hrtimer: fix rq->lock inversion (again)
[linux-2.6/mini2440.git] / kernel / sched.c
blob63256e3ede2a3480cd9fe3b27122dea44171cb63
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
127 #ifdef CONFIG_SMP
129 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
135 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
144 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
149 #endif
151 static inline int rt_policy(int policy)
153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 return 1;
155 return 0;
158 static inline int task_has_rt_policy(struct task_struct *p)
160 return rt_policy(p->policy);
164 * This is the priority-queue data structure of the RT scheduling class:
166 struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
171 struct rt_bandwidth {
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
179 static struct rt_bandwidth def_rt_bandwidth;
181 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
183 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
195 if (!overrun)
196 break;
198 idle = do_sched_rt_period_timer(rt_b, overrun);
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
204 static
205 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
210 spin_lock_init(&rt_b->rt_runtime_lock);
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
217 static inline int rt_bandwidth_enabled(void)
219 return sysctl_sched_rt_runtime >= 0;
222 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
224 ktime_t now;
226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
227 return;
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 unsigned long delta;
235 ktime_t soft, hard;
237 if (hrtimer_active(&rt_b->rt_period_timer))
238 break;
240 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
241 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
243 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
244 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
245 delta = ktime_to_ns(ktime_sub(hard, soft));
246 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
247 HRTIMER_MODE_ABS, 0);
249 spin_unlock(&rt_b->rt_runtime_lock);
252 #ifdef CONFIG_RT_GROUP_SCHED
253 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
255 hrtimer_cancel(&rt_b->rt_period_timer);
257 #endif
260 * sched_domains_mutex serializes calls to arch_init_sched_domains,
261 * detach_destroy_domains and partition_sched_domains.
263 static DEFINE_MUTEX(sched_domains_mutex);
265 #ifdef CONFIG_GROUP_SCHED
267 #include <linux/cgroup.h>
269 struct cfs_rq;
271 static LIST_HEAD(task_groups);
273 /* task group related information */
274 struct task_group {
275 #ifdef CONFIG_CGROUP_SCHED
276 struct cgroup_subsys_state css;
277 #endif
279 #ifdef CONFIG_USER_SCHED
280 uid_t uid;
281 #endif
283 #ifdef CONFIG_FAIR_GROUP_SCHED
284 /* schedulable entities of this group on each cpu */
285 struct sched_entity **se;
286 /* runqueue "owned" by this group on each cpu */
287 struct cfs_rq **cfs_rq;
288 unsigned long shares;
289 #endif
291 #ifdef CONFIG_RT_GROUP_SCHED
292 struct sched_rt_entity **rt_se;
293 struct rt_rq **rt_rq;
295 struct rt_bandwidth rt_bandwidth;
296 #endif
298 struct rcu_head rcu;
299 struct list_head list;
301 struct task_group *parent;
302 struct list_head siblings;
303 struct list_head children;
306 #ifdef CONFIG_USER_SCHED
308 /* Helper function to pass uid information to create_sched_user() */
309 void set_tg_uid(struct user_struct *user)
311 user->tg->uid = user->uid;
315 * Root task group.
316 * Every UID task group (including init_task_group aka UID-0) will
317 * be a child to this group.
319 struct task_group root_task_group;
321 #ifdef CONFIG_FAIR_GROUP_SCHED
322 /* Default task group's sched entity on each cpu */
323 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
324 /* Default task group's cfs_rq on each cpu */
325 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
326 #endif /* CONFIG_FAIR_GROUP_SCHED */
328 #ifdef CONFIG_RT_GROUP_SCHED
329 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
330 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
331 #endif /* CONFIG_RT_GROUP_SCHED */
332 #else /* !CONFIG_USER_SCHED */
333 #define root_task_group init_task_group
334 #endif /* CONFIG_USER_SCHED */
336 /* task_group_lock serializes add/remove of task groups and also changes to
337 * a task group's cpu shares.
339 static DEFINE_SPINLOCK(task_group_lock);
341 #ifdef CONFIG_SMP
342 static int root_task_group_empty(void)
344 return list_empty(&root_task_group.children);
346 #endif
348 #ifdef CONFIG_FAIR_GROUP_SCHED
349 #ifdef CONFIG_USER_SCHED
350 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
351 #else /* !CONFIG_USER_SCHED */
352 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
353 #endif /* CONFIG_USER_SCHED */
356 * A weight of 0 or 1 can cause arithmetics problems.
357 * A weight of a cfs_rq is the sum of weights of which entities
358 * are queued on this cfs_rq, so a weight of a entity should not be
359 * too large, so as the shares value of a task group.
360 * (The default weight is 1024 - so there's no practical
361 * limitation from this.)
363 #define MIN_SHARES 2
364 #define MAX_SHARES (1UL << 18)
366 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
367 #endif
369 /* Default task group.
370 * Every task in system belong to this group at bootup.
372 struct task_group init_task_group;
374 /* return group to which a task belongs */
375 static inline struct task_group *task_group(struct task_struct *p)
377 struct task_group *tg;
379 #ifdef CONFIG_USER_SCHED
380 rcu_read_lock();
381 tg = __task_cred(p)->user->tg;
382 rcu_read_unlock();
383 #elif defined(CONFIG_CGROUP_SCHED)
384 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
385 struct task_group, css);
386 #else
387 tg = &init_task_group;
388 #endif
389 return tg;
392 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
393 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
395 #ifdef CONFIG_FAIR_GROUP_SCHED
396 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
397 p->se.parent = task_group(p)->se[cpu];
398 #endif
400 #ifdef CONFIG_RT_GROUP_SCHED
401 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
402 p->rt.parent = task_group(p)->rt_se[cpu];
403 #endif
406 #else
408 #ifdef CONFIG_SMP
409 static int root_task_group_empty(void)
411 return 1;
413 #endif
415 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
416 static inline struct task_group *task_group(struct task_struct *p)
418 return NULL;
421 #endif /* CONFIG_GROUP_SCHED */
423 /* CFS-related fields in a runqueue */
424 struct cfs_rq {
425 struct load_weight load;
426 unsigned long nr_running;
428 u64 exec_clock;
429 u64 min_vruntime;
431 struct rb_root tasks_timeline;
432 struct rb_node *rb_leftmost;
434 struct list_head tasks;
435 struct list_head *balance_iterator;
438 * 'curr' points to currently running entity on this cfs_rq.
439 * It is set to NULL otherwise (i.e when none are currently running).
441 struct sched_entity *curr, *next, *last;
443 unsigned int nr_spread_over;
445 #ifdef CONFIG_FAIR_GROUP_SCHED
446 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
449 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
450 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
451 * (like users, containers etc.)
453 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
454 * list is used during load balance.
456 struct list_head leaf_cfs_rq_list;
457 struct task_group *tg; /* group that "owns" this runqueue */
459 #ifdef CONFIG_SMP
461 * the part of load.weight contributed by tasks
463 unsigned long task_weight;
466 * h_load = weight * f(tg)
468 * Where f(tg) is the recursive weight fraction assigned to
469 * this group.
471 unsigned long h_load;
474 * this cpu's part of tg->shares
476 unsigned long shares;
479 * load.weight at the time we set shares
481 unsigned long rq_weight;
482 #endif
483 #endif
486 /* Real-Time classes' related field in a runqueue: */
487 struct rt_rq {
488 struct rt_prio_array active;
489 unsigned long rt_nr_running;
490 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
491 struct {
492 int curr; /* highest queued rt task prio */
493 #ifdef CONFIG_SMP
494 int next; /* next highest */
495 #endif
496 } highest_prio;
497 #endif
498 #ifdef CONFIG_SMP
499 unsigned long rt_nr_migratory;
500 int overloaded;
501 struct plist_head pushable_tasks;
502 #endif
503 int rt_throttled;
504 u64 rt_time;
505 u64 rt_runtime;
506 /* Nests inside the rq lock: */
507 spinlock_t rt_runtime_lock;
509 #ifdef CONFIG_RT_GROUP_SCHED
510 unsigned long rt_nr_boosted;
512 struct rq *rq;
513 struct list_head leaf_rt_rq_list;
514 struct task_group *tg;
515 struct sched_rt_entity *rt_se;
516 #endif
519 #ifdef CONFIG_SMP
522 * We add the notion of a root-domain which will be used to define per-domain
523 * variables. Each exclusive cpuset essentially defines an island domain by
524 * fully partitioning the member cpus from any other cpuset. Whenever a new
525 * exclusive cpuset is created, we also create and attach a new root-domain
526 * object.
529 struct root_domain {
530 atomic_t refcount;
531 cpumask_var_t span;
532 cpumask_var_t online;
535 * The "RT overload" flag: it gets set if a CPU has more than
536 * one runnable RT task.
538 cpumask_var_t rto_mask;
539 atomic_t rto_count;
540 #ifdef CONFIG_SMP
541 struct cpupri cpupri;
542 #endif
543 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
545 * Preferred wake up cpu nominated by sched_mc balance that will be
546 * used when most cpus are idle in the system indicating overall very
547 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
549 unsigned int sched_mc_preferred_wakeup_cpu;
550 #endif
554 * By default the system creates a single root-domain with all cpus as
555 * members (mimicking the global state we have today).
557 static struct root_domain def_root_domain;
559 #endif
562 * This is the main, per-CPU runqueue data structure.
564 * Locking rule: those places that want to lock multiple runqueues
565 * (such as the load balancing or the thread migration code), lock
566 * acquire operations must be ordered by ascending &runqueue.
568 struct rq {
569 /* runqueue lock: */
570 spinlock_t lock;
573 * nr_running and cpu_load should be in the same cacheline because
574 * remote CPUs use both these fields when doing load calculation.
576 unsigned long nr_running;
577 #define CPU_LOAD_IDX_MAX 5
578 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
579 #ifdef CONFIG_NO_HZ
580 unsigned long last_tick_seen;
581 unsigned char in_nohz_recently;
582 #endif
583 /* capture load from *all* tasks on this cpu: */
584 struct load_weight load;
585 unsigned long nr_load_updates;
586 u64 nr_switches;
588 struct cfs_rq cfs;
589 struct rt_rq rt;
591 #ifdef CONFIG_FAIR_GROUP_SCHED
592 /* list of leaf cfs_rq on this cpu: */
593 struct list_head leaf_cfs_rq_list;
594 #endif
595 #ifdef CONFIG_RT_GROUP_SCHED
596 struct list_head leaf_rt_rq_list;
597 #endif
600 * This is part of a global counter where only the total sum
601 * over all CPUs matters. A task can increase this counter on
602 * one CPU and if it got migrated afterwards it may decrease
603 * it on another CPU. Always updated under the runqueue lock:
605 unsigned long nr_uninterruptible;
607 struct task_struct *curr, *idle;
608 unsigned long next_balance;
609 struct mm_struct *prev_mm;
611 u64 clock;
613 atomic_t nr_iowait;
615 #ifdef CONFIG_SMP
616 struct root_domain *rd;
617 struct sched_domain *sd;
619 unsigned char idle_at_tick;
620 /* For active balancing */
621 int active_balance;
622 int push_cpu;
623 /* cpu of this runqueue: */
624 int cpu;
625 int online;
627 unsigned long avg_load_per_task;
629 struct task_struct *migration_thread;
630 struct list_head migration_queue;
631 #endif
633 #ifdef CONFIG_SCHED_HRTICK
634 #ifdef CONFIG_SMP
635 int hrtick_csd_pending;
636 struct call_single_data hrtick_csd;
637 #endif
638 struct hrtimer hrtick_timer;
639 #endif
641 #ifdef CONFIG_SCHEDSTATS
642 /* latency stats */
643 struct sched_info rq_sched_info;
644 unsigned long long rq_cpu_time;
645 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
647 /* sys_sched_yield() stats */
648 unsigned int yld_count;
650 /* schedule() stats */
651 unsigned int sched_switch;
652 unsigned int sched_count;
653 unsigned int sched_goidle;
655 /* try_to_wake_up() stats */
656 unsigned int ttwu_count;
657 unsigned int ttwu_local;
659 /* BKL stats */
660 unsigned int bkl_count;
661 #endif
664 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
666 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
668 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
671 static inline int cpu_of(struct rq *rq)
673 #ifdef CONFIG_SMP
674 return rq->cpu;
675 #else
676 return 0;
677 #endif
681 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
682 * See detach_destroy_domains: synchronize_sched for details.
684 * The domain tree of any CPU may only be accessed from within
685 * preempt-disabled sections.
687 #define for_each_domain(cpu, __sd) \
688 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
690 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
691 #define this_rq() (&__get_cpu_var(runqueues))
692 #define task_rq(p) cpu_rq(task_cpu(p))
693 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
695 static inline void update_rq_clock(struct rq *rq)
697 rq->clock = sched_clock_cpu(cpu_of(rq));
701 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
703 #ifdef CONFIG_SCHED_DEBUG
704 # define const_debug __read_mostly
705 #else
706 # define const_debug static const
707 #endif
710 * runqueue_is_locked
712 * Returns true if the current cpu runqueue is locked.
713 * This interface allows printk to be called with the runqueue lock
714 * held and know whether or not it is OK to wake up the klogd.
716 int runqueue_is_locked(void)
718 int cpu = get_cpu();
719 struct rq *rq = cpu_rq(cpu);
720 int ret;
722 ret = spin_is_locked(&rq->lock);
723 put_cpu();
724 return ret;
728 * Debugging: various feature bits
731 #define SCHED_FEAT(name, enabled) \
732 __SCHED_FEAT_##name ,
734 enum {
735 #include "sched_features.h"
738 #undef SCHED_FEAT
740 #define SCHED_FEAT(name, enabled) \
741 (1UL << __SCHED_FEAT_##name) * enabled |
743 const_debug unsigned int sysctl_sched_features =
744 #include "sched_features.h"
747 #undef SCHED_FEAT
749 #ifdef CONFIG_SCHED_DEBUG
750 #define SCHED_FEAT(name, enabled) \
751 #name ,
753 static __read_mostly char *sched_feat_names[] = {
754 #include "sched_features.h"
755 NULL
758 #undef SCHED_FEAT
760 static int sched_feat_show(struct seq_file *m, void *v)
762 int i;
764 for (i = 0; sched_feat_names[i]; i++) {
765 if (!(sysctl_sched_features & (1UL << i)))
766 seq_puts(m, "NO_");
767 seq_printf(m, "%s ", sched_feat_names[i]);
769 seq_puts(m, "\n");
771 return 0;
774 static ssize_t
775 sched_feat_write(struct file *filp, const char __user *ubuf,
776 size_t cnt, loff_t *ppos)
778 char buf[64];
779 char *cmp = buf;
780 int neg = 0;
781 int i;
783 if (cnt > 63)
784 cnt = 63;
786 if (copy_from_user(&buf, ubuf, cnt))
787 return -EFAULT;
789 buf[cnt] = 0;
791 if (strncmp(buf, "NO_", 3) == 0) {
792 neg = 1;
793 cmp += 3;
796 for (i = 0; sched_feat_names[i]; i++) {
797 int len = strlen(sched_feat_names[i]);
799 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
800 if (neg)
801 sysctl_sched_features &= ~(1UL << i);
802 else
803 sysctl_sched_features |= (1UL << i);
804 break;
808 if (!sched_feat_names[i])
809 return -EINVAL;
811 filp->f_pos += cnt;
813 return cnt;
816 static int sched_feat_open(struct inode *inode, struct file *filp)
818 return single_open(filp, sched_feat_show, NULL);
821 static struct file_operations sched_feat_fops = {
822 .open = sched_feat_open,
823 .write = sched_feat_write,
824 .read = seq_read,
825 .llseek = seq_lseek,
826 .release = single_release,
829 static __init int sched_init_debug(void)
831 debugfs_create_file("sched_features", 0644, NULL, NULL,
832 &sched_feat_fops);
834 return 0;
836 late_initcall(sched_init_debug);
838 #endif
840 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
843 * Number of tasks to iterate in a single balance run.
844 * Limited because this is done with IRQs disabled.
846 const_debug unsigned int sysctl_sched_nr_migrate = 32;
849 * ratelimit for updating the group shares.
850 * default: 0.25ms
852 unsigned int sysctl_sched_shares_ratelimit = 250000;
855 * Inject some fuzzyness into changing the per-cpu group shares
856 * this avoids remote rq-locks at the expense of fairness.
857 * default: 4
859 unsigned int sysctl_sched_shares_thresh = 4;
862 * period over which we measure -rt task cpu usage in us.
863 * default: 1s
865 unsigned int sysctl_sched_rt_period = 1000000;
867 static __read_mostly int scheduler_running;
870 * part of the period that we allow rt tasks to run in us.
871 * default: 0.95s
873 int sysctl_sched_rt_runtime = 950000;
875 static inline u64 global_rt_period(void)
877 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
880 static inline u64 global_rt_runtime(void)
882 if (sysctl_sched_rt_runtime < 0)
883 return RUNTIME_INF;
885 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
888 #ifndef prepare_arch_switch
889 # define prepare_arch_switch(next) do { } while (0)
890 #endif
891 #ifndef finish_arch_switch
892 # define finish_arch_switch(prev) do { } while (0)
893 #endif
895 static inline int task_current(struct rq *rq, struct task_struct *p)
897 return rq->curr == p;
900 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
901 static inline int task_running(struct rq *rq, struct task_struct *p)
903 return task_current(rq, p);
906 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
912 #ifdef CONFIG_DEBUG_SPINLOCK
913 /* this is a valid case when another task releases the spinlock */
914 rq->lock.owner = current;
915 #endif
917 * If we are tracking spinlock dependencies then we have to
918 * fix up the runqueue lock - which gets 'carried over' from
919 * prev into current:
921 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
923 spin_unlock_irq(&rq->lock);
926 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
927 static inline int task_running(struct rq *rq, struct task_struct *p)
929 #ifdef CONFIG_SMP
930 return p->oncpu;
931 #else
932 return task_current(rq, p);
933 #endif
936 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
938 #ifdef CONFIG_SMP
940 * We can optimise this out completely for !SMP, because the
941 * SMP rebalancing from interrupt is the only thing that cares
942 * here.
944 next->oncpu = 1;
945 #endif
946 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 spin_unlock_irq(&rq->lock);
948 #else
949 spin_unlock(&rq->lock);
950 #endif
953 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
955 #ifdef CONFIG_SMP
957 * After ->oncpu is cleared, the task can be moved to a different CPU.
958 * We must ensure this doesn't happen until the switch is completely
959 * finished.
961 smp_wmb();
962 prev->oncpu = 0;
963 #endif
964 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
965 local_irq_enable();
966 #endif
968 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
971 * __task_rq_lock - lock the runqueue a given task resides on.
972 * Must be called interrupts disabled.
974 static inline struct rq *__task_rq_lock(struct task_struct *p)
975 __acquires(rq->lock)
977 for (;;) {
978 struct rq *rq = task_rq(p);
979 spin_lock(&rq->lock);
980 if (likely(rq == task_rq(p)))
981 return rq;
982 spin_unlock(&rq->lock);
987 * task_rq_lock - lock the runqueue a given task resides on and disable
988 * interrupts. Note the ordering: we can safely lookup the task_rq without
989 * explicitly disabling preemption.
991 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
992 __acquires(rq->lock)
994 struct rq *rq;
996 for (;;) {
997 local_irq_save(*flags);
998 rq = task_rq(p);
999 spin_lock(&rq->lock);
1000 if (likely(rq == task_rq(p)))
1001 return rq;
1002 spin_unlock_irqrestore(&rq->lock, *flags);
1006 void task_rq_unlock_wait(struct task_struct *p)
1008 struct rq *rq = task_rq(p);
1010 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1011 spin_unlock_wait(&rq->lock);
1014 static void __task_rq_unlock(struct rq *rq)
1015 __releases(rq->lock)
1017 spin_unlock(&rq->lock);
1020 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1021 __releases(rq->lock)
1023 spin_unlock_irqrestore(&rq->lock, *flags);
1027 * this_rq_lock - lock this runqueue and disable interrupts.
1029 static struct rq *this_rq_lock(void)
1030 __acquires(rq->lock)
1032 struct rq *rq;
1034 local_irq_disable();
1035 rq = this_rq();
1036 spin_lock(&rq->lock);
1038 return rq;
1041 #ifdef CONFIG_SCHED_HRTICK
1043 * Use HR-timers to deliver accurate preemption points.
1045 * Its all a bit involved since we cannot program an hrt while holding the
1046 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1047 * reschedule event.
1049 * When we get rescheduled we reprogram the hrtick_timer outside of the
1050 * rq->lock.
1054 * Use hrtick when:
1055 * - enabled by features
1056 * - hrtimer is actually high res
1058 static inline int hrtick_enabled(struct rq *rq)
1060 if (!sched_feat(HRTICK))
1061 return 0;
1062 if (!cpu_active(cpu_of(rq)))
1063 return 0;
1064 return hrtimer_is_hres_active(&rq->hrtick_timer);
1067 static void hrtick_clear(struct rq *rq)
1069 if (hrtimer_active(&rq->hrtick_timer))
1070 hrtimer_cancel(&rq->hrtick_timer);
1074 * High-resolution timer tick.
1075 * Runs from hardirq context with interrupts disabled.
1077 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1079 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1081 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1083 spin_lock(&rq->lock);
1084 update_rq_clock(rq);
1085 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1086 spin_unlock(&rq->lock);
1088 return HRTIMER_NORESTART;
1091 #ifdef CONFIG_SMP
1093 * called from hardirq (IPI) context
1095 static void __hrtick_start(void *arg)
1097 struct rq *rq = arg;
1099 spin_lock(&rq->lock);
1100 hrtimer_restart(&rq->hrtick_timer);
1101 rq->hrtick_csd_pending = 0;
1102 spin_unlock(&rq->lock);
1106 * Called to set the hrtick timer state.
1108 * called with rq->lock held and irqs disabled
1110 static void hrtick_start(struct rq *rq, u64 delay)
1112 struct hrtimer *timer = &rq->hrtick_timer;
1113 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1115 hrtimer_set_expires(timer, time);
1117 if (rq == this_rq()) {
1118 hrtimer_restart(timer);
1119 } else if (!rq->hrtick_csd_pending) {
1120 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1121 rq->hrtick_csd_pending = 1;
1125 static int
1126 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1128 int cpu = (int)(long)hcpu;
1130 switch (action) {
1131 case CPU_UP_CANCELED:
1132 case CPU_UP_CANCELED_FROZEN:
1133 case CPU_DOWN_PREPARE:
1134 case CPU_DOWN_PREPARE_FROZEN:
1135 case CPU_DEAD:
1136 case CPU_DEAD_FROZEN:
1137 hrtick_clear(cpu_rq(cpu));
1138 return NOTIFY_OK;
1141 return NOTIFY_DONE;
1144 static __init void init_hrtick(void)
1146 hotcpu_notifier(hotplug_hrtick, 0);
1148 #else
1150 * Called to set the hrtick timer state.
1152 * called with rq->lock held and irqs disabled
1154 static void hrtick_start(struct rq *rq, u64 delay)
1156 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1157 HRTIMER_MODE_REL, 0);
1160 static inline void init_hrtick(void)
1163 #endif /* CONFIG_SMP */
1165 static void init_rq_hrtick(struct rq *rq)
1167 #ifdef CONFIG_SMP
1168 rq->hrtick_csd_pending = 0;
1170 rq->hrtick_csd.flags = 0;
1171 rq->hrtick_csd.func = __hrtick_start;
1172 rq->hrtick_csd.info = rq;
1173 #endif
1175 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1176 rq->hrtick_timer.function = hrtick;
1178 #else /* CONFIG_SCHED_HRTICK */
1179 static inline void hrtick_clear(struct rq *rq)
1183 static inline void init_rq_hrtick(struct rq *rq)
1187 static inline void init_hrtick(void)
1190 #endif /* CONFIG_SCHED_HRTICK */
1193 * resched_task - mark a task 'to be rescheduled now'.
1195 * On UP this means the setting of the need_resched flag, on SMP it
1196 * might also involve a cross-CPU call to trigger the scheduler on
1197 * the target CPU.
1199 #ifdef CONFIG_SMP
1201 #ifndef tsk_is_polling
1202 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1203 #endif
1205 static void resched_task(struct task_struct *p)
1207 int cpu;
1209 assert_spin_locked(&task_rq(p)->lock);
1211 if (test_tsk_need_resched(p))
1212 return;
1214 set_tsk_need_resched(p);
1216 cpu = task_cpu(p);
1217 if (cpu == smp_processor_id())
1218 return;
1220 /* NEED_RESCHED must be visible before we test polling */
1221 smp_mb();
1222 if (!tsk_is_polling(p))
1223 smp_send_reschedule(cpu);
1226 static void resched_cpu(int cpu)
1228 struct rq *rq = cpu_rq(cpu);
1229 unsigned long flags;
1231 if (!spin_trylock_irqsave(&rq->lock, flags))
1232 return;
1233 resched_task(cpu_curr(cpu));
1234 spin_unlock_irqrestore(&rq->lock, flags);
1237 #ifdef CONFIG_NO_HZ
1239 * When add_timer_on() enqueues a timer into the timer wheel of an
1240 * idle CPU then this timer might expire before the next timer event
1241 * which is scheduled to wake up that CPU. In case of a completely
1242 * idle system the next event might even be infinite time into the
1243 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1244 * leaves the inner idle loop so the newly added timer is taken into
1245 * account when the CPU goes back to idle and evaluates the timer
1246 * wheel for the next timer event.
1248 void wake_up_idle_cpu(int cpu)
1250 struct rq *rq = cpu_rq(cpu);
1252 if (cpu == smp_processor_id())
1253 return;
1256 * This is safe, as this function is called with the timer
1257 * wheel base lock of (cpu) held. When the CPU is on the way
1258 * to idle and has not yet set rq->curr to idle then it will
1259 * be serialized on the timer wheel base lock and take the new
1260 * timer into account automatically.
1262 if (rq->curr != rq->idle)
1263 return;
1266 * We can set TIF_RESCHED on the idle task of the other CPU
1267 * lockless. The worst case is that the other CPU runs the
1268 * idle task through an additional NOOP schedule()
1270 set_tsk_need_resched(rq->idle);
1272 /* NEED_RESCHED must be visible before we test polling */
1273 smp_mb();
1274 if (!tsk_is_polling(rq->idle))
1275 smp_send_reschedule(cpu);
1277 #endif /* CONFIG_NO_HZ */
1279 #else /* !CONFIG_SMP */
1280 static void resched_task(struct task_struct *p)
1282 assert_spin_locked(&task_rq(p)->lock);
1283 set_tsk_need_resched(p);
1285 #endif /* CONFIG_SMP */
1287 #if BITS_PER_LONG == 32
1288 # define WMULT_CONST (~0UL)
1289 #else
1290 # define WMULT_CONST (1UL << 32)
1291 #endif
1293 #define WMULT_SHIFT 32
1296 * Shift right and round:
1298 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1301 * delta *= weight / lw
1303 static unsigned long
1304 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1307 u64 tmp;
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1317 tmp = (u64)delta_exec * weight;
1319 * Check whether we'd overflow the 64-bit multiplication:
1321 if (unlikely(tmp > WMULT_CONST))
1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1323 WMULT_SHIFT/2);
1324 else
1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1330 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 lw->weight += inc;
1333 lw->inv_weight = 0;
1336 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 lw->weight -= dec;
1339 lw->inv_weight = 0;
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1351 #define WEIGHT_IDLEPRIO 3
1352 #define WMULT_IDLEPRIO 1431655765
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
1366 static const int prio_to_weight[40] = {
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1384 static const u32 prio_to_wmult[40] = {
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1395 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1402 struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1408 #ifdef CONFIG_SMP
1409 static unsigned long
1410 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1415 static int
1416 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
1419 #endif
1421 #ifdef CONFIG_CGROUP_CPUACCT
1422 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1423 #else
1424 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1425 #endif
1427 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1429 update_load_add(&rq->load, load);
1432 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1434 update_load_sub(&rq->load, load);
1437 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1438 typedef int (*tg_visitor)(struct task_group *, void *);
1441 * Iterate the full tree, calling @down when first entering a node and @up when
1442 * leaving it for the final time.
1444 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1446 struct task_group *parent, *child;
1447 int ret;
1449 rcu_read_lock();
1450 parent = &root_task_group;
1451 down:
1452 ret = (*down)(parent, data);
1453 if (ret)
1454 goto out_unlock;
1455 list_for_each_entry_rcu(child, &parent->children, siblings) {
1456 parent = child;
1457 goto down;
1460 continue;
1462 ret = (*up)(parent, data);
1463 if (ret)
1464 goto out_unlock;
1466 child = parent;
1467 parent = parent->parent;
1468 if (parent)
1469 goto up;
1470 out_unlock:
1471 rcu_read_unlock();
1473 return ret;
1476 static int tg_nop(struct task_group *tg, void *data)
1478 return 0;
1480 #endif
1482 #ifdef CONFIG_SMP
1483 static unsigned long source_load(int cpu, int type);
1484 static unsigned long target_load(int cpu, int type);
1485 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1487 static unsigned long cpu_avg_load_per_task(int cpu)
1489 struct rq *rq = cpu_rq(cpu);
1490 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1492 if (nr_running)
1493 rq->avg_load_per_task = rq->load.weight / nr_running;
1494 else
1495 rq->avg_load_per_task = 0;
1497 return rq->avg_load_per_task;
1500 #ifdef CONFIG_FAIR_GROUP_SCHED
1502 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1505 * Calculate and set the cpu's group shares.
1507 static void
1508 update_group_shares_cpu(struct task_group *tg, int cpu,
1509 unsigned long sd_shares, unsigned long sd_rq_weight)
1511 unsigned long shares;
1512 unsigned long rq_weight;
1514 if (!tg->se[cpu])
1515 return;
1517 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1520 * \Sum shares * rq_weight
1521 * shares = -----------------------
1522 * \Sum rq_weight
1525 shares = (sd_shares * rq_weight) / sd_rq_weight;
1526 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1528 if (abs(shares - tg->se[cpu]->load.weight) >
1529 sysctl_sched_shares_thresh) {
1530 struct rq *rq = cpu_rq(cpu);
1531 unsigned long flags;
1533 spin_lock_irqsave(&rq->lock, flags);
1534 tg->cfs_rq[cpu]->shares = shares;
1536 __set_se_shares(tg->se[cpu], shares);
1537 spin_unlock_irqrestore(&rq->lock, flags);
1542 * Re-compute the task group their per cpu shares over the given domain.
1543 * This needs to be done in a bottom-up fashion because the rq weight of a
1544 * parent group depends on the shares of its child groups.
1546 static int tg_shares_up(struct task_group *tg, void *data)
1548 unsigned long weight, rq_weight = 0;
1549 unsigned long shares = 0;
1550 struct sched_domain *sd = data;
1551 int i;
1553 for_each_cpu(i, sched_domain_span(sd)) {
1555 * If there are currently no tasks on the cpu pretend there
1556 * is one of average load so that when a new task gets to
1557 * run here it will not get delayed by group starvation.
1559 weight = tg->cfs_rq[i]->load.weight;
1560 if (!weight)
1561 weight = NICE_0_LOAD;
1563 tg->cfs_rq[i]->rq_weight = weight;
1564 rq_weight += weight;
1565 shares += tg->cfs_rq[i]->shares;
1568 if ((!shares && rq_weight) || shares > tg->shares)
1569 shares = tg->shares;
1571 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1572 shares = tg->shares;
1574 for_each_cpu(i, sched_domain_span(sd))
1575 update_group_shares_cpu(tg, i, shares, rq_weight);
1577 return 0;
1581 * Compute the cpu's hierarchical load factor for each task group.
1582 * This needs to be done in a top-down fashion because the load of a child
1583 * group is a fraction of its parents load.
1585 static int tg_load_down(struct task_group *tg, void *data)
1587 unsigned long load;
1588 long cpu = (long)data;
1590 if (!tg->parent) {
1591 load = cpu_rq(cpu)->load.weight;
1592 } else {
1593 load = tg->parent->cfs_rq[cpu]->h_load;
1594 load *= tg->cfs_rq[cpu]->shares;
1595 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1598 tg->cfs_rq[cpu]->h_load = load;
1600 return 0;
1603 static void update_shares(struct sched_domain *sd)
1605 u64 now = cpu_clock(raw_smp_processor_id());
1606 s64 elapsed = now - sd->last_update;
1608 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1609 sd->last_update = now;
1610 walk_tg_tree(tg_nop, tg_shares_up, sd);
1614 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1616 spin_unlock(&rq->lock);
1617 update_shares(sd);
1618 spin_lock(&rq->lock);
1621 static void update_h_load(long cpu)
1623 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1626 #else
1628 static inline void update_shares(struct sched_domain *sd)
1632 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1636 #endif
1638 #ifdef CONFIG_PREEMPT
1641 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1642 * way at the expense of forcing extra atomic operations in all
1643 * invocations. This assures that the double_lock is acquired using the
1644 * same underlying policy as the spinlock_t on this architecture, which
1645 * reduces latency compared to the unfair variant below. However, it
1646 * also adds more overhead and therefore may reduce throughput.
1648 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1649 __releases(this_rq->lock)
1650 __acquires(busiest->lock)
1651 __acquires(this_rq->lock)
1653 spin_unlock(&this_rq->lock);
1654 double_rq_lock(this_rq, busiest);
1656 return 1;
1659 #else
1661 * Unfair double_lock_balance: Optimizes throughput at the expense of
1662 * latency by eliminating extra atomic operations when the locks are
1663 * already in proper order on entry. This favors lower cpu-ids and will
1664 * grant the double lock to lower cpus over higher ids under contention,
1665 * regardless of entry order into the function.
1667 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1668 __releases(this_rq->lock)
1669 __acquires(busiest->lock)
1670 __acquires(this_rq->lock)
1672 int ret = 0;
1674 if (unlikely(!spin_trylock(&busiest->lock))) {
1675 if (busiest < this_rq) {
1676 spin_unlock(&this_rq->lock);
1677 spin_lock(&busiest->lock);
1678 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1679 ret = 1;
1680 } else
1681 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1683 return ret;
1686 #endif /* CONFIG_PREEMPT */
1689 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1691 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1693 if (unlikely(!irqs_disabled())) {
1694 /* printk() doesn't work good under rq->lock */
1695 spin_unlock(&this_rq->lock);
1696 BUG_ON(1);
1699 return _double_lock_balance(this_rq, busiest);
1702 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1703 __releases(busiest->lock)
1705 spin_unlock(&busiest->lock);
1706 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1708 #endif
1710 #ifdef CONFIG_FAIR_GROUP_SCHED
1711 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1713 #ifdef CONFIG_SMP
1714 cfs_rq->shares = shares;
1715 #endif
1717 #endif
1719 #include "sched_stats.h"
1720 #include "sched_idletask.c"
1721 #include "sched_fair.c"
1722 #include "sched_rt.c"
1723 #ifdef CONFIG_SCHED_DEBUG
1724 # include "sched_debug.c"
1725 #endif
1727 #define sched_class_highest (&rt_sched_class)
1728 #define for_each_class(class) \
1729 for (class = sched_class_highest; class; class = class->next)
1731 static void inc_nr_running(struct rq *rq)
1733 rq->nr_running++;
1736 static void dec_nr_running(struct rq *rq)
1738 rq->nr_running--;
1741 static void set_load_weight(struct task_struct *p)
1743 if (task_has_rt_policy(p)) {
1744 p->se.load.weight = prio_to_weight[0] * 2;
1745 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1746 return;
1750 * SCHED_IDLE tasks get minimal weight:
1752 if (p->policy == SCHED_IDLE) {
1753 p->se.load.weight = WEIGHT_IDLEPRIO;
1754 p->se.load.inv_weight = WMULT_IDLEPRIO;
1755 return;
1758 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1759 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1762 static void update_avg(u64 *avg, u64 sample)
1764 s64 diff = sample - *avg;
1765 *avg += diff >> 3;
1768 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1770 if (wakeup)
1771 p->se.start_runtime = p->se.sum_exec_runtime;
1773 sched_info_queued(p);
1774 p->sched_class->enqueue_task(rq, p, wakeup);
1775 p->se.on_rq = 1;
1778 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1780 if (sleep) {
1781 if (p->se.last_wakeup) {
1782 update_avg(&p->se.avg_overlap,
1783 p->se.sum_exec_runtime - p->se.last_wakeup);
1784 p->se.last_wakeup = 0;
1785 } else {
1786 update_avg(&p->se.avg_wakeup,
1787 sysctl_sched_wakeup_granularity);
1791 sched_info_dequeued(p);
1792 p->sched_class->dequeue_task(rq, p, sleep);
1793 p->se.on_rq = 0;
1797 * __normal_prio - return the priority that is based on the static prio
1799 static inline int __normal_prio(struct task_struct *p)
1801 return p->static_prio;
1805 * Calculate the expected normal priority: i.e. priority
1806 * without taking RT-inheritance into account. Might be
1807 * boosted by interactivity modifiers. Changes upon fork,
1808 * setprio syscalls, and whenever the interactivity
1809 * estimator recalculates.
1811 static inline int normal_prio(struct task_struct *p)
1813 int prio;
1815 if (task_has_rt_policy(p))
1816 prio = MAX_RT_PRIO-1 - p->rt_priority;
1817 else
1818 prio = __normal_prio(p);
1819 return prio;
1823 * Calculate the current priority, i.e. the priority
1824 * taken into account by the scheduler. This value might
1825 * be boosted by RT tasks, or might be boosted by
1826 * interactivity modifiers. Will be RT if the task got
1827 * RT-boosted. If not then it returns p->normal_prio.
1829 static int effective_prio(struct task_struct *p)
1831 p->normal_prio = normal_prio(p);
1833 * If we are RT tasks or we were boosted to RT priority,
1834 * keep the priority unchanged. Otherwise, update priority
1835 * to the normal priority:
1837 if (!rt_prio(p->prio))
1838 return p->normal_prio;
1839 return p->prio;
1843 * activate_task - move a task to the runqueue.
1845 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1847 if (task_contributes_to_load(p))
1848 rq->nr_uninterruptible--;
1850 enqueue_task(rq, p, wakeup);
1851 inc_nr_running(rq);
1855 * deactivate_task - remove a task from the runqueue.
1857 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1859 if (task_contributes_to_load(p))
1860 rq->nr_uninterruptible++;
1862 dequeue_task(rq, p, sleep);
1863 dec_nr_running(rq);
1867 * task_curr - is this task currently executing on a CPU?
1868 * @p: the task in question.
1870 inline int task_curr(const struct task_struct *p)
1872 return cpu_curr(task_cpu(p)) == p;
1875 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1877 set_task_rq(p, cpu);
1878 #ifdef CONFIG_SMP
1880 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1881 * successfuly executed on another CPU. We must ensure that updates of
1882 * per-task data have been completed by this moment.
1884 smp_wmb();
1885 task_thread_info(p)->cpu = cpu;
1886 #endif
1889 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1890 const struct sched_class *prev_class,
1891 int oldprio, int running)
1893 if (prev_class != p->sched_class) {
1894 if (prev_class->switched_from)
1895 prev_class->switched_from(rq, p, running);
1896 p->sched_class->switched_to(rq, p, running);
1897 } else
1898 p->sched_class->prio_changed(rq, p, oldprio, running);
1901 #ifdef CONFIG_SMP
1903 /* Used instead of source_load when we know the type == 0 */
1904 static unsigned long weighted_cpuload(const int cpu)
1906 return cpu_rq(cpu)->load.weight;
1910 * Is this task likely cache-hot:
1912 static int
1913 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1915 s64 delta;
1918 * Buddy candidates are cache hot:
1920 if (sched_feat(CACHE_HOT_BUDDY) &&
1921 (&p->se == cfs_rq_of(&p->se)->next ||
1922 &p->se == cfs_rq_of(&p->se)->last))
1923 return 1;
1925 if (p->sched_class != &fair_sched_class)
1926 return 0;
1928 if (sysctl_sched_migration_cost == -1)
1929 return 1;
1930 if (sysctl_sched_migration_cost == 0)
1931 return 0;
1933 delta = now - p->se.exec_start;
1935 return delta < (s64)sysctl_sched_migration_cost;
1939 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1941 int old_cpu = task_cpu(p);
1942 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1943 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1944 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1945 u64 clock_offset;
1947 clock_offset = old_rq->clock - new_rq->clock;
1949 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1951 #ifdef CONFIG_SCHEDSTATS
1952 if (p->se.wait_start)
1953 p->se.wait_start -= clock_offset;
1954 if (p->se.sleep_start)
1955 p->se.sleep_start -= clock_offset;
1956 if (p->se.block_start)
1957 p->se.block_start -= clock_offset;
1958 if (old_cpu != new_cpu) {
1959 schedstat_inc(p, se.nr_migrations);
1960 if (task_hot(p, old_rq->clock, NULL))
1961 schedstat_inc(p, se.nr_forced2_migrations);
1963 #endif
1964 p->se.vruntime -= old_cfsrq->min_vruntime -
1965 new_cfsrq->min_vruntime;
1967 __set_task_cpu(p, new_cpu);
1970 struct migration_req {
1971 struct list_head list;
1973 struct task_struct *task;
1974 int dest_cpu;
1976 struct completion done;
1980 * The task's runqueue lock must be held.
1981 * Returns true if you have to wait for migration thread.
1983 static int
1984 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1986 struct rq *rq = task_rq(p);
1989 * If the task is not on a runqueue (and not running), then
1990 * it is sufficient to simply update the task's cpu field.
1992 if (!p->se.on_rq && !task_running(rq, p)) {
1993 set_task_cpu(p, dest_cpu);
1994 return 0;
1997 init_completion(&req->done);
1998 req->task = p;
1999 req->dest_cpu = dest_cpu;
2000 list_add(&req->list, &rq->migration_queue);
2002 return 1;
2006 * wait_task_inactive - wait for a thread to unschedule.
2008 * If @match_state is nonzero, it's the @p->state value just checked and
2009 * not expected to change. If it changes, i.e. @p might have woken up,
2010 * then return zero. When we succeed in waiting for @p to be off its CPU,
2011 * we return a positive number (its total switch count). If a second call
2012 * a short while later returns the same number, the caller can be sure that
2013 * @p has remained unscheduled the whole time.
2015 * The caller must ensure that the task *will* unschedule sometime soon,
2016 * else this function might spin for a *long* time. This function can't
2017 * be called with interrupts off, or it may introduce deadlock with
2018 * smp_call_function() if an IPI is sent by the same process we are
2019 * waiting to become inactive.
2021 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2023 unsigned long flags;
2024 int running, on_rq;
2025 unsigned long ncsw;
2026 struct rq *rq;
2028 for (;;) {
2030 * We do the initial early heuristics without holding
2031 * any task-queue locks at all. We'll only try to get
2032 * the runqueue lock when things look like they will
2033 * work out!
2035 rq = task_rq(p);
2038 * If the task is actively running on another CPU
2039 * still, just relax and busy-wait without holding
2040 * any locks.
2042 * NOTE! Since we don't hold any locks, it's not
2043 * even sure that "rq" stays as the right runqueue!
2044 * But we don't care, since "task_running()" will
2045 * return false if the runqueue has changed and p
2046 * is actually now running somewhere else!
2048 while (task_running(rq, p)) {
2049 if (match_state && unlikely(p->state != match_state))
2050 return 0;
2051 cpu_relax();
2055 * Ok, time to look more closely! We need the rq
2056 * lock now, to be *sure*. If we're wrong, we'll
2057 * just go back and repeat.
2059 rq = task_rq_lock(p, &flags);
2060 trace_sched_wait_task(rq, p);
2061 running = task_running(rq, p);
2062 on_rq = p->se.on_rq;
2063 ncsw = 0;
2064 if (!match_state || p->state == match_state)
2065 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2066 task_rq_unlock(rq, &flags);
2069 * If it changed from the expected state, bail out now.
2071 if (unlikely(!ncsw))
2072 break;
2075 * Was it really running after all now that we
2076 * checked with the proper locks actually held?
2078 * Oops. Go back and try again..
2080 if (unlikely(running)) {
2081 cpu_relax();
2082 continue;
2086 * It's not enough that it's not actively running,
2087 * it must be off the runqueue _entirely_, and not
2088 * preempted!
2090 * So if it was still runnable (but just not actively
2091 * running right now), it's preempted, and we should
2092 * yield - it could be a while.
2094 if (unlikely(on_rq)) {
2095 schedule_timeout_uninterruptible(1);
2096 continue;
2100 * Ahh, all good. It wasn't running, and it wasn't
2101 * runnable, which means that it will never become
2102 * running in the future either. We're all done!
2104 break;
2107 return ncsw;
2110 /***
2111 * kick_process - kick a running thread to enter/exit the kernel
2112 * @p: the to-be-kicked thread
2114 * Cause a process which is running on another CPU to enter
2115 * kernel-mode, without any delay. (to get signals handled.)
2117 * NOTE: this function doesnt have to take the runqueue lock,
2118 * because all it wants to ensure is that the remote task enters
2119 * the kernel. If the IPI races and the task has been migrated
2120 * to another CPU then no harm is done and the purpose has been
2121 * achieved as well.
2123 void kick_process(struct task_struct *p)
2125 int cpu;
2127 preempt_disable();
2128 cpu = task_cpu(p);
2129 if ((cpu != smp_processor_id()) && task_curr(p))
2130 smp_send_reschedule(cpu);
2131 preempt_enable();
2135 * Return a low guess at the load of a migration-source cpu weighted
2136 * according to the scheduling class and "nice" value.
2138 * We want to under-estimate the load of migration sources, to
2139 * balance conservatively.
2141 static unsigned long source_load(int cpu, int type)
2143 struct rq *rq = cpu_rq(cpu);
2144 unsigned long total = weighted_cpuload(cpu);
2146 if (type == 0 || !sched_feat(LB_BIAS))
2147 return total;
2149 return min(rq->cpu_load[type-1], total);
2153 * Return a high guess at the load of a migration-target cpu weighted
2154 * according to the scheduling class and "nice" value.
2156 static unsigned long target_load(int cpu, int type)
2158 struct rq *rq = cpu_rq(cpu);
2159 unsigned long total = weighted_cpuload(cpu);
2161 if (type == 0 || !sched_feat(LB_BIAS))
2162 return total;
2164 return max(rq->cpu_load[type-1], total);
2168 * find_idlest_group finds and returns the least busy CPU group within the
2169 * domain.
2171 static struct sched_group *
2172 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2174 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2175 unsigned long min_load = ULONG_MAX, this_load = 0;
2176 int load_idx = sd->forkexec_idx;
2177 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2179 do {
2180 unsigned long load, avg_load;
2181 int local_group;
2182 int i;
2184 /* Skip over this group if it has no CPUs allowed */
2185 if (!cpumask_intersects(sched_group_cpus(group),
2186 &p->cpus_allowed))
2187 continue;
2189 local_group = cpumask_test_cpu(this_cpu,
2190 sched_group_cpus(group));
2192 /* Tally up the load of all CPUs in the group */
2193 avg_load = 0;
2195 for_each_cpu(i, sched_group_cpus(group)) {
2196 /* Bias balancing toward cpus of our domain */
2197 if (local_group)
2198 load = source_load(i, load_idx);
2199 else
2200 load = target_load(i, load_idx);
2202 avg_load += load;
2205 /* Adjust by relative CPU power of the group */
2206 avg_load = sg_div_cpu_power(group,
2207 avg_load * SCHED_LOAD_SCALE);
2209 if (local_group) {
2210 this_load = avg_load;
2211 this = group;
2212 } else if (avg_load < min_load) {
2213 min_load = avg_load;
2214 idlest = group;
2216 } while (group = group->next, group != sd->groups);
2218 if (!idlest || 100*this_load < imbalance*min_load)
2219 return NULL;
2220 return idlest;
2224 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2226 static int
2227 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2229 unsigned long load, min_load = ULONG_MAX;
2230 int idlest = -1;
2231 int i;
2233 /* Traverse only the allowed CPUs */
2234 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2235 load = weighted_cpuload(i);
2237 if (load < min_load || (load == min_load && i == this_cpu)) {
2238 min_load = load;
2239 idlest = i;
2243 return idlest;
2247 * sched_balance_self: balance the current task (running on cpu) in domains
2248 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2249 * SD_BALANCE_EXEC.
2251 * Balance, ie. select the least loaded group.
2253 * Returns the target CPU number, or the same CPU if no balancing is needed.
2255 * preempt must be disabled.
2257 static int sched_balance_self(int cpu, int flag)
2259 struct task_struct *t = current;
2260 struct sched_domain *tmp, *sd = NULL;
2262 for_each_domain(cpu, tmp) {
2264 * If power savings logic is enabled for a domain, stop there.
2266 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2267 break;
2268 if (tmp->flags & flag)
2269 sd = tmp;
2272 if (sd)
2273 update_shares(sd);
2275 while (sd) {
2276 struct sched_group *group;
2277 int new_cpu, weight;
2279 if (!(sd->flags & flag)) {
2280 sd = sd->child;
2281 continue;
2284 group = find_idlest_group(sd, t, cpu);
2285 if (!group) {
2286 sd = sd->child;
2287 continue;
2290 new_cpu = find_idlest_cpu(group, t, cpu);
2291 if (new_cpu == -1 || new_cpu == cpu) {
2292 /* Now try balancing at a lower domain level of cpu */
2293 sd = sd->child;
2294 continue;
2297 /* Now try balancing at a lower domain level of new_cpu */
2298 cpu = new_cpu;
2299 weight = cpumask_weight(sched_domain_span(sd));
2300 sd = NULL;
2301 for_each_domain(cpu, tmp) {
2302 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2303 break;
2304 if (tmp->flags & flag)
2305 sd = tmp;
2307 /* while loop will break here if sd == NULL */
2310 return cpu;
2313 #endif /* CONFIG_SMP */
2315 /***
2316 * try_to_wake_up - wake up a thread
2317 * @p: the to-be-woken-up thread
2318 * @state: the mask of task states that can be woken
2319 * @sync: do a synchronous wakeup?
2321 * Put it on the run-queue if it's not already there. The "current"
2322 * thread is always on the run-queue (except when the actual
2323 * re-schedule is in progress), and as such you're allowed to do
2324 * the simpler "current->state = TASK_RUNNING" to mark yourself
2325 * runnable without the overhead of this.
2327 * returns failure only if the task is already active.
2329 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2331 int cpu, orig_cpu, this_cpu, success = 0;
2332 unsigned long flags;
2333 long old_state;
2334 struct rq *rq;
2336 if (!sched_feat(SYNC_WAKEUPS))
2337 sync = 0;
2339 #ifdef CONFIG_SMP
2340 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2341 struct sched_domain *sd;
2343 this_cpu = raw_smp_processor_id();
2344 cpu = task_cpu(p);
2346 for_each_domain(this_cpu, sd) {
2347 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2348 update_shares(sd);
2349 break;
2353 #endif
2355 smp_wmb();
2356 rq = task_rq_lock(p, &flags);
2357 update_rq_clock(rq);
2358 old_state = p->state;
2359 if (!(old_state & state))
2360 goto out;
2362 if (p->se.on_rq)
2363 goto out_running;
2365 cpu = task_cpu(p);
2366 orig_cpu = cpu;
2367 this_cpu = smp_processor_id();
2369 #ifdef CONFIG_SMP
2370 if (unlikely(task_running(rq, p)))
2371 goto out_activate;
2373 cpu = p->sched_class->select_task_rq(p, sync);
2374 if (cpu != orig_cpu) {
2375 set_task_cpu(p, cpu);
2376 task_rq_unlock(rq, &flags);
2377 /* might preempt at this point */
2378 rq = task_rq_lock(p, &flags);
2379 old_state = p->state;
2380 if (!(old_state & state))
2381 goto out;
2382 if (p->se.on_rq)
2383 goto out_running;
2385 this_cpu = smp_processor_id();
2386 cpu = task_cpu(p);
2389 #ifdef CONFIG_SCHEDSTATS
2390 schedstat_inc(rq, ttwu_count);
2391 if (cpu == this_cpu)
2392 schedstat_inc(rq, ttwu_local);
2393 else {
2394 struct sched_domain *sd;
2395 for_each_domain(this_cpu, sd) {
2396 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2397 schedstat_inc(sd, ttwu_wake_remote);
2398 break;
2402 #endif /* CONFIG_SCHEDSTATS */
2404 out_activate:
2405 #endif /* CONFIG_SMP */
2406 schedstat_inc(p, se.nr_wakeups);
2407 if (sync)
2408 schedstat_inc(p, se.nr_wakeups_sync);
2409 if (orig_cpu != cpu)
2410 schedstat_inc(p, se.nr_wakeups_migrate);
2411 if (cpu == this_cpu)
2412 schedstat_inc(p, se.nr_wakeups_local);
2413 else
2414 schedstat_inc(p, se.nr_wakeups_remote);
2415 activate_task(rq, p, 1);
2416 success = 1;
2419 * Only attribute actual wakeups done by this task.
2421 if (!in_interrupt()) {
2422 struct sched_entity *se = &current->se;
2423 u64 sample = se->sum_exec_runtime;
2425 if (se->last_wakeup)
2426 sample -= se->last_wakeup;
2427 else
2428 sample -= se->start_runtime;
2429 update_avg(&se->avg_wakeup, sample);
2431 se->last_wakeup = se->sum_exec_runtime;
2434 out_running:
2435 trace_sched_wakeup(rq, p, success);
2436 check_preempt_curr(rq, p, sync);
2438 p->state = TASK_RUNNING;
2439 #ifdef CONFIG_SMP
2440 if (p->sched_class->task_wake_up)
2441 p->sched_class->task_wake_up(rq, p);
2442 #endif
2443 out:
2444 task_rq_unlock(rq, &flags);
2446 return success;
2449 int wake_up_process(struct task_struct *p)
2451 return try_to_wake_up(p, TASK_ALL, 0);
2453 EXPORT_SYMBOL(wake_up_process);
2455 int wake_up_state(struct task_struct *p, unsigned int state)
2457 return try_to_wake_up(p, state, 0);
2461 * Perform scheduler related setup for a newly forked process p.
2462 * p is forked by current.
2464 * __sched_fork() is basic setup used by init_idle() too:
2466 static void __sched_fork(struct task_struct *p)
2468 p->se.exec_start = 0;
2469 p->se.sum_exec_runtime = 0;
2470 p->se.prev_sum_exec_runtime = 0;
2471 p->se.last_wakeup = 0;
2472 p->se.avg_overlap = 0;
2473 p->se.start_runtime = 0;
2474 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2476 #ifdef CONFIG_SCHEDSTATS
2477 p->se.wait_start = 0;
2478 p->se.sum_sleep_runtime = 0;
2479 p->se.sleep_start = 0;
2480 p->se.block_start = 0;
2481 p->se.sleep_max = 0;
2482 p->se.block_max = 0;
2483 p->se.exec_max = 0;
2484 p->se.slice_max = 0;
2485 p->se.wait_max = 0;
2486 #endif
2488 INIT_LIST_HEAD(&p->rt.run_list);
2489 p->se.on_rq = 0;
2490 INIT_LIST_HEAD(&p->se.group_node);
2492 #ifdef CONFIG_PREEMPT_NOTIFIERS
2493 INIT_HLIST_HEAD(&p->preempt_notifiers);
2494 #endif
2497 * We mark the process as running here, but have not actually
2498 * inserted it onto the runqueue yet. This guarantees that
2499 * nobody will actually run it, and a signal or other external
2500 * event cannot wake it up and insert it on the runqueue either.
2502 p->state = TASK_RUNNING;
2506 * fork()/clone()-time setup:
2508 void sched_fork(struct task_struct *p, int clone_flags)
2510 int cpu = get_cpu();
2512 __sched_fork(p);
2514 #ifdef CONFIG_SMP
2515 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2516 #endif
2517 set_task_cpu(p, cpu);
2520 * Make sure we do not leak PI boosting priority to the child:
2522 p->prio = current->normal_prio;
2523 if (!rt_prio(p->prio))
2524 p->sched_class = &fair_sched_class;
2526 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2527 if (likely(sched_info_on()))
2528 memset(&p->sched_info, 0, sizeof(p->sched_info));
2529 #endif
2530 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2531 p->oncpu = 0;
2532 #endif
2533 #ifdef CONFIG_PREEMPT
2534 /* Want to start with kernel preemption disabled. */
2535 task_thread_info(p)->preempt_count = 1;
2536 #endif
2537 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2539 put_cpu();
2543 * wake_up_new_task - wake up a newly created task for the first time.
2545 * This function will do some initial scheduler statistics housekeeping
2546 * that must be done for every newly created context, then puts the task
2547 * on the runqueue and wakes it.
2549 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2551 unsigned long flags;
2552 struct rq *rq;
2554 rq = task_rq_lock(p, &flags);
2555 BUG_ON(p->state != TASK_RUNNING);
2556 update_rq_clock(rq);
2558 p->prio = effective_prio(p);
2560 if (!p->sched_class->task_new || !current->se.on_rq) {
2561 activate_task(rq, p, 0);
2562 } else {
2564 * Let the scheduling class do new task startup
2565 * management (if any):
2567 p->sched_class->task_new(rq, p);
2568 inc_nr_running(rq);
2570 trace_sched_wakeup_new(rq, p, 1);
2571 check_preempt_curr(rq, p, 0);
2572 #ifdef CONFIG_SMP
2573 if (p->sched_class->task_wake_up)
2574 p->sched_class->task_wake_up(rq, p);
2575 #endif
2576 task_rq_unlock(rq, &flags);
2579 #ifdef CONFIG_PREEMPT_NOTIFIERS
2582 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2583 * @notifier: notifier struct to register
2585 void preempt_notifier_register(struct preempt_notifier *notifier)
2587 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2589 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2592 * preempt_notifier_unregister - no longer interested in preemption notifications
2593 * @notifier: notifier struct to unregister
2595 * This is safe to call from within a preemption notifier.
2597 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2599 hlist_del(&notifier->link);
2601 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2603 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2605 struct preempt_notifier *notifier;
2606 struct hlist_node *node;
2608 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2609 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2612 static void
2613 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2614 struct task_struct *next)
2616 struct preempt_notifier *notifier;
2617 struct hlist_node *node;
2619 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2620 notifier->ops->sched_out(notifier, next);
2623 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2625 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2629 static void
2630 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2631 struct task_struct *next)
2635 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2638 * prepare_task_switch - prepare to switch tasks
2639 * @rq: the runqueue preparing to switch
2640 * @prev: the current task that is being switched out
2641 * @next: the task we are going to switch to.
2643 * This is called with the rq lock held and interrupts off. It must
2644 * be paired with a subsequent finish_task_switch after the context
2645 * switch.
2647 * prepare_task_switch sets up locking and calls architecture specific
2648 * hooks.
2650 static inline void
2651 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2652 struct task_struct *next)
2654 fire_sched_out_preempt_notifiers(prev, next);
2655 prepare_lock_switch(rq, next);
2656 prepare_arch_switch(next);
2660 * finish_task_switch - clean up after a task-switch
2661 * @rq: runqueue associated with task-switch
2662 * @prev: the thread we just switched away from.
2664 * finish_task_switch must be called after the context switch, paired
2665 * with a prepare_task_switch call before the context switch.
2666 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2667 * and do any other architecture-specific cleanup actions.
2669 * Note that we may have delayed dropping an mm in context_switch(). If
2670 * so, we finish that here outside of the runqueue lock. (Doing it
2671 * with the lock held can cause deadlocks; see schedule() for
2672 * details.)
2674 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2675 __releases(rq->lock)
2677 struct mm_struct *mm = rq->prev_mm;
2678 long prev_state;
2679 #ifdef CONFIG_SMP
2680 int post_schedule = 0;
2682 if (current->sched_class->needs_post_schedule)
2683 post_schedule = current->sched_class->needs_post_schedule(rq);
2684 #endif
2686 rq->prev_mm = NULL;
2689 * A task struct has one reference for the use as "current".
2690 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2691 * schedule one last time. The schedule call will never return, and
2692 * the scheduled task must drop that reference.
2693 * The test for TASK_DEAD must occur while the runqueue locks are
2694 * still held, otherwise prev could be scheduled on another cpu, die
2695 * there before we look at prev->state, and then the reference would
2696 * be dropped twice.
2697 * Manfred Spraul <manfred@colorfullife.com>
2699 prev_state = prev->state;
2700 finish_arch_switch(prev);
2701 finish_lock_switch(rq, prev);
2702 #ifdef CONFIG_SMP
2703 if (post_schedule)
2704 current->sched_class->post_schedule(rq);
2705 #endif
2707 fire_sched_in_preempt_notifiers(current);
2708 if (mm)
2709 mmdrop(mm);
2710 if (unlikely(prev_state == TASK_DEAD)) {
2712 * Remove function-return probe instances associated with this
2713 * task and put them back on the free list.
2715 kprobe_flush_task(prev);
2716 put_task_struct(prev);
2721 * schedule_tail - first thing a freshly forked thread must call.
2722 * @prev: the thread we just switched away from.
2724 asmlinkage void schedule_tail(struct task_struct *prev)
2725 __releases(rq->lock)
2727 struct rq *rq = this_rq();
2729 finish_task_switch(rq, prev);
2730 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2731 /* In this case, finish_task_switch does not reenable preemption */
2732 preempt_enable();
2733 #endif
2734 if (current->set_child_tid)
2735 put_user(task_pid_vnr(current), current->set_child_tid);
2739 * context_switch - switch to the new MM and the new
2740 * thread's register state.
2742 static inline void
2743 context_switch(struct rq *rq, struct task_struct *prev,
2744 struct task_struct *next)
2746 struct mm_struct *mm, *oldmm;
2748 prepare_task_switch(rq, prev, next);
2749 trace_sched_switch(rq, prev, next);
2750 mm = next->mm;
2751 oldmm = prev->active_mm;
2753 * For paravirt, this is coupled with an exit in switch_to to
2754 * combine the page table reload and the switch backend into
2755 * one hypercall.
2757 arch_enter_lazy_cpu_mode();
2759 if (unlikely(!mm)) {
2760 next->active_mm = oldmm;
2761 atomic_inc(&oldmm->mm_count);
2762 enter_lazy_tlb(oldmm, next);
2763 } else
2764 switch_mm(oldmm, mm, next);
2766 if (unlikely(!prev->mm)) {
2767 prev->active_mm = NULL;
2768 rq->prev_mm = oldmm;
2771 * Since the runqueue lock will be released by the next
2772 * task (which is an invalid locking op but in the case
2773 * of the scheduler it's an obvious special-case), so we
2774 * do an early lockdep release here:
2776 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2777 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2778 #endif
2780 /* Here we just switch the register state and the stack. */
2781 switch_to(prev, next, prev);
2783 barrier();
2785 * this_rq must be evaluated again because prev may have moved
2786 * CPUs since it called schedule(), thus the 'rq' on its stack
2787 * frame will be invalid.
2789 finish_task_switch(this_rq(), prev);
2793 * nr_running, nr_uninterruptible and nr_context_switches:
2795 * externally visible scheduler statistics: current number of runnable
2796 * threads, current number of uninterruptible-sleeping threads, total
2797 * number of context switches performed since bootup.
2799 unsigned long nr_running(void)
2801 unsigned long i, sum = 0;
2803 for_each_online_cpu(i)
2804 sum += cpu_rq(i)->nr_running;
2806 return sum;
2809 unsigned long nr_uninterruptible(void)
2811 unsigned long i, sum = 0;
2813 for_each_possible_cpu(i)
2814 sum += cpu_rq(i)->nr_uninterruptible;
2817 * Since we read the counters lockless, it might be slightly
2818 * inaccurate. Do not allow it to go below zero though:
2820 if (unlikely((long)sum < 0))
2821 sum = 0;
2823 return sum;
2826 unsigned long long nr_context_switches(void)
2828 int i;
2829 unsigned long long sum = 0;
2831 for_each_possible_cpu(i)
2832 sum += cpu_rq(i)->nr_switches;
2834 return sum;
2837 unsigned long nr_iowait(void)
2839 unsigned long i, sum = 0;
2841 for_each_possible_cpu(i)
2842 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2844 return sum;
2847 unsigned long nr_active(void)
2849 unsigned long i, running = 0, uninterruptible = 0;
2851 for_each_online_cpu(i) {
2852 running += cpu_rq(i)->nr_running;
2853 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2856 if (unlikely((long)uninterruptible < 0))
2857 uninterruptible = 0;
2859 return running + uninterruptible;
2863 * Update rq->cpu_load[] statistics. This function is usually called every
2864 * scheduler tick (TICK_NSEC).
2866 static void update_cpu_load(struct rq *this_rq)
2868 unsigned long this_load = this_rq->load.weight;
2869 int i, scale;
2871 this_rq->nr_load_updates++;
2873 /* Update our load: */
2874 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2875 unsigned long old_load, new_load;
2877 /* scale is effectively 1 << i now, and >> i divides by scale */
2879 old_load = this_rq->cpu_load[i];
2880 new_load = this_load;
2882 * Round up the averaging division if load is increasing. This
2883 * prevents us from getting stuck on 9 if the load is 10, for
2884 * example.
2886 if (new_load > old_load)
2887 new_load += scale-1;
2888 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2892 #ifdef CONFIG_SMP
2895 * double_rq_lock - safely lock two runqueues
2897 * Note this does not disable interrupts like task_rq_lock,
2898 * you need to do so manually before calling.
2900 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2901 __acquires(rq1->lock)
2902 __acquires(rq2->lock)
2904 BUG_ON(!irqs_disabled());
2905 if (rq1 == rq2) {
2906 spin_lock(&rq1->lock);
2907 __acquire(rq2->lock); /* Fake it out ;) */
2908 } else {
2909 if (rq1 < rq2) {
2910 spin_lock(&rq1->lock);
2911 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2912 } else {
2913 spin_lock(&rq2->lock);
2914 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2917 update_rq_clock(rq1);
2918 update_rq_clock(rq2);
2922 * double_rq_unlock - safely unlock two runqueues
2924 * Note this does not restore interrupts like task_rq_unlock,
2925 * you need to do so manually after calling.
2927 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2928 __releases(rq1->lock)
2929 __releases(rq2->lock)
2931 spin_unlock(&rq1->lock);
2932 if (rq1 != rq2)
2933 spin_unlock(&rq2->lock);
2934 else
2935 __release(rq2->lock);
2939 * If dest_cpu is allowed for this process, migrate the task to it.
2940 * This is accomplished by forcing the cpu_allowed mask to only
2941 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2942 * the cpu_allowed mask is restored.
2944 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2946 struct migration_req req;
2947 unsigned long flags;
2948 struct rq *rq;
2950 rq = task_rq_lock(p, &flags);
2951 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2952 || unlikely(!cpu_active(dest_cpu)))
2953 goto out;
2955 /* force the process onto the specified CPU */
2956 if (migrate_task(p, dest_cpu, &req)) {
2957 /* Need to wait for migration thread (might exit: take ref). */
2958 struct task_struct *mt = rq->migration_thread;
2960 get_task_struct(mt);
2961 task_rq_unlock(rq, &flags);
2962 wake_up_process(mt);
2963 put_task_struct(mt);
2964 wait_for_completion(&req.done);
2966 return;
2968 out:
2969 task_rq_unlock(rq, &flags);
2973 * sched_exec - execve() is a valuable balancing opportunity, because at
2974 * this point the task has the smallest effective memory and cache footprint.
2976 void sched_exec(void)
2978 int new_cpu, this_cpu = get_cpu();
2979 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2980 put_cpu();
2981 if (new_cpu != this_cpu)
2982 sched_migrate_task(current, new_cpu);
2986 * pull_task - move a task from a remote runqueue to the local runqueue.
2987 * Both runqueues must be locked.
2989 static void pull_task(struct rq *src_rq, struct task_struct *p,
2990 struct rq *this_rq, int this_cpu)
2992 deactivate_task(src_rq, p, 0);
2993 set_task_cpu(p, this_cpu);
2994 activate_task(this_rq, p, 0);
2996 * Note that idle threads have a prio of MAX_PRIO, for this test
2997 * to be always true for them.
2999 check_preempt_curr(this_rq, p, 0);
3003 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3005 static
3006 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3007 struct sched_domain *sd, enum cpu_idle_type idle,
3008 int *all_pinned)
3010 int tsk_cache_hot = 0;
3012 * We do not migrate tasks that are:
3013 * 1) running (obviously), or
3014 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3015 * 3) are cache-hot on their current CPU.
3017 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3018 schedstat_inc(p, se.nr_failed_migrations_affine);
3019 return 0;
3021 *all_pinned = 0;
3023 if (task_running(rq, p)) {
3024 schedstat_inc(p, se.nr_failed_migrations_running);
3025 return 0;
3029 * Aggressive migration if:
3030 * 1) task is cache cold, or
3031 * 2) too many balance attempts have failed.
3034 tsk_cache_hot = task_hot(p, rq->clock, sd);
3035 if (!tsk_cache_hot ||
3036 sd->nr_balance_failed > sd->cache_nice_tries) {
3037 #ifdef CONFIG_SCHEDSTATS
3038 if (tsk_cache_hot) {
3039 schedstat_inc(sd, lb_hot_gained[idle]);
3040 schedstat_inc(p, se.nr_forced_migrations);
3042 #endif
3043 return 1;
3046 if (tsk_cache_hot) {
3047 schedstat_inc(p, se.nr_failed_migrations_hot);
3048 return 0;
3050 return 1;
3053 static unsigned long
3054 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3055 unsigned long max_load_move, struct sched_domain *sd,
3056 enum cpu_idle_type idle, int *all_pinned,
3057 int *this_best_prio, struct rq_iterator *iterator)
3059 int loops = 0, pulled = 0, pinned = 0;
3060 struct task_struct *p;
3061 long rem_load_move = max_load_move;
3063 if (max_load_move == 0)
3064 goto out;
3066 pinned = 1;
3069 * Start the load-balancing iterator:
3071 p = iterator->start(iterator->arg);
3072 next:
3073 if (!p || loops++ > sysctl_sched_nr_migrate)
3074 goto out;
3076 if ((p->se.load.weight >> 1) > rem_load_move ||
3077 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3078 p = iterator->next(iterator->arg);
3079 goto next;
3082 pull_task(busiest, p, this_rq, this_cpu);
3083 pulled++;
3084 rem_load_move -= p->se.load.weight;
3086 #ifdef CONFIG_PREEMPT
3088 * NEWIDLE balancing is a source of latency, so preemptible kernels
3089 * will stop after the first task is pulled to minimize the critical
3090 * section.
3092 if (idle == CPU_NEWLY_IDLE)
3093 goto out;
3094 #endif
3097 * We only want to steal up to the prescribed amount of weighted load.
3099 if (rem_load_move > 0) {
3100 if (p->prio < *this_best_prio)
3101 *this_best_prio = p->prio;
3102 p = iterator->next(iterator->arg);
3103 goto next;
3105 out:
3107 * Right now, this is one of only two places pull_task() is called,
3108 * so we can safely collect pull_task() stats here rather than
3109 * inside pull_task().
3111 schedstat_add(sd, lb_gained[idle], pulled);
3113 if (all_pinned)
3114 *all_pinned = pinned;
3116 return max_load_move - rem_load_move;
3120 * move_tasks tries to move up to max_load_move weighted load from busiest to
3121 * this_rq, as part of a balancing operation within domain "sd".
3122 * Returns 1 if successful and 0 otherwise.
3124 * Called with both runqueues locked.
3126 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3127 unsigned long max_load_move,
3128 struct sched_domain *sd, enum cpu_idle_type idle,
3129 int *all_pinned)
3131 const struct sched_class *class = sched_class_highest;
3132 unsigned long total_load_moved = 0;
3133 int this_best_prio = this_rq->curr->prio;
3135 do {
3136 total_load_moved +=
3137 class->load_balance(this_rq, this_cpu, busiest,
3138 max_load_move - total_load_moved,
3139 sd, idle, all_pinned, &this_best_prio);
3140 class = class->next;
3142 #ifdef CONFIG_PREEMPT
3144 * NEWIDLE balancing is a source of latency, so preemptible
3145 * kernels will stop after the first task is pulled to minimize
3146 * the critical section.
3148 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3149 break;
3150 #endif
3151 } while (class && max_load_move > total_load_moved);
3153 return total_load_moved > 0;
3156 static int
3157 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3158 struct sched_domain *sd, enum cpu_idle_type idle,
3159 struct rq_iterator *iterator)
3161 struct task_struct *p = iterator->start(iterator->arg);
3162 int pinned = 0;
3164 while (p) {
3165 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3166 pull_task(busiest, p, this_rq, this_cpu);
3168 * Right now, this is only the second place pull_task()
3169 * is called, so we can safely collect pull_task()
3170 * stats here rather than inside pull_task().
3172 schedstat_inc(sd, lb_gained[idle]);
3174 return 1;
3176 p = iterator->next(iterator->arg);
3179 return 0;
3183 * move_one_task tries to move exactly one task from busiest to this_rq, as
3184 * part of active balancing operations within "domain".
3185 * Returns 1 if successful and 0 otherwise.
3187 * Called with both runqueues locked.
3189 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3190 struct sched_domain *sd, enum cpu_idle_type idle)
3192 const struct sched_class *class;
3194 for (class = sched_class_highest; class; class = class->next)
3195 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3196 return 1;
3198 return 0;
3200 /********** Helpers for find_busiest_group ************************/
3202 * sd_lb_stats - Structure to store the statistics of a sched_domain
3203 * during load balancing.
3205 struct sd_lb_stats {
3206 struct sched_group *busiest; /* Busiest group in this sd */
3207 struct sched_group *this; /* Local group in this sd */
3208 unsigned long total_load; /* Total load of all groups in sd */
3209 unsigned long total_pwr; /* Total power of all groups in sd */
3210 unsigned long avg_load; /* Average load across all groups in sd */
3212 /** Statistics of this group */
3213 unsigned long this_load;
3214 unsigned long this_load_per_task;
3215 unsigned long this_nr_running;
3217 /* Statistics of the busiest group */
3218 unsigned long max_load;
3219 unsigned long busiest_load_per_task;
3220 unsigned long busiest_nr_running;
3222 int group_imb; /* Is there imbalance in this sd */
3223 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3224 int power_savings_balance; /* Is powersave balance needed for this sd */
3225 struct sched_group *group_min; /* Least loaded group in sd */
3226 struct sched_group *group_leader; /* Group which relieves group_min */
3227 unsigned long min_load_per_task; /* load_per_task in group_min */
3228 unsigned long leader_nr_running; /* Nr running of group_leader */
3229 unsigned long min_nr_running; /* Nr running of group_min */
3230 #endif
3234 * sg_lb_stats - stats of a sched_group required for load_balancing
3236 struct sg_lb_stats {
3237 unsigned long avg_load; /*Avg load across the CPUs of the group */
3238 unsigned long group_load; /* Total load over the CPUs of the group */
3239 unsigned long sum_nr_running; /* Nr tasks running in the group */
3240 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3241 unsigned long group_capacity;
3242 int group_imb; /* Is there an imbalance in the group ? */
3246 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3247 * @group: The group whose first cpu is to be returned.
3249 static inline unsigned int group_first_cpu(struct sched_group *group)
3251 return cpumask_first(sched_group_cpus(group));
3255 * get_sd_load_idx - Obtain the load index for a given sched domain.
3256 * @sd: The sched_domain whose load_idx is to be obtained.
3257 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3259 static inline int get_sd_load_idx(struct sched_domain *sd,
3260 enum cpu_idle_type idle)
3262 int load_idx;
3264 switch (idle) {
3265 case CPU_NOT_IDLE:
3266 load_idx = sd->busy_idx;
3267 break;
3269 case CPU_NEWLY_IDLE:
3270 load_idx = sd->newidle_idx;
3271 break;
3272 default:
3273 load_idx = sd->idle_idx;
3274 break;
3277 return load_idx;
3281 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3283 * init_sd_power_savings_stats - Initialize power savings statistics for
3284 * the given sched_domain, during load balancing.
3286 * @sd: Sched domain whose power-savings statistics are to be initialized.
3287 * @sds: Variable containing the statistics for sd.
3288 * @idle: Idle status of the CPU at which we're performing load-balancing.
3290 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3291 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3294 * Busy processors will not participate in power savings
3295 * balance.
3297 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3298 sds->power_savings_balance = 0;
3299 else {
3300 sds->power_savings_balance = 1;
3301 sds->min_nr_running = ULONG_MAX;
3302 sds->leader_nr_running = 0;
3307 * update_sd_power_savings_stats - Update the power saving stats for a
3308 * sched_domain while performing load balancing.
3310 * @group: sched_group belonging to the sched_domain under consideration.
3311 * @sds: Variable containing the statistics of the sched_domain
3312 * @local_group: Does group contain the CPU for which we're performing
3313 * load balancing ?
3314 * @sgs: Variable containing the statistics of the group.
3316 static inline void update_sd_power_savings_stats(struct sched_group *group,
3317 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3320 if (!sds->power_savings_balance)
3321 return;
3324 * If the local group is idle or completely loaded
3325 * no need to do power savings balance at this domain
3327 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3328 !sds->this_nr_running))
3329 sds->power_savings_balance = 0;
3332 * If a group is already running at full capacity or idle,
3333 * don't include that group in power savings calculations
3335 if (!sds->power_savings_balance ||
3336 sgs->sum_nr_running >= sgs->group_capacity ||
3337 !sgs->sum_nr_running)
3338 return;
3341 * Calculate the group which has the least non-idle load.
3342 * This is the group from where we need to pick up the load
3343 * for saving power
3345 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3346 (sgs->sum_nr_running == sds->min_nr_running &&
3347 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3348 sds->group_min = group;
3349 sds->min_nr_running = sgs->sum_nr_running;
3350 sds->min_load_per_task = sgs->sum_weighted_load /
3351 sgs->sum_nr_running;
3355 * Calculate the group which is almost near its
3356 * capacity but still has some space to pick up some load
3357 * from other group and save more power
3359 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3360 return;
3362 if (sgs->sum_nr_running > sds->leader_nr_running ||
3363 (sgs->sum_nr_running == sds->leader_nr_running &&
3364 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3365 sds->group_leader = group;
3366 sds->leader_nr_running = sgs->sum_nr_running;
3371 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3372 * @sds: Variable containing the statistics of the sched_domain
3373 * under consideration.
3374 * @this_cpu: Cpu at which we're currently performing load-balancing.
3375 * @imbalance: Variable to store the imbalance.
3377 * Description:
3378 * Check if we have potential to perform some power-savings balance.
3379 * If yes, set the busiest group to be the least loaded group in the
3380 * sched_domain, so that it's CPUs can be put to idle.
3382 * Returns 1 if there is potential to perform power-savings balance.
3383 * Else returns 0.
3385 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3386 int this_cpu, unsigned long *imbalance)
3388 if (!sds->power_savings_balance)
3389 return 0;
3391 if (sds->this != sds->group_leader ||
3392 sds->group_leader == sds->group_min)
3393 return 0;
3395 *imbalance = sds->min_load_per_task;
3396 sds->busiest = sds->group_min;
3398 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3399 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3400 group_first_cpu(sds->group_leader);
3403 return 1;
3406 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3407 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3408 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3410 return;
3413 static inline void update_sd_power_savings_stats(struct sched_group *group,
3414 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3416 return;
3419 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3420 int this_cpu, unsigned long *imbalance)
3422 return 0;
3424 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3428 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3429 * @group: sched_group whose statistics are to be updated.
3430 * @this_cpu: Cpu for which load balance is currently performed.
3431 * @idle: Idle status of this_cpu
3432 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3433 * @sd_idle: Idle status of the sched_domain containing group.
3434 * @local_group: Does group contain this_cpu.
3435 * @cpus: Set of cpus considered for load balancing.
3436 * @balance: Should we balance.
3437 * @sgs: variable to hold the statistics for this group.
3439 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3440 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3441 int local_group, const struct cpumask *cpus,
3442 int *balance, struct sg_lb_stats *sgs)
3444 unsigned long load, max_cpu_load, min_cpu_load;
3445 int i;
3446 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3447 unsigned long sum_avg_load_per_task;
3448 unsigned long avg_load_per_task;
3450 if (local_group)
3451 balance_cpu = group_first_cpu(group);
3453 /* Tally up the load of all CPUs in the group */
3454 sum_avg_load_per_task = avg_load_per_task = 0;
3455 max_cpu_load = 0;
3456 min_cpu_load = ~0UL;
3458 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3459 struct rq *rq = cpu_rq(i);
3461 if (*sd_idle && rq->nr_running)
3462 *sd_idle = 0;
3464 /* Bias balancing toward cpus of our domain */
3465 if (local_group) {
3466 if (idle_cpu(i) && !first_idle_cpu) {
3467 first_idle_cpu = 1;
3468 balance_cpu = i;
3471 load = target_load(i, load_idx);
3472 } else {
3473 load = source_load(i, load_idx);
3474 if (load > max_cpu_load)
3475 max_cpu_load = load;
3476 if (min_cpu_load > load)
3477 min_cpu_load = load;
3480 sgs->group_load += load;
3481 sgs->sum_nr_running += rq->nr_running;
3482 sgs->sum_weighted_load += weighted_cpuload(i);
3484 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3488 * First idle cpu or the first cpu(busiest) in this sched group
3489 * is eligible for doing load balancing at this and above
3490 * domains. In the newly idle case, we will allow all the cpu's
3491 * to do the newly idle load balance.
3493 if (idle != CPU_NEWLY_IDLE && local_group &&
3494 balance_cpu != this_cpu && balance) {
3495 *balance = 0;
3496 return;
3499 /* Adjust by relative CPU power of the group */
3500 sgs->avg_load = sg_div_cpu_power(group,
3501 sgs->group_load * SCHED_LOAD_SCALE);
3505 * Consider the group unbalanced when the imbalance is larger
3506 * than the average weight of two tasks.
3508 * APZ: with cgroup the avg task weight can vary wildly and
3509 * might not be a suitable number - should we keep a
3510 * normalized nr_running number somewhere that negates
3511 * the hierarchy?
3513 avg_load_per_task = sg_div_cpu_power(group,
3514 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3516 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3517 sgs->group_imb = 1;
3519 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3524 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3525 * @sd: sched_domain whose statistics are to be updated.
3526 * @this_cpu: Cpu for which load balance is currently performed.
3527 * @idle: Idle status of this_cpu
3528 * @sd_idle: Idle status of the sched_domain containing group.
3529 * @cpus: Set of cpus considered for load balancing.
3530 * @balance: Should we balance.
3531 * @sds: variable to hold the statistics for this sched_domain.
3533 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3534 enum cpu_idle_type idle, int *sd_idle,
3535 const struct cpumask *cpus, int *balance,
3536 struct sd_lb_stats *sds)
3538 struct sched_group *group = sd->groups;
3539 struct sg_lb_stats sgs;
3540 int load_idx;
3542 init_sd_power_savings_stats(sd, sds, idle);
3543 load_idx = get_sd_load_idx(sd, idle);
3545 do {
3546 int local_group;
3548 local_group = cpumask_test_cpu(this_cpu,
3549 sched_group_cpus(group));
3550 memset(&sgs, 0, sizeof(sgs));
3551 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3552 local_group, cpus, balance, &sgs);
3554 if (local_group && balance && !(*balance))
3555 return;
3557 sds->total_load += sgs.group_load;
3558 sds->total_pwr += group->__cpu_power;
3560 if (local_group) {
3561 sds->this_load = sgs.avg_load;
3562 sds->this = group;
3563 sds->this_nr_running = sgs.sum_nr_running;
3564 sds->this_load_per_task = sgs.sum_weighted_load;
3565 } else if (sgs.avg_load > sds->max_load &&
3566 (sgs.sum_nr_running > sgs.group_capacity ||
3567 sgs.group_imb)) {
3568 sds->max_load = sgs.avg_load;
3569 sds->busiest = group;
3570 sds->busiest_nr_running = sgs.sum_nr_running;
3571 sds->busiest_load_per_task = sgs.sum_weighted_load;
3572 sds->group_imb = sgs.group_imb;
3575 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3576 group = group->next;
3577 } while (group != sd->groups);
3582 * fix_small_imbalance - Calculate the minor imbalance that exists
3583 * amongst the groups of a sched_domain, during
3584 * load balancing.
3585 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3586 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3587 * @imbalance: Variable to store the imbalance.
3589 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3590 int this_cpu, unsigned long *imbalance)
3592 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3593 unsigned int imbn = 2;
3595 if (sds->this_nr_running) {
3596 sds->this_load_per_task /= sds->this_nr_running;
3597 if (sds->busiest_load_per_task >
3598 sds->this_load_per_task)
3599 imbn = 1;
3600 } else
3601 sds->this_load_per_task =
3602 cpu_avg_load_per_task(this_cpu);
3604 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3605 sds->busiest_load_per_task * imbn) {
3606 *imbalance = sds->busiest_load_per_task;
3607 return;
3611 * OK, we don't have enough imbalance to justify moving tasks,
3612 * however we may be able to increase total CPU power used by
3613 * moving them.
3616 pwr_now += sds->busiest->__cpu_power *
3617 min(sds->busiest_load_per_task, sds->max_load);
3618 pwr_now += sds->this->__cpu_power *
3619 min(sds->this_load_per_task, sds->this_load);
3620 pwr_now /= SCHED_LOAD_SCALE;
3622 /* Amount of load we'd subtract */
3623 tmp = sg_div_cpu_power(sds->busiest,
3624 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3625 if (sds->max_load > tmp)
3626 pwr_move += sds->busiest->__cpu_power *
3627 min(sds->busiest_load_per_task, sds->max_load - tmp);
3629 /* Amount of load we'd add */
3630 if (sds->max_load * sds->busiest->__cpu_power <
3631 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3632 tmp = sg_div_cpu_power(sds->this,
3633 sds->max_load * sds->busiest->__cpu_power);
3634 else
3635 tmp = sg_div_cpu_power(sds->this,
3636 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3637 pwr_move += sds->this->__cpu_power *
3638 min(sds->this_load_per_task, sds->this_load + tmp);
3639 pwr_move /= SCHED_LOAD_SCALE;
3641 /* Move if we gain throughput */
3642 if (pwr_move > pwr_now)
3643 *imbalance = sds->busiest_load_per_task;
3647 * calculate_imbalance - Calculate the amount of imbalance present within the
3648 * groups of a given sched_domain during load balance.
3649 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3650 * @this_cpu: Cpu for which currently load balance is being performed.
3651 * @imbalance: The variable to store the imbalance.
3653 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3654 unsigned long *imbalance)
3656 unsigned long max_pull;
3658 * In the presence of smp nice balancing, certain scenarios can have
3659 * max load less than avg load(as we skip the groups at or below
3660 * its cpu_power, while calculating max_load..)
3662 if (sds->max_load < sds->avg_load) {
3663 *imbalance = 0;
3664 return fix_small_imbalance(sds, this_cpu, imbalance);
3667 /* Don't want to pull so many tasks that a group would go idle */
3668 max_pull = min(sds->max_load - sds->avg_load,
3669 sds->max_load - sds->busiest_load_per_task);
3671 /* How much load to actually move to equalise the imbalance */
3672 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3673 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3674 / SCHED_LOAD_SCALE;
3677 * if *imbalance is less than the average load per runnable task
3678 * there is no gaurantee that any tasks will be moved so we'll have
3679 * a think about bumping its value to force at least one task to be
3680 * moved
3682 if (*imbalance < sds->busiest_load_per_task)
3683 return fix_small_imbalance(sds, this_cpu, imbalance);
3686 /******* find_busiest_group() helpers end here *********************/
3689 * find_busiest_group - Returns the busiest group within the sched_domain
3690 * if there is an imbalance. If there isn't an imbalance, and
3691 * the user has opted for power-savings, it returns a group whose
3692 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3693 * such a group exists.
3695 * Also calculates the amount of weighted load which should be moved
3696 * to restore balance.
3698 * @sd: The sched_domain whose busiest group is to be returned.
3699 * @this_cpu: The cpu for which load balancing is currently being performed.
3700 * @imbalance: Variable which stores amount of weighted load which should
3701 * be moved to restore balance/put a group to idle.
3702 * @idle: The idle status of this_cpu.
3703 * @sd_idle: The idleness of sd
3704 * @cpus: The set of CPUs under consideration for load-balancing.
3705 * @balance: Pointer to a variable indicating if this_cpu
3706 * is the appropriate cpu to perform load balancing at this_level.
3708 * Returns: - the busiest group if imbalance exists.
3709 * - If no imbalance and user has opted for power-savings balance,
3710 * return the least loaded group whose CPUs can be
3711 * put to idle by rebalancing its tasks onto our group.
3713 static struct sched_group *
3714 find_busiest_group(struct sched_domain *sd, int this_cpu,
3715 unsigned long *imbalance, enum cpu_idle_type idle,
3716 int *sd_idle, const struct cpumask *cpus, int *balance)
3718 struct sd_lb_stats sds;
3720 memset(&sds, 0, sizeof(sds));
3723 * Compute the various statistics relavent for load balancing at
3724 * this level.
3726 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3727 balance, &sds);
3729 /* Cases where imbalance does not exist from POV of this_cpu */
3730 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3731 * at this level.
3732 * 2) There is no busy sibling group to pull from.
3733 * 3) This group is the busiest group.
3734 * 4) This group is more busy than the avg busieness at this
3735 * sched_domain.
3736 * 5) The imbalance is within the specified limit.
3737 * 6) Any rebalance would lead to ping-pong
3739 if (balance && !(*balance))
3740 goto ret;
3742 if (!sds.busiest || sds.busiest_nr_running == 0)
3743 goto out_balanced;
3745 if (sds.this_load >= sds.max_load)
3746 goto out_balanced;
3748 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3750 if (sds.this_load >= sds.avg_load)
3751 goto out_balanced;
3753 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3754 goto out_balanced;
3756 sds.busiest_load_per_task /= sds.busiest_nr_running;
3757 if (sds.group_imb)
3758 sds.busiest_load_per_task =
3759 min(sds.busiest_load_per_task, sds.avg_load);
3762 * We're trying to get all the cpus to the average_load, so we don't
3763 * want to push ourselves above the average load, nor do we wish to
3764 * reduce the max loaded cpu below the average load, as either of these
3765 * actions would just result in more rebalancing later, and ping-pong
3766 * tasks around. Thus we look for the minimum possible imbalance.
3767 * Negative imbalances (*we* are more loaded than anyone else) will
3768 * be counted as no imbalance for these purposes -- we can't fix that
3769 * by pulling tasks to us. Be careful of negative numbers as they'll
3770 * appear as very large values with unsigned longs.
3772 if (sds.max_load <= sds.busiest_load_per_task)
3773 goto out_balanced;
3775 /* Looks like there is an imbalance. Compute it */
3776 calculate_imbalance(&sds, this_cpu, imbalance);
3777 return sds.busiest;
3779 out_balanced:
3781 * There is no obvious imbalance. But check if we can do some balancing
3782 * to save power.
3784 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3785 return sds.busiest;
3786 ret:
3787 *imbalance = 0;
3788 return NULL;
3792 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3794 static struct rq *
3795 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3796 unsigned long imbalance, const struct cpumask *cpus)
3798 struct rq *busiest = NULL, *rq;
3799 unsigned long max_load = 0;
3800 int i;
3802 for_each_cpu(i, sched_group_cpus(group)) {
3803 unsigned long wl;
3805 if (!cpumask_test_cpu(i, cpus))
3806 continue;
3808 rq = cpu_rq(i);
3809 wl = weighted_cpuload(i);
3811 if (rq->nr_running == 1 && wl > imbalance)
3812 continue;
3814 if (wl > max_load) {
3815 max_load = wl;
3816 busiest = rq;
3820 return busiest;
3824 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3825 * so long as it is large enough.
3827 #define MAX_PINNED_INTERVAL 512
3830 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3831 * tasks if there is an imbalance.
3833 static int load_balance(int this_cpu, struct rq *this_rq,
3834 struct sched_domain *sd, enum cpu_idle_type idle,
3835 int *balance, struct cpumask *cpus)
3837 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3838 struct sched_group *group;
3839 unsigned long imbalance;
3840 struct rq *busiest;
3841 unsigned long flags;
3843 cpumask_setall(cpus);
3846 * When power savings policy is enabled for the parent domain, idle
3847 * sibling can pick up load irrespective of busy siblings. In this case,
3848 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3849 * portraying it as CPU_NOT_IDLE.
3851 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3852 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3853 sd_idle = 1;
3855 schedstat_inc(sd, lb_count[idle]);
3857 redo:
3858 update_shares(sd);
3859 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3860 cpus, balance);
3862 if (*balance == 0)
3863 goto out_balanced;
3865 if (!group) {
3866 schedstat_inc(sd, lb_nobusyg[idle]);
3867 goto out_balanced;
3870 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3871 if (!busiest) {
3872 schedstat_inc(sd, lb_nobusyq[idle]);
3873 goto out_balanced;
3876 BUG_ON(busiest == this_rq);
3878 schedstat_add(sd, lb_imbalance[idle], imbalance);
3880 ld_moved = 0;
3881 if (busiest->nr_running > 1) {
3883 * Attempt to move tasks. If find_busiest_group has found
3884 * an imbalance but busiest->nr_running <= 1, the group is
3885 * still unbalanced. ld_moved simply stays zero, so it is
3886 * correctly treated as an imbalance.
3888 local_irq_save(flags);
3889 double_rq_lock(this_rq, busiest);
3890 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3891 imbalance, sd, idle, &all_pinned);
3892 double_rq_unlock(this_rq, busiest);
3893 local_irq_restore(flags);
3896 * some other cpu did the load balance for us.
3898 if (ld_moved && this_cpu != smp_processor_id())
3899 resched_cpu(this_cpu);
3901 /* All tasks on this runqueue were pinned by CPU affinity */
3902 if (unlikely(all_pinned)) {
3903 cpumask_clear_cpu(cpu_of(busiest), cpus);
3904 if (!cpumask_empty(cpus))
3905 goto redo;
3906 goto out_balanced;
3910 if (!ld_moved) {
3911 schedstat_inc(sd, lb_failed[idle]);
3912 sd->nr_balance_failed++;
3914 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3916 spin_lock_irqsave(&busiest->lock, flags);
3918 /* don't kick the migration_thread, if the curr
3919 * task on busiest cpu can't be moved to this_cpu
3921 if (!cpumask_test_cpu(this_cpu,
3922 &busiest->curr->cpus_allowed)) {
3923 spin_unlock_irqrestore(&busiest->lock, flags);
3924 all_pinned = 1;
3925 goto out_one_pinned;
3928 if (!busiest->active_balance) {
3929 busiest->active_balance = 1;
3930 busiest->push_cpu = this_cpu;
3931 active_balance = 1;
3933 spin_unlock_irqrestore(&busiest->lock, flags);
3934 if (active_balance)
3935 wake_up_process(busiest->migration_thread);
3938 * We've kicked active balancing, reset the failure
3939 * counter.
3941 sd->nr_balance_failed = sd->cache_nice_tries+1;
3943 } else
3944 sd->nr_balance_failed = 0;
3946 if (likely(!active_balance)) {
3947 /* We were unbalanced, so reset the balancing interval */
3948 sd->balance_interval = sd->min_interval;
3949 } else {
3951 * If we've begun active balancing, start to back off. This
3952 * case may not be covered by the all_pinned logic if there
3953 * is only 1 task on the busy runqueue (because we don't call
3954 * move_tasks).
3956 if (sd->balance_interval < sd->max_interval)
3957 sd->balance_interval *= 2;
3960 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3961 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3962 ld_moved = -1;
3964 goto out;
3966 out_balanced:
3967 schedstat_inc(sd, lb_balanced[idle]);
3969 sd->nr_balance_failed = 0;
3971 out_one_pinned:
3972 /* tune up the balancing interval */
3973 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3974 (sd->balance_interval < sd->max_interval))
3975 sd->balance_interval *= 2;
3977 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3978 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3979 ld_moved = -1;
3980 else
3981 ld_moved = 0;
3982 out:
3983 if (ld_moved)
3984 update_shares(sd);
3985 return ld_moved;
3989 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3990 * tasks if there is an imbalance.
3992 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3993 * this_rq is locked.
3995 static int
3996 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3997 struct cpumask *cpus)
3999 struct sched_group *group;
4000 struct rq *busiest = NULL;
4001 unsigned long imbalance;
4002 int ld_moved = 0;
4003 int sd_idle = 0;
4004 int all_pinned = 0;
4006 cpumask_setall(cpus);
4009 * When power savings policy is enabled for the parent domain, idle
4010 * sibling can pick up load irrespective of busy siblings. In this case,
4011 * let the state of idle sibling percolate up as IDLE, instead of
4012 * portraying it as CPU_NOT_IDLE.
4014 if (sd->flags & SD_SHARE_CPUPOWER &&
4015 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4016 sd_idle = 1;
4018 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4019 redo:
4020 update_shares_locked(this_rq, sd);
4021 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4022 &sd_idle, cpus, NULL);
4023 if (!group) {
4024 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4025 goto out_balanced;
4028 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4029 if (!busiest) {
4030 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4031 goto out_balanced;
4034 BUG_ON(busiest == this_rq);
4036 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4038 ld_moved = 0;
4039 if (busiest->nr_running > 1) {
4040 /* Attempt to move tasks */
4041 double_lock_balance(this_rq, busiest);
4042 /* this_rq->clock is already updated */
4043 update_rq_clock(busiest);
4044 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4045 imbalance, sd, CPU_NEWLY_IDLE,
4046 &all_pinned);
4047 double_unlock_balance(this_rq, busiest);
4049 if (unlikely(all_pinned)) {
4050 cpumask_clear_cpu(cpu_of(busiest), cpus);
4051 if (!cpumask_empty(cpus))
4052 goto redo;
4056 if (!ld_moved) {
4057 int active_balance = 0;
4059 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4060 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4061 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4062 return -1;
4064 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4065 return -1;
4067 if (sd->nr_balance_failed++ < 2)
4068 return -1;
4071 * The only task running in a non-idle cpu can be moved to this
4072 * cpu in an attempt to completely freeup the other CPU
4073 * package. The same method used to move task in load_balance()
4074 * have been extended for load_balance_newidle() to speedup
4075 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4077 * The package power saving logic comes from
4078 * find_busiest_group(). If there are no imbalance, then
4079 * f_b_g() will return NULL. However when sched_mc={1,2} then
4080 * f_b_g() will select a group from which a running task may be
4081 * pulled to this cpu in order to make the other package idle.
4082 * If there is no opportunity to make a package idle and if
4083 * there are no imbalance, then f_b_g() will return NULL and no
4084 * action will be taken in load_balance_newidle().
4086 * Under normal task pull operation due to imbalance, there
4087 * will be more than one task in the source run queue and
4088 * move_tasks() will succeed. ld_moved will be true and this
4089 * active balance code will not be triggered.
4092 /* Lock busiest in correct order while this_rq is held */
4093 double_lock_balance(this_rq, busiest);
4096 * don't kick the migration_thread, if the curr
4097 * task on busiest cpu can't be moved to this_cpu
4099 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4100 double_unlock_balance(this_rq, busiest);
4101 all_pinned = 1;
4102 return ld_moved;
4105 if (!busiest->active_balance) {
4106 busiest->active_balance = 1;
4107 busiest->push_cpu = this_cpu;
4108 active_balance = 1;
4111 double_unlock_balance(this_rq, busiest);
4113 * Should not call ttwu while holding a rq->lock
4115 spin_unlock(&this_rq->lock);
4116 if (active_balance)
4117 wake_up_process(busiest->migration_thread);
4118 spin_lock(&this_rq->lock);
4120 } else
4121 sd->nr_balance_failed = 0;
4123 update_shares_locked(this_rq, sd);
4124 return ld_moved;
4126 out_balanced:
4127 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4128 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4129 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4130 return -1;
4131 sd->nr_balance_failed = 0;
4133 return 0;
4137 * idle_balance is called by schedule() if this_cpu is about to become
4138 * idle. Attempts to pull tasks from other CPUs.
4140 static void idle_balance(int this_cpu, struct rq *this_rq)
4142 struct sched_domain *sd;
4143 int pulled_task = 0;
4144 unsigned long next_balance = jiffies + HZ;
4145 cpumask_var_t tmpmask;
4147 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
4148 return;
4150 for_each_domain(this_cpu, sd) {
4151 unsigned long interval;
4153 if (!(sd->flags & SD_LOAD_BALANCE))
4154 continue;
4156 if (sd->flags & SD_BALANCE_NEWIDLE)
4157 /* If we've pulled tasks over stop searching: */
4158 pulled_task = load_balance_newidle(this_cpu, this_rq,
4159 sd, tmpmask);
4161 interval = msecs_to_jiffies(sd->balance_interval);
4162 if (time_after(next_balance, sd->last_balance + interval))
4163 next_balance = sd->last_balance + interval;
4164 if (pulled_task)
4165 break;
4167 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4169 * We are going idle. next_balance may be set based on
4170 * a busy processor. So reset next_balance.
4172 this_rq->next_balance = next_balance;
4174 free_cpumask_var(tmpmask);
4178 * active_load_balance is run by migration threads. It pushes running tasks
4179 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4180 * running on each physical CPU where possible, and avoids physical /
4181 * logical imbalances.
4183 * Called with busiest_rq locked.
4185 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4187 int target_cpu = busiest_rq->push_cpu;
4188 struct sched_domain *sd;
4189 struct rq *target_rq;
4191 /* Is there any task to move? */
4192 if (busiest_rq->nr_running <= 1)
4193 return;
4195 target_rq = cpu_rq(target_cpu);
4198 * This condition is "impossible", if it occurs
4199 * we need to fix it. Originally reported by
4200 * Bjorn Helgaas on a 128-cpu setup.
4202 BUG_ON(busiest_rq == target_rq);
4204 /* move a task from busiest_rq to target_rq */
4205 double_lock_balance(busiest_rq, target_rq);
4206 update_rq_clock(busiest_rq);
4207 update_rq_clock(target_rq);
4209 /* Search for an sd spanning us and the target CPU. */
4210 for_each_domain(target_cpu, sd) {
4211 if ((sd->flags & SD_LOAD_BALANCE) &&
4212 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4213 break;
4216 if (likely(sd)) {
4217 schedstat_inc(sd, alb_count);
4219 if (move_one_task(target_rq, target_cpu, busiest_rq,
4220 sd, CPU_IDLE))
4221 schedstat_inc(sd, alb_pushed);
4222 else
4223 schedstat_inc(sd, alb_failed);
4225 double_unlock_balance(busiest_rq, target_rq);
4228 #ifdef CONFIG_NO_HZ
4229 static struct {
4230 atomic_t load_balancer;
4231 cpumask_var_t cpu_mask;
4232 } nohz ____cacheline_aligned = {
4233 .load_balancer = ATOMIC_INIT(-1),
4237 * This routine will try to nominate the ilb (idle load balancing)
4238 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4239 * load balancing on behalf of all those cpus. If all the cpus in the system
4240 * go into this tickless mode, then there will be no ilb owner (as there is
4241 * no need for one) and all the cpus will sleep till the next wakeup event
4242 * arrives...
4244 * For the ilb owner, tick is not stopped. And this tick will be used
4245 * for idle load balancing. ilb owner will still be part of
4246 * nohz.cpu_mask..
4248 * While stopping the tick, this cpu will become the ilb owner if there
4249 * is no other owner. And will be the owner till that cpu becomes busy
4250 * or if all cpus in the system stop their ticks at which point
4251 * there is no need for ilb owner.
4253 * When the ilb owner becomes busy, it nominates another owner, during the
4254 * next busy scheduler_tick()
4256 int select_nohz_load_balancer(int stop_tick)
4258 int cpu = smp_processor_id();
4260 if (stop_tick) {
4261 cpu_rq(cpu)->in_nohz_recently = 1;
4263 if (!cpu_active(cpu)) {
4264 if (atomic_read(&nohz.load_balancer) != cpu)
4265 return 0;
4268 * If we are going offline and still the leader,
4269 * give up!
4271 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4272 BUG();
4274 return 0;
4277 cpumask_set_cpu(cpu, nohz.cpu_mask);
4279 /* time for ilb owner also to sleep */
4280 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4281 if (atomic_read(&nohz.load_balancer) == cpu)
4282 atomic_set(&nohz.load_balancer, -1);
4283 return 0;
4286 if (atomic_read(&nohz.load_balancer) == -1) {
4287 /* make me the ilb owner */
4288 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4289 return 1;
4290 } else if (atomic_read(&nohz.load_balancer) == cpu)
4291 return 1;
4292 } else {
4293 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4294 return 0;
4296 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4298 if (atomic_read(&nohz.load_balancer) == cpu)
4299 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4300 BUG();
4302 return 0;
4304 #endif
4306 static DEFINE_SPINLOCK(balancing);
4309 * It checks each scheduling domain to see if it is due to be balanced,
4310 * and initiates a balancing operation if so.
4312 * Balancing parameters are set up in arch_init_sched_domains.
4314 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4316 int balance = 1;
4317 struct rq *rq = cpu_rq(cpu);
4318 unsigned long interval;
4319 struct sched_domain *sd;
4320 /* Earliest time when we have to do rebalance again */
4321 unsigned long next_balance = jiffies + 60*HZ;
4322 int update_next_balance = 0;
4323 int need_serialize;
4324 cpumask_var_t tmp;
4326 /* Fails alloc? Rebalancing probably not a priority right now. */
4327 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
4328 return;
4330 for_each_domain(cpu, sd) {
4331 if (!(sd->flags & SD_LOAD_BALANCE))
4332 continue;
4334 interval = sd->balance_interval;
4335 if (idle != CPU_IDLE)
4336 interval *= sd->busy_factor;
4338 /* scale ms to jiffies */
4339 interval = msecs_to_jiffies(interval);
4340 if (unlikely(!interval))
4341 interval = 1;
4342 if (interval > HZ*NR_CPUS/10)
4343 interval = HZ*NR_CPUS/10;
4345 need_serialize = sd->flags & SD_SERIALIZE;
4347 if (need_serialize) {
4348 if (!spin_trylock(&balancing))
4349 goto out;
4352 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4353 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
4355 * We've pulled tasks over so either we're no
4356 * longer idle, or one of our SMT siblings is
4357 * not idle.
4359 idle = CPU_NOT_IDLE;
4361 sd->last_balance = jiffies;
4363 if (need_serialize)
4364 spin_unlock(&balancing);
4365 out:
4366 if (time_after(next_balance, sd->last_balance + interval)) {
4367 next_balance = sd->last_balance + interval;
4368 update_next_balance = 1;
4372 * Stop the load balance at this level. There is another
4373 * CPU in our sched group which is doing load balancing more
4374 * actively.
4376 if (!balance)
4377 break;
4381 * next_balance will be updated only when there is a need.
4382 * When the cpu is attached to null domain for ex, it will not be
4383 * updated.
4385 if (likely(update_next_balance))
4386 rq->next_balance = next_balance;
4388 free_cpumask_var(tmp);
4392 * run_rebalance_domains is triggered when needed from the scheduler tick.
4393 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4394 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4396 static void run_rebalance_domains(struct softirq_action *h)
4398 int this_cpu = smp_processor_id();
4399 struct rq *this_rq = cpu_rq(this_cpu);
4400 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4401 CPU_IDLE : CPU_NOT_IDLE;
4403 rebalance_domains(this_cpu, idle);
4405 #ifdef CONFIG_NO_HZ
4407 * If this cpu is the owner for idle load balancing, then do the
4408 * balancing on behalf of the other idle cpus whose ticks are
4409 * stopped.
4411 if (this_rq->idle_at_tick &&
4412 atomic_read(&nohz.load_balancer) == this_cpu) {
4413 struct rq *rq;
4414 int balance_cpu;
4416 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4417 if (balance_cpu == this_cpu)
4418 continue;
4421 * If this cpu gets work to do, stop the load balancing
4422 * work being done for other cpus. Next load
4423 * balancing owner will pick it up.
4425 if (need_resched())
4426 break;
4428 rebalance_domains(balance_cpu, CPU_IDLE);
4430 rq = cpu_rq(balance_cpu);
4431 if (time_after(this_rq->next_balance, rq->next_balance))
4432 this_rq->next_balance = rq->next_balance;
4435 #endif
4438 static inline int on_null_domain(int cpu)
4440 return !rcu_dereference(cpu_rq(cpu)->sd);
4444 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4446 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4447 * idle load balancing owner or decide to stop the periodic load balancing,
4448 * if the whole system is idle.
4450 static inline void trigger_load_balance(struct rq *rq, int cpu)
4452 #ifdef CONFIG_NO_HZ
4454 * If we were in the nohz mode recently and busy at the current
4455 * scheduler tick, then check if we need to nominate new idle
4456 * load balancer.
4458 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4459 rq->in_nohz_recently = 0;
4461 if (atomic_read(&nohz.load_balancer) == cpu) {
4462 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4463 atomic_set(&nohz.load_balancer, -1);
4466 if (atomic_read(&nohz.load_balancer) == -1) {
4468 * simple selection for now: Nominate the
4469 * first cpu in the nohz list to be the next
4470 * ilb owner.
4472 * TBD: Traverse the sched domains and nominate
4473 * the nearest cpu in the nohz.cpu_mask.
4475 int ilb = cpumask_first(nohz.cpu_mask);
4477 if (ilb < nr_cpu_ids)
4478 resched_cpu(ilb);
4483 * If this cpu is idle and doing idle load balancing for all the
4484 * cpus with ticks stopped, is it time for that to stop?
4486 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4487 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4488 resched_cpu(cpu);
4489 return;
4493 * If this cpu is idle and the idle load balancing is done by
4494 * someone else, then no need raise the SCHED_SOFTIRQ
4496 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4497 cpumask_test_cpu(cpu, nohz.cpu_mask))
4498 return;
4499 #endif
4500 /* Don't need to rebalance while attached to NULL domain */
4501 if (time_after_eq(jiffies, rq->next_balance) &&
4502 likely(!on_null_domain(cpu)))
4503 raise_softirq(SCHED_SOFTIRQ);
4506 #else /* CONFIG_SMP */
4509 * on UP we do not need to balance between CPUs:
4511 static inline void idle_balance(int cpu, struct rq *rq)
4515 #endif
4517 DEFINE_PER_CPU(struct kernel_stat, kstat);
4519 EXPORT_PER_CPU_SYMBOL(kstat);
4522 * Return any ns on the sched_clock that have not yet been banked in
4523 * @p in case that task is currently running.
4525 unsigned long long task_delta_exec(struct task_struct *p)
4527 unsigned long flags;
4528 struct rq *rq;
4529 u64 ns = 0;
4531 rq = task_rq_lock(p, &flags);
4533 if (task_current(rq, p)) {
4534 u64 delta_exec;
4536 update_rq_clock(rq);
4537 delta_exec = rq->clock - p->se.exec_start;
4538 if ((s64)delta_exec > 0)
4539 ns = delta_exec;
4542 task_rq_unlock(rq, &flags);
4544 return ns;
4548 * Account user cpu time to a process.
4549 * @p: the process that the cpu time gets accounted to
4550 * @cputime: the cpu time spent in user space since the last update
4551 * @cputime_scaled: cputime scaled by cpu frequency
4553 void account_user_time(struct task_struct *p, cputime_t cputime,
4554 cputime_t cputime_scaled)
4556 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4557 cputime64_t tmp;
4559 /* Add user time to process. */
4560 p->utime = cputime_add(p->utime, cputime);
4561 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4562 account_group_user_time(p, cputime);
4564 /* Add user time to cpustat. */
4565 tmp = cputime_to_cputime64(cputime);
4566 if (TASK_NICE(p) > 0)
4567 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4568 else
4569 cpustat->user = cputime64_add(cpustat->user, tmp);
4570 /* Account for user time used */
4571 acct_update_integrals(p);
4575 * Account guest cpu time to a process.
4576 * @p: the process that the cpu time gets accounted to
4577 * @cputime: the cpu time spent in virtual machine since the last update
4578 * @cputime_scaled: cputime scaled by cpu frequency
4580 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4581 cputime_t cputime_scaled)
4583 cputime64_t tmp;
4584 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4586 tmp = cputime_to_cputime64(cputime);
4588 /* Add guest time to process. */
4589 p->utime = cputime_add(p->utime, cputime);
4590 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4591 account_group_user_time(p, cputime);
4592 p->gtime = cputime_add(p->gtime, cputime);
4594 /* Add guest time to cpustat. */
4595 cpustat->user = cputime64_add(cpustat->user, tmp);
4596 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4600 * Account system cpu time to a process.
4601 * @p: the process that the cpu time gets accounted to
4602 * @hardirq_offset: the offset to subtract from hardirq_count()
4603 * @cputime: the cpu time spent in kernel space since the last update
4604 * @cputime_scaled: cputime scaled by cpu frequency
4606 void account_system_time(struct task_struct *p, int hardirq_offset,
4607 cputime_t cputime, cputime_t cputime_scaled)
4609 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4610 cputime64_t tmp;
4612 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4613 account_guest_time(p, cputime, cputime_scaled);
4614 return;
4617 /* Add system time to process. */
4618 p->stime = cputime_add(p->stime, cputime);
4619 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4620 account_group_system_time(p, cputime);
4622 /* Add system time to cpustat. */
4623 tmp = cputime_to_cputime64(cputime);
4624 if (hardirq_count() - hardirq_offset)
4625 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4626 else if (softirq_count())
4627 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4628 else
4629 cpustat->system = cputime64_add(cpustat->system, tmp);
4631 /* Account for system time used */
4632 acct_update_integrals(p);
4636 * Account for involuntary wait time.
4637 * @steal: the cpu time spent in involuntary wait
4639 void account_steal_time(cputime_t cputime)
4641 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4642 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4644 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4648 * Account for idle time.
4649 * @cputime: the cpu time spent in idle wait
4651 void account_idle_time(cputime_t cputime)
4653 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4654 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4655 struct rq *rq = this_rq();
4657 if (atomic_read(&rq->nr_iowait) > 0)
4658 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4659 else
4660 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4663 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4666 * Account a single tick of cpu time.
4667 * @p: the process that the cpu time gets accounted to
4668 * @user_tick: indicates if the tick is a user or a system tick
4670 void account_process_tick(struct task_struct *p, int user_tick)
4672 cputime_t one_jiffy = jiffies_to_cputime(1);
4673 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4674 struct rq *rq = this_rq();
4676 if (user_tick)
4677 account_user_time(p, one_jiffy, one_jiffy_scaled);
4678 else if (p != rq->idle)
4679 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4680 one_jiffy_scaled);
4681 else
4682 account_idle_time(one_jiffy);
4686 * Account multiple ticks of steal time.
4687 * @p: the process from which the cpu time has been stolen
4688 * @ticks: number of stolen ticks
4690 void account_steal_ticks(unsigned long ticks)
4692 account_steal_time(jiffies_to_cputime(ticks));
4696 * Account multiple ticks of idle time.
4697 * @ticks: number of stolen ticks
4699 void account_idle_ticks(unsigned long ticks)
4701 account_idle_time(jiffies_to_cputime(ticks));
4704 #endif
4707 * Use precise platform statistics if available:
4709 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4710 cputime_t task_utime(struct task_struct *p)
4712 return p->utime;
4715 cputime_t task_stime(struct task_struct *p)
4717 return p->stime;
4719 #else
4720 cputime_t task_utime(struct task_struct *p)
4722 clock_t utime = cputime_to_clock_t(p->utime),
4723 total = utime + cputime_to_clock_t(p->stime);
4724 u64 temp;
4727 * Use CFS's precise accounting:
4729 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4731 if (total) {
4732 temp *= utime;
4733 do_div(temp, total);
4735 utime = (clock_t)temp;
4737 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4738 return p->prev_utime;
4741 cputime_t task_stime(struct task_struct *p)
4743 clock_t stime;
4746 * Use CFS's precise accounting. (we subtract utime from
4747 * the total, to make sure the total observed by userspace
4748 * grows monotonically - apps rely on that):
4750 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4751 cputime_to_clock_t(task_utime(p));
4753 if (stime >= 0)
4754 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4756 return p->prev_stime;
4758 #endif
4760 inline cputime_t task_gtime(struct task_struct *p)
4762 return p->gtime;
4766 * This function gets called by the timer code, with HZ frequency.
4767 * We call it with interrupts disabled.
4769 * It also gets called by the fork code, when changing the parent's
4770 * timeslices.
4772 void scheduler_tick(void)
4774 int cpu = smp_processor_id();
4775 struct rq *rq = cpu_rq(cpu);
4776 struct task_struct *curr = rq->curr;
4778 sched_clock_tick();
4780 spin_lock(&rq->lock);
4781 update_rq_clock(rq);
4782 update_cpu_load(rq);
4783 curr->sched_class->task_tick(rq, curr, 0);
4784 spin_unlock(&rq->lock);
4786 #ifdef CONFIG_SMP
4787 rq->idle_at_tick = idle_cpu(cpu);
4788 trigger_load_balance(rq, cpu);
4789 #endif
4792 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4793 defined(CONFIG_PREEMPT_TRACER))
4795 static inline unsigned long get_parent_ip(unsigned long addr)
4797 if (in_lock_functions(addr)) {
4798 addr = CALLER_ADDR2;
4799 if (in_lock_functions(addr))
4800 addr = CALLER_ADDR3;
4802 return addr;
4805 void __kprobes add_preempt_count(int val)
4807 #ifdef CONFIG_DEBUG_PREEMPT
4809 * Underflow?
4811 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4812 return;
4813 #endif
4814 preempt_count() += val;
4815 #ifdef CONFIG_DEBUG_PREEMPT
4817 * Spinlock count overflowing soon?
4819 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4820 PREEMPT_MASK - 10);
4821 #endif
4822 if (preempt_count() == val)
4823 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4825 EXPORT_SYMBOL(add_preempt_count);
4827 void __kprobes sub_preempt_count(int val)
4829 #ifdef CONFIG_DEBUG_PREEMPT
4831 * Underflow?
4833 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4834 return;
4836 * Is the spinlock portion underflowing?
4838 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4839 !(preempt_count() & PREEMPT_MASK)))
4840 return;
4841 #endif
4843 if (preempt_count() == val)
4844 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4845 preempt_count() -= val;
4847 EXPORT_SYMBOL(sub_preempt_count);
4849 #endif
4852 * Print scheduling while atomic bug:
4854 static noinline void __schedule_bug(struct task_struct *prev)
4856 struct pt_regs *regs = get_irq_regs();
4858 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4859 prev->comm, prev->pid, preempt_count());
4861 debug_show_held_locks(prev);
4862 print_modules();
4863 if (irqs_disabled())
4864 print_irqtrace_events(prev);
4866 if (regs)
4867 show_regs(regs);
4868 else
4869 dump_stack();
4873 * Various schedule()-time debugging checks and statistics:
4875 static inline void schedule_debug(struct task_struct *prev)
4878 * Test if we are atomic. Since do_exit() needs to call into
4879 * schedule() atomically, we ignore that path for now.
4880 * Otherwise, whine if we are scheduling when we should not be.
4882 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4883 __schedule_bug(prev);
4885 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4887 schedstat_inc(this_rq(), sched_count);
4888 #ifdef CONFIG_SCHEDSTATS
4889 if (unlikely(prev->lock_depth >= 0)) {
4890 schedstat_inc(this_rq(), bkl_count);
4891 schedstat_inc(prev, sched_info.bkl_count);
4893 #endif
4896 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4898 if (prev->state == TASK_RUNNING) {
4899 u64 runtime = prev->se.sum_exec_runtime;
4901 runtime -= prev->se.prev_sum_exec_runtime;
4902 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
4905 * In order to avoid avg_overlap growing stale when we are
4906 * indeed overlapping and hence not getting put to sleep, grow
4907 * the avg_overlap on preemption.
4909 * We use the average preemption runtime because that
4910 * correlates to the amount of cache footprint a task can
4911 * build up.
4913 update_avg(&prev->se.avg_overlap, runtime);
4915 prev->sched_class->put_prev_task(rq, prev);
4919 * Pick up the highest-prio task:
4921 static inline struct task_struct *
4922 pick_next_task(struct rq *rq)
4924 const struct sched_class *class;
4925 struct task_struct *p;
4928 * Optimization: we know that if all tasks are in
4929 * the fair class we can call that function directly:
4931 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4932 p = fair_sched_class.pick_next_task(rq);
4933 if (likely(p))
4934 return p;
4937 class = sched_class_highest;
4938 for ( ; ; ) {
4939 p = class->pick_next_task(rq);
4940 if (p)
4941 return p;
4943 * Will never be NULL as the idle class always
4944 * returns a non-NULL p:
4946 class = class->next;
4951 * schedule() is the main scheduler function.
4953 asmlinkage void __sched __schedule(void)
4955 struct task_struct *prev, *next;
4956 unsigned long *switch_count;
4957 struct rq *rq;
4958 int cpu;
4960 cpu = smp_processor_id();
4961 rq = cpu_rq(cpu);
4962 rcu_qsctr_inc(cpu);
4963 prev = rq->curr;
4964 switch_count = &prev->nivcsw;
4966 release_kernel_lock(prev);
4967 need_resched_nonpreemptible:
4969 schedule_debug(prev);
4971 if (sched_feat(HRTICK))
4972 hrtick_clear(rq);
4974 spin_lock_irq(&rq->lock);
4975 update_rq_clock(rq);
4976 clear_tsk_need_resched(prev);
4978 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4979 if (unlikely(signal_pending_state(prev->state, prev)))
4980 prev->state = TASK_RUNNING;
4981 else
4982 deactivate_task(rq, prev, 1);
4983 switch_count = &prev->nvcsw;
4986 #ifdef CONFIG_SMP
4987 if (prev->sched_class->pre_schedule)
4988 prev->sched_class->pre_schedule(rq, prev);
4989 #endif
4991 if (unlikely(!rq->nr_running))
4992 idle_balance(cpu, rq);
4994 put_prev_task(rq, prev);
4995 next = pick_next_task(rq);
4997 if (likely(prev != next)) {
4998 sched_info_switch(prev, next);
5000 rq->nr_switches++;
5001 rq->curr = next;
5002 ++*switch_count;
5004 context_switch(rq, prev, next); /* unlocks the rq */
5006 * the context switch might have flipped the stack from under
5007 * us, hence refresh the local variables.
5009 cpu = smp_processor_id();
5010 rq = cpu_rq(cpu);
5011 } else
5012 spin_unlock_irq(&rq->lock);
5014 if (unlikely(reacquire_kernel_lock(current) < 0))
5015 goto need_resched_nonpreemptible;
5018 asmlinkage void __sched schedule(void)
5020 need_resched:
5021 preempt_disable();
5022 __schedule();
5023 preempt_enable_no_resched();
5024 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
5025 goto need_resched;
5027 EXPORT_SYMBOL(schedule);
5029 #ifdef CONFIG_SMP
5031 * Look out! "owner" is an entirely speculative pointer
5032 * access and not reliable.
5034 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5036 unsigned int cpu;
5037 struct rq *rq;
5039 if (!sched_feat(OWNER_SPIN))
5040 return 0;
5042 #ifdef CONFIG_DEBUG_PAGEALLOC
5044 * Need to access the cpu field knowing that
5045 * DEBUG_PAGEALLOC could have unmapped it if
5046 * the mutex owner just released it and exited.
5048 if (probe_kernel_address(&owner->cpu, cpu))
5049 goto out;
5050 #else
5051 cpu = owner->cpu;
5052 #endif
5055 * Even if the access succeeded (likely case),
5056 * the cpu field may no longer be valid.
5058 if (cpu >= nr_cpumask_bits)
5059 goto out;
5062 * We need to validate that we can do a
5063 * get_cpu() and that we have the percpu area.
5065 if (!cpu_online(cpu))
5066 goto out;
5068 rq = cpu_rq(cpu);
5070 for (;;) {
5072 * Owner changed, break to re-assess state.
5074 if (lock->owner != owner)
5075 break;
5078 * Is that owner really running on that cpu?
5080 if (task_thread_info(rq->curr) != owner || need_resched())
5081 return 0;
5083 cpu_relax();
5085 out:
5086 return 1;
5088 #endif
5090 #ifdef CONFIG_PREEMPT
5092 * this is the entry point to schedule() from in-kernel preemption
5093 * off of preempt_enable. Kernel preemptions off return from interrupt
5094 * occur there and call schedule directly.
5096 asmlinkage void __sched preempt_schedule(void)
5098 struct thread_info *ti = current_thread_info();
5101 * If there is a non-zero preempt_count or interrupts are disabled,
5102 * we do not want to preempt the current task. Just return..
5104 if (likely(ti->preempt_count || irqs_disabled()))
5105 return;
5107 do {
5108 add_preempt_count(PREEMPT_ACTIVE);
5109 schedule();
5110 sub_preempt_count(PREEMPT_ACTIVE);
5113 * Check again in case we missed a preemption opportunity
5114 * between schedule and now.
5116 barrier();
5117 } while (need_resched());
5119 EXPORT_SYMBOL(preempt_schedule);
5122 * this is the entry point to schedule() from kernel preemption
5123 * off of irq context.
5124 * Note, that this is called and return with irqs disabled. This will
5125 * protect us against recursive calling from irq.
5127 asmlinkage void __sched preempt_schedule_irq(void)
5129 struct thread_info *ti = current_thread_info();
5131 /* Catch callers which need to be fixed */
5132 BUG_ON(ti->preempt_count || !irqs_disabled());
5134 do {
5135 add_preempt_count(PREEMPT_ACTIVE);
5136 local_irq_enable();
5137 schedule();
5138 local_irq_disable();
5139 sub_preempt_count(PREEMPT_ACTIVE);
5142 * Check again in case we missed a preemption opportunity
5143 * between schedule and now.
5145 barrier();
5146 } while (need_resched());
5149 #endif /* CONFIG_PREEMPT */
5151 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5152 void *key)
5154 return try_to_wake_up(curr->private, mode, sync);
5156 EXPORT_SYMBOL(default_wake_function);
5159 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5160 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5161 * number) then we wake all the non-exclusive tasks and one exclusive task.
5163 * There are circumstances in which we can try to wake a task which has already
5164 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5165 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5167 void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5168 int nr_exclusive, int sync, void *key)
5170 wait_queue_t *curr, *next;
5172 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5173 unsigned flags = curr->flags;
5175 if (curr->func(curr, mode, sync, key) &&
5176 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5177 break;
5182 * __wake_up - wake up threads blocked on a waitqueue.
5183 * @q: the waitqueue
5184 * @mode: which threads
5185 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5186 * @key: is directly passed to the wakeup function
5188 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5189 int nr_exclusive, void *key)
5191 unsigned long flags;
5193 spin_lock_irqsave(&q->lock, flags);
5194 __wake_up_common(q, mode, nr_exclusive, 0, key);
5195 spin_unlock_irqrestore(&q->lock, flags);
5197 EXPORT_SYMBOL(__wake_up);
5200 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5202 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5204 __wake_up_common(q, mode, 1, 0, NULL);
5208 * __wake_up_sync - wake up threads blocked on a waitqueue.
5209 * @q: the waitqueue
5210 * @mode: which threads
5211 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5213 * The sync wakeup differs that the waker knows that it will schedule
5214 * away soon, so while the target thread will be woken up, it will not
5215 * be migrated to another CPU - ie. the two threads are 'synchronized'
5216 * with each other. This can prevent needless bouncing between CPUs.
5218 * On UP it can prevent extra preemption.
5220 void
5221 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5223 unsigned long flags;
5224 int sync = 1;
5226 if (unlikely(!q))
5227 return;
5229 if (unlikely(!nr_exclusive))
5230 sync = 0;
5232 spin_lock_irqsave(&q->lock, flags);
5233 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
5234 spin_unlock_irqrestore(&q->lock, flags);
5236 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5239 * complete: - signals a single thread waiting on this completion
5240 * @x: holds the state of this particular completion
5242 * This will wake up a single thread waiting on this completion. Threads will be
5243 * awakened in the same order in which they were queued.
5245 * See also complete_all(), wait_for_completion() and related routines.
5247 void complete(struct completion *x)
5249 unsigned long flags;
5251 spin_lock_irqsave(&x->wait.lock, flags);
5252 x->done++;
5253 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5254 spin_unlock_irqrestore(&x->wait.lock, flags);
5256 EXPORT_SYMBOL(complete);
5259 * complete_all: - signals all threads waiting on this completion
5260 * @x: holds the state of this particular completion
5262 * This will wake up all threads waiting on this particular completion event.
5264 void complete_all(struct completion *x)
5266 unsigned long flags;
5268 spin_lock_irqsave(&x->wait.lock, flags);
5269 x->done += UINT_MAX/2;
5270 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5271 spin_unlock_irqrestore(&x->wait.lock, flags);
5273 EXPORT_SYMBOL(complete_all);
5275 static inline long __sched
5276 do_wait_for_common(struct completion *x, long timeout, int state)
5278 if (!x->done) {
5279 DECLARE_WAITQUEUE(wait, current);
5281 wait.flags |= WQ_FLAG_EXCLUSIVE;
5282 __add_wait_queue_tail(&x->wait, &wait);
5283 do {
5284 if (signal_pending_state(state, current)) {
5285 timeout = -ERESTARTSYS;
5286 break;
5288 __set_current_state(state);
5289 spin_unlock_irq(&x->wait.lock);
5290 timeout = schedule_timeout(timeout);
5291 spin_lock_irq(&x->wait.lock);
5292 } while (!x->done && timeout);
5293 __remove_wait_queue(&x->wait, &wait);
5294 if (!x->done)
5295 return timeout;
5297 x->done--;
5298 return timeout ?: 1;
5301 static long __sched
5302 wait_for_common(struct completion *x, long timeout, int state)
5304 might_sleep();
5306 spin_lock_irq(&x->wait.lock);
5307 timeout = do_wait_for_common(x, timeout, state);
5308 spin_unlock_irq(&x->wait.lock);
5309 return timeout;
5313 * wait_for_completion: - waits for completion of a task
5314 * @x: holds the state of this particular completion
5316 * This waits to be signaled for completion of a specific task. It is NOT
5317 * interruptible and there is no timeout.
5319 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5320 * and interrupt capability. Also see complete().
5322 void __sched wait_for_completion(struct completion *x)
5324 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5326 EXPORT_SYMBOL(wait_for_completion);
5329 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5330 * @x: holds the state of this particular completion
5331 * @timeout: timeout value in jiffies
5333 * This waits for either a completion of a specific task to be signaled or for a
5334 * specified timeout to expire. The timeout is in jiffies. It is not
5335 * interruptible.
5337 unsigned long __sched
5338 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5340 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5342 EXPORT_SYMBOL(wait_for_completion_timeout);
5345 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5346 * @x: holds the state of this particular completion
5348 * This waits for completion of a specific task to be signaled. It is
5349 * interruptible.
5351 int __sched wait_for_completion_interruptible(struct completion *x)
5353 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5354 if (t == -ERESTARTSYS)
5355 return t;
5356 return 0;
5358 EXPORT_SYMBOL(wait_for_completion_interruptible);
5361 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5362 * @x: holds the state of this particular completion
5363 * @timeout: timeout value in jiffies
5365 * This waits for either a completion of a specific task to be signaled or for a
5366 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5368 unsigned long __sched
5369 wait_for_completion_interruptible_timeout(struct completion *x,
5370 unsigned long timeout)
5372 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5374 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5377 * wait_for_completion_killable: - waits for completion of a task (killable)
5378 * @x: holds the state of this particular completion
5380 * This waits to be signaled for completion of a specific task. It can be
5381 * interrupted by a kill signal.
5383 int __sched wait_for_completion_killable(struct completion *x)
5385 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5386 if (t == -ERESTARTSYS)
5387 return t;
5388 return 0;
5390 EXPORT_SYMBOL(wait_for_completion_killable);
5393 * try_wait_for_completion - try to decrement a completion without blocking
5394 * @x: completion structure
5396 * Returns: 0 if a decrement cannot be done without blocking
5397 * 1 if a decrement succeeded.
5399 * If a completion is being used as a counting completion,
5400 * attempt to decrement the counter without blocking. This
5401 * enables us to avoid waiting if the resource the completion
5402 * is protecting is not available.
5404 bool try_wait_for_completion(struct completion *x)
5406 int ret = 1;
5408 spin_lock_irq(&x->wait.lock);
5409 if (!x->done)
5410 ret = 0;
5411 else
5412 x->done--;
5413 spin_unlock_irq(&x->wait.lock);
5414 return ret;
5416 EXPORT_SYMBOL(try_wait_for_completion);
5419 * completion_done - Test to see if a completion has any waiters
5420 * @x: completion structure
5422 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5423 * 1 if there are no waiters.
5426 bool completion_done(struct completion *x)
5428 int ret = 1;
5430 spin_lock_irq(&x->wait.lock);
5431 if (!x->done)
5432 ret = 0;
5433 spin_unlock_irq(&x->wait.lock);
5434 return ret;
5436 EXPORT_SYMBOL(completion_done);
5438 static long __sched
5439 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5441 unsigned long flags;
5442 wait_queue_t wait;
5444 init_waitqueue_entry(&wait, current);
5446 __set_current_state(state);
5448 spin_lock_irqsave(&q->lock, flags);
5449 __add_wait_queue(q, &wait);
5450 spin_unlock(&q->lock);
5451 timeout = schedule_timeout(timeout);
5452 spin_lock_irq(&q->lock);
5453 __remove_wait_queue(q, &wait);
5454 spin_unlock_irqrestore(&q->lock, flags);
5456 return timeout;
5459 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5461 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5463 EXPORT_SYMBOL(interruptible_sleep_on);
5465 long __sched
5466 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5468 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5470 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5472 void __sched sleep_on(wait_queue_head_t *q)
5474 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5476 EXPORT_SYMBOL(sleep_on);
5478 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5480 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5482 EXPORT_SYMBOL(sleep_on_timeout);
5484 #ifdef CONFIG_RT_MUTEXES
5487 * rt_mutex_setprio - set the current priority of a task
5488 * @p: task
5489 * @prio: prio value (kernel-internal form)
5491 * This function changes the 'effective' priority of a task. It does
5492 * not touch ->normal_prio like __setscheduler().
5494 * Used by the rt_mutex code to implement priority inheritance logic.
5496 void rt_mutex_setprio(struct task_struct *p, int prio)
5498 unsigned long flags;
5499 int oldprio, on_rq, running;
5500 struct rq *rq;
5501 const struct sched_class *prev_class = p->sched_class;
5503 BUG_ON(prio < 0 || prio > MAX_PRIO);
5505 rq = task_rq_lock(p, &flags);
5506 update_rq_clock(rq);
5508 oldprio = p->prio;
5509 on_rq = p->se.on_rq;
5510 running = task_current(rq, p);
5511 if (on_rq)
5512 dequeue_task(rq, p, 0);
5513 if (running)
5514 p->sched_class->put_prev_task(rq, p);
5516 if (rt_prio(prio))
5517 p->sched_class = &rt_sched_class;
5518 else
5519 p->sched_class = &fair_sched_class;
5521 p->prio = prio;
5523 if (running)
5524 p->sched_class->set_curr_task(rq);
5525 if (on_rq) {
5526 enqueue_task(rq, p, 0);
5528 check_class_changed(rq, p, prev_class, oldprio, running);
5530 task_rq_unlock(rq, &flags);
5533 #endif
5535 void set_user_nice(struct task_struct *p, long nice)
5537 int old_prio, delta, on_rq;
5538 unsigned long flags;
5539 struct rq *rq;
5541 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5542 return;
5544 * We have to be careful, if called from sys_setpriority(),
5545 * the task might be in the middle of scheduling on another CPU.
5547 rq = task_rq_lock(p, &flags);
5548 update_rq_clock(rq);
5550 * The RT priorities are set via sched_setscheduler(), but we still
5551 * allow the 'normal' nice value to be set - but as expected
5552 * it wont have any effect on scheduling until the task is
5553 * SCHED_FIFO/SCHED_RR:
5555 if (task_has_rt_policy(p)) {
5556 p->static_prio = NICE_TO_PRIO(nice);
5557 goto out_unlock;
5559 on_rq = p->se.on_rq;
5560 if (on_rq)
5561 dequeue_task(rq, p, 0);
5563 p->static_prio = NICE_TO_PRIO(nice);
5564 set_load_weight(p);
5565 old_prio = p->prio;
5566 p->prio = effective_prio(p);
5567 delta = p->prio - old_prio;
5569 if (on_rq) {
5570 enqueue_task(rq, p, 0);
5572 * If the task increased its priority or is running and
5573 * lowered its priority, then reschedule its CPU:
5575 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5576 resched_task(rq->curr);
5578 out_unlock:
5579 task_rq_unlock(rq, &flags);
5581 EXPORT_SYMBOL(set_user_nice);
5584 * can_nice - check if a task can reduce its nice value
5585 * @p: task
5586 * @nice: nice value
5588 int can_nice(const struct task_struct *p, const int nice)
5590 /* convert nice value [19,-20] to rlimit style value [1,40] */
5591 int nice_rlim = 20 - nice;
5593 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5594 capable(CAP_SYS_NICE));
5597 #ifdef __ARCH_WANT_SYS_NICE
5600 * sys_nice - change the priority of the current process.
5601 * @increment: priority increment
5603 * sys_setpriority is a more generic, but much slower function that
5604 * does similar things.
5606 SYSCALL_DEFINE1(nice, int, increment)
5608 long nice, retval;
5611 * Setpriority might change our priority at the same moment.
5612 * We don't have to worry. Conceptually one call occurs first
5613 * and we have a single winner.
5615 if (increment < -40)
5616 increment = -40;
5617 if (increment > 40)
5618 increment = 40;
5620 nice = TASK_NICE(current) + increment;
5621 if (nice < -20)
5622 nice = -20;
5623 if (nice > 19)
5624 nice = 19;
5626 if (increment < 0 && !can_nice(current, nice))
5627 return -EPERM;
5629 retval = security_task_setnice(current, nice);
5630 if (retval)
5631 return retval;
5633 set_user_nice(current, nice);
5634 return 0;
5637 #endif
5640 * task_prio - return the priority value of a given task.
5641 * @p: the task in question.
5643 * This is the priority value as seen by users in /proc.
5644 * RT tasks are offset by -200. Normal tasks are centered
5645 * around 0, value goes from -16 to +15.
5647 int task_prio(const struct task_struct *p)
5649 return p->prio - MAX_RT_PRIO;
5653 * task_nice - return the nice value of a given task.
5654 * @p: the task in question.
5656 int task_nice(const struct task_struct *p)
5658 return TASK_NICE(p);
5660 EXPORT_SYMBOL(task_nice);
5663 * idle_cpu - is a given cpu idle currently?
5664 * @cpu: the processor in question.
5666 int idle_cpu(int cpu)
5668 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5672 * idle_task - return the idle task for a given cpu.
5673 * @cpu: the processor in question.
5675 struct task_struct *idle_task(int cpu)
5677 return cpu_rq(cpu)->idle;
5681 * find_process_by_pid - find a process with a matching PID value.
5682 * @pid: the pid in question.
5684 static struct task_struct *find_process_by_pid(pid_t pid)
5686 return pid ? find_task_by_vpid(pid) : current;
5689 /* Actually do priority change: must hold rq lock. */
5690 static void
5691 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5693 BUG_ON(p->se.on_rq);
5695 p->policy = policy;
5696 switch (p->policy) {
5697 case SCHED_NORMAL:
5698 case SCHED_BATCH:
5699 case SCHED_IDLE:
5700 p->sched_class = &fair_sched_class;
5701 break;
5702 case SCHED_FIFO:
5703 case SCHED_RR:
5704 p->sched_class = &rt_sched_class;
5705 break;
5708 p->rt_priority = prio;
5709 p->normal_prio = normal_prio(p);
5710 /* we are holding p->pi_lock already */
5711 p->prio = rt_mutex_getprio(p);
5712 set_load_weight(p);
5716 * check the target process has a UID that matches the current process's
5718 static bool check_same_owner(struct task_struct *p)
5720 const struct cred *cred = current_cred(), *pcred;
5721 bool match;
5723 rcu_read_lock();
5724 pcred = __task_cred(p);
5725 match = (cred->euid == pcred->euid ||
5726 cred->euid == pcred->uid);
5727 rcu_read_unlock();
5728 return match;
5731 static int __sched_setscheduler(struct task_struct *p, int policy,
5732 struct sched_param *param, bool user)
5734 int retval, oldprio, oldpolicy = -1, on_rq, running;
5735 unsigned long flags;
5736 const struct sched_class *prev_class = p->sched_class;
5737 struct rq *rq;
5739 /* may grab non-irq protected spin_locks */
5740 BUG_ON(in_interrupt());
5741 recheck:
5742 /* double check policy once rq lock held */
5743 if (policy < 0)
5744 policy = oldpolicy = p->policy;
5745 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5746 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5747 policy != SCHED_IDLE)
5748 return -EINVAL;
5750 * Valid priorities for SCHED_FIFO and SCHED_RR are
5751 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5752 * SCHED_BATCH and SCHED_IDLE is 0.
5754 if (param->sched_priority < 0 ||
5755 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5756 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5757 return -EINVAL;
5758 if (rt_policy(policy) != (param->sched_priority != 0))
5759 return -EINVAL;
5762 * Allow unprivileged RT tasks to decrease priority:
5764 if (user && !capable(CAP_SYS_NICE)) {
5765 if (rt_policy(policy)) {
5766 unsigned long rlim_rtprio;
5768 if (!lock_task_sighand(p, &flags))
5769 return -ESRCH;
5770 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5771 unlock_task_sighand(p, &flags);
5773 /* can't set/change the rt policy */
5774 if (policy != p->policy && !rlim_rtprio)
5775 return -EPERM;
5777 /* can't increase priority */
5778 if (param->sched_priority > p->rt_priority &&
5779 param->sched_priority > rlim_rtprio)
5780 return -EPERM;
5783 * Like positive nice levels, dont allow tasks to
5784 * move out of SCHED_IDLE either:
5786 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5787 return -EPERM;
5789 /* can't change other user's priorities */
5790 if (!check_same_owner(p))
5791 return -EPERM;
5794 if (user) {
5795 #ifdef CONFIG_RT_GROUP_SCHED
5797 * Do not allow realtime tasks into groups that have no runtime
5798 * assigned.
5800 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5801 task_group(p)->rt_bandwidth.rt_runtime == 0)
5802 return -EPERM;
5803 #endif
5805 retval = security_task_setscheduler(p, policy, param);
5806 if (retval)
5807 return retval;
5811 * make sure no PI-waiters arrive (or leave) while we are
5812 * changing the priority of the task:
5814 spin_lock_irqsave(&p->pi_lock, flags);
5816 * To be able to change p->policy safely, the apropriate
5817 * runqueue lock must be held.
5819 rq = __task_rq_lock(p);
5820 /* recheck policy now with rq lock held */
5821 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5822 policy = oldpolicy = -1;
5823 __task_rq_unlock(rq);
5824 spin_unlock_irqrestore(&p->pi_lock, flags);
5825 goto recheck;
5827 update_rq_clock(rq);
5828 on_rq = p->se.on_rq;
5829 running = task_current(rq, p);
5830 if (on_rq)
5831 deactivate_task(rq, p, 0);
5832 if (running)
5833 p->sched_class->put_prev_task(rq, p);
5835 oldprio = p->prio;
5836 __setscheduler(rq, p, policy, param->sched_priority);
5838 if (running)
5839 p->sched_class->set_curr_task(rq);
5840 if (on_rq) {
5841 activate_task(rq, p, 0);
5843 check_class_changed(rq, p, prev_class, oldprio, running);
5845 __task_rq_unlock(rq);
5846 spin_unlock_irqrestore(&p->pi_lock, flags);
5848 rt_mutex_adjust_pi(p);
5850 return 0;
5854 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5855 * @p: the task in question.
5856 * @policy: new policy.
5857 * @param: structure containing the new RT priority.
5859 * NOTE that the task may be already dead.
5861 int sched_setscheduler(struct task_struct *p, int policy,
5862 struct sched_param *param)
5864 return __sched_setscheduler(p, policy, param, true);
5866 EXPORT_SYMBOL_GPL(sched_setscheduler);
5869 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5870 * @p: the task in question.
5871 * @policy: new policy.
5872 * @param: structure containing the new RT priority.
5874 * Just like sched_setscheduler, only don't bother checking if the
5875 * current context has permission. For example, this is needed in
5876 * stop_machine(): we create temporary high priority worker threads,
5877 * but our caller might not have that capability.
5879 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5880 struct sched_param *param)
5882 return __sched_setscheduler(p, policy, param, false);
5885 static int
5886 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5888 struct sched_param lparam;
5889 struct task_struct *p;
5890 int retval;
5892 if (!param || pid < 0)
5893 return -EINVAL;
5894 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5895 return -EFAULT;
5897 rcu_read_lock();
5898 retval = -ESRCH;
5899 p = find_process_by_pid(pid);
5900 if (p != NULL)
5901 retval = sched_setscheduler(p, policy, &lparam);
5902 rcu_read_unlock();
5904 return retval;
5908 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5909 * @pid: the pid in question.
5910 * @policy: new policy.
5911 * @param: structure containing the new RT priority.
5913 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5914 struct sched_param __user *, param)
5916 /* negative values for policy are not valid */
5917 if (policy < 0)
5918 return -EINVAL;
5920 return do_sched_setscheduler(pid, policy, param);
5924 * sys_sched_setparam - set/change the RT priority of a thread
5925 * @pid: the pid in question.
5926 * @param: structure containing the new RT priority.
5928 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5930 return do_sched_setscheduler(pid, -1, param);
5934 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5935 * @pid: the pid in question.
5937 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5939 struct task_struct *p;
5940 int retval;
5942 if (pid < 0)
5943 return -EINVAL;
5945 retval = -ESRCH;
5946 read_lock(&tasklist_lock);
5947 p = find_process_by_pid(pid);
5948 if (p) {
5949 retval = security_task_getscheduler(p);
5950 if (!retval)
5951 retval = p->policy;
5953 read_unlock(&tasklist_lock);
5954 return retval;
5958 * sys_sched_getscheduler - get the RT priority of a thread
5959 * @pid: the pid in question.
5960 * @param: structure containing the RT priority.
5962 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5964 struct sched_param lp;
5965 struct task_struct *p;
5966 int retval;
5968 if (!param || pid < 0)
5969 return -EINVAL;
5971 read_lock(&tasklist_lock);
5972 p = find_process_by_pid(pid);
5973 retval = -ESRCH;
5974 if (!p)
5975 goto out_unlock;
5977 retval = security_task_getscheduler(p);
5978 if (retval)
5979 goto out_unlock;
5981 lp.sched_priority = p->rt_priority;
5982 read_unlock(&tasklist_lock);
5985 * This one might sleep, we cannot do it with a spinlock held ...
5987 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5989 return retval;
5991 out_unlock:
5992 read_unlock(&tasklist_lock);
5993 return retval;
5996 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5998 cpumask_var_t cpus_allowed, new_mask;
5999 struct task_struct *p;
6000 int retval;
6002 get_online_cpus();
6003 read_lock(&tasklist_lock);
6005 p = find_process_by_pid(pid);
6006 if (!p) {
6007 read_unlock(&tasklist_lock);
6008 put_online_cpus();
6009 return -ESRCH;
6013 * It is not safe to call set_cpus_allowed with the
6014 * tasklist_lock held. We will bump the task_struct's
6015 * usage count and then drop tasklist_lock.
6017 get_task_struct(p);
6018 read_unlock(&tasklist_lock);
6020 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6021 retval = -ENOMEM;
6022 goto out_put_task;
6024 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6025 retval = -ENOMEM;
6026 goto out_free_cpus_allowed;
6028 retval = -EPERM;
6029 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6030 goto out_unlock;
6032 retval = security_task_setscheduler(p, 0, NULL);
6033 if (retval)
6034 goto out_unlock;
6036 cpuset_cpus_allowed(p, cpus_allowed);
6037 cpumask_and(new_mask, in_mask, cpus_allowed);
6038 again:
6039 retval = set_cpus_allowed_ptr(p, new_mask);
6041 if (!retval) {
6042 cpuset_cpus_allowed(p, cpus_allowed);
6043 if (!cpumask_subset(new_mask, cpus_allowed)) {
6045 * We must have raced with a concurrent cpuset
6046 * update. Just reset the cpus_allowed to the
6047 * cpuset's cpus_allowed
6049 cpumask_copy(new_mask, cpus_allowed);
6050 goto again;
6053 out_unlock:
6054 free_cpumask_var(new_mask);
6055 out_free_cpus_allowed:
6056 free_cpumask_var(cpus_allowed);
6057 out_put_task:
6058 put_task_struct(p);
6059 put_online_cpus();
6060 return retval;
6063 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6064 struct cpumask *new_mask)
6066 if (len < cpumask_size())
6067 cpumask_clear(new_mask);
6068 else if (len > cpumask_size())
6069 len = cpumask_size();
6071 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6075 * sys_sched_setaffinity - set the cpu affinity of a process
6076 * @pid: pid of the process
6077 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6078 * @user_mask_ptr: user-space pointer to the new cpu mask
6080 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6081 unsigned long __user *, user_mask_ptr)
6083 cpumask_var_t new_mask;
6084 int retval;
6086 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6087 return -ENOMEM;
6089 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6090 if (retval == 0)
6091 retval = sched_setaffinity(pid, new_mask);
6092 free_cpumask_var(new_mask);
6093 return retval;
6096 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6098 struct task_struct *p;
6099 int retval;
6101 get_online_cpus();
6102 read_lock(&tasklist_lock);
6104 retval = -ESRCH;
6105 p = find_process_by_pid(pid);
6106 if (!p)
6107 goto out_unlock;
6109 retval = security_task_getscheduler(p);
6110 if (retval)
6111 goto out_unlock;
6113 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6115 out_unlock:
6116 read_unlock(&tasklist_lock);
6117 put_online_cpus();
6119 return retval;
6123 * sys_sched_getaffinity - get the cpu affinity of a process
6124 * @pid: pid of the process
6125 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6126 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6128 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6129 unsigned long __user *, user_mask_ptr)
6131 int ret;
6132 cpumask_var_t mask;
6134 if (len < cpumask_size())
6135 return -EINVAL;
6137 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6138 return -ENOMEM;
6140 ret = sched_getaffinity(pid, mask);
6141 if (ret == 0) {
6142 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6143 ret = -EFAULT;
6144 else
6145 ret = cpumask_size();
6147 free_cpumask_var(mask);
6149 return ret;
6153 * sys_sched_yield - yield the current processor to other threads.
6155 * This function yields the current CPU to other tasks. If there are no
6156 * other threads running on this CPU then this function will return.
6158 SYSCALL_DEFINE0(sched_yield)
6160 struct rq *rq = this_rq_lock();
6162 schedstat_inc(rq, yld_count);
6163 current->sched_class->yield_task(rq);
6166 * Since we are going to call schedule() anyway, there's
6167 * no need to preempt or enable interrupts:
6169 __release(rq->lock);
6170 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6171 _raw_spin_unlock(&rq->lock);
6172 preempt_enable_no_resched();
6174 schedule();
6176 return 0;
6179 static void __cond_resched(void)
6181 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6182 __might_sleep(__FILE__, __LINE__);
6183 #endif
6185 * The BKS might be reacquired before we have dropped
6186 * PREEMPT_ACTIVE, which could trigger a second
6187 * cond_resched() call.
6189 do {
6190 add_preempt_count(PREEMPT_ACTIVE);
6191 schedule();
6192 sub_preempt_count(PREEMPT_ACTIVE);
6193 } while (need_resched());
6196 int __sched _cond_resched(void)
6198 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6199 system_state == SYSTEM_RUNNING) {
6200 __cond_resched();
6201 return 1;
6203 return 0;
6205 EXPORT_SYMBOL(_cond_resched);
6208 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6209 * call schedule, and on return reacquire the lock.
6211 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6212 * operations here to prevent schedule() from being called twice (once via
6213 * spin_unlock(), once by hand).
6215 int cond_resched_lock(spinlock_t *lock)
6217 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6218 int ret = 0;
6220 if (spin_needbreak(lock) || resched) {
6221 spin_unlock(lock);
6222 if (resched && need_resched())
6223 __cond_resched();
6224 else
6225 cpu_relax();
6226 ret = 1;
6227 spin_lock(lock);
6229 return ret;
6231 EXPORT_SYMBOL(cond_resched_lock);
6233 int __sched cond_resched_softirq(void)
6235 BUG_ON(!in_softirq());
6237 if (need_resched() && system_state == SYSTEM_RUNNING) {
6238 local_bh_enable();
6239 __cond_resched();
6240 local_bh_disable();
6241 return 1;
6243 return 0;
6245 EXPORT_SYMBOL(cond_resched_softirq);
6248 * yield - yield the current processor to other threads.
6250 * This is a shortcut for kernel-space yielding - it marks the
6251 * thread runnable and calls sys_sched_yield().
6253 void __sched yield(void)
6255 set_current_state(TASK_RUNNING);
6256 sys_sched_yield();
6258 EXPORT_SYMBOL(yield);
6261 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6262 * that process accounting knows that this is a task in IO wait state.
6264 * But don't do that if it is a deliberate, throttling IO wait (this task
6265 * has set its backing_dev_info: the queue against which it should throttle)
6267 void __sched io_schedule(void)
6269 struct rq *rq = &__raw_get_cpu_var(runqueues);
6271 delayacct_blkio_start();
6272 atomic_inc(&rq->nr_iowait);
6273 schedule();
6274 atomic_dec(&rq->nr_iowait);
6275 delayacct_blkio_end();
6277 EXPORT_SYMBOL(io_schedule);
6279 long __sched io_schedule_timeout(long timeout)
6281 struct rq *rq = &__raw_get_cpu_var(runqueues);
6282 long ret;
6284 delayacct_blkio_start();
6285 atomic_inc(&rq->nr_iowait);
6286 ret = schedule_timeout(timeout);
6287 atomic_dec(&rq->nr_iowait);
6288 delayacct_blkio_end();
6289 return ret;
6293 * sys_sched_get_priority_max - return maximum RT priority.
6294 * @policy: scheduling class.
6296 * this syscall returns the maximum rt_priority that can be used
6297 * by a given scheduling class.
6299 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6301 int ret = -EINVAL;
6303 switch (policy) {
6304 case SCHED_FIFO:
6305 case SCHED_RR:
6306 ret = MAX_USER_RT_PRIO-1;
6307 break;
6308 case SCHED_NORMAL:
6309 case SCHED_BATCH:
6310 case SCHED_IDLE:
6311 ret = 0;
6312 break;
6314 return ret;
6318 * sys_sched_get_priority_min - return minimum RT priority.
6319 * @policy: scheduling class.
6321 * this syscall returns the minimum rt_priority that can be used
6322 * by a given scheduling class.
6324 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6326 int ret = -EINVAL;
6328 switch (policy) {
6329 case SCHED_FIFO:
6330 case SCHED_RR:
6331 ret = 1;
6332 break;
6333 case SCHED_NORMAL:
6334 case SCHED_BATCH:
6335 case SCHED_IDLE:
6336 ret = 0;
6338 return ret;
6342 * sys_sched_rr_get_interval - return the default timeslice of a process.
6343 * @pid: pid of the process.
6344 * @interval: userspace pointer to the timeslice value.
6346 * this syscall writes the default timeslice value of a given process
6347 * into the user-space timespec buffer. A value of '0' means infinity.
6349 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6350 struct timespec __user *, interval)
6352 struct task_struct *p;
6353 unsigned int time_slice;
6354 int retval;
6355 struct timespec t;
6357 if (pid < 0)
6358 return -EINVAL;
6360 retval = -ESRCH;
6361 read_lock(&tasklist_lock);
6362 p = find_process_by_pid(pid);
6363 if (!p)
6364 goto out_unlock;
6366 retval = security_task_getscheduler(p);
6367 if (retval)
6368 goto out_unlock;
6371 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6372 * tasks that are on an otherwise idle runqueue:
6374 time_slice = 0;
6375 if (p->policy == SCHED_RR) {
6376 time_slice = DEF_TIMESLICE;
6377 } else if (p->policy != SCHED_FIFO) {
6378 struct sched_entity *se = &p->se;
6379 unsigned long flags;
6380 struct rq *rq;
6382 rq = task_rq_lock(p, &flags);
6383 if (rq->cfs.load.weight)
6384 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6385 task_rq_unlock(rq, &flags);
6387 read_unlock(&tasklist_lock);
6388 jiffies_to_timespec(time_slice, &t);
6389 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6390 return retval;
6392 out_unlock:
6393 read_unlock(&tasklist_lock);
6394 return retval;
6397 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6399 void sched_show_task(struct task_struct *p)
6401 unsigned long free = 0;
6402 unsigned state;
6404 state = p->state ? __ffs(p->state) + 1 : 0;
6405 printk(KERN_INFO "%-13.13s %c", p->comm,
6406 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6407 #if BITS_PER_LONG == 32
6408 if (state == TASK_RUNNING)
6409 printk(KERN_CONT " running ");
6410 else
6411 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6412 #else
6413 if (state == TASK_RUNNING)
6414 printk(KERN_CONT " running task ");
6415 else
6416 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6417 #endif
6418 #ifdef CONFIG_DEBUG_STACK_USAGE
6419 free = stack_not_used(p);
6420 #endif
6421 printk(KERN_CONT "%5lu %5d %6d\n", free,
6422 task_pid_nr(p), task_pid_nr(p->real_parent));
6424 show_stack(p, NULL);
6427 void show_state_filter(unsigned long state_filter)
6429 struct task_struct *g, *p;
6431 #if BITS_PER_LONG == 32
6432 printk(KERN_INFO
6433 " task PC stack pid father\n");
6434 #else
6435 printk(KERN_INFO
6436 " task PC stack pid father\n");
6437 #endif
6438 read_lock(&tasklist_lock);
6439 do_each_thread(g, p) {
6441 * reset the NMI-timeout, listing all files on a slow
6442 * console might take alot of time:
6444 touch_nmi_watchdog();
6445 if (!state_filter || (p->state & state_filter))
6446 sched_show_task(p);
6447 } while_each_thread(g, p);
6449 touch_all_softlockup_watchdogs();
6451 #ifdef CONFIG_SCHED_DEBUG
6452 sysrq_sched_debug_show();
6453 #endif
6454 read_unlock(&tasklist_lock);
6456 * Only show locks if all tasks are dumped:
6458 if (state_filter == -1)
6459 debug_show_all_locks();
6462 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6464 idle->sched_class = &idle_sched_class;
6468 * init_idle - set up an idle thread for a given CPU
6469 * @idle: task in question
6470 * @cpu: cpu the idle task belongs to
6472 * NOTE: this function does not set the idle thread's NEED_RESCHED
6473 * flag, to make booting more robust.
6475 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6477 struct rq *rq = cpu_rq(cpu);
6478 unsigned long flags;
6480 spin_lock_irqsave(&rq->lock, flags);
6482 __sched_fork(idle);
6483 idle->se.exec_start = sched_clock();
6485 idle->prio = idle->normal_prio = MAX_PRIO;
6486 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6487 __set_task_cpu(idle, cpu);
6489 rq->curr = rq->idle = idle;
6490 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6491 idle->oncpu = 1;
6492 #endif
6493 spin_unlock_irqrestore(&rq->lock, flags);
6495 /* Set the preempt count _outside_ the spinlocks! */
6496 #if defined(CONFIG_PREEMPT)
6497 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6498 #else
6499 task_thread_info(idle)->preempt_count = 0;
6500 #endif
6502 * The idle tasks have their own, simple scheduling class:
6504 idle->sched_class = &idle_sched_class;
6505 ftrace_graph_init_task(idle);
6509 * In a system that switches off the HZ timer nohz_cpu_mask
6510 * indicates which cpus entered this state. This is used
6511 * in the rcu update to wait only for active cpus. For system
6512 * which do not switch off the HZ timer nohz_cpu_mask should
6513 * always be CPU_BITS_NONE.
6515 cpumask_var_t nohz_cpu_mask;
6518 * Increase the granularity value when there are more CPUs,
6519 * because with more CPUs the 'effective latency' as visible
6520 * to users decreases. But the relationship is not linear,
6521 * so pick a second-best guess by going with the log2 of the
6522 * number of CPUs.
6524 * This idea comes from the SD scheduler of Con Kolivas:
6526 static inline void sched_init_granularity(void)
6528 unsigned int factor = 1 + ilog2(num_online_cpus());
6529 const unsigned long limit = 200000000;
6531 sysctl_sched_min_granularity *= factor;
6532 if (sysctl_sched_min_granularity > limit)
6533 sysctl_sched_min_granularity = limit;
6535 sysctl_sched_latency *= factor;
6536 if (sysctl_sched_latency > limit)
6537 sysctl_sched_latency = limit;
6539 sysctl_sched_wakeup_granularity *= factor;
6541 sysctl_sched_shares_ratelimit *= factor;
6544 #ifdef CONFIG_SMP
6546 * This is how migration works:
6548 * 1) we queue a struct migration_req structure in the source CPU's
6549 * runqueue and wake up that CPU's migration thread.
6550 * 2) we down() the locked semaphore => thread blocks.
6551 * 3) migration thread wakes up (implicitly it forces the migrated
6552 * thread off the CPU)
6553 * 4) it gets the migration request and checks whether the migrated
6554 * task is still in the wrong runqueue.
6555 * 5) if it's in the wrong runqueue then the migration thread removes
6556 * it and puts it into the right queue.
6557 * 6) migration thread up()s the semaphore.
6558 * 7) we wake up and the migration is done.
6562 * Change a given task's CPU affinity. Migrate the thread to a
6563 * proper CPU and schedule it away if the CPU it's executing on
6564 * is removed from the allowed bitmask.
6566 * NOTE: the caller must have a valid reference to the task, the
6567 * task must not exit() & deallocate itself prematurely. The
6568 * call is not atomic; no spinlocks may be held.
6570 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6572 struct migration_req req;
6573 unsigned long flags;
6574 struct rq *rq;
6575 int ret = 0;
6577 rq = task_rq_lock(p, &flags);
6578 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6579 ret = -EINVAL;
6580 goto out;
6583 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6584 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6585 ret = -EINVAL;
6586 goto out;
6589 if (p->sched_class->set_cpus_allowed)
6590 p->sched_class->set_cpus_allowed(p, new_mask);
6591 else {
6592 cpumask_copy(&p->cpus_allowed, new_mask);
6593 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6596 /* Can the task run on the task's current CPU? If so, we're done */
6597 if (cpumask_test_cpu(task_cpu(p), new_mask))
6598 goto out;
6600 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6601 /* Need help from migration thread: drop lock and wait. */
6602 task_rq_unlock(rq, &flags);
6603 wake_up_process(rq->migration_thread);
6604 wait_for_completion(&req.done);
6605 tlb_migrate_finish(p->mm);
6606 return 0;
6608 out:
6609 task_rq_unlock(rq, &flags);
6611 return ret;
6613 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6616 * Move (not current) task off this cpu, onto dest cpu. We're doing
6617 * this because either it can't run here any more (set_cpus_allowed()
6618 * away from this CPU, or CPU going down), or because we're
6619 * attempting to rebalance this task on exec (sched_exec).
6621 * So we race with normal scheduler movements, but that's OK, as long
6622 * as the task is no longer on this CPU.
6624 * Returns non-zero if task was successfully migrated.
6626 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6628 struct rq *rq_dest, *rq_src;
6629 int ret = 0, on_rq;
6631 if (unlikely(!cpu_active(dest_cpu)))
6632 return ret;
6634 rq_src = cpu_rq(src_cpu);
6635 rq_dest = cpu_rq(dest_cpu);
6637 double_rq_lock(rq_src, rq_dest);
6638 /* Already moved. */
6639 if (task_cpu(p) != src_cpu)
6640 goto done;
6641 /* Affinity changed (again). */
6642 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6643 goto fail;
6645 on_rq = p->se.on_rq;
6646 if (on_rq)
6647 deactivate_task(rq_src, p, 0);
6649 set_task_cpu(p, dest_cpu);
6650 if (on_rq) {
6651 activate_task(rq_dest, p, 0);
6652 check_preempt_curr(rq_dest, p, 0);
6654 done:
6655 ret = 1;
6656 fail:
6657 double_rq_unlock(rq_src, rq_dest);
6658 return ret;
6662 * migration_thread - this is a highprio system thread that performs
6663 * thread migration by bumping thread off CPU then 'pushing' onto
6664 * another runqueue.
6666 static int migration_thread(void *data)
6668 int cpu = (long)data;
6669 struct rq *rq;
6671 rq = cpu_rq(cpu);
6672 BUG_ON(rq->migration_thread != current);
6674 set_current_state(TASK_INTERRUPTIBLE);
6675 while (!kthread_should_stop()) {
6676 struct migration_req *req;
6677 struct list_head *head;
6679 spin_lock_irq(&rq->lock);
6681 if (cpu_is_offline(cpu)) {
6682 spin_unlock_irq(&rq->lock);
6683 goto wait_to_die;
6686 if (rq->active_balance) {
6687 active_load_balance(rq, cpu);
6688 rq->active_balance = 0;
6691 head = &rq->migration_queue;
6693 if (list_empty(head)) {
6694 spin_unlock_irq(&rq->lock);
6695 schedule();
6696 set_current_state(TASK_INTERRUPTIBLE);
6697 continue;
6699 req = list_entry(head->next, struct migration_req, list);
6700 list_del_init(head->next);
6702 spin_unlock(&rq->lock);
6703 __migrate_task(req->task, cpu, req->dest_cpu);
6704 local_irq_enable();
6706 complete(&req->done);
6708 __set_current_state(TASK_RUNNING);
6709 return 0;
6711 wait_to_die:
6712 /* Wait for kthread_stop */
6713 set_current_state(TASK_INTERRUPTIBLE);
6714 while (!kthread_should_stop()) {
6715 schedule();
6716 set_current_state(TASK_INTERRUPTIBLE);
6718 __set_current_state(TASK_RUNNING);
6719 return 0;
6722 #ifdef CONFIG_HOTPLUG_CPU
6724 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6726 int ret;
6728 local_irq_disable();
6729 ret = __migrate_task(p, src_cpu, dest_cpu);
6730 local_irq_enable();
6731 return ret;
6735 * Figure out where task on dead CPU should go, use force if necessary.
6737 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6739 int dest_cpu;
6740 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6742 again:
6743 /* Look for allowed, online CPU in same node. */
6744 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6745 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6746 goto move;
6748 /* Any allowed, online CPU? */
6749 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6750 if (dest_cpu < nr_cpu_ids)
6751 goto move;
6753 /* No more Mr. Nice Guy. */
6754 if (dest_cpu >= nr_cpu_ids) {
6755 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6756 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6759 * Don't tell them about moving exiting tasks or
6760 * kernel threads (both mm NULL), since they never
6761 * leave kernel.
6763 if (p->mm && printk_ratelimit()) {
6764 printk(KERN_INFO "process %d (%s) no "
6765 "longer affine to cpu%d\n",
6766 task_pid_nr(p), p->comm, dead_cpu);
6770 move:
6771 /* It can have affinity changed while we were choosing. */
6772 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6773 goto again;
6777 * While a dead CPU has no uninterruptible tasks queued at this point,
6778 * it might still have a nonzero ->nr_uninterruptible counter, because
6779 * for performance reasons the counter is not stricly tracking tasks to
6780 * their home CPUs. So we just add the counter to another CPU's counter,
6781 * to keep the global sum constant after CPU-down:
6783 static void migrate_nr_uninterruptible(struct rq *rq_src)
6785 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6786 unsigned long flags;
6788 local_irq_save(flags);
6789 double_rq_lock(rq_src, rq_dest);
6790 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6791 rq_src->nr_uninterruptible = 0;
6792 double_rq_unlock(rq_src, rq_dest);
6793 local_irq_restore(flags);
6796 /* Run through task list and migrate tasks from the dead cpu. */
6797 static void migrate_live_tasks(int src_cpu)
6799 struct task_struct *p, *t;
6801 read_lock(&tasklist_lock);
6803 do_each_thread(t, p) {
6804 if (p == current)
6805 continue;
6807 if (task_cpu(p) == src_cpu)
6808 move_task_off_dead_cpu(src_cpu, p);
6809 } while_each_thread(t, p);
6811 read_unlock(&tasklist_lock);
6815 * Schedules idle task to be the next runnable task on current CPU.
6816 * It does so by boosting its priority to highest possible.
6817 * Used by CPU offline code.
6819 void sched_idle_next(void)
6821 int this_cpu = smp_processor_id();
6822 struct rq *rq = cpu_rq(this_cpu);
6823 struct task_struct *p = rq->idle;
6824 unsigned long flags;
6826 /* cpu has to be offline */
6827 BUG_ON(cpu_online(this_cpu));
6830 * Strictly not necessary since rest of the CPUs are stopped by now
6831 * and interrupts disabled on the current cpu.
6833 spin_lock_irqsave(&rq->lock, flags);
6835 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6837 update_rq_clock(rq);
6838 activate_task(rq, p, 0);
6840 spin_unlock_irqrestore(&rq->lock, flags);
6844 * Ensures that the idle task is using init_mm right before its cpu goes
6845 * offline.
6847 void idle_task_exit(void)
6849 struct mm_struct *mm = current->active_mm;
6851 BUG_ON(cpu_online(smp_processor_id()));
6853 if (mm != &init_mm)
6854 switch_mm(mm, &init_mm, current);
6855 mmdrop(mm);
6858 /* called under rq->lock with disabled interrupts */
6859 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6861 struct rq *rq = cpu_rq(dead_cpu);
6863 /* Must be exiting, otherwise would be on tasklist. */
6864 BUG_ON(!p->exit_state);
6866 /* Cannot have done final schedule yet: would have vanished. */
6867 BUG_ON(p->state == TASK_DEAD);
6869 get_task_struct(p);
6872 * Drop lock around migration; if someone else moves it,
6873 * that's OK. No task can be added to this CPU, so iteration is
6874 * fine.
6876 spin_unlock_irq(&rq->lock);
6877 move_task_off_dead_cpu(dead_cpu, p);
6878 spin_lock_irq(&rq->lock);
6880 put_task_struct(p);
6883 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6884 static void migrate_dead_tasks(unsigned int dead_cpu)
6886 struct rq *rq = cpu_rq(dead_cpu);
6887 struct task_struct *next;
6889 for ( ; ; ) {
6890 if (!rq->nr_running)
6891 break;
6892 update_rq_clock(rq);
6893 next = pick_next_task(rq);
6894 if (!next)
6895 break;
6896 next->sched_class->put_prev_task(rq, next);
6897 migrate_dead(dead_cpu, next);
6901 #endif /* CONFIG_HOTPLUG_CPU */
6903 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6905 static struct ctl_table sd_ctl_dir[] = {
6907 .procname = "sched_domain",
6908 .mode = 0555,
6910 {0, },
6913 static struct ctl_table sd_ctl_root[] = {
6915 .ctl_name = CTL_KERN,
6916 .procname = "kernel",
6917 .mode = 0555,
6918 .child = sd_ctl_dir,
6920 {0, },
6923 static struct ctl_table *sd_alloc_ctl_entry(int n)
6925 struct ctl_table *entry =
6926 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6928 return entry;
6931 static void sd_free_ctl_entry(struct ctl_table **tablep)
6933 struct ctl_table *entry;
6936 * In the intermediate directories, both the child directory and
6937 * procname are dynamically allocated and could fail but the mode
6938 * will always be set. In the lowest directory the names are
6939 * static strings and all have proc handlers.
6941 for (entry = *tablep; entry->mode; entry++) {
6942 if (entry->child)
6943 sd_free_ctl_entry(&entry->child);
6944 if (entry->proc_handler == NULL)
6945 kfree(entry->procname);
6948 kfree(*tablep);
6949 *tablep = NULL;
6952 static void
6953 set_table_entry(struct ctl_table *entry,
6954 const char *procname, void *data, int maxlen,
6955 mode_t mode, proc_handler *proc_handler)
6957 entry->procname = procname;
6958 entry->data = data;
6959 entry->maxlen = maxlen;
6960 entry->mode = mode;
6961 entry->proc_handler = proc_handler;
6964 static struct ctl_table *
6965 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6967 struct ctl_table *table = sd_alloc_ctl_entry(13);
6969 if (table == NULL)
6970 return NULL;
6972 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6973 sizeof(long), 0644, proc_doulongvec_minmax);
6974 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6975 sizeof(long), 0644, proc_doulongvec_minmax);
6976 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6977 sizeof(int), 0644, proc_dointvec_minmax);
6978 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6979 sizeof(int), 0644, proc_dointvec_minmax);
6980 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6981 sizeof(int), 0644, proc_dointvec_minmax);
6982 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6983 sizeof(int), 0644, proc_dointvec_minmax);
6984 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6985 sizeof(int), 0644, proc_dointvec_minmax);
6986 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6987 sizeof(int), 0644, proc_dointvec_minmax);
6988 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6989 sizeof(int), 0644, proc_dointvec_minmax);
6990 set_table_entry(&table[9], "cache_nice_tries",
6991 &sd->cache_nice_tries,
6992 sizeof(int), 0644, proc_dointvec_minmax);
6993 set_table_entry(&table[10], "flags", &sd->flags,
6994 sizeof(int), 0644, proc_dointvec_minmax);
6995 set_table_entry(&table[11], "name", sd->name,
6996 CORENAME_MAX_SIZE, 0444, proc_dostring);
6997 /* &table[12] is terminator */
6999 return table;
7002 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7004 struct ctl_table *entry, *table;
7005 struct sched_domain *sd;
7006 int domain_num = 0, i;
7007 char buf[32];
7009 for_each_domain(cpu, sd)
7010 domain_num++;
7011 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7012 if (table == NULL)
7013 return NULL;
7015 i = 0;
7016 for_each_domain(cpu, sd) {
7017 snprintf(buf, 32, "domain%d", i);
7018 entry->procname = kstrdup(buf, GFP_KERNEL);
7019 entry->mode = 0555;
7020 entry->child = sd_alloc_ctl_domain_table(sd);
7021 entry++;
7022 i++;
7024 return table;
7027 static struct ctl_table_header *sd_sysctl_header;
7028 static void register_sched_domain_sysctl(void)
7030 int i, cpu_num = num_online_cpus();
7031 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7032 char buf[32];
7034 WARN_ON(sd_ctl_dir[0].child);
7035 sd_ctl_dir[0].child = entry;
7037 if (entry == NULL)
7038 return;
7040 for_each_online_cpu(i) {
7041 snprintf(buf, 32, "cpu%d", i);
7042 entry->procname = kstrdup(buf, GFP_KERNEL);
7043 entry->mode = 0555;
7044 entry->child = sd_alloc_ctl_cpu_table(i);
7045 entry++;
7048 WARN_ON(sd_sysctl_header);
7049 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7052 /* may be called multiple times per register */
7053 static void unregister_sched_domain_sysctl(void)
7055 if (sd_sysctl_header)
7056 unregister_sysctl_table(sd_sysctl_header);
7057 sd_sysctl_header = NULL;
7058 if (sd_ctl_dir[0].child)
7059 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7061 #else
7062 static void register_sched_domain_sysctl(void)
7065 static void unregister_sched_domain_sysctl(void)
7068 #endif
7070 static void set_rq_online(struct rq *rq)
7072 if (!rq->online) {
7073 const struct sched_class *class;
7075 cpumask_set_cpu(rq->cpu, rq->rd->online);
7076 rq->online = 1;
7078 for_each_class(class) {
7079 if (class->rq_online)
7080 class->rq_online(rq);
7085 static void set_rq_offline(struct rq *rq)
7087 if (rq->online) {
7088 const struct sched_class *class;
7090 for_each_class(class) {
7091 if (class->rq_offline)
7092 class->rq_offline(rq);
7095 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7096 rq->online = 0;
7101 * migration_call - callback that gets triggered when a CPU is added.
7102 * Here we can start up the necessary migration thread for the new CPU.
7104 static int __cpuinit
7105 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7107 struct task_struct *p;
7108 int cpu = (long)hcpu;
7109 unsigned long flags;
7110 struct rq *rq;
7112 switch (action) {
7114 case CPU_UP_PREPARE:
7115 case CPU_UP_PREPARE_FROZEN:
7116 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7117 if (IS_ERR(p))
7118 return NOTIFY_BAD;
7119 kthread_bind(p, cpu);
7120 /* Must be high prio: stop_machine expects to yield to it. */
7121 rq = task_rq_lock(p, &flags);
7122 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7123 task_rq_unlock(rq, &flags);
7124 cpu_rq(cpu)->migration_thread = p;
7125 break;
7127 case CPU_ONLINE:
7128 case CPU_ONLINE_FROZEN:
7129 /* Strictly unnecessary, as first user will wake it. */
7130 wake_up_process(cpu_rq(cpu)->migration_thread);
7132 /* Update our root-domain */
7133 rq = cpu_rq(cpu);
7134 spin_lock_irqsave(&rq->lock, flags);
7135 if (rq->rd) {
7136 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7138 set_rq_online(rq);
7140 spin_unlock_irqrestore(&rq->lock, flags);
7141 break;
7143 #ifdef CONFIG_HOTPLUG_CPU
7144 case CPU_UP_CANCELED:
7145 case CPU_UP_CANCELED_FROZEN:
7146 if (!cpu_rq(cpu)->migration_thread)
7147 break;
7148 /* Unbind it from offline cpu so it can run. Fall thru. */
7149 kthread_bind(cpu_rq(cpu)->migration_thread,
7150 cpumask_any(cpu_online_mask));
7151 kthread_stop(cpu_rq(cpu)->migration_thread);
7152 cpu_rq(cpu)->migration_thread = NULL;
7153 break;
7155 case CPU_DEAD:
7156 case CPU_DEAD_FROZEN:
7157 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7158 migrate_live_tasks(cpu);
7159 rq = cpu_rq(cpu);
7160 kthread_stop(rq->migration_thread);
7161 rq->migration_thread = NULL;
7162 /* Idle task back to normal (off runqueue, low prio) */
7163 spin_lock_irq(&rq->lock);
7164 update_rq_clock(rq);
7165 deactivate_task(rq, rq->idle, 0);
7166 rq->idle->static_prio = MAX_PRIO;
7167 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7168 rq->idle->sched_class = &idle_sched_class;
7169 migrate_dead_tasks(cpu);
7170 spin_unlock_irq(&rq->lock);
7171 cpuset_unlock();
7172 migrate_nr_uninterruptible(rq);
7173 BUG_ON(rq->nr_running != 0);
7176 * No need to migrate the tasks: it was best-effort if
7177 * they didn't take sched_hotcpu_mutex. Just wake up
7178 * the requestors.
7180 spin_lock_irq(&rq->lock);
7181 while (!list_empty(&rq->migration_queue)) {
7182 struct migration_req *req;
7184 req = list_entry(rq->migration_queue.next,
7185 struct migration_req, list);
7186 list_del_init(&req->list);
7187 spin_unlock_irq(&rq->lock);
7188 complete(&req->done);
7189 spin_lock_irq(&rq->lock);
7191 spin_unlock_irq(&rq->lock);
7192 break;
7194 case CPU_DYING:
7195 case CPU_DYING_FROZEN:
7196 /* Update our root-domain */
7197 rq = cpu_rq(cpu);
7198 spin_lock_irqsave(&rq->lock, flags);
7199 if (rq->rd) {
7200 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7201 set_rq_offline(rq);
7203 spin_unlock_irqrestore(&rq->lock, flags);
7204 break;
7205 #endif
7207 return NOTIFY_OK;
7210 /* Register at highest priority so that task migration (migrate_all_tasks)
7211 * happens before everything else.
7213 static struct notifier_block __cpuinitdata migration_notifier = {
7214 .notifier_call = migration_call,
7215 .priority = 10
7218 static int __init migration_init(void)
7220 void *cpu = (void *)(long)smp_processor_id();
7221 int err;
7223 /* Start one for the boot CPU: */
7224 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7225 BUG_ON(err == NOTIFY_BAD);
7226 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7227 register_cpu_notifier(&migration_notifier);
7229 return err;
7231 early_initcall(migration_init);
7232 #endif
7234 #ifdef CONFIG_SMP
7236 #ifdef CONFIG_SCHED_DEBUG
7238 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7239 struct cpumask *groupmask)
7241 struct sched_group *group = sd->groups;
7242 char str[256];
7244 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7245 cpumask_clear(groupmask);
7247 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7249 if (!(sd->flags & SD_LOAD_BALANCE)) {
7250 printk("does not load-balance\n");
7251 if (sd->parent)
7252 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7253 " has parent");
7254 return -1;
7257 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7259 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7260 printk(KERN_ERR "ERROR: domain->span does not contain "
7261 "CPU%d\n", cpu);
7263 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7264 printk(KERN_ERR "ERROR: domain->groups does not contain"
7265 " CPU%d\n", cpu);
7268 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7269 do {
7270 if (!group) {
7271 printk("\n");
7272 printk(KERN_ERR "ERROR: group is NULL\n");
7273 break;
7276 if (!group->__cpu_power) {
7277 printk(KERN_CONT "\n");
7278 printk(KERN_ERR "ERROR: domain->cpu_power not "
7279 "set\n");
7280 break;
7283 if (!cpumask_weight(sched_group_cpus(group))) {
7284 printk(KERN_CONT "\n");
7285 printk(KERN_ERR "ERROR: empty group\n");
7286 break;
7289 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7290 printk(KERN_CONT "\n");
7291 printk(KERN_ERR "ERROR: repeated CPUs\n");
7292 break;
7295 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7297 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7298 printk(KERN_CONT " %s", str);
7300 group = group->next;
7301 } while (group != sd->groups);
7302 printk(KERN_CONT "\n");
7304 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7305 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7307 if (sd->parent &&
7308 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7309 printk(KERN_ERR "ERROR: parent span is not a superset "
7310 "of domain->span\n");
7311 return 0;
7314 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7316 cpumask_var_t groupmask;
7317 int level = 0;
7319 if (!sd) {
7320 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7321 return;
7324 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7326 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7327 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7328 return;
7331 for (;;) {
7332 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7333 break;
7334 level++;
7335 sd = sd->parent;
7336 if (!sd)
7337 break;
7339 free_cpumask_var(groupmask);
7341 #else /* !CONFIG_SCHED_DEBUG */
7342 # define sched_domain_debug(sd, cpu) do { } while (0)
7343 #endif /* CONFIG_SCHED_DEBUG */
7345 static int sd_degenerate(struct sched_domain *sd)
7347 if (cpumask_weight(sched_domain_span(sd)) == 1)
7348 return 1;
7350 /* Following flags need at least 2 groups */
7351 if (sd->flags & (SD_LOAD_BALANCE |
7352 SD_BALANCE_NEWIDLE |
7353 SD_BALANCE_FORK |
7354 SD_BALANCE_EXEC |
7355 SD_SHARE_CPUPOWER |
7356 SD_SHARE_PKG_RESOURCES)) {
7357 if (sd->groups != sd->groups->next)
7358 return 0;
7361 /* Following flags don't use groups */
7362 if (sd->flags & (SD_WAKE_IDLE |
7363 SD_WAKE_AFFINE |
7364 SD_WAKE_BALANCE))
7365 return 0;
7367 return 1;
7370 static int
7371 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7373 unsigned long cflags = sd->flags, pflags = parent->flags;
7375 if (sd_degenerate(parent))
7376 return 1;
7378 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7379 return 0;
7381 /* Does parent contain flags not in child? */
7382 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7383 if (cflags & SD_WAKE_AFFINE)
7384 pflags &= ~SD_WAKE_BALANCE;
7385 /* Flags needing groups don't count if only 1 group in parent */
7386 if (parent->groups == parent->groups->next) {
7387 pflags &= ~(SD_LOAD_BALANCE |
7388 SD_BALANCE_NEWIDLE |
7389 SD_BALANCE_FORK |
7390 SD_BALANCE_EXEC |
7391 SD_SHARE_CPUPOWER |
7392 SD_SHARE_PKG_RESOURCES);
7393 if (nr_node_ids == 1)
7394 pflags &= ~SD_SERIALIZE;
7396 if (~cflags & pflags)
7397 return 0;
7399 return 1;
7402 static void free_rootdomain(struct root_domain *rd)
7404 cpupri_cleanup(&rd->cpupri);
7406 free_cpumask_var(rd->rto_mask);
7407 free_cpumask_var(rd->online);
7408 free_cpumask_var(rd->span);
7409 kfree(rd);
7412 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7414 struct root_domain *old_rd = NULL;
7415 unsigned long flags;
7417 spin_lock_irqsave(&rq->lock, flags);
7419 if (rq->rd) {
7420 old_rd = rq->rd;
7422 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7423 set_rq_offline(rq);
7425 cpumask_clear_cpu(rq->cpu, old_rd->span);
7428 * If we dont want to free the old_rt yet then
7429 * set old_rd to NULL to skip the freeing later
7430 * in this function:
7432 if (!atomic_dec_and_test(&old_rd->refcount))
7433 old_rd = NULL;
7436 atomic_inc(&rd->refcount);
7437 rq->rd = rd;
7439 cpumask_set_cpu(rq->cpu, rd->span);
7440 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7441 set_rq_online(rq);
7443 spin_unlock_irqrestore(&rq->lock, flags);
7445 if (old_rd)
7446 free_rootdomain(old_rd);
7449 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7451 memset(rd, 0, sizeof(*rd));
7453 if (bootmem) {
7454 alloc_bootmem_cpumask_var(&def_root_domain.span);
7455 alloc_bootmem_cpumask_var(&def_root_domain.online);
7456 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7457 cpupri_init(&rd->cpupri, true);
7458 return 0;
7461 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7462 goto out;
7463 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7464 goto free_span;
7465 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7466 goto free_online;
7468 if (cpupri_init(&rd->cpupri, false) != 0)
7469 goto free_rto_mask;
7470 return 0;
7472 free_rto_mask:
7473 free_cpumask_var(rd->rto_mask);
7474 free_online:
7475 free_cpumask_var(rd->online);
7476 free_span:
7477 free_cpumask_var(rd->span);
7478 out:
7479 return -ENOMEM;
7482 static void init_defrootdomain(void)
7484 init_rootdomain(&def_root_domain, true);
7486 atomic_set(&def_root_domain.refcount, 1);
7489 static struct root_domain *alloc_rootdomain(void)
7491 struct root_domain *rd;
7493 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7494 if (!rd)
7495 return NULL;
7497 if (init_rootdomain(rd, false) != 0) {
7498 kfree(rd);
7499 return NULL;
7502 return rd;
7506 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7507 * hold the hotplug lock.
7509 static void
7510 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7512 struct rq *rq = cpu_rq(cpu);
7513 struct sched_domain *tmp;
7515 /* Remove the sched domains which do not contribute to scheduling. */
7516 for (tmp = sd; tmp; ) {
7517 struct sched_domain *parent = tmp->parent;
7518 if (!parent)
7519 break;
7521 if (sd_parent_degenerate(tmp, parent)) {
7522 tmp->parent = parent->parent;
7523 if (parent->parent)
7524 parent->parent->child = tmp;
7525 } else
7526 tmp = tmp->parent;
7529 if (sd && sd_degenerate(sd)) {
7530 sd = sd->parent;
7531 if (sd)
7532 sd->child = NULL;
7535 sched_domain_debug(sd, cpu);
7537 rq_attach_root(rq, rd);
7538 rcu_assign_pointer(rq->sd, sd);
7541 /* cpus with isolated domains */
7542 static cpumask_var_t cpu_isolated_map;
7544 /* Setup the mask of cpus configured for isolated domains */
7545 static int __init isolated_cpu_setup(char *str)
7547 cpulist_parse(str, cpu_isolated_map);
7548 return 1;
7551 __setup("isolcpus=", isolated_cpu_setup);
7554 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7555 * to a function which identifies what group(along with sched group) a CPU
7556 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7557 * (due to the fact that we keep track of groups covered with a struct cpumask).
7559 * init_sched_build_groups will build a circular linked list of the groups
7560 * covered by the given span, and will set each group's ->cpumask correctly,
7561 * and ->cpu_power to 0.
7563 static void
7564 init_sched_build_groups(const struct cpumask *span,
7565 const struct cpumask *cpu_map,
7566 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7567 struct sched_group **sg,
7568 struct cpumask *tmpmask),
7569 struct cpumask *covered, struct cpumask *tmpmask)
7571 struct sched_group *first = NULL, *last = NULL;
7572 int i;
7574 cpumask_clear(covered);
7576 for_each_cpu(i, span) {
7577 struct sched_group *sg;
7578 int group = group_fn(i, cpu_map, &sg, tmpmask);
7579 int j;
7581 if (cpumask_test_cpu(i, covered))
7582 continue;
7584 cpumask_clear(sched_group_cpus(sg));
7585 sg->__cpu_power = 0;
7587 for_each_cpu(j, span) {
7588 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7589 continue;
7591 cpumask_set_cpu(j, covered);
7592 cpumask_set_cpu(j, sched_group_cpus(sg));
7594 if (!first)
7595 first = sg;
7596 if (last)
7597 last->next = sg;
7598 last = sg;
7600 last->next = first;
7603 #define SD_NODES_PER_DOMAIN 16
7605 #ifdef CONFIG_NUMA
7608 * find_next_best_node - find the next node to include in a sched_domain
7609 * @node: node whose sched_domain we're building
7610 * @used_nodes: nodes already in the sched_domain
7612 * Find the next node to include in a given scheduling domain. Simply
7613 * finds the closest node not already in the @used_nodes map.
7615 * Should use nodemask_t.
7617 static int find_next_best_node(int node, nodemask_t *used_nodes)
7619 int i, n, val, min_val, best_node = 0;
7621 min_val = INT_MAX;
7623 for (i = 0; i < nr_node_ids; i++) {
7624 /* Start at @node */
7625 n = (node + i) % nr_node_ids;
7627 if (!nr_cpus_node(n))
7628 continue;
7630 /* Skip already used nodes */
7631 if (node_isset(n, *used_nodes))
7632 continue;
7634 /* Simple min distance search */
7635 val = node_distance(node, n);
7637 if (val < min_val) {
7638 min_val = val;
7639 best_node = n;
7643 node_set(best_node, *used_nodes);
7644 return best_node;
7648 * sched_domain_node_span - get a cpumask for a node's sched_domain
7649 * @node: node whose cpumask we're constructing
7650 * @span: resulting cpumask
7652 * Given a node, construct a good cpumask for its sched_domain to span. It
7653 * should be one that prevents unnecessary balancing, but also spreads tasks
7654 * out optimally.
7656 static void sched_domain_node_span(int node, struct cpumask *span)
7658 nodemask_t used_nodes;
7659 int i;
7661 cpumask_clear(span);
7662 nodes_clear(used_nodes);
7664 cpumask_or(span, span, cpumask_of_node(node));
7665 node_set(node, used_nodes);
7667 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7668 int next_node = find_next_best_node(node, &used_nodes);
7670 cpumask_or(span, span, cpumask_of_node(next_node));
7673 #endif /* CONFIG_NUMA */
7675 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7678 * The cpus mask in sched_group and sched_domain hangs off the end.
7679 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7680 * for nr_cpu_ids < CONFIG_NR_CPUS.
7682 struct static_sched_group {
7683 struct sched_group sg;
7684 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7687 struct static_sched_domain {
7688 struct sched_domain sd;
7689 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7693 * SMT sched-domains:
7695 #ifdef CONFIG_SCHED_SMT
7696 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7697 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7699 static int
7700 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7701 struct sched_group **sg, struct cpumask *unused)
7703 if (sg)
7704 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7705 return cpu;
7707 #endif /* CONFIG_SCHED_SMT */
7710 * multi-core sched-domains:
7712 #ifdef CONFIG_SCHED_MC
7713 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7714 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7715 #endif /* CONFIG_SCHED_MC */
7717 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7718 static int
7719 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7720 struct sched_group **sg, struct cpumask *mask)
7722 int group;
7724 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7725 group = cpumask_first(mask);
7726 if (sg)
7727 *sg = &per_cpu(sched_group_core, group).sg;
7728 return group;
7730 #elif defined(CONFIG_SCHED_MC)
7731 static int
7732 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7733 struct sched_group **sg, struct cpumask *unused)
7735 if (sg)
7736 *sg = &per_cpu(sched_group_core, cpu).sg;
7737 return cpu;
7739 #endif
7741 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7742 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7744 static int
7745 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7746 struct sched_group **sg, struct cpumask *mask)
7748 int group;
7749 #ifdef CONFIG_SCHED_MC
7750 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7751 group = cpumask_first(mask);
7752 #elif defined(CONFIG_SCHED_SMT)
7753 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7754 group = cpumask_first(mask);
7755 #else
7756 group = cpu;
7757 #endif
7758 if (sg)
7759 *sg = &per_cpu(sched_group_phys, group).sg;
7760 return group;
7763 #ifdef CONFIG_NUMA
7765 * The init_sched_build_groups can't handle what we want to do with node
7766 * groups, so roll our own. Now each node has its own list of groups which
7767 * gets dynamically allocated.
7769 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7770 static struct sched_group ***sched_group_nodes_bycpu;
7772 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7773 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7775 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7776 struct sched_group **sg,
7777 struct cpumask *nodemask)
7779 int group;
7781 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7782 group = cpumask_first(nodemask);
7784 if (sg)
7785 *sg = &per_cpu(sched_group_allnodes, group).sg;
7786 return group;
7789 static void init_numa_sched_groups_power(struct sched_group *group_head)
7791 struct sched_group *sg = group_head;
7792 int j;
7794 if (!sg)
7795 return;
7796 do {
7797 for_each_cpu(j, sched_group_cpus(sg)) {
7798 struct sched_domain *sd;
7800 sd = &per_cpu(phys_domains, j).sd;
7801 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7803 * Only add "power" once for each
7804 * physical package.
7806 continue;
7809 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7811 sg = sg->next;
7812 } while (sg != group_head);
7814 #endif /* CONFIG_NUMA */
7816 #ifdef CONFIG_NUMA
7817 /* Free memory allocated for various sched_group structures */
7818 static void free_sched_groups(const struct cpumask *cpu_map,
7819 struct cpumask *nodemask)
7821 int cpu, i;
7823 for_each_cpu(cpu, cpu_map) {
7824 struct sched_group **sched_group_nodes
7825 = sched_group_nodes_bycpu[cpu];
7827 if (!sched_group_nodes)
7828 continue;
7830 for (i = 0; i < nr_node_ids; i++) {
7831 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7833 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7834 if (cpumask_empty(nodemask))
7835 continue;
7837 if (sg == NULL)
7838 continue;
7839 sg = sg->next;
7840 next_sg:
7841 oldsg = sg;
7842 sg = sg->next;
7843 kfree(oldsg);
7844 if (oldsg != sched_group_nodes[i])
7845 goto next_sg;
7847 kfree(sched_group_nodes);
7848 sched_group_nodes_bycpu[cpu] = NULL;
7851 #else /* !CONFIG_NUMA */
7852 static void free_sched_groups(const struct cpumask *cpu_map,
7853 struct cpumask *nodemask)
7856 #endif /* CONFIG_NUMA */
7859 * Initialize sched groups cpu_power.
7861 * cpu_power indicates the capacity of sched group, which is used while
7862 * distributing the load between different sched groups in a sched domain.
7863 * Typically cpu_power for all the groups in a sched domain will be same unless
7864 * there are asymmetries in the topology. If there are asymmetries, group
7865 * having more cpu_power will pickup more load compared to the group having
7866 * less cpu_power.
7868 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7869 * the maximum number of tasks a group can handle in the presence of other idle
7870 * or lightly loaded groups in the same sched domain.
7872 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7874 struct sched_domain *child;
7875 struct sched_group *group;
7877 WARN_ON(!sd || !sd->groups);
7879 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7880 return;
7882 child = sd->child;
7884 sd->groups->__cpu_power = 0;
7887 * For perf policy, if the groups in child domain share resources
7888 * (for example cores sharing some portions of the cache hierarchy
7889 * or SMT), then set this domain groups cpu_power such that each group
7890 * can handle only one task, when there are other idle groups in the
7891 * same sched domain.
7893 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7894 (child->flags &
7895 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7896 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7897 return;
7901 * add cpu_power of each child group to this groups cpu_power
7903 group = child->groups;
7904 do {
7905 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7906 group = group->next;
7907 } while (group != child->groups);
7911 * Initializers for schedule domains
7912 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7915 #ifdef CONFIG_SCHED_DEBUG
7916 # define SD_INIT_NAME(sd, type) sd->name = #type
7917 #else
7918 # define SD_INIT_NAME(sd, type) do { } while (0)
7919 #endif
7921 #define SD_INIT(sd, type) sd_init_##type(sd)
7923 #define SD_INIT_FUNC(type) \
7924 static noinline void sd_init_##type(struct sched_domain *sd) \
7926 memset(sd, 0, sizeof(*sd)); \
7927 *sd = SD_##type##_INIT; \
7928 sd->level = SD_LV_##type; \
7929 SD_INIT_NAME(sd, type); \
7932 SD_INIT_FUNC(CPU)
7933 #ifdef CONFIG_NUMA
7934 SD_INIT_FUNC(ALLNODES)
7935 SD_INIT_FUNC(NODE)
7936 #endif
7937 #ifdef CONFIG_SCHED_SMT
7938 SD_INIT_FUNC(SIBLING)
7939 #endif
7940 #ifdef CONFIG_SCHED_MC
7941 SD_INIT_FUNC(MC)
7942 #endif
7944 static int default_relax_domain_level = -1;
7946 static int __init setup_relax_domain_level(char *str)
7948 unsigned long val;
7950 val = simple_strtoul(str, NULL, 0);
7951 if (val < SD_LV_MAX)
7952 default_relax_domain_level = val;
7954 return 1;
7956 __setup("relax_domain_level=", setup_relax_domain_level);
7958 static void set_domain_attribute(struct sched_domain *sd,
7959 struct sched_domain_attr *attr)
7961 int request;
7963 if (!attr || attr->relax_domain_level < 0) {
7964 if (default_relax_domain_level < 0)
7965 return;
7966 else
7967 request = default_relax_domain_level;
7968 } else
7969 request = attr->relax_domain_level;
7970 if (request < sd->level) {
7971 /* turn off idle balance on this domain */
7972 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7973 } else {
7974 /* turn on idle balance on this domain */
7975 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7980 * Build sched domains for a given set of cpus and attach the sched domains
7981 * to the individual cpus
7983 static int __build_sched_domains(const struct cpumask *cpu_map,
7984 struct sched_domain_attr *attr)
7986 int i, err = -ENOMEM;
7987 struct root_domain *rd;
7988 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7989 tmpmask;
7990 #ifdef CONFIG_NUMA
7991 cpumask_var_t domainspan, covered, notcovered;
7992 struct sched_group **sched_group_nodes = NULL;
7993 int sd_allnodes = 0;
7995 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7996 goto out;
7997 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7998 goto free_domainspan;
7999 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8000 goto free_covered;
8001 #endif
8003 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8004 goto free_notcovered;
8005 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8006 goto free_nodemask;
8007 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8008 goto free_this_sibling_map;
8009 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8010 goto free_this_core_map;
8011 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8012 goto free_send_covered;
8014 #ifdef CONFIG_NUMA
8016 * Allocate the per-node list of sched groups
8018 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8019 GFP_KERNEL);
8020 if (!sched_group_nodes) {
8021 printk(KERN_WARNING "Can not alloc sched group node list\n");
8022 goto free_tmpmask;
8024 #endif
8026 rd = alloc_rootdomain();
8027 if (!rd) {
8028 printk(KERN_WARNING "Cannot alloc root domain\n");
8029 goto free_sched_groups;
8032 #ifdef CONFIG_NUMA
8033 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8034 #endif
8037 * Set up domains for cpus specified by the cpu_map.
8039 for_each_cpu(i, cpu_map) {
8040 struct sched_domain *sd = NULL, *p;
8042 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8044 #ifdef CONFIG_NUMA
8045 if (cpumask_weight(cpu_map) >
8046 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8047 sd = &per_cpu(allnodes_domains, i).sd;
8048 SD_INIT(sd, ALLNODES);
8049 set_domain_attribute(sd, attr);
8050 cpumask_copy(sched_domain_span(sd), cpu_map);
8051 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8052 p = sd;
8053 sd_allnodes = 1;
8054 } else
8055 p = NULL;
8057 sd = &per_cpu(node_domains, i).sd;
8058 SD_INIT(sd, NODE);
8059 set_domain_attribute(sd, attr);
8060 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8061 sd->parent = p;
8062 if (p)
8063 p->child = sd;
8064 cpumask_and(sched_domain_span(sd),
8065 sched_domain_span(sd), cpu_map);
8066 #endif
8068 p = sd;
8069 sd = &per_cpu(phys_domains, i).sd;
8070 SD_INIT(sd, CPU);
8071 set_domain_attribute(sd, attr);
8072 cpumask_copy(sched_domain_span(sd), nodemask);
8073 sd->parent = p;
8074 if (p)
8075 p->child = sd;
8076 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8078 #ifdef CONFIG_SCHED_MC
8079 p = sd;
8080 sd = &per_cpu(core_domains, i).sd;
8081 SD_INIT(sd, MC);
8082 set_domain_attribute(sd, attr);
8083 cpumask_and(sched_domain_span(sd), cpu_map,
8084 cpu_coregroup_mask(i));
8085 sd->parent = p;
8086 p->child = sd;
8087 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8088 #endif
8090 #ifdef CONFIG_SCHED_SMT
8091 p = sd;
8092 sd = &per_cpu(cpu_domains, i).sd;
8093 SD_INIT(sd, SIBLING);
8094 set_domain_attribute(sd, attr);
8095 cpumask_and(sched_domain_span(sd),
8096 &per_cpu(cpu_sibling_map, i), cpu_map);
8097 sd->parent = p;
8098 p->child = sd;
8099 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8100 #endif
8103 #ifdef CONFIG_SCHED_SMT
8104 /* Set up CPU (sibling) groups */
8105 for_each_cpu(i, cpu_map) {
8106 cpumask_and(this_sibling_map,
8107 &per_cpu(cpu_sibling_map, i), cpu_map);
8108 if (i != cpumask_first(this_sibling_map))
8109 continue;
8111 init_sched_build_groups(this_sibling_map, cpu_map,
8112 &cpu_to_cpu_group,
8113 send_covered, tmpmask);
8115 #endif
8117 #ifdef CONFIG_SCHED_MC
8118 /* Set up multi-core groups */
8119 for_each_cpu(i, cpu_map) {
8120 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8121 if (i != cpumask_first(this_core_map))
8122 continue;
8124 init_sched_build_groups(this_core_map, cpu_map,
8125 &cpu_to_core_group,
8126 send_covered, tmpmask);
8128 #endif
8130 /* Set up physical groups */
8131 for (i = 0; i < nr_node_ids; i++) {
8132 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8133 if (cpumask_empty(nodemask))
8134 continue;
8136 init_sched_build_groups(nodemask, cpu_map,
8137 &cpu_to_phys_group,
8138 send_covered, tmpmask);
8141 #ifdef CONFIG_NUMA
8142 /* Set up node groups */
8143 if (sd_allnodes) {
8144 init_sched_build_groups(cpu_map, cpu_map,
8145 &cpu_to_allnodes_group,
8146 send_covered, tmpmask);
8149 for (i = 0; i < nr_node_ids; i++) {
8150 /* Set up node groups */
8151 struct sched_group *sg, *prev;
8152 int j;
8154 cpumask_clear(covered);
8155 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8156 if (cpumask_empty(nodemask)) {
8157 sched_group_nodes[i] = NULL;
8158 continue;
8161 sched_domain_node_span(i, domainspan);
8162 cpumask_and(domainspan, domainspan, cpu_map);
8164 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8165 GFP_KERNEL, i);
8166 if (!sg) {
8167 printk(KERN_WARNING "Can not alloc domain group for "
8168 "node %d\n", i);
8169 goto error;
8171 sched_group_nodes[i] = sg;
8172 for_each_cpu(j, nodemask) {
8173 struct sched_domain *sd;
8175 sd = &per_cpu(node_domains, j).sd;
8176 sd->groups = sg;
8178 sg->__cpu_power = 0;
8179 cpumask_copy(sched_group_cpus(sg), nodemask);
8180 sg->next = sg;
8181 cpumask_or(covered, covered, nodemask);
8182 prev = sg;
8184 for (j = 0; j < nr_node_ids; j++) {
8185 int n = (i + j) % nr_node_ids;
8187 cpumask_complement(notcovered, covered);
8188 cpumask_and(tmpmask, notcovered, cpu_map);
8189 cpumask_and(tmpmask, tmpmask, domainspan);
8190 if (cpumask_empty(tmpmask))
8191 break;
8193 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8194 if (cpumask_empty(tmpmask))
8195 continue;
8197 sg = kmalloc_node(sizeof(struct sched_group) +
8198 cpumask_size(),
8199 GFP_KERNEL, i);
8200 if (!sg) {
8201 printk(KERN_WARNING
8202 "Can not alloc domain group for node %d\n", j);
8203 goto error;
8205 sg->__cpu_power = 0;
8206 cpumask_copy(sched_group_cpus(sg), tmpmask);
8207 sg->next = prev->next;
8208 cpumask_or(covered, covered, tmpmask);
8209 prev->next = sg;
8210 prev = sg;
8213 #endif
8215 /* Calculate CPU power for physical packages and nodes */
8216 #ifdef CONFIG_SCHED_SMT
8217 for_each_cpu(i, cpu_map) {
8218 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8220 init_sched_groups_power(i, sd);
8222 #endif
8223 #ifdef CONFIG_SCHED_MC
8224 for_each_cpu(i, cpu_map) {
8225 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8227 init_sched_groups_power(i, sd);
8229 #endif
8231 for_each_cpu(i, cpu_map) {
8232 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8234 init_sched_groups_power(i, sd);
8237 #ifdef CONFIG_NUMA
8238 for (i = 0; i < nr_node_ids; i++)
8239 init_numa_sched_groups_power(sched_group_nodes[i]);
8241 if (sd_allnodes) {
8242 struct sched_group *sg;
8244 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8245 tmpmask);
8246 init_numa_sched_groups_power(sg);
8248 #endif
8250 /* Attach the domains */
8251 for_each_cpu(i, cpu_map) {
8252 struct sched_domain *sd;
8253 #ifdef CONFIG_SCHED_SMT
8254 sd = &per_cpu(cpu_domains, i).sd;
8255 #elif defined(CONFIG_SCHED_MC)
8256 sd = &per_cpu(core_domains, i).sd;
8257 #else
8258 sd = &per_cpu(phys_domains, i).sd;
8259 #endif
8260 cpu_attach_domain(sd, rd, i);
8263 err = 0;
8265 free_tmpmask:
8266 free_cpumask_var(tmpmask);
8267 free_send_covered:
8268 free_cpumask_var(send_covered);
8269 free_this_core_map:
8270 free_cpumask_var(this_core_map);
8271 free_this_sibling_map:
8272 free_cpumask_var(this_sibling_map);
8273 free_nodemask:
8274 free_cpumask_var(nodemask);
8275 free_notcovered:
8276 #ifdef CONFIG_NUMA
8277 free_cpumask_var(notcovered);
8278 free_covered:
8279 free_cpumask_var(covered);
8280 free_domainspan:
8281 free_cpumask_var(domainspan);
8282 out:
8283 #endif
8284 return err;
8286 free_sched_groups:
8287 #ifdef CONFIG_NUMA
8288 kfree(sched_group_nodes);
8289 #endif
8290 goto free_tmpmask;
8292 #ifdef CONFIG_NUMA
8293 error:
8294 free_sched_groups(cpu_map, tmpmask);
8295 free_rootdomain(rd);
8296 goto free_tmpmask;
8297 #endif
8300 static int build_sched_domains(const struct cpumask *cpu_map)
8302 return __build_sched_domains(cpu_map, NULL);
8305 static struct cpumask *doms_cur; /* current sched domains */
8306 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8307 static struct sched_domain_attr *dattr_cur;
8308 /* attribues of custom domains in 'doms_cur' */
8311 * Special case: If a kmalloc of a doms_cur partition (array of
8312 * cpumask) fails, then fallback to a single sched domain,
8313 * as determined by the single cpumask fallback_doms.
8315 static cpumask_var_t fallback_doms;
8318 * arch_update_cpu_topology lets virtualized architectures update the
8319 * cpu core maps. It is supposed to return 1 if the topology changed
8320 * or 0 if it stayed the same.
8322 int __attribute__((weak)) arch_update_cpu_topology(void)
8324 return 0;
8328 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8329 * For now this just excludes isolated cpus, but could be used to
8330 * exclude other special cases in the future.
8332 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8334 int err;
8336 arch_update_cpu_topology();
8337 ndoms_cur = 1;
8338 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8339 if (!doms_cur)
8340 doms_cur = fallback_doms;
8341 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8342 dattr_cur = NULL;
8343 err = build_sched_domains(doms_cur);
8344 register_sched_domain_sysctl();
8346 return err;
8349 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8350 struct cpumask *tmpmask)
8352 free_sched_groups(cpu_map, tmpmask);
8356 * Detach sched domains from a group of cpus specified in cpu_map
8357 * These cpus will now be attached to the NULL domain
8359 static void detach_destroy_domains(const struct cpumask *cpu_map)
8361 /* Save because hotplug lock held. */
8362 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8363 int i;
8365 for_each_cpu(i, cpu_map)
8366 cpu_attach_domain(NULL, &def_root_domain, i);
8367 synchronize_sched();
8368 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8371 /* handle null as "default" */
8372 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8373 struct sched_domain_attr *new, int idx_new)
8375 struct sched_domain_attr tmp;
8377 /* fast path */
8378 if (!new && !cur)
8379 return 1;
8381 tmp = SD_ATTR_INIT;
8382 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8383 new ? (new + idx_new) : &tmp,
8384 sizeof(struct sched_domain_attr));
8388 * Partition sched domains as specified by the 'ndoms_new'
8389 * cpumasks in the array doms_new[] of cpumasks. This compares
8390 * doms_new[] to the current sched domain partitioning, doms_cur[].
8391 * It destroys each deleted domain and builds each new domain.
8393 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8394 * The masks don't intersect (don't overlap.) We should setup one
8395 * sched domain for each mask. CPUs not in any of the cpumasks will
8396 * not be load balanced. If the same cpumask appears both in the
8397 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8398 * it as it is.
8400 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8401 * ownership of it and will kfree it when done with it. If the caller
8402 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8403 * ndoms_new == 1, and partition_sched_domains() will fallback to
8404 * the single partition 'fallback_doms', it also forces the domains
8405 * to be rebuilt.
8407 * If doms_new == NULL it will be replaced with cpu_online_mask.
8408 * ndoms_new == 0 is a special case for destroying existing domains,
8409 * and it will not create the default domain.
8411 * Call with hotplug lock held
8413 /* FIXME: Change to struct cpumask *doms_new[] */
8414 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8415 struct sched_domain_attr *dattr_new)
8417 int i, j, n;
8418 int new_topology;
8420 mutex_lock(&sched_domains_mutex);
8422 /* always unregister in case we don't destroy any domains */
8423 unregister_sched_domain_sysctl();
8425 /* Let architecture update cpu core mappings. */
8426 new_topology = arch_update_cpu_topology();
8428 n = doms_new ? ndoms_new : 0;
8430 /* Destroy deleted domains */
8431 for (i = 0; i < ndoms_cur; i++) {
8432 for (j = 0; j < n && !new_topology; j++) {
8433 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8434 && dattrs_equal(dattr_cur, i, dattr_new, j))
8435 goto match1;
8437 /* no match - a current sched domain not in new doms_new[] */
8438 detach_destroy_domains(doms_cur + i);
8439 match1:
8443 if (doms_new == NULL) {
8444 ndoms_cur = 0;
8445 doms_new = fallback_doms;
8446 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8447 WARN_ON_ONCE(dattr_new);
8450 /* Build new domains */
8451 for (i = 0; i < ndoms_new; i++) {
8452 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8453 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8454 && dattrs_equal(dattr_new, i, dattr_cur, j))
8455 goto match2;
8457 /* no match - add a new doms_new */
8458 __build_sched_domains(doms_new + i,
8459 dattr_new ? dattr_new + i : NULL);
8460 match2:
8464 /* Remember the new sched domains */
8465 if (doms_cur != fallback_doms)
8466 kfree(doms_cur);
8467 kfree(dattr_cur); /* kfree(NULL) is safe */
8468 doms_cur = doms_new;
8469 dattr_cur = dattr_new;
8470 ndoms_cur = ndoms_new;
8472 register_sched_domain_sysctl();
8474 mutex_unlock(&sched_domains_mutex);
8477 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8478 static void arch_reinit_sched_domains(void)
8480 get_online_cpus();
8482 /* Destroy domains first to force the rebuild */
8483 partition_sched_domains(0, NULL, NULL);
8485 rebuild_sched_domains();
8486 put_online_cpus();
8489 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8491 unsigned int level = 0;
8493 if (sscanf(buf, "%u", &level) != 1)
8494 return -EINVAL;
8497 * level is always be positive so don't check for
8498 * level < POWERSAVINGS_BALANCE_NONE which is 0
8499 * What happens on 0 or 1 byte write,
8500 * need to check for count as well?
8503 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8504 return -EINVAL;
8506 if (smt)
8507 sched_smt_power_savings = level;
8508 else
8509 sched_mc_power_savings = level;
8511 arch_reinit_sched_domains();
8513 return count;
8516 #ifdef CONFIG_SCHED_MC
8517 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8518 char *page)
8520 return sprintf(page, "%u\n", sched_mc_power_savings);
8522 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8523 const char *buf, size_t count)
8525 return sched_power_savings_store(buf, count, 0);
8527 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8528 sched_mc_power_savings_show,
8529 sched_mc_power_savings_store);
8530 #endif
8532 #ifdef CONFIG_SCHED_SMT
8533 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8534 char *page)
8536 return sprintf(page, "%u\n", sched_smt_power_savings);
8538 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8539 const char *buf, size_t count)
8541 return sched_power_savings_store(buf, count, 1);
8543 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8544 sched_smt_power_savings_show,
8545 sched_smt_power_savings_store);
8546 #endif
8548 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8550 int err = 0;
8552 #ifdef CONFIG_SCHED_SMT
8553 if (smt_capable())
8554 err = sysfs_create_file(&cls->kset.kobj,
8555 &attr_sched_smt_power_savings.attr);
8556 #endif
8557 #ifdef CONFIG_SCHED_MC
8558 if (!err && mc_capable())
8559 err = sysfs_create_file(&cls->kset.kobj,
8560 &attr_sched_mc_power_savings.attr);
8561 #endif
8562 return err;
8564 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8566 #ifndef CONFIG_CPUSETS
8568 * Add online and remove offline CPUs from the scheduler domains.
8569 * When cpusets are enabled they take over this function.
8571 static int update_sched_domains(struct notifier_block *nfb,
8572 unsigned long action, void *hcpu)
8574 switch (action) {
8575 case CPU_ONLINE:
8576 case CPU_ONLINE_FROZEN:
8577 case CPU_DEAD:
8578 case CPU_DEAD_FROZEN:
8579 partition_sched_domains(1, NULL, NULL);
8580 return NOTIFY_OK;
8582 default:
8583 return NOTIFY_DONE;
8586 #endif
8588 static int update_runtime(struct notifier_block *nfb,
8589 unsigned long action, void *hcpu)
8591 int cpu = (int)(long)hcpu;
8593 switch (action) {
8594 case CPU_DOWN_PREPARE:
8595 case CPU_DOWN_PREPARE_FROZEN:
8596 disable_runtime(cpu_rq(cpu));
8597 return NOTIFY_OK;
8599 case CPU_DOWN_FAILED:
8600 case CPU_DOWN_FAILED_FROZEN:
8601 case CPU_ONLINE:
8602 case CPU_ONLINE_FROZEN:
8603 enable_runtime(cpu_rq(cpu));
8604 return NOTIFY_OK;
8606 default:
8607 return NOTIFY_DONE;
8611 void __init sched_init_smp(void)
8613 cpumask_var_t non_isolated_cpus;
8615 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8617 #if defined(CONFIG_NUMA)
8618 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8619 GFP_KERNEL);
8620 BUG_ON(sched_group_nodes_bycpu == NULL);
8621 #endif
8622 get_online_cpus();
8623 mutex_lock(&sched_domains_mutex);
8624 arch_init_sched_domains(cpu_online_mask);
8625 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8626 if (cpumask_empty(non_isolated_cpus))
8627 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8628 mutex_unlock(&sched_domains_mutex);
8629 put_online_cpus();
8631 #ifndef CONFIG_CPUSETS
8632 /* XXX: Theoretical race here - CPU may be hotplugged now */
8633 hotcpu_notifier(update_sched_domains, 0);
8634 #endif
8636 /* RT runtime code needs to handle some hotplug events */
8637 hotcpu_notifier(update_runtime, 0);
8639 init_hrtick();
8641 /* Move init over to a non-isolated CPU */
8642 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8643 BUG();
8644 sched_init_granularity();
8645 free_cpumask_var(non_isolated_cpus);
8647 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8648 init_sched_rt_class();
8650 #else
8651 void __init sched_init_smp(void)
8653 sched_init_granularity();
8655 #endif /* CONFIG_SMP */
8657 int in_sched_functions(unsigned long addr)
8659 return in_lock_functions(addr) ||
8660 (addr >= (unsigned long)__sched_text_start
8661 && addr < (unsigned long)__sched_text_end);
8664 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8666 cfs_rq->tasks_timeline = RB_ROOT;
8667 INIT_LIST_HEAD(&cfs_rq->tasks);
8668 #ifdef CONFIG_FAIR_GROUP_SCHED
8669 cfs_rq->rq = rq;
8670 #endif
8671 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8674 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8676 struct rt_prio_array *array;
8677 int i;
8679 array = &rt_rq->active;
8680 for (i = 0; i < MAX_RT_PRIO; i++) {
8681 INIT_LIST_HEAD(array->queue + i);
8682 __clear_bit(i, array->bitmap);
8684 /* delimiter for bitsearch: */
8685 __set_bit(MAX_RT_PRIO, array->bitmap);
8687 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8688 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8689 #ifdef CONFIG_SMP
8690 rt_rq->highest_prio.next = MAX_RT_PRIO;
8691 #endif
8692 #endif
8693 #ifdef CONFIG_SMP
8694 rt_rq->rt_nr_migratory = 0;
8695 rt_rq->overloaded = 0;
8696 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
8697 #endif
8699 rt_rq->rt_time = 0;
8700 rt_rq->rt_throttled = 0;
8701 rt_rq->rt_runtime = 0;
8702 spin_lock_init(&rt_rq->rt_runtime_lock);
8704 #ifdef CONFIG_RT_GROUP_SCHED
8705 rt_rq->rt_nr_boosted = 0;
8706 rt_rq->rq = rq;
8707 #endif
8710 #ifdef CONFIG_FAIR_GROUP_SCHED
8711 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8712 struct sched_entity *se, int cpu, int add,
8713 struct sched_entity *parent)
8715 struct rq *rq = cpu_rq(cpu);
8716 tg->cfs_rq[cpu] = cfs_rq;
8717 init_cfs_rq(cfs_rq, rq);
8718 cfs_rq->tg = tg;
8719 if (add)
8720 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8722 tg->se[cpu] = se;
8723 /* se could be NULL for init_task_group */
8724 if (!se)
8725 return;
8727 if (!parent)
8728 se->cfs_rq = &rq->cfs;
8729 else
8730 se->cfs_rq = parent->my_q;
8732 se->my_q = cfs_rq;
8733 se->load.weight = tg->shares;
8734 se->load.inv_weight = 0;
8735 se->parent = parent;
8737 #endif
8739 #ifdef CONFIG_RT_GROUP_SCHED
8740 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8741 struct sched_rt_entity *rt_se, int cpu, int add,
8742 struct sched_rt_entity *parent)
8744 struct rq *rq = cpu_rq(cpu);
8746 tg->rt_rq[cpu] = rt_rq;
8747 init_rt_rq(rt_rq, rq);
8748 rt_rq->tg = tg;
8749 rt_rq->rt_se = rt_se;
8750 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8751 if (add)
8752 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8754 tg->rt_se[cpu] = rt_se;
8755 if (!rt_se)
8756 return;
8758 if (!parent)
8759 rt_se->rt_rq = &rq->rt;
8760 else
8761 rt_se->rt_rq = parent->my_q;
8763 rt_se->my_q = rt_rq;
8764 rt_se->parent = parent;
8765 INIT_LIST_HEAD(&rt_se->run_list);
8767 #endif
8769 void __init sched_init(void)
8771 int i, j;
8772 unsigned long alloc_size = 0, ptr;
8774 #ifdef CONFIG_FAIR_GROUP_SCHED
8775 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8776 #endif
8777 #ifdef CONFIG_RT_GROUP_SCHED
8778 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8779 #endif
8780 #ifdef CONFIG_USER_SCHED
8781 alloc_size *= 2;
8782 #endif
8784 * As sched_init() is called before page_alloc is setup,
8785 * we use alloc_bootmem().
8787 if (alloc_size) {
8788 ptr = (unsigned long)alloc_bootmem(alloc_size);
8790 #ifdef CONFIG_FAIR_GROUP_SCHED
8791 init_task_group.se = (struct sched_entity **)ptr;
8792 ptr += nr_cpu_ids * sizeof(void **);
8794 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8795 ptr += nr_cpu_ids * sizeof(void **);
8797 #ifdef CONFIG_USER_SCHED
8798 root_task_group.se = (struct sched_entity **)ptr;
8799 ptr += nr_cpu_ids * sizeof(void **);
8801 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8802 ptr += nr_cpu_ids * sizeof(void **);
8803 #endif /* CONFIG_USER_SCHED */
8804 #endif /* CONFIG_FAIR_GROUP_SCHED */
8805 #ifdef CONFIG_RT_GROUP_SCHED
8806 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8807 ptr += nr_cpu_ids * sizeof(void **);
8809 init_task_group.rt_rq = (struct rt_rq **)ptr;
8810 ptr += nr_cpu_ids * sizeof(void **);
8812 #ifdef CONFIG_USER_SCHED
8813 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8814 ptr += nr_cpu_ids * sizeof(void **);
8816 root_task_group.rt_rq = (struct rt_rq **)ptr;
8817 ptr += nr_cpu_ids * sizeof(void **);
8818 #endif /* CONFIG_USER_SCHED */
8819 #endif /* CONFIG_RT_GROUP_SCHED */
8822 #ifdef CONFIG_SMP
8823 init_defrootdomain();
8824 #endif
8826 init_rt_bandwidth(&def_rt_bandwidth,
8827 global_rt_period(), global_rt_runtime());
8829 #ifdef CONFIG_RT_GROUP_SCHED
8830 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8831 global_rt_period(), global_rt_runtime());
8832 #ifdef CONFIG_USER_SCHED
8833 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8834 global_rt_period(), RUNTIME_INF);
8835 #endif /* CONFIG_USER_SCHED */
8836 #endif /* CONFIG_RT_GROUP_SCHED */
8838 #ifdef CONFIG_GROUP_SCHED
8839 list_add(&init_task_group.list, &task_groups);
8840 INIT_LIST_HEAD(&init_task_group.children);
8842 #ifdef CONFIG_USER_SCHED
8843 INIT_LIST_HEAD(&root_task_group.children);
8844 init_task_group.parent = &root_task_group;
8845 list_add(&init_task_group.siblings, &root_task_group.children);
8846 #endif /* CONFIG_USER_SCHED */
8847 #endif /* CONFIG_GROUP_SCHED */
8849 for_each_possible_cpu(i) {
8850 struct rq *rq;
8852 rq = cpu_rq(i);
8853 spin_lock_init(&rq->lock);
8854 rq->nr_running = 0;
8855 init_cfs_rq(&rq->cfs, rq);
8856 init_rt_rq(&rq->rt, rq);
8857 #ifdef CONFIG_FAIR_GROUP_SCHED
8858 init_task_group.shares = init_task_group_load;
8859 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8860 #ifdef CONFIG_CGROUP_SCHED
8862 * How much cpu bandwidth does init_task_group get?
8864 * In case of task-groups formed thr' the cgroup filesystem, it
8865 * gets 100% of the cpu resources in the system. This overall
8866 * system cpu resource is divided among the tasks of
8867 * init_task_group and its child task-groups in a fair manner,
8868 * based on each entity's (task or task-group's) weight
8869 * (se->load.weight).
8871 * In other words, if init_task_group has 10 tasks of weight
8872 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8873 * then A0's share of the cpu resource is:
8875 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8877 * We achieve this by letting init_task_group's tasks sit
8878 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8880 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8881 #elif defined CONFIG_USER_SCHED
8882 root_task_group.shares = NICE_0_LOAD;
8883 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8885 * In case of task-groups formed thr' the user id of tasks,
8886 * init_task_group represents tasks belonging to root user.
8887 * Hence it forms a sibling of all subsequent groups formed.
8888 * In this case, init_task_group gets only a fraction of overall
8889 * system cpu resource, based on the weight assigned to root
8890 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8891 * by letting tasks of init_task_group sit in a separate cfs_rq
8892 * (init_cfs_rq) and having one entity represent this group of
8893 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8895 init_tg_cfs_entry(&init_task_group,
8896 &per_cpu(init_cfs_rq, i),
8897 &per_cpu(init_sched_entity, i), i, 1,
8898 root_task_group.se[i]);
8900 #endif
8901 #endif /* CONFIG_FAIR_GROUP_SCHED */
8903 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8904 #ifdef CONFIG_RT_GROUP_SCHED
8905 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8906 #ifdef CONFIG_CGROUP_SCHED
8907 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8908 #elif defined CONFIG_USER_SCHED
8909 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8910 init_tg_rt_entry(&init_task_group,
8911 &per_cpu(init_rt_rq, i),
8912 &per_cpu(init_sched_rt_entity, i), i, 1,
8913 root_task_group.rt_se[i]);
8914 #endif
8915 #endif
8917 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8918 rq->cpu_load[j] = 0;
8919 #ifdef CONFIG_SMP
8920 rq->sd = NULL;
8921 rq->rd = NULL;
8922 rq->active_balance = 0;
8923 rq->next_balance = jiffies;
8924 rq->push_cpu = 0;
8925 rq->cpu = i;
8926 rq->online = 0;
8927 rq->migration_thread = NULL;
8928 INIT_LIST_HEAD(&rq->migration_queue);
8929 rq_attach_root(rq, &def_root_domain);
8930 #endif
8931 init_rq_hrtick(rq);
8932 atomic_set(&rq->nr_iowait, 0);
8935 set_load_weight(&init_task);
8937 #ifdef CONFIG_PREEMPT_NOTIFIERS
8938 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8939 #endif
8941 #ifdef CONFIG_SMP
8942 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8943 #endif
8945 #ifdef CONFIG_RT_MUTEXES
8946 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8947 #endif
8950 * The boot idle thread does lazy MMU switching as well:
8952 atomic_inc(&init_mm.mm_count);
8953 enter_lazy_tlb(&init_mm, current);
8956 * Make us the idle thread. Technically, schedule() should not be
8957 * called from this thread, however somewhere below it might be,
8958 * but because we are the idle thread, we just pick up running again
8959 * when this runqueue becomes "idle".
8961 init_idle(current, smp_processor_id());
8963 * During early bootup we pretend to be a normal task:
8965 current->sched_class = &fair_sched_class;
8967 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8968 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8969 #ifdef CONFIG_SMP
8970 #ifdef CONFIG_NO_HZ
8971 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8972 #endif
8973 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8974 #endif /* SMP */
8976 scheduler_running = 1;
8979 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8980 void __might_sleep(char *file, int line)
8982 #ifdef in_atomic
8983 static unsigned long prev_jiffy; /* ratelimiting */
8985 if ((!in_atomic() && !irqs_disabled()) ||
8986 system_state != SYSTEM_RUNNING || oops_in_progress)
8987 return;
8988 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8989 return;
8990 prev_jiffy = jiffies;
8992 printk(KERN_ERR
8993 "BUG: sleeping function called from invalid context at %s:%d\n",
8994 file, line);
8995 printk(KERN_ERR
8996 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8997 in_atomic(), irqs_disabled(),
8998 current->pid, current->comm);
9000 debug_show_held_locks(current);
9001 if (irqs_disabled())
9002 print_irqtrace_events(current);
9003 dump_stack();
9004 #endif
9006 EXPORT_SYMBOL(__might_sleep);
9007 #endif
9009 #ifdef CONFIG_MAGIC_SYSRQ
9010 static void normalize_task(struct rq *rq, struct task_struct *p)
9012 int on_rq;
9014 update_rq_clock(rq);
9015 on_rq = p->se.on_rq;
9016 if (on_rq)
9017 deactivate_task(rq, p, 0);
9018 __setscheduler(rq, p, SCHED_NORMAL, 0);
9019 if (on_rq) {
9020 activate_task(rq, p, 0);
9021 resched_task(rq->curr);
9025 void normalize_rt_tasks(void)
9027 struct task_struct *g, *p;
9028 unsigned long flags;
9029 struct rq *rq;
9031 read_lock_irqsave(&tasklist_lock, flags);
9032 do_each_thread(g, p) {
9034 * Only normalize user tasks:
9036 if (!p->mm)
9037 continue;
9039 p->se.exec_start = 0;
9040 #ifdef CONFIG_SCHEDSTATS
9041 p->se.wait_start = 0;
9042 p->se.sleep_start = 0;
9043 p->se.block_start = 0;
9044 #endif
9046 if (!rt_task(p)) {
9048 * Renice negative nice level userspace
9049 * tasks back to 0:
9051 if (TASK_NICE(p) < 0 && p->mm)
9052 set_user_nice(p, 0);
9053 continue;
9056 spin_lock(&p->pi_lock);
9057 rq = __task_rq_lock(p);
9059 normalize_task(rq, p);
9061 __task_rq_unlock(rq);
9062 spin_unlock(&p->pi_lock);
9063 } while_each_thread(g, p);
9065 read_unlock_irqrestore(&tasklist_lock, flags);
9068 #endif /* CONFIG_MAGIC_SYSRQ */
9070 #ifdef CONFIG_IA64
9072 * These functions are only useful for the IA64 MCA handling.
9074 * They can only be called when the whole system has been
9075 * stopped - every CPU needs to be quiescent, and no scheduling
9076 * activity can take place. Using them for anything else would
9077 * be a serious bug, and as a result, they aren't even visible
9078 * under any other configuration.
9082 * curr_task - return the current task for a given cpu.
9083 * @cpu: the processor in question.
9085 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9087 struct task_struct *curr_task(int cpu)
9089 return cpu_curr(cpu);
9093 * set_curr_task - set the current task for a given cpu.
9094 * @cpu: the processor in question.
9095 * @p: the task pointer to set.
9097 * Description: This function must only be used when non-maskable interrupts
9098 * are serviced on a separate stack. It allows the architecture to switch the
9099 * notion of the current task on a cpu in a non-blocking manner. This function
9100 * must be called with all CPU's synchronized, and interrupts disabled, the
9101 * and caller must save the original value of the current task (see
9102 * curr_task() above) and restore that value before reenabling interrupts and
9103 * re-starting the system.
9105 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9107 void set_curr_task(int cpu, struct task_struct *p)
9109 cpu_curr(cpu) = p;
9112 #endif
9114 #ifdef CONFIG_FAIR_GROUP_SCHED
9115 static void free_fair_sched_group(struct task_group *tg)
9117 int i;
9119 for_each_possible_cpu(i) {
9120 if (tg->cfs_rq)
9121 kfree(tg->cfs_rq[i]);
9122 if (tg->se)
9123 kfree(tg->se[i]);
9126 kfree(tg->cfs_rq);
9127 kfree(tg->se);
9130 static
9131 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9133 struct cfs_rq *cfs_rq;
9134 struct sched_entity *se;
9135 struct rq *rq;
9136 int i;
9138 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9139 if (!tg->cfs_rq)
9140 goto err;
9141 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9142 if (!tg->se)
9143 goto err;
9145 tg->shares = NICE_0_LOAD;
9147 for_each_possible_cpu(i) {
9148 rq = cpu_rq(i);
9150 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9151 GFP_KERNEL, cpu_to_node(i));
9152 if (!cfs_rq)
9153 goto err;
9155 se = kzalloc_node(sizeof(struct sched_entity),
9156 GFP_KERNEL, cpu_to_node(i));
9157 if (!se)
9158 goto err;
9160 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9163 return 1;
9165 err:
9166 return 0;
9169 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9171 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9172 &cpu_rq(cpu)->leaf_cfs_rq_list);
9175 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9177 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9179 #else /* !CONFG_FAIR_GROUP_SCHED */
9180 static inline void free_fair_sched_group(struct task_group *tg)
9184 static inline
9185 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9187 return 1;
9190 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9194 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9197 #endif /* CONFIG_FAIR_GROUP_SCHED */
9199 #ifdef CONFIG_RT_GROUP_SCHED
9200 static void free_rt_sched_group(struct task_group *tg)
9202 int i;
9204 destroy_rt_bandwidth(&tg->rt_bandwidth);
9206 for_each_possible_cpu(i) {
9207 if (tg->rt_rq)
9208 kfree(tg->rt_rq[i]);
9209 if (tg->rt_se)
9210 kfree(tg->rt_se[i]);
9213 kfree(tg->rt_rq);
9214 kfree(tg->rt_se);
9217 static
9218 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9220 struct rt_rq *rt_rq;
9221 struct sched_rt_entity *rt_se;
9222 struct rq *rq;
9223 int i;
9225 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9226 if (!tg->rt_rq)
9227 goto err;
9228 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9229 if (!tg->rt_se)
9230 goto err;
9232 init_rt_bandwidth(&tg->rt_bandwidth,
9233 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9235 for_each_possible_cpu(i) {
9236 rq = cpu_rq(i);
9238 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9239 GFP_KERNEL, cpu_to_node(i));
9240 if (!rt_rq)
9241 goto err;
9243 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9244 GFP_KERNEL, cpu_to_node(i));
9245 if (!rt_se)
9246 goto err;
9248 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9251 return 1;
9253 err:
9254 return 0;
9257 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9259 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9260 &cpu_rq(cpu)->leaf_rt_rq_list);
9263 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9265 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9267 #else /* !CONFIG_RT_GROUP_SCHED */
9268 static inline void free_rt_sched_group(struct task_group *tg)
9272 static inline
9273 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9275 return 1;
9278 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9282 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9285 #endif /* CONFIG_RT_GROUP_SCHED */
9287 #ifdef CONFIG_GROUP_SCHED
9288 static void free_sched_group(struct task_group *tg)
9290 free_fair_sched_group(tg);
9291 free_rt_sched_group(tg);
9292 kfree(tg);
9295 /* allocate runqueue etc for a new task group */
9296 struct task_group *sched_create_group(struct task_group *parent)
9298 struct task_group *tg;
9299 unsigned long flags;
9300 int i;
9302 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9303 if (!tg)
9304 return ERR_PTR(-ENOMEM);
9306 if (!alloc_fair_sched_group(tg, parent))
9307 goto err;
9309 if (!alloc_rt_sched_group(tg, parent))
9310 goto err;
9312 spin_lock_irqsave(&task_group_lock, flags);
9313 for_each_possible_cpu(i) {
9314 register_fair_sched_group(tg, i);
9315 register_rt_sched_group(tg, i);
9317 list_add_rcu(&tg->list, &task_groups);
9319 WARN_ON(!parent); /* root should already exist */
9321 tg->parent = parent;
9322 INIT_LIST_HEAD(&tg->children);
9323 list_add_rcu(&tg->siblings, &parent->children);
9324 spin_unlock_irqrestore(&task_group_lock, flags);
9326 return tg;
9328 err:
9329 free_sched_group(tg);
9330 return ERR_PTR(-ENOMEM);
9333 /* rcu callback to free various structures associated with a task group */
9334 static void free_sched_group_rcu(struct rcu_head *rhp)
9336 /* now it should be safe to free those cfs_rqs */
9337 free_sched_group(container_of(rhp, struct task_group, rcu));
9340 /* Destroy runqueue etc associated with a task group */
9341 void sched_destroy_group(struct task_group *tg)
9343 unsigned long flags;
9344 int i;
9346 spin_lock_irqsave(&task_group_lock, flags);
9347 for_each_possible_cpu(i) {
9348 unregister_fair_sched_group(tg, i);
9349 unregister_rt_sched_group(tg, i);
9351 list_del_rcu(&tg->list);
9352 list_del_rcu(&tg->siblings);
9353 spin_unlock_irqrestore(&task_group_lock, flags);
9355 /* wait for possible concurrent references to cfs_rqs complete */
9356 call_rcu(&tg->rcu, free_sched_group_rcu);
9359 /* change task's runqueue when it moves between groups.
9360 * The caller of this function should have put the task in its new group
9361 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9362 * reflect its new group.
9364 void sched_move_task(struct task_struct *tsk)
9366 int on_rq, running;
9367 unsigned long flags;
9368 struct rq *rq;
9370 rq = task_rq_lock(tsk, &flags);
9372 update_rq_clock(rq);
9374 running = task_current(rq, tsk);
9375 on_rq = tsk->se.on_rq;
9377 if (on_rq)
9378 dequeue_task(rq, tsk, 0);
9379 if (unlikely(running))
9380 tsk->sched_class->put_prev_task(rq, tsk);
9382 set_task_rq(tsk, task_cpu(tsk));
9384 #ifdef CONFIG_FAIR_GROUP_SCHED
9385 if (tsk->sched_class->moved_group)
9386 tsk->sched_class->moved_group(tsk);
9387 #endif
9389 if (unlikely(running))
9390 tsk->sched_class->set_curr_task(rq);
9391 if (on_rq)
9392 enqueue_task(rq, tsk, 0);
9394 task_rq_unlock(rq, &flags);
9396 #endif /* CONFIG_GROUP_SCHED */
9398 #ifdef CONFIG_FAIR_GROUP_SCHED
9399 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9401 struct cfs_rq *cfs_rq = se->cfs_rq;
9402 int on_rq;
9404 on_rq = se->on_rq;
9405 if (on_rq)
9406 dequeue_entity(cfs_rq, se, 0);
9408 se->load.weight = shares;
9409 se->load.inv_weight = 0;
9411 if (on_rq)
9412 enqueue_entity(cfs_rq, se, 0);
9415 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9417 struct cfs_rq *cfs_rq = se->cfs_rq;
9418 struct rq *rq = cfs_rq->rq;
9419 unsigned long flags;
9421 spin_lock_irqsave(&rq->lock, flags);
9422 __set_se_shares(se, shares);
9423 spin_unlock_irqrestore(&rq->lock, flags);
9426 static DEFINE_MUTEX(shares_mutex);
9428 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9430 int i;
9431 unsigned long flags;
9434 * We can't change the weight of the root cgroup.
9436 if (!tg->se[0])
9437 return -EINVAL;
9439 if (shares < MIN_SHARES)
9440 shares = MIN_SHARES;
9441 else if (shares > MAX_SHARES)
9442 shares = MAX_SHARES;
9444 mutex_lock(&shares_mutex);
9445 if (tg->shares == shares)
9446 goto done;
9448 spin_lock_irqsave(&task_group_lock, flags);
9449 for_each_possible_cpu(i)
9450 unregister_fair_sched_group(tg, i);
9451 list_del_rcu(&tg->siblings);
9452 spin_unlock_irqrestore(&task_group_lock, flags);
9454 /* wait for any ongoing reference to this group to finish */
9455 synchronize_sched();
9458 * Now we are free to modify the group's share on each cpu
9459 * w/o tripping rebalance_share or load_balance_fair.
9461 tg->shares = shares;
9462 for_each_possible_cpu(i) {
9464 * force a rebalance
9466 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9467 set_se_shares(tg->se[i], shares);
9471 * Enable load balance activity on this group, by inserting it back on
9472 * each cpu's rq->leaf_cfs_rq_list.
9474 spin_lock_irqsave(&task_group_lock, flags);
9475 for_each_possible_cpu(i)
9476 register_fair_sched_group(tg, i);
9477 list_add_rcu(&tg->siblings, &tg->parent->children);
9478 spin_unlock_irqrestore(&task_group_lock, flags);
9479 done:
9480 mutex_unlock(&shares_mutex);
9481 return 0;
9484 unsigned long sched_group_shares(struct task_group *tg)
9486 return tg->shares;
9488 #endif
9490 #ifdef CONFIG_RT_GROUP_SCHED
9492 * Ensure that the real time constraints are schedulable.
9494 static DEFINE_MUTEX(rt_constraints_mutex);
9496 static unsigned long to_ratio(u64 period, u64 runtime)
9498 if (runtime == RUNTIME_INF)
9499 return 1ULL << 20;
9501 return div64_u64(runtime << 20, period);
9504 /* Must be called with tasklist_lock held */
9505 static inline int tg_has_rt_tasks(struct task_group *tg)
9507 struct task_struct *g, *p;
9509 do_each_thread(g, p) {
9510 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9511 return 1;
9512 } while_each_thread(g, p);
9514 return 0;
9517 struct rt_schedulable_data {
9518 struct task_group *tg;
9519 u64 rt_period;
9520 u64 rt_runtime;
9523 static int tg_schedulable(struct task_group *tg, void *data)
9525 struct rt_schedulable_data *d = data;
9526 struct task_group *child;
9527 unsigned long total, sum = 0;
9528 u64 period, runtime;
9530 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9531 runtime = tg->rt_bandwidth.rt_runtime;
9533 if (tg == d->tg) {
9534 period = d->rt_period;
9535 runtime = d->rt_runtime;
9538 #ifdef CONFIG_USER_SCHED
9539 if (tg == &root_task_group) {
9540 period = global_rt_period();
9541 runtime = global_rt_runtime();
9543 #endif
9546 * Cannot have more runtime than the period.
9548 if (runtime > period && runtime != RUNTIME_INF)
9549 return -EINVAL;
9552 * Ensure we don't starve existing RT tasks.
9554 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9555 return -EBUSY;
9557 total = to_ratio(period, runtime);
9560 * Nobody can have more than the global setting allows.
9562 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9563 return -EINVAL;
9566 * The sum of our children's runtime should not exceed our own.
9568 list_for_each_entry_rcu(child, &tg->children, siblings) {
9569 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9570 runtime = child->rt_bandwidth.rt_runtime;
9572 if (child == d->tg) {
9573 period = d->rt_period;
9574 runtime = d->rt_runtime;
9577 sum += to_ratio(period, runtime);
9580 if (sum > total)
9581 return -EINVAL;
9583 return 0;
9586 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9588 struct rt_schedulable_data data = {
9589 .tg = tg,
9590 .rt_period = period,
9591 .rt_runtime = runtime,
9594 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9597 static int tg_set_bandwidth(struct task_group *tg,
9598 u64 rt_period, u64 rt_runtime)
9600 int i, err = 0;
9602 mutex_lock(&rt_constraints_mutex);
9603 read_lock(&tasklist_lock);
9604 err = __rt_schedulable(tg, rt_period, rt_runtime);
9605 if (err)
9606 goto unlock;
9608 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9609 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9610 tg->rt_bandwidth.rt_runtime = rt_runtime;
9612 for_each_possible_cpu(i) {
9613 struct rt_rq *rt_rq = tg->rt_rq[i];
9615 spin_lock(&rt_rq->rt_runtime_lock);
9616 rt_rq->rt_runtime = rt_runtime;
9617 spin_unlock(&rt_rq->rt_runtime_lock);
9619 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9620 unlock:
9621 read_unlock(&tasklist_lock);
9622 mutex_unlock(&rt_constraints_mutex);
9624 return err;
9627 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9629 u64 rt_runtime, rt_period;
9631 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9632 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9633 if (rt_runtime_us < 0)
9634 rt_runtime = RUNTIME_INF;
9636 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9639 long sched_group_rt_runtime(struct task_group *tg)
9641 u64 rt_runtime_us;
9643 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9644 return -1;
9646 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9647 do_div(rt_runtime_us, NSEC_PER_USEC);
9648 return rt_runtime_us;
9651 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9653 u64 rt_runtime, rt_period;
9655 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9656 rt_runtime = tg->rt_bandwidth.rt_runtime;
9658 if (rt_period == 0)
9659 return -EINVAL;
9661 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9664 long sched_group_rt_period(struct task_group *tg)
9666 u64 rt_period_us;
9668 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9669 do_div(rt_period_us, NSEC_PER_USEC);
9670 return rt_period_us;
9673 static int sched_rt_global_constraints(void)
9675 u64 runtime, period;
9676 int ret = 0;
9678 if (sysctl_sched_rt_period <= 0)
9679 return -EINVAL;
9681 runtime = global_rt_runtime();
9682 period = global_rt_period();
9685 * Sanity check on the sysctl variables.
9687 if (runtime > period && runtime != RUNTIME_INF)
9688 return -EINVAL;
9690 mutex_lock(&rt_constraints_mutex);
9691 read_lock(&tasklist_lock);
9692 ret = __rt_schedulable(NULL, 0, 0);
9693 read_unlock(&tasklist_lock);
9694 mutex_unlock(&rt_constraints_mutex);
9696 return ret;
9699 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9701 /* Don't accept realtime tasks when there is no way for them to run */
9702 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9703 return 0;
9705 return 1;
9708 #else /* !CONFIG_RT_GROUP_SCHED */
9709 static int sched_rt_global_constraints(void)
9711 unsigned long flags;
9712 int i;
9714 if (sysctl_sched_rt_period <= 0)
9715 return -EINVAL;
9717 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9718 for_each_possible_cpu(i) {
9719 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9721 spin_lock(&rt_rq->rt_runtime_lock);
9722 rt_rq->rt_runtime = global_rt_runtime();
9723 spin_unlock(&rt_rq->rt_runtime_lock);
9725 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9727 return 0;
9729 #endif /* CONFIG_RT_GROUP_SCHED */
9731 int sched_rt_handler(struct ctl_table *table, int write,
9732 struct file *filp, void __user *buffer, size_t *lenp,
9733 loff_t *ppos)
9735 int ret;
9736 int old_period, old_runtime;
9737 static DEFINE_MUTEX(mutex);
9739 mutex_lock(&mutex);
9740 old_period = sysctl_sched_rt_period;
9741 old_runtime = sysctl_sched_rt_runtime;
9743 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9745 if (!ret && write) {
9746 ret = sched_rt_global_constraints();
9747 if (ret) {
9748 sysctl_sched_rt_period = old_period;
9749 sysctl_sched_rt_runtime = old_runtime;
9750 } else {
9751 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9752 def_rt_bandwidth.rt_period =
9753 ns_to_ktime(global_rt_period());
9756 mutex_unlock(&mutex);
9758 return ret;
9761 #ifdef CONFIG_CGROUP_SCHED
9763 /* return corresponding task_group object of a cgroup */
9764 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9766 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9767 struct task_group, css);
9770 static struct cgroup_subsys_state *
9771 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9773 struct task_group *tg, *parent;
9775 if (!cgrp->parent) {
9776 /* This is early initialization for the top cgroup */
9777 return &init_task_group.css;
9780 parent = cgroup_tg(cgrp->parent);
9781 tg = sched_create_group(parent);
9782 if (IS_ERR(tg))
9783 return ERR_PTR(-ENOMEM);
9785 return &tg->css;
9788 static void
9789 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9791 struct task_group *tg = cgroup_tg(cgrp);
9793 sched_destroy_group(tg);
9796 static int
9797 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9798 struct task_struct *tsk)
9800 #ifdef CONFIG_RT_GROUP_SCHED
9801 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9802 return -EINVAL;
9803 #else
9804 /* We don't support RT-tasks being in separate groups */
9805 if (tsk->sched_class != &fair_sched_class)
9806 return -EINVAL;
9807 #endif
9809 return 0;
9812 static void
9813 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9814 struct cgroup *old_cont, struct task_struct *tsk)
9816 sched_move_task(tsk);
9819 #ifdef CONFIG_FAIR_GROUP_SCHED
9820 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9821 u64 shareval)
9823 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9826 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9828 struct task_group *tg = cgroup_tg(cgrp);
9830 return (u64) tg->shares;
9832 #endif /* CONFIG_FAIR_GROUP_SCHED */
9834 #ifdef CONFIG_RT_GROUP_SCHED
9835 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9836 s64 val)
9838 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9841 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9843 return sched_group_rt_runtime(cgroup_tg(cgrp));
9846 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9847 u64 rt_period_us)
9849 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9852 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9854 return sched_group_rt_period(cgroup_tg(cgrp));
9856 #endif /* CONFIG_RT_GROUP_SCHED */
9858 static struct cftype cpu_files[] = {
9859 #ifdef CONFIG_FAIR_GROUP_SCHED
9861 .name = "shares",
9862 .read_u64 = cpu_shares_read_u64,
9863 .write_u64 = cpu_shares_write_u64,
9865 #endif
9866 #ifdef CONFIG_RT_GROUP_SCHED
9868 .name = "rt_runtime_us",
9869 .read_s64 = cpu_rt_runtime_read,
9870 .write_s64 = cpu_rt_runtime_write,
9873 .name = "rt_period_us",
9874 .read_u64 = cpu_rt_period_read_uint,
9875 .write_u64 = cpu_rt_period_write_uint,
9877 #endif
9880 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9882 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9885 struct cgroup_subsys cpu_cgroup_subsys = {
9886 .name = "cpu",
9887 .create = cpu_cgroup_create,
9888 .destroy = cpu_cgroup_destroy,
9889 .can_attach = cpu_cgroup_can_attach,
9890 .attach = cpu_cgroup_attach,
9891 .populate = cpu_cgroup_populate,
9892 .subsys_id = cpu_cgroup_subsys_id,
9893 .early_init = 1,
9896 #endif /* CONFIG_CGROUP_SCHED */
9898 #ifdef CONFIG_CGROUP_CPUACCT
9901 * CPU accounting code for task groups.
9903 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9904 * (balbir@in.ibm.com).
9907 /* track cpu usage of a group of tasks and its child groups */
9908 struct cpuacct {
9909 struct cgroup_subsys_state css;
9910 /* cpuusage holds pointer to a u64-type object on every cpu */
9911 u64 *cpuusage;
9912 struct cpuacct *parent;
9915 struct cgroup_subsys cpuacct_subsys;
9917 /* return cpu accounting group corresponding to this container */
9918 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9920 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9921 struct cpuacct, css);
9924 /* return cpu accounting group to which this task belongs */
9925 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9927 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9928 struct cpuacct, css);
9931 /* create a new cpu accounting group */
9932 static struct cgroup_subsys_state *cpuacct_create(
9933 struct cgroup_subsys *ss, struct cgroup *cgrp)
9935 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9937 if (!ca)
9938 return ERR_PTR(-ENOMEM);
9940 ca->cpuusage = alloc_percpu(u64);
9941 if (!ca->cpuusage) {
9942 kfree(ca);
9943 return ERR_PTR(-ENOMEM);
9946 if (cgrp->parent)
9947 ca->parent = cgroup_ca(cgrp->parent);
9949 return &ca->css;
9952 /* destroy an existing cpu accounting group */
9953 static void
9954 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9956 struct cpuacct *ca = cgroup_ca(cgrp);
9958 free_percpu(ca->cpuusage);
9959 kfree(ca);
9962 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9964 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9965 u64 data;
9967 #ifndef CONFIG_64BIT
9969 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9971 spin_lock_irq(&cpu_rq(cpu)->lock);
9972 data = *cpuusage;
9973 spin_unlock_irq(&cpu_rq(cpu)->lock);
9974 #else
9975 data = *cpuusage;
9976 #endif
9978 return data;
9981 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9983 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9985 #ifndef CONFIG_64BIT
9987 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9989 spin_lock_irq(&cpu_rq(cpu)->lock);
9990 *cpuusage = val;
9991 spin_unlock_irq(&cpu_rq(cpu)->lock);
9992 #else
9993 *cpuusage = val;
9994 #endif
9997 /* return total cpu usage (in nanoseconds) of a group */
9998 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10000 struct cpuacct *ca = cgroup_ca(cgrp);
10001 u64 totalcpuusage = 0;
10002 int i;
10004 for_each_present_cpu(i)
10005 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10007 return totalcpuusage;
10010 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10011 u64 reset)
10013 struct cpuacct *ca = cgroup_ca(cgrp);
10014 int err = 0;
10015 int i;
10017 if (reset) {
10018 err = -EINVAL;
10019 goto out;
10022 for_each_present_cpu(i)
10023 cpuacct_cpuusage_write(ca, i, 0);
10025 out:
10026 return err;
10029 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10030 struct seq_file *m)
10032 struct cpuacct *ca = cgroup_ca(cgroup);
10033 u64 percpu;
10034 int i;
10036 for_each_present_cpu(i) {
10037 percpu = cpuacct_cpuusage_read(ca, i);
10038 seq_printf(m, "%llu ", (unsigned long long) percpu);
10040 seq_printf(m, "\n");
10041 return 0;
10044 static struct cftype files[] = {
10046 .name = "usage",
10047 .read_u64 = cpuusage_read,
10048 .write_u64 = cpuusage_write,
10051 .name = "usage_percpu",
10052 .read_seq_string = cpuacct_percpu_seq_read,
10057 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10059 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10063 * charge this task's execution time to its accounting group.
10065 * called with rq->lock held.
10067 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10069 struct cpuacct *ca;
10070 int cpu;
10072 if (unlikely(!cpuacct_subsys.active))
10073 return;
10075 cpu = task_cpu(tsk);
10076 ca = task_ca(tsk);
10078 for (; ca; ca = ca->parent) {
10079 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10080 *cpuusage += cputime;
10084 struct cgroup_subsys cpuacct_subsys = {
10085 .name = "cpuacct",
10086 .create = cpuacct_create,
10087 .destroy = cpuacct_destroy,
10088 .populate = cpuacct_populate,
10089 .subsys_id = cpuacct_subsys_id,
10091 #endif /* CONFIG_CGROUP_CPUACCT */