ENTRIES_PER_PAGEPAGE;
656 if (idx >= limit)
657 goto done1;
659 stage = idx + ENTRIES_PER_PAGEPAGE;
660 middir = *dir;
661 if (punch_hole)
662 needs_lock = &info->lock;
663 if (upper_limit >= stage) {
664 if (needs_lock) {
665 spin_lock(needs_lock);
666 *dir = NULL;
667 spin_unlock(needs_lock);
668 needs_lock = NULL;
669 } else
670 *dir = NULL;
671 nr_pages_to_free++;
672 list_add(&middir->lru, &pages_to_free);
674 shmem_dir_unmap(dir);
675 cond_resched();
676 dir = shmem_dir_map(middir);
677 diroff = 0;
679 punch_lock = needs_lock;
680 subdir = dir[diroff];
681 if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
682 if (needs_lock) {
683 spin_lock(needs_lock);
684 dir[diroff] = NULL;
685 spin_unlock(needs_lock);
686 punch_lock = NULL;
687 } else
688 dir[diroff] = NULL;
689 nr_pages_to_free++;
690 list_add(&subdir->lru, &pages_to_free);
692 if (subdir && page_private(subdir) /* has swap entries */) {
693 size = limit - idx;
694 if (size > ENTRIES_PER_PAGE)
695 size = ENTRIES_PER_PAGE;
696 freed = shmem_map_and_free_swp(subdir,
697 offset, size, &dir, punch_lock);
698 if (!dir)
699 dir = shmem_dir_map(middir);
700 nr_swaps_freed += freed;
701 if (offset || punch_lock) {
702 spin_lock(&info->lock);
703 set_page_private(subdir,
704 page_private(subdir) - freed);
705 spin_unlock(&info->lock);
706 } else
707 BUG_ON(page_private(subdir) != freed);
709 offset = 0;
711 done1:
712 shmem_dir_unmap(dir);
713 done2:
714 if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
716 * Call truncate_inode_pages again: racing shmem_unuse_inode
717 * may have swizzled a page in from swap since vmtruncate or
718 * generic_delete_inode did it, before we lowered next_index.
719 * Also, though shmem_getpage checks i_size before adding to
720 * cache, no recheck after: so fix the narrow window there too.
722 * Recalling truncate_inode_pages_range and unmap_mapping_range
723 * every time for punch_hole (which never got a chance to clear
724 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
725 * yet hardly ever necessary: try to optimize them out later.
727 truncate_inode_pages_range(inode->i_mapping, start, end);
728 if (punch_hole)
729 unmap_mapping_range(inode->i_mapping, start,
730 end - start, 1);
733 spin_lock(&info->lock);
734 info->flags &= ~SHMEM_TRUNCATE;
735 info->swapped -= nr_swaps_freed;
736 if (nr_pages_to_free)
737 shmem_free_blocks(inode, nr_pages_to_free);
738 shmem_recalc_inode(inode);
739 spin_unlock(&info->lock);
742 * Empty swap vector directory pages to be freed?
744 if (!list_empty(&pages_to_free)) {
745 pages_to_free.prev->next = NULL;
746 shmem_free_pages(pages_to_free.next);
750 static void shmem_truncate(struct inode *inode)
752 shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
755 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
757 struct inode *inode = dentry->d_inode;
758 struct page *page = NULL;
759 int error;
761 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
762 if (attr->ia_size < inode->i_size) {
764 * If truncating down to a partial page, then
765 * if that page is already allocated, hold it
766 * in memory until the truncation is over, so
767 * truncate_partial_page cannnot miss it were
768 * it assigned to swap.
770 if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
771 (void) shmem_getpage(inode,
772 attr->ia_size>>PAGE_CACHE_SHIFT,
773 &page, SGP_READ, NULL);
774 if (page)
775 unlock_page(page);
778 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
779 * detect if any pages might have been added to cache
780 * after truncate_inode_pages. But we needn't bother
781 * if it's being fully truncated to zero-length: the
782 * nrpages check is efficient enough in that case.
784 if (attr->ia_size) {
785 struct shmem_inode_info *info = SHMEM_I(inode);
786 spin_lock(&info->lock);
787 info->flags &= ~SHMEM_PAGEIN;
788 spin_unlock(&info->lock);
793 error = inode_change_ok(inode, attr);
794 if (!error)
795 error = inode_setattr(inode, attr);
796 #ifdef CONFIG_TMPFS_POSIX_ACL
797 if (!error && (attr->ia_valid & ATTR_MODE))
798 error = generic_acl_chmod(inode, &shmem_acl_ops);
799 #endif
800 if (page)
801 page_cache_release(page);
802 return error;
805 static void shmem_delete_inode(struct inode *inode)
807 struct shmem_inode_info *info = SHMEM_I(inode);
809 if (inode->i_op->truncate == shmem_truncate) {
810 truncate_inode_pages(inode->i_mapping, 0);
811 shmem_unacct_size(info->flags, inode->i_size);
812 inode->i_size = 0;
813 shmem_truncate(inode);
814 if (!list_empty(&info->swaplist)) {
815 mutex_lock(&shmem_swaplist_mutex);
816 list_del_init(&info->swaplist);
817 mutex_unlock(&shmem_swaplist_mutex);
820 BUG_ON(inode->i_blocks);
821 shmem_free_inode(inode->i_sb);
822 clear_inode(inode);
825 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
827 swp_entry_t *ptr;
829 for (ptr = dir; ptr < edir; ptr++) {
830 if (ptr->val == entry.val)
831 return ptr - dir;
833 return -1;
836 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
838 struct inode *inode;
839 unsigned long idx;
840 unsigned long size;
841 unsigned long limit;
842 unsigned long stage;
843 struct page **dir;
844 struct page *subdir;
845 swp_entry_t *ptr;
846 int offset;
847 int error;
849 idx = 0;
850 ptr = info->i_direct;
851 spin_lock(&info->lock);
852 if (!info->swapped) {
853 list_del_init(&info->swaplist);
854 goto lost2;
856 limit = info->next_index;
857 size = limit;
858 if (size > SHMEM_NR_DIRECT)
859 size = SHMEM_NR_DIRECT;
860 offset = shmem_find_swp(entry, ptr, ptr+size);
861 if (offset >= 0)
862 goto found;
863 if (!info->i_indirect)
864 goto lost2;
866 dir = shmem_dir_map(info->i_indirect);
867 stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
869 for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
870 if (unlikely(idx == stage)) {
871 shmem_dir_unmap(dir-1);
872 if (cond_resched_lock(&info->lock)) {
873 /* check it has not been truncated */
874 if (limit > info->next_index) {
875 limit = info->next_index;
876 if (idx >= limit)
877 goto lost2;
880 dir = shmem_dir_map(info->i_indirect) +
881 ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
882 while (!*dir) {
883 dir++;
884 idx += ENTRIES_PER_PAGEPAGE;
885 if (idx >= limit)
886 goto lost1;
888 stage = idx + ENTRIES_PER_PAGEPAGE;
889 subdir = *dir;
890 shmem_dir_unmap(dir);
891 dir = shmem_dir_map(subdir);
893 subdir = *dir;
894 if (subdir && page_private(subdir)) {
895 ptr = shmem_swp_map(subdir);
896 size = limit - idx;
897 if (size > ENTRIES_PER_PAGE)
898 size = ENTRIES_PER_PAGE;
899 offset = shmem_find_swp(entry, ptr, ptr+size);
900 shmem_swp_unmap(ptr);
901 if (offset >= 0) {
902 shmem_dir_unmap(dir);
903 goto found;
907 lost1:
908 shmem_dir_unmap(dir-1);
909 lost2:
910 spin_unlock(&info->lock);
911 return 0;
912 found:
913 idx += offset;
914 inode = igrab(&info->vfs_inode);
915 spin_unlock(&info->lock);
918 * Move _head_ to start search for next from here.
919 * But be careful: shmem_delete_inode checks list_empty without taking
920 * mutex, and there's an instant in list_move_tail when info->swaplist
921 * would appear empty, if it were the only one on shmem_swaplist. We
922 * could avoid doing it if inode NULL; or use this minor optimization.
924 if (shmem_swaplist.next != &info->swaplist)
925 list_move_tail(&shmem_swaplist, &info->swaplist);
926 mutex_unlock(&shmem_swaplist_mutex);
928 error = 1;
929 if (!inode)
930 goto out;
932 * Charge page using GFP_HIGHUSER_MOVABLE while we can wait.
933 * charged back to the user(not to caller) when swap account is used.
935 error = mem_cgroup_cache_charge_swapin(page, current->mm, GFP_KERNEL,
936 true);
937 if (error)
938 goto out;
939 error = radix_tree_preload(GFP_KERNEL);
940 if (error) {
941 mem_cgroup_uncharge_cache_page(page);
942 goto out;
944 error = 1;
946 spin_lock(&info->lock);
947 ptr = shmem_swp_entry(info, idx, NULL);
948 if (ptr && ptr->val == entry.val) {
949 error = add_to_page_cache_locked(page, inode->i_mapping,
950 idx, GFP_NOWAIT);
951 /* does mem_cgroup_uncharge_cache_page on error */
952 } else /* we must compensate for our precharge above */
953 mem_cgroup_uncharge_cache_page(page);
955 if (error == -EEXIST) {
956 struct page *filepage = find_get_page(inode->i_mapping, idx);
957 error = 1;
958 if (filepage) {
960 * There might be a more uptodate page coming down
961 * from a stacked writepage: forget our swappage if so.
963 if (PageUptodate(filepage))
964 error = 0;
965 page_cache_release(filepage);
968 if (!error) {
969 delete_from_swap_cache(page);
970 set_page_dirty(page);
971 info->flags |= SHMEM_PAGEIN;
972 shmem_swp_set(info, ptr, 0);
973 swap_free(entry);
974 error = 1; /* not an error, but entry was found */
976 if (ptr)
977 shmem_swp_unmap(ptr);
978 spin_unlock(&info->lock);
979 radix_tree_preload_end();
980 out:
981 unlock_page(page);
982 page_cache_release(page);
983 iput(inode); /* allows for NULL */
984 return error;
988 * shmem_unuse() search for an eventually swapped out shmem page.
990 int shmem_unuse(swp_entry_t entry, struct page *page)
992 struct list_head *p, *next;
993 struct shmem_inode_info *info;
994 int found = 0;
996 mutex_lock(&shmem_swaplist_mutex);
997 list_for_each_safe(p, next, &shmem_swaplist) {
998 info = list_entry(p, struct shmem_inode_info, swaplist);
999 found = shmem_unuse_inode(info, entry, page);
1000 cond_resched();
1001 if (found)
1002 goto out;
1004 mutex_unlock(&shmem_swaplist_mutex);
1005 out: return found; /* 0 or 1 or -ENOMEM */
1009 * Move the page from the page cache to the swap cache.
1011 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1013 struct shmem_inode_info *info;
1014 swp_entry_t *entry, swap;
1015 struct address_space *mapping;
1016 unsigned long index;
1017 struct inode *inode;
1019 BUG_ON(!PageLocked(page));
1020 mapping = page->mapping;
1021 index = page->index;
1022 inode = mapping->host;
1023 info = SHMEM_I(inode);
1024 if (info->flags & VM_LOCKED)
1025 goto redirty;
1026 if (!total_swap_pages)
1027 goto redirty;
1030 * shmem_backing_dev_info's capabilities prevent regular writeback or
1031 * sync from ever calling shmem_writepage; but a stacking filesystem
1032 * may use the ->writepage of its underlying filesystem, in which case
1033 * tmpfs should write out to swap only in response to memory pressure,
1034 * and not for pdflush or sync. However, in those cases, we do still
1035 * want to check if there's a redundant swappage to be discarded.
1037 if (wbc->for_reclaim)
1038 swap = get_swap_page();
1039 else
1040 swap.val = 0;
1042 spin_lock(&info->lock);
1043 if (index >= info->next_index) {
1044 BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1045 goto unlock;
1047 entry = shmem_swp_entry(info, index, NULL);
1048 if (entry->val) {
1050 * The more uptodate page coming down from a stacked
1051 * writepage should replace our old swappage.
1053 free_swap_and_cache(*entry);
1054 shmem_swp_set(info, entry, 0);
1056 shmem_recalc_inode(inode);
1058 if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1059 remove_from_page_cache(page);
1060 shmem_swp_set(info, entry, swap.val);
1061 shmem_swp_unmap(entry);
1062 if (list_empty(&info->swaplist))
1063 inode = igrab(inode);
1064 else
1065 inode = NULL;
1066 spin_unlock(&info->lock);
1067 swap_duplicate(swap);
1068 BUG_ON(page_mapped(page));
1069 page_cache_release(page); /* pagecache ref */
1070 set_page_dirty(page);
1071 unlock_page(page);
1072 if (inode) {
1073 mutex_lock(&shmem_swaplist_mutex);
1074 /* move instead of add in case we're racing */
1075 list_move_tail(&info->swaplist, &shmem_swaplist);
1076 mutex_unlock(&shmem_swaplist_mutex);
1077 iput(inode);
1079 return 0;
1082 shmem_swp_unmap(entry);
1083 unlock:
1084 spin_unlock(&info->lock);
1085 swap_free(swap);
1086 redirty:
1087 set_page_dirty(page);
1088 if (wbc->for_reclaim)
1089 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1090 unlock_page(page);
1091 return 0;
1094 #ifdef CONFIG_NUMA
1095 #ifdef CONFIG_TMPFS
1096 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1098 char buffer[64];
1100 if (!mpol || mpol->mode == MPOL_DEFAULT)
1101 return; /* show nothing */
1103 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1105 seq_printf(seq, ",mpol=%s", buffer);
1108 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1110 struct mempolicy *mpol = NULL;
1111 if (sbinfo->mpol) {
1112 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1113 mpol = sbinfo->mpol;
1114 mpol_get(mpol);
1115 spin_unlock(&sbinfo->stat_lock);
1117 return mpol;
1119 #endif /* CONFIG_TMPFS */
1121 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1122 struct shmem_inode_info *info, unsigned long idx)
1124 struct mempolicy mpol, *spol;
1125 struct vm_area_struct pvma;
1126 struct page *page;
1128 spol = mpol_cond_copy(&mpol,
1129 mpol_shared_policy_lookup(&info->policy, idx));
1131 /* Create a pseudo vma that just contains the policy */
1132 pvma.vm_start = 0;
1133 pvma.vm_pgoff = idx;
1134 pvma.vm_ops = NULL;
1135 pvma.vm_policy = spol;
1136 page = swapin_readahead(entry, gfp, &pvma, 0);
1137 return page;
1140 static struct page *shmem_alloc_page(gfp_t gfp,
1141 struct shmem_inode_info *info, unsigned long idx)
1143 struct vm_area_struct pvma;
1145 /* Create a pseudo vma that just contains the policy */
1146 pvma.vm_start = 0;
1147 pvma.vm_pgoff = idx;
1148 pvma.vm_ops = NULL;
1149 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1152 * alloc_page_vma() will drop the shared policy reference
1154 return alloc_page_vma(gfp, &pvma, 0);
1156 #else /* !CONFIG_NUMA */
1157 #ifdef CONFIG_TMPFS
1158 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1161 #endif /* CONFIG_TMPFS */
1163 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1164 struct shmem_inode_info *info, unsigned long idx)
1166 return swapin_readahead(entry, gfp, NULL, 0);
1169 static inline struct page *shmem_alloc_page(gfp_t gfp,
1170 struct shmem_inode_info *info, unsigned long idx)
1172 return alloc_page(gfp);
1174 #endif /* CONFIG_NUMA */
1176 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1177 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1179 return NULL;
1181 #endif
1184 * shmem_getpage - either get the page from swap or allocate a new one
1186 * If we allocate a new one we do not mark it dirty. That's up to the
1187 * vm. If we swap it in we mark it dirty since we also free the swap
1188 * entry since a page cannot live in both the swap and page cache
1190 static int shmem_getpage(struct inode *inode, unsigned long idx,
1191 struct page **pagep, enum sgp_type sgp, int *type)
1193 struct address_space *mapping = inode->i_mapping;
1194 struct shmem_inode_info *info = SHMEM_I(inode);
1195 struct shmem_sb_info *sbinfo;
1196 struct page *filepage = *pagep;
1197 struct page *swappage;
1198 swp_entry_t *entry;
1199 swp_entry_t swap;
1200 gfp_t gfp;
1201 int error;
1203 if (idx >= SHMEM_MAX_INDEX)
1204 return -EFBIG;
1206 if (type)
1207 *type = 0;
1210 * Normally, filepage is NULL on entry, and either found
1211 * uptodate immediately, or allocated and zeroed, or read
1212 * in under swappage, which is then assigned to filepage.
1213 * But shmem_readpage (required for splice) passes in a locked
1214 * filepage, which may be found not uptodate by other callers
1215 * too, and may need to be copied from the swappage read in.
1217 repeat:
1218 if (!filepage)
1219 filepage = find_lock_page(mapping, idx);
1220 if (filepage && PageUptodate(filepage))
1221 goto done;
1222 error = 0;
1223 gfp = mapping_gfp_mask(mapping);
1224 if (!filepage) {
1226 * Try to preload while we can wait, to not make a habit of
1227 * draining atomic reserves; but don't latch on to this cpu.
1229 error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1230 if (error)
1231 goto failed;
1232 radix_tree_preload_end();
1235 spin_lock(&info->lock);
1236 shmem_recalc_inode(inode);
1237 entry = shmem_swp_alloc(info, idx, sgp);
1238 if (IS_ERR(entry)) {
1239 spin_unlock(&info->lock);
1240 error = PTR_ERR(entry);
1241 goto failed;
1243 swap = *entry;
1245 if (swap.val) {
1246 /* Look it up and read it in.. */
1247 swappage = lookup_swap_cache(swap);
1248 if (!swappage) {
1249 shmem_swp_unmap(entry);
1250 /* here we actually do the io */
1251 if (type && !(*type & VM_FAULT_MAJOR)) {
1252 __count_vm_event(PGMAJFAULT);
1253 *type |= VM_FAULT_MAJOR;
1255 spin_unlock(&info->lock);
1256 swappage = shmem_swapin(swap, gfp, info, idx);
1257 if (!swappage) {
1258 spin_lock(&info->lock);
1259 entry = shmem_swp_alloc(info, idx, sgp);
1260 if (IS_ERR(entry))
1261 error = PTR_ERR(entry);
1262 else {
1263 if (entry->val == swap.val)
1264 error = -ENOMEM;
1265 shmem_swp_unmap(entry);
1267 spin_unlock(&info->lock);
1268 if (error)
1269 goto failed;
1270 goto repeat;
1272 wait_on_page_locked(swappage);
1274 * We want to avoid charge at add_to_page_cache().
1275 * charge against this swap cache here.
1277 if (mem_cgroup_cache_charge_swapin(swappage,
1278 current->mm, gfp & GFP_RECLAIM_MASK, false)) {
1279 page_cache_release(swappage);
1280 error = -ENOMEM;
1281 goto failed;
1283 page_cache_release(swappage);
1284 goto repeat;
1287 /* We have to do this with page locked to prevent races */
1288 if (!trylock_page(swappage)) {
1289 shmem_swp_unmap(entry);
1290 spin_unlock(&info->lock);
1291 wait_on_page_locked(swappage);
1292 page_cache_release(swappage);
1293 goto repeat;
1295 if (PageWriteback(swappage)) {
1296 shmem_swp_unmap(entry);
1297 spin_unlock(&info->lock);
1298 wait_on_page_writeback(swappage);
1299 unlock_page(swappage);
1300 page_cache_release(swappage);
1301 goto repeat;
1303 if (!PageUptodate(swappage)) {
1304 shmem_swp_unmap(entry);
1305 spin_unlock(&info->lock);
1306 unlock_page(swappage);
1307 page_cache_release(swappage);
1308 error = -EIO;
1309 goto failed;
1312 if (filepage) {
1313 shmem_swp_set(info, entry, 0);
1314 shmem_swp_unmap(entry);
1315 delete_from_swap_cache(swappage);
1316 spin_unlock(&info->lock);
1317 copy_highpage(filepage, swappage);
1318 unlock_page(swappage);
1319 page_cache_release(swappage);
1320 flush_dcache_page(filepage);
1321 SetPageUptodate(filepage);
1322 set_page_dirty(filepage);
1323 swap_free(swap);
1324 } else if (!(error = add_to_page_cache_locked(swappage, mapping,
1325 idx, GFP_NOWAIT))) {
1326 info->flags |= SHMEM_PAGEIN;
1327 shmem_swp_set(info, entry, 0);
1328 shmem_swp_unmap(entry);
1329 delete_from_swap_cache(swappage);
1330 spin_unlock(&info->lock);
1331 filepage = swappage;
1332 set_page_dirty(filepage);
1333 swap_free(swap);
1334 } else {
1335 shmem_swp_unmap(entry);
1336 spin_unlock(&info->lock);
1337 unlock_page(swappage);
1338 page_cache_release(swappage);
1339 if (error == -ENOMEM) {
1340 /* allow reclaim from this memory cgroup */
1341 error = mem_cgroup_shrink_usage(current->mm,
1342 gfp);
1343 if (error)
1344 goto failed;
1346 goto repeat;
1348 } else if (sgp == SGP_READ && !filepage) {
1349 shmem_swp_unmap(entry);
1350 filepage = find_get_page(mapping, idx);
1351 if (filepage &&
1352 (!PageUptodate(filepage) || !trylock_page(filepage))) {
1353 spin_unlock(&info->lock);
1354 wait_on_page_locked(filepage);
1355 page_cache_release(filepage);
1356 filepage = NULL;
1357 goto repeat;
1359 spin_unlock(&info->lock);
1360 } else {
1361 shmem_swp_unmap(entry);
1362 sbinfo = SHMEM_SB(inode->i_sb);
1363 if (sbinfo->max_blocks) {
1364 spin_lock(&sbinfo->stat_lock);
1365 if (sbinfo->free_blocks == 0 ||
1366 shmem_acct_block(info->flags)) {
1367 spin_unlock(&sbinfo->stat_lock);
1368 spin_unlock(&info->lock);
1369 error = -ENOSPC;
1370 goto failed;
1372 sbinfo->free_blocks--;
1373 inode->i_blocks += BLOCKS_PER_PAGE;
1374 spin_unlock(&sbinfo->stat_lock);
1375 } else if (shmem_acct_block(info->flags)) {
1376 spin_unlock(&info->lock);
1377 error = -ENOSPC;
1378 goto failed;
1381 if (!filepage) {
1382 int ret;
1384 spin_unlock(&info->lock);
1385 filepage = shmem_alloc_page(gfp, info, idx);
1386 if (!filepage) {
1387 shmem_unacct_blocks(info->flags, 1);
1388 shmem_free_blocks(inode, 1);
1389 error = -ENOMEM;
1390 goto failed;
1392 SetPageSwapBacked(filepage);
1394 /* Precharge page while we can wait, compensate after */
1395 error = mem_cgroup_cache_charge(filepage, current->mm,
1396 GFP_KERNEL);
1397 if (error) {
1398 page_cache_release(filepage);
1399 shmem_unacct_blocks(info->flags, 1);
1400 shmem_free_blocks(inode, 1);
1401 filepage = NULL;
1402 goto failed;
1405 spin_lock(&info->lock);
1406 entry = shmem_swp_alloc(info, idx, sgp);
1407 if (IS_ERR(entry))
1408 error = PTR_ERR(entry);
1409 else {
1410 swap = *entry;
1411 shmem_swp_unmap(entry);
1413 ret = error || swap.val;
1414 if (ret)
1415 mem_cgroup_uncharge_cache_page(filepage);
1416 else
1417 ret = add_to_page_cache_lru(filepage, mapping,
1418 idx, GFP_NOWAIT);
1420 * At add_to_page_cache_lru() failure, uncharge will
1421 * be done automatically.
1423 if (ret) {
1424 spin_unlock(&info->lock);
1425 page_cache_release(filepage);
1426 shmem_unacct_blocks(info->flags, 1);
1427 shmem_free_blocks(inode, 1);
1428 filepage = NULL;
1429 if (error)
1430 goto failed;
1431 goto repeat;
1433 info->flags |= SHMEM_PAGEIN;
1436 info->alloced++;
1437 spin_unlock(&info->lock);
1438 clear_highpage(filepage);
1439 flush_dcache_page(filepage);
1440 SetPageUptodate(filepage);
1441 if (sgp == SGP_DIRTY)
1442 set_page_dirty(filepage);
1444 done:
1445 *pagep = filepage;
1446 return 0;
1448 failed:
1449 if (*pagep != filepage) {
1450 unlock_page(filepage);
1451 page_cache_release(filepage);
1453 return error;
1456 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1458 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1459 int error;
1460 int ret;
1462 if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1463 return VM_FAULT_SIGBUS;
1465 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1466 if (error)
1467 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1469 return ret | VM_FAULT_LOCKED;
1472 #ifdef CONFIG_NUMA
1473 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1475 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1476 return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1479 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1480 unsigned long addr)
1482 struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1483 unsigned long idx;
1485 idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1486 return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1488 #endif
1490 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1492 struct inode *inode = file->f_path.dentry->d_inode;
1493 struct shmem_inode_info *info = SHMEM_I(inode);
1494 int retval = -ENOMEM;
1496 spin_lock(&info->lock);
1497 if (lock && !(info->flags & VM_LOCKED)) {
1498 if (!user_shm_lock(inode->i_size, user))
1499 goto out_nomem;
1500 info->flags |= VM_LOCKED;
1501 mapping_set_unevictable(file->f_mapping);
1503 if (!lock && (info->flags & VM_LOCKED) && user) {
1504 user_shm_unlock(inode->i_size, user);
1505 info->flags &= ~VM_LOCKED;
1506 mapping_clear_unevictable(file->f_mapping);
1507 scan_mapping_unevictable_pages(file->f_mapping);
1509 retval = 0;
1511 out_nomem:
1512 spin_unlock(&info->lock);
1513 return retval;
1516 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1518 file_accessed(file);
1519 vma->vm_ops = &shmem_vm_ops;
1520 vma->vm_flags |= VM_CAN_NONLINEAR;
1521 return 0;
1524 static struct inode *
1525 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1527 struct inode *inode;
1528 struct shmem_inode_info *info;
1529 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1531 if (shmem_reserve_inode(sb))
1532 return NULL;
1534 inode = new_inode(sb);
1535 if (inode) {
1536 inode->i_mode = mode;
1537 inode->i_uid = current_fsuid();
1538 inode->i_gid = current_fsgid();
1539 inode->i_blocks = 0;
1540 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1541 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1542 inode->i_generation = get_seconds();
1543 info = SHMEM_I(inode);
1544 memset(info, 0, (char *)inode - (char *)info);
1545 spin_lock_init(&info->lock);
1546 INIT_LIST_HEAD(&info->swaplist);
1548 switch (mode & S_IFMT) {
1549 default:
1550 inode->i_op = &shmem_special_inode_operations;
1551 init_special_inode(inode, mode, dev);
1552 break;
1553 case S_IFREG:
1554 inode->i_mapping->a_ops = &shmem_aops;
1555 inode->i_op = &shmem_inode_operations;
1556 inode->i_fop = &shmem_file_operations;
1557 mpol_shared_policy_init(&info->policy,
1558 shmem_get_sbmpol(sbinfo));
1559 break;
1560 case S_IFDIR:
1561 inc_nlink(inode);
1562 /* Some things misbehave if size == 0 on a directory */
1563 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1564 inode->i_op = &shmem_dir_inode_operations;
1565 inode->i_fop = &simple_dir_operations;
1566 break;
1567 case S_IFLNK:
1569 * Must not load anything in the rbtree,
1570 * mpol_free_shared_policy will not be called.
1572 mpol_shared_policy_init(&info->policy, NULL);
1573 break;
1575 } else
1576 shmem_free_inode(sb);
1577 return inode;
1580 #ifdef CONFIG_TMPFS
1581 static const struct inode_operations shmem_symlink_inode_operations;
1582 static const struct inode_operations shmem_symlink_inline_operations;
1585 * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1586 * but providing them allows a tmpfs file to be used for splice, sendfile, and
1587 * below the loop driver, in the generic fashion that many filesystems support.
1589 static int shmem_readpage(struct file *file, struct page *page)
1591 struct inode *inode = page->mapping->host;
1592 int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1593 unlock_page(page);
1594 return error;
1597 static int
1598 shmem_write_begin(struct file *file, struct address_space *mapping,
1599 loff_t pos, unsigned len, unsigned flags,
1600 struct page **pagep, void **fsdata)
1602 struct inode *inode = mapping->host;
1603 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1604 *pagep = NULL;
1605 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1608 static int
1609 shmem_write_end(struct file *file, struct address_space *mapping,
1610 loff_t pos, unsigned len, unsigned copied,
1611 struct page *page, void *fsdata)
1613 struct inode *inode = mapping->host;
1615 if (pos + copied > inode->i_size)
1616 i_size_write(inode, pos + copied);
1618 unlock_page(page);
1619 set_page_dirty(page);
1620 page_cache_release(page);
1622 return copied;
1625 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1627 struct inode *inode = filp->f_path.dentry->d_inode;
1628 struct address_space *mapping = inode->i_mapping;
1629 unsigned long index, offset;
1630 enum sgp_type sgp = SGP_READ;
1633 * Might this read be for a stacking filesystem? Then when reading
1634 * holes of a sparse file, we actually need to allocate those pages,
1635 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1637 if (segment_eq(get_fs(), KERNEL_DS))
1638 sgp = SGP_DIRTY;
1640 index = *ppos >> PAGE_CACHE_SHIFT;
1641 offset = *ppos & ~PAGE_CACHE_MASK;
1643 for (;;) {
1644 struct page *page = NULL;
1645 unsigned long end_index, nr, ret;
1646 loff_t i_size = i_size_read(inode);
1648 end_index = i_size >> PAGE_CACHE_SHIFT;
1649 if (index > end_index)
1650 break;
1651 if (index == end_index) {
1652 nr = i_size & ~PAGE_CACHE_MASK;
1653 if (nr <= offset)
1654 break;
1657 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1658 if (desc->error) {
1659 if (desc->error == -EINVAL)
1660 desc->error = 0;
1661 break;
1663 if (page)
1664 unlock_page(page);
1667 * We must evaluate after, since reads (unlike writes)
1668 * are called without i_mutex protection against truncate
1670 nr = PAGE_CACHE_SIZE;
1671 i_size = i_size_read(inode);
1672 end_index = i_size >> PAGE_CACHE_SHIFT;
1673 if (index == end_index) {
1674 nr = i_size & ~PAGE_CACHE_MASK;
1675 if (nr <= offset) {
1676 if (page)
1677 page_cache_release(page);
1678 break;
1681 nr -= offset;
1683 if (page) {
1685 * If users can be writing to this page using arbitrary
1686 * virtual addresses, take care about potential aliasing
1687 * before reading the page on the kernel side.
1689 if (mapping_writably_mapped(mapping))
1690 flush_dcache_page(page);
1692 * Mark the page accessed if we read the beginning.
1694 if (!offset)
1695 mark_page_accessed(page);
1696 } else {
1697 page = ZERO_PAGE(0);
1698 page_cache_get(page);
1702 * Ok, we have the page, and it's up-to-date, so
1703 * now we can copy it to user space...
1705 * The actor routine returns how many bytes were actually used..
1706 * NOTE! This may not be the same as how much of a user buffer
1707 * we filled up (we may be padding etc), so we can only update
1708 * "pos" here (the actor routine has to update the user buffer
1709 * pointers and the remaining count).
1711 ret = actor(desc, page, offset, nr);
1712 offset += ret;
1713 index += offset >> PAGE_CACHE_SHIFT;
1714 offset &= ~PAGE_CACHE_MASK;
1716 page_cache_release(page);
1717 if (ret != nr || !desc->count)
1718 break;
1720 cond_resched();
1723 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1724 file_accessed(filp);
1727 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1728 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1730 struct file *filp = iocb->ki_filp;
1731 ssize_t retval;
1732 unsigned long seg;
1733 size_t count;
1734 loff_t *ppos = &iocb->ki_pos;
1736 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1737 if (retval)
1738 return retval;
1740 for (seg = 0; seg < nr_segs; seg++) {
1741 read_descriptor_t desc;
1743 desc.written = 0;
1744 desc.arg.buf = iov[seg].iov_base;
1745 desc.count = iov[seg].iov_len;
1746 if (desc.count == 0)
1747 continue;
1748 desc.error = 0;
1749 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1750 retval += desc.written;
1751 if (desc.error) {
1752 retval = retval ?: desc.error;
1753 break;
1755 if (desc.count > 0)
1756 break;
1758 return retval;
1761 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1763 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1765 buf->f_type = TMPFS_MAGIC;
1766 buf->f_bsize = PAGE_CACHE_SIZE;
1767 buf->f_namelen = NAME_MAX;
1768 spin_lock(&sbinfo->stat_lock);
1769 if (sbinfo->max_blocks) {
1770 buf->f_blocks = sbinfo->max_blocks;
1771 buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1773 if (sbinfo->max_inodes) {
1774 buf->f_files = sbinfo->max_inodes;
1775 buf->f_ffree = sbinfo->free_inodes;
1777 /* else leave those fields 0 like simple_statfs */
1778 spin_unlock(&sbinfo->stat_lock);
1779 return 0;
1783 * File creation. Allocate an inode, and we're done..
1785 static int
1786 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1788 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1789 int error = -ENOSPC;
1791 if (inode) {
1792 error = security_inode_init_security(inode, dir, NULL, NULL,
1793 NULL);
1794 if (error) {
1795 if (error != -EOPNOTSUPP) {
1796 iput(inode);
1797 return error;
1800 error = shmem_acl_init(inode, dir);
1801 if (error) {
1802 iput(inode);
1803 return error;
1805 if (dir->i_mode & S_ISGID) {
1806 inode->i_gid = dir->i_gid;
1807 if (S_ISDIR(mode))
1808 inode->i_mode |= S_ISGID;
1810 dir->i_size += BOGO_DIRENT_SIZE;
1811 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1812 d_instantiate(dentry, inode);
1813 dget(dentry); /* Extra count - pin the dentry in core */
1815 return error;
1818 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1820 int error;
1822 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1823 return error;
1824 inc_nlink(dir);
1825 return 0;
1828 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1829 struct nameidata *nd)
1831 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1835 * Link a file..
1837 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1839 struct inode *inode = old_dentry->d_inode;
1840 int ret;
1843 * No ordinary (disk based) filesystem counts links as inodes;
1844 * but each new link needs a new dentry, pinning lowmem, and
1845 * tmpfs dentries cannot be pruned until they are unlinked.
1847 ret = shmem_reserve_inode(inode->i_sb);
1848 if (ret)
1849 goto out;
1851 dir->i_size += BOGO_DIRENT_SIZE;
1852 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1853 inc_nlink(inode);
1854 atomic_inc(&inode->i_count); /* New dentry reference */
1855 dget(dentry); /* Extra pinning count for the created dentry */
1856 d_instantiate(dentry, inode);
1857 out:
1858 return ret;
1861 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1863 struct inode *inode = dentry->d_inode;
1865 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1866 shmem_free_inode(inode->i_sb);
1868 dir->i_size -= BOGO_DIRENT_SIZE;
1869 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1870 drop_nlink(inode);
1871 dput(dentry); /* Undo the count from "create" - this does all the work */
1872 return 0;
1875 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1877 if (!simple_empty(dentry))
1878 return -ENOTEMPTY;
1880 drop_nlink(dentry->d_inode);
1881 drop_nlink(dir);
1882 return shmem_unlink(dir, dentry);
1886 * The VFS layer already does all the dentry stuff for rename,
1887 * we just have to decrement the usage count for the target if
1888 * it exists so that the VFS layer correctly free's it when it
1889 * gets overwritten.
1891 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1893 struct inode *inode = old_dentry->d_inode;
1894 int they_are_dirs = S_ISDIR(inode->i_mode);
1896 if (!simple_empty(new_dentry))
1897 return -ENOTEMPTY;
1899 if (new_dentry->d_inode) {
1900 (void) shmem_unlink(new_dir, new_dentry);
1901 if (they_are_dirs)
1902 drop_nlink(old_dir);
1903 } else if (they_are_dirs) {
1904 drop_nlink(old_dir);
1905 inc_nlink(new_dir);
1908 old_dir->i_size -= BOGO_DIRENT_SIZE;
1909 new_dir->i_size += BOGO_DIRENT_SIZE;
1910 old_dir->i_ctime = old_dir->i_mtime =
1911 new_dir->i_ctime = new_dir->i_mtime =
1912 inode->i_ctime = CURRENT_TIME;
1913 return 0;
1916 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1918 int error;
1919 int len;
1920 struct inode *inode;
1921 struct page *page = NULL;
1922 char *kaddr;
1923 struct shmem_inode_info *info;
1925 len = strlen(symname) + 1;
1926 if (len > PAGE_CACHE_SIZE)
1927 return -ENAMETOOLONG;
1929 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1930 if (!inode)
1931 return -ENOSPC;
1933 error = security_inode_init_security(inode, dir, NULL, NULL,
1934 NULL);
1935 if (error) {
1936 if (error != -EOPNOTSUPP) {
1937 iput(inode);
1938 return error;
1940 error = 0;
1943 info = SHMEM_I(inode);
1944 inode->i_size = len-1;
1945 if (len <= (char *)inode - (char *)info) {
1946 /* do it inline */
1947 memcpy(info, symname, len);
1948 inode->i_op = &shmem_symlink_inline_operations;
1949 } else {
1950 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1951 if (error) {
1952 iput(inode);
1953 return error;
1955 unlock_page(page);
1956 inode->i_mapping->a_ops = &shmem_aops;
1957 inode->i_op = &shmem_symlink_inode_operations;
1958 kaddr = kmap_atomic(page, KM_USER0);
1959 memcpy(kaddr, symname, len);
1960 kunmap_atomic(kaddr, KM_USER0);
1961 set_page_dirty(page);
1962 page_cache_release(page);
1964 if (dir->i_mode & S_ISGID)
1965 inode->i_gid = dir->i_gid;
1966 dir->i_size += BOGO_DIRENT_SIZE;
1967 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1968 d_instantiate(dentry, inode);
1969 dget(dentry);
1970 return 0;
1973 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1975 nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1976 return NULL;
1979 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1981 struct page *page = NULL;
1982 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1983 nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1984 if (page)
1985 unlock_page(page);
1986 return page;
1989 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1991 if (!IS_ERR(nd_get_link(nd))) {
1992 struct page *page = cookie;
1993 kunmap(page);
1994 mark_page_accessed(page);
1995 page_cache_release(page);
1999 static const struct inode_operations shmem_symlink_inline_operations = {
2000 .readlink = generic_readlink,
2001 .follow_link = shmem_follow_link_inline,
2004 static const struct inode_operations shmem_symlink_inode_operations = {
2005 .truncate = shmem_truncate,
2006 .readlink = generic_readlink,
2007 .follow_link = shmem_follow_link,
2008 .put_link = shmem_put_link,
2011 #ifdef CONFIG_TMPFS_POSIX_ACL
2013 * Superblocks without xattr inode operations will get security.* xattr
2014 * support from the VFS "for free". As soon as we have any other xattrs
2015 * like ACLs, we also need to implement the security.* handlers at
2016 * filesystem level, though.
2019 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2020 size_t list_len, const char *name,
2021 size_t name_len)
2023 return security_inode_listsecurity(inode, list, list_len);
2026 static int shmem_xattr_security_get(struct inode *inode, const char *name,
2027 void *buffer, size_t size)
2029 if (strcmp(name, "") == 0)
2030 return -EINVAL;
2031 return xattr_getsecurity(inode, name, buffer, size);
2034 static int shmem_xattr_security_set(struct inode *inode, const char *name,
2035 const void *value, size_t size, int flags)
2037 if (strcmp(name, "") == 0)
2038 return -EINVAL;
2039 return security_inode_setsecurity(inode, name, value, size, flags);
2042 static struct xattr_handler shmem_xattr_security_handler = {
2043 .prefix = XATTR_SECURITY_PREFIX,
2044 .list = shmem_xattr_security_list,
2045 .get = shmem_xattr_security_get,
2046 .set = shmem_xattr_security_set,
2049 static struct xattr_handler *shmem_xattr_handlers[] = {
2050 &shmem_xattr_acl_access_handler,
2051 &shmem_xattr_acl_default_handler,
2052 &shmem_xattr_security_handler,
2053 NULL
2055 #endif
2057 static struct dentry *shmem_get_parent(struct dentry *child)
2059 return ERR_PTR(-ESTALE);
2062 static int shmem_match(struct inode *ino, void *vfh)
2064 __u32 *fh = vfh;
2065 __u64 inum = fh[2];
2066 inum = (inum << 32) | fh[1];
2067 return ino->i_ino == inum && fh[0] == ino->i_generation;
2070 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2071 struct fid *fid, int fh_len, int fh_type)
2073 struct inode *inode;
2074 struct dentry *dentry = NULL;
2075 u64 inum = fid->raw[2];
2076 inum = (inum << 32) | fid->raw[1];
2078 if (fh_len < 3)
2079 return NULL;
2081 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2082 shmem_match, fid->raw);
2083 if (inode) {
2084 dentry = d_find_alias(inode);
2085 iput(inode);
2088 return dentry;
2091 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2092 int connectable)
2094 struct inode *inode = dentry->d_inode;
2096 if (*len < 3)
2097 return 255;
2099 if (hlist_unhashed(&inode->i_hash)) {
2100 /* Unfortunately insert_inode_hash is not idempotent,
2101 * so as we hash inodes here rather than at creation
2102 * time, we need a lock to ensure we only try
2103 * to do it once
2105 static DEFINE_SPINLOCK(lock);
2106 spin_lock(&lock);
2107 if (hlist_unhashed(&inode->i_hash))
2108 __insert_inode_hash(inode,
2109 inode->i_ino + inode->i_generation);
2110 spin_unlock(&lock);
2113 fh[0] = inode->i_generation;
2114 fh[1] = inode->i_ino;
2115 fh[2] = ((__u64)inode->i_ino) >> 32;
2117 *len = 3;
2118 return 1;
2121 static const struct export_operations shmem_export_ops = {
2122 .get_parent = shmem_get_parent,
2123 .encode_fh = shmem_encode_fh,
2124 .fh_to_dentry = shmem_fh_to_dentry,
2127 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2128 bool remount)
2130 char *this_char, *value, *rest;
2132 while (options != NULL) {
2133 this_char = options;
2134 for (;;) {
2136 * NUL-terminate this option: unfortunately,
2137 * mount options form a comma-separated list,
2138 * but mpol's nodelist may also contain commas.
2140 options = strchr(options, ',');
2141 if (options == NULL)
2142 break;
2143 options++;
2144 if (!isdigit(*options)) {
2145 options[-1] = '\0';
2146 break;
2149 if (!*this_char)
2150 continue;
2151 if ((value = strchr(this_char,'=')) != NULL) {
2152 *value++ = 0;
2153 } else {
2154 printk(KERN_ERR
2155 "tmpfs: No value for mount option '%s'\n",
2156 this_char);
2157 return 1;
2160 if (!strcmp(this_char,"size")) {
2161 unsigned long long size;
2162 size = memparse(value,&rest);
2163 if (*rest == '%') {
2164 size <<= PAGE_SHIFT;
2165 size *= totalram_pages;
2166 do_div(size, 100);
2167 rest++;
2169 if (*rest)
2170 goto bad_val;
2171 sbinfo->max_blocks =
2172 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2173 } else if (!strcmp(this_char,"nr_blocks")) {
2174 sbinfo->max_blocks = memparse(value, &rest);
2175 if (*rest)
2176 goto bad_val;
2177 } else if (!strcmp(this_char,"nr_inodes")) {
2178 sbinfo->max_inodes = memparse(value, &rest);
2179 if (*rest)
2180 goto bad_val;
2181 } else if (!strcmp(this_char,"mode")) {
2182 if (remount)
2183 continue;
2184 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2185 if (*rest)
2186 goto bad_val;
2187 } else if (!strcmp(this_char,"uid")) {
2188 if (remount)
2189 continue;
2190 sbinfo->uid = simple_strtoul(value, &rest, 0);
2191 if (*rest)
2192 goto bad_val;
2193 } else if (!strcmp(this_char,"gid")) {
2194 if (remount)
2195 continue;
2196 sbinfo->gid = simple_strtoul(value, &rest, 0);
2197 if (*rest)
2198 goto bad_val;
2199 } else if (!strcmp(this_char,"mpol")) {
2200 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2201 goto bad_val;
2202 } else {
2203 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2204 this_char);
2205 return 1;
2208 return 0;
2210 bad_val:
2211 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2212 value, this_char);
2213 return 1;
2217 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2219 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2220 struct shmem_sb_info config = *sbinfo;
2221 unsigned long blocks;
2222 unsigned long inodes;
2223 int error = -EINVAL;
2225 if (shmem_parse_options(data, &config, true))
2226 return error;
2228 spin_lock(&sbinfo->stat_lock);
2229 blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2230 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2231 if (config.max_blocks < blocks)
2232 goto out;
2233 if (config.max_inodes < inodes)
2234 goto out;
2236 * Those tests also disallow limited->unlimited while any are in
2237 * use, so i_blocks will always be zero when max_blocks is zero;
2238 * but we must separately disallow unlimited->limited, because
2239 * in that case we have no record of how much is already in use.
2241 if (config.max_blocks && !sbinfo->max_blocks)
2242 goto out;
2243 if (config.max_inodes && !sbinfo->max_inodes)
2244 goto out;
2246 error = 0;
2247 sbinfo->max_blocks = config.max_blocks;
2248 sbinfo->free_blocks = config.max_blocks - blocks;
2249 sbinfo->max_inodes = config.max_inodes;
2250 sbinfo->free_inodes = config.max_inodes - inodes;
2252 mpol_put(sbinfo->mpol);
2253 sbinfo->mpol = config.mpol; /* transfers initial ref */
2254 out:
2255 spin_unlock(&sbinfo->stat_lock);
2256 return error;
2259 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2261 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2263 if (sbinfo->max_blocks != shmem_default_max_blocks())
2264 seq_printf(seq, ",size=%luk",
2265 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2266 if (sbinfo->max_inodes != shmem_default_max_inodes())
2267 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2268 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2269 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2270 if (sbinfo->uid != 0)
2271 seq_printf(seq, ",uid=%u", sbinfo->uid);
2272 if (sbinfo->gid != 0)
2273 seq_printf(seq, ",gid=%u", sbinfo->gid);
2274 shmem_show_mpol(seq, sbinfo->mpol);
2275 return 0;
2277 #endif /* CONFIG_TMPFS */
2279 static void shmem_put_super(struct super_block *sb)
2281 kfree(sb->s_fs_info);
2282 sb->s_fs_info = NULL;
2285 static int shmem_fill_super(struct super_block *sb,
2286 void *data, int silent)
2288 struct inode *inode;
2289 struct dentry *root;
2290 struct shmem_sb_info *sbinfo;
2291 int err = -ENOMEM;
2293 /* Round up to L1_CACHE_BYTES to resist false sharing */
2294 sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2295 L1_CACHE_BYTES), GFP_KERNEL);
2296 if (!sbinfo)
2297 return -ENOMEM;
2299 sbinfo->max_blocks = 0;
2300 sbinfo->max_inodes = 0;
2301 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2302 sbinfo->uid = current_fsuid();
2303 sbinfo->gid = current_fsgid();
2304 sbinfo->mpol = NULL;
2305 sb->s_fs_info = sbinfo;
2307 #ifdef CONFIG_TMPFS
2309 * Per default we only allow half of the physical ram per
2310 * tmpfs instance, limiting inodes to one per page of lowmem;
2311 * but the internal instance is left unlimited.
2313 if (!(sb->s_flags & MS_NOUSER)) {
2314 sbinfo->max_blocks = shmem_default_max_blocks();
2315 sbinfo->max_inodes = shmem_default_max_inodes();
2316 if (shmem_parse_options(data, sbinfo, false)) {
2317 err = -EINVAL;
2318 goto failed;
2321 sb->s_export_op = &shmem_export_ops;
2322 #else
2323 sb->s_flags |= MS_NOUSER;
2324 #endif
2326 spin_lock_init(&sbinfo->stat_lock);
2327 sbinfo->free_blocks = sbinfo->max_blocks;
2328 sbinfo->free_inodes = sbinfo->max_inodes;
2330 sb->s_maxbytes = SHMEM_MAX_BYTES;
2331 sb->s_blocksize = PAGE_CACHE_SIZE;
2332 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2333 sb->s_magic = TMPFS_MAGIC;
2334 sb->s_op = &shmem_ops;
2335 sb->s_time_gran = 1;
2336 #ifdef CONFIG_TMPFS_POSIX_ACL
2337 sb->s_xattr = shmem_xattr_handlers;
2338 sb->s_flags |= MS_POSIXACL;
2339 #endif
2341 inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0);
2342 if (!inode)
2343 goto failed;
2344 inode->i_uid = sbinfo->uid;
2345 inode->i_gid = sbinfo->gid;
2346 root = d_alloc_root(inode);
2347 if (!root)
2348 goto failed_iput;
2349 sb->s_root = root;
2350 return 0;
2352 failed_iput:
2353 iput(inode);
2354 failed:
2355 shmem_put_super(sb);
2356 return err;
2359 static struct kmem_cache *shmem_inode_cachep;
2361 static struct inode *shmem_alloc_inode(struct super_block *sb)
2363 struct shmem_inode_info *p;
2364 p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2365 if (!p)
2366 return NULL;
2367 return &p->vfs_inode;
2370 static void shmem_destroy_inode(struct inode *inode)
2372 if ((inode->i_mode & S_IFMT) == S_IFREG) {
2373 /* only struct inode is valid if it's an inline symlink */
2374 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2376 shmem_acl_destroy_inode(inode);
2377 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2380 static void init_once(void *foo)
2382 struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2384 inode_init_once(&p->vfs_inode);
2385 #ifdef CONFIG_TMPFS_POSIX_ACL
2386 p->i_acl = NULL;
2387 p->i_default_acl = NULL;
2388 #endif
2391 static int init_inodecache(void)
2393 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2394 sizeof(struct shmem_inode_info),
2395 0, SLAB_PANIC, init_once);
2396 return 0;
2399 static void destroy_inodecache(void)
2401 kmem_cache_destroy(shmem_inode_cachep);
2404 static const struct address_space_operations shmem_aops = {
2405 .writepage = shmem_writepage,
2406 .set_page_dirty = __set_page_dirty_no_writeback,
2407 #ifdef CONFIG_TMPFS
2408 .readpage = shmem_readpage,
2409 .write_begin = shmem_write_begin,
2410 .write_end = shmem_write_end,
2411 #endif
2412 .migratepage = migrate_page,
2415 static const struct file_operations shmem_file_operations = {
2416 .mmap = shmem_mmap,
2417 #ifdef CONFIG_TMPFS
2418 .llseek = generic_file_llseek,
2419 .read = do_sync_read,
2420 .write = do_sync_write,
2421 .aio_read = shmem_file_aio_read,
2422 .aio_write = generic_file_aio_write,
2423 .fsync = simple_sync_file,
2424 .splice_read = generic_file_splice_read,
2425 .splice_write = generic_file_splice_write,
2426 #endif
2429 static const struct inode_operations shmem_inode_operations = {
2430 .truncate = shmem_truncate,
2431 .setattr = shmem_notify_change,
2432 .truncate_range = shmem_truncate_range,
2433 #ifdef CONFIG_TMPFS_POSIX_ACL
2434 .setxattr = generic_setxattr,
2435 .getxattr = generic_getxattr,
2436 .listxattr = generic_listxattr,
2437 .removexattr = generic_removexattr,
2438 .permission = shmem_permission,
2439 #endif
2443 static const struct inode_operations shmem_dir_inode_operations = {
2444 #ifdef CONFIG_TMPFS
2445 .create = shmem_create,
2446 .lookup = simple_lookup,
2447 .link = shmem_link,
2448 .unlink = shmem_unlink,
2449 .symlink = shmem_symlink,
2450 .mkdir = shmem_mkdir,
2451 .rmdir = shmem_rmdir,
2452 .mknod = shmem_mknod,
2453 .rename = shmem_rename,
2454 #endif
2455 #ifdef CONFIG_TMPFS_POSIX_ACL
2456 .setattr = shmem_notify_change,
2457 .setxattr = generic_setxattr,
2458 .getxattr = generic_getxattr,
2459 .listxattr = generic_listxattr,
2460 .removexattr = generic_removexattr,
2461 .permission = shmem_permission,
2462 #endif
2465 static const struct inode_operations shmem_special_inode_operations = {
2466 #ifdef CONFIG_TMPFS_POSIX_ACL
2467 .setattr = shmem_notify_change,
2468 .setxattr = generic_setxattr,
2469 .getxattr = generic_getxattr,
2470 .listxattr = generic_listxattr,
2471 .removexattr = generic_removexattr,
2472 .permission = shmem_permission,
2473 #endif
2476 static const struct super_operations shmem_ops = {
2477 .alloc_inode = shmem_alloc_inode,
2478 .destroy_inode = shmem_destroy_inode,
2479 #ifdef CONFIG_TMPFS
2480 .statfs = shmem_statfs,
2481 .remount_fs = shmem_remount_fs,
2482 .show_options = shmem_show_options,
2483 #endif
2484 .delete_inode = shmem_delete_inode,
2485 .drop_inode = generic_delete_inode,
2486 .put_super = shmem_put_super,
2489 static struct vm_operations_struct shmem_vm_ops = {
2490 .fault = shmem_fault,
2491 #ifdef CONFIG_NUMA
2492 .set_policy = shmem_set_policy,
2493 .get_policy = shmem_get_policy,
2494 #endif
2498 static int shmem_get_sb(struct file_system_type *fs_type,
2499 int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2501 return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2504 static struct file_system_type tmpfs_fs_type = {
2505 .owner = THIS_MODULE,
2506 .name = "tmpfs",
2507 .get_sb = shmem_get_sb,
2508 .kill_sb = kill_litter_super,
2511 static int __init init_tmpfs(void)
2513 int error;
2515 error = bdi_init(&shmem_backing_dev_info);
2516 if (error)
2517 goto out4;
2519 error = init_inodecache();
2520 if (error)
2521 goto out3;
2523 error = register_filesystem(&tmpfs_fs_type);
2524 if (error) {
2525 printk(KERN_ERR "Could not register tmpfs\n");
2526 goto out2;
2529 shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2530 tmpfs_fs_type.name, NULL);
2531 if (IS_ERR(shm_mnt)) {
2532 error = PTR_ERR(shm_mnt);
2533 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2534 goto out1;
2536 return 0;
2538 out1:
2539 unregister_filesystem(&tmpfs_fs_type);
2540 out2:
2541 destroy_inodecache();
2542 out3:
2543 bdi_destroy(&shmem_backing_dev_info);
2544 out4:
2545 shm_mnt = ERR_PTR(error);
2546 return error;
2549 #else /* !CONFIG_SHMEM */
2552 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2554 * This is intended for small system where the benefits of the full
2555 * shmem code (swap-backed and resource-limited) are outweighed by
2556 * their complexity. On systems without swap this code should be
2557 * effectively equivalent, but much lighter weight.
2560 #include <linux/ramfs.h>
2562 static struct file_system_type tmpfs_fs_type = {
2563 .name = "tmpfs",
2564 .get_sb = ramfs_get_sb,
2565 .kill_sb = kill_litter_super,
2568 static int __init init_tmpfs(void)
2570 BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2572 shm_mnt = kern_mount(&tmpfs_fs_type);
2573 BUG_ON(IS_ERR(shm_mnt));
2575 return 0;
2578 int shmem_unuse(swp_entry_t entry, struct page *page)
2580 return 0;
2583 #define shmem_file_operations ramfs_file_operations
2584 #define shmem_vm_ops generic_file_vm_ops
2585 #define shmem_get_inode ramfs_get_inode
2586 #define shmem_acct_size(a, b) 0
2587 #define shmem_unacct_size(a, b) do {} while (0)
2588 #define SHMEM_MAX_BYTES LLONG_MAX
2590 #endif /* CONFIG_SHMEM */
2592 /* common code */
2595 * shmem_file_setup - get an unlinked file living in tmpfs
2596 * @name: name for dentry (to be seen in /proc/<pid>/maps
2597 * @size: size to be set for the file
2598 * @flags: vm_flags
2600 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2602 int error;
2603 struct file *file;
2604 struct inode *inode;
2605 struct dentry *dentry, *root;
2606 struct qstr this;
2608 if (IS_ERR(shm_mnt))
2609 return (void *)shm_mnt;
2611 if (size < 0 || size > SHMEM_MAX_BYTES)
2612 return ERR_PTR(-EINVAL);
2614 if (shmem_acct_size(flags, size))
2615 return ERR_PTR(-ENOMEM);
2617 error = -ENOMEM;
2618 this.name = name;
2619 this.len = strlen(name);
2620 this.hash = 0; /* will go */
2621 root = shm_mnt->mnt_root;
2622 dentry = d_alloc(root, &this);
2623 if (!dentry)
2624 goto put_memory;
2626 error = -ENFILE;
2627 file = get_empty_filp();
2628 if (!file)
2629 goto put_dentry;
2631 error = -ENOSPC;
2632 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2633 if (!inode)
2634 goto close_file;
2636 #ifdef CONFIG_SHMEM
2637 SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2638 #endif
2639 d_instantiate(dentry, inode);
2640 inode->i_size = size;
2641 inode->i_nlink = 0; /* It is unlinked */
2642 init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2643 &shmem_file_operations);
2645 #ifndef CONFIG_MMU
2646 error = ramfs_nommu_expand_for_mapping(inode, size);
2647 if (error)
2648 goto close_file;
2649 #endif
2650 return file;
2652 close_file:
2653 put_filp(file);
2654 put_dentry:
2655 dput(dentry);
2656 put_memory:
2657 shmem_unacct_size(flags, size);
2658 return ERR_PTR(error);
2660 EXPORT_SYMBOL_GPL(shmem_file_setup);
2663 * shmem_zero_setup - setup a shared anonymous mapping
2664 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2666 int shmem_zero_setup(struct vm_area_struct *vma)
2668 struct file *file;
2669 loff_t size = vma->vm_end - vma->vm_start;
2671 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2672 if (IS_ERR(file))
2673 return PTR_ERR(file);
2675 if (vma->vm_file)
2676 fput(vma->vm_file);
2677 vma->vm_file = file;
2678 vma->vm_ops = &shmem_vm_ops;
2679 return 0;
2682 module_init(init_tmpfs)