Btrfs: removed unused #include <version.h>'s
[linux-2.6/mini2440.git] / fs / btrfs / inode.c
blob44dbd550c4bdc9b9aaf8b2f5a1d530e7941d1fee
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "ref-cache.h"
52 #include "compression.h"
54 struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
59 static struct inode_operations btrfs_dir_inode_operations;
60 static struct inode_operations btrfs_symlink_inode_operations;
61 static struct inode_operations btrfs_dir_ro_inode_operations;
62 static struct inode_operations btrfs_special_inode_operations;
63 static struct inode_operations btrfs_file_inode_operations;
64 static struct address_space_operations btrfs_aops;
65 static struct address_space_operations btrfs_symlink_aops;
66 static struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_bit_radix_cachep;
73 struct kmem_cache *btrfs_path_cachep;
75 #define S_SHIFT 12
76 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
77 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
78 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
79 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
80 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
81 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
82 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
83 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
86 static void btrfs_truncate(struct inode *inode);
87 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
88 static noinline int cow_file_range(struct inode *inode,
89 struct page *locked_page,
90 u64 start, u64 end, int *page_started,
91 unsigned long *nr_written, int unlock);
94 * a very lame attempt at stopping writes when the FS is 85% full. There
95 * are countless ways this is incorrect, but it is better than nothing.
97 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
98 int for_del)
100 u64 total;
101 u64 used;
102 u64 thresh;
103 int ret = 0;
105 spin_lock(&root->fs_info->delalloc_lock);
106 total = btrfs_super_total_bytes(&root->fs_info->super_copy);
107 used = btrfs_super_bytes_used(&root->fs_info->super_copy);
108 if (for_del)
109 thresh = total * 90;
110 else
111 thresh = total * 85;
113 do_div(thresh, 100);
115 if (used + root->fs_info->delalloc_bytes + num_required > thresh)
116 ret = -ENOSPC;
117 spin_unlock(&root->fs_info->delalloc_lock);
118 return ret;
122 * this does all the hard work for inserting an inline extent into
123 * the btree. The caller should have done a btrfs_drop_extents so that
124 * no overlapping inline items exist in the btree
126 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
127 struct btrfs_root *root, struct inode *inode,
128 u64 start, size_t size, size_t compressed_size,
129 struct page **compressed_pages)
131 struct btrfs_key key;
132 struct btrfs_path *path;
133 struct extent_buffer *leaf;
134 struct page *page = NULL;
135 char *kaddr;
136 unsigned long ptr;
137 struct btrfs_file_extent_item *ei;
138 int err = 0;
139 int ret;
140 size_t cur_size = size;
141 size_t datasize;
142 unsigned long offset;
143 int use_compress = 0;
145 if (compressed_size && compressed_pages) {
146 use_compress = 1;
147 cur_size = compressed_size;
150 path = btrfs_alloc_path();
151 if (!path)
152 return -ENOMEM;
154 btrfs_set_trans_block_group(trans, inode);
156 key.objectid = inode->i_ino;
157 key.offset = start;
158 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
159 datasize = btrfs_file_extent_calc_inline_size(cur_size);
161 inode_add_bytes(inode, size);
162 ret = btrfs_insert_empty_item(trans, root, path, &key,
163 datasize);
164 BUG_ON(ret);
165 if (ret) {
166 err = ret;
167 goto fail;
169 leaf = path->nodes[0];
170 ei = btrfs_item_ptr(leaf, path->slots[0],
171 struct btrfs_file_extent_item);
172 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
173 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
174 btrfs_set_file_extent_encryption(leaf, ei, 0);
175 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
176 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
177 ptr = btrfs_file_extent_inline_start(ei);
179 if (use_compress) {
180 struct page *cpage;
181 int i = 0;
182 while (compressed_size > 0) {
183 cpage = compressed_pages[i];
184 cur_size = min_t(unsigned long, compressed_size,
185 PAGE_CACHE_SIZE);
187 kaddr = kmap(cpage);
188 write_extent_buffer(leaf, kaddr, ptr, cur_size);
189 kunmap(cpage);
191 i++;
192 ptr += cur_size;
193 compressed_size -= cur_size;
195 btrfs_set_file_extent_compression(leaf, ei,
196 BTRFS_COMPRESS_ZLIB);
197 } else {
198 page = find_get_page(inode->i_mapping,
199 start >> PAGE_CACHE_SHIFT);
200 btrfs_set_file_extent_compression(leaf, ei, 0);
201 kaddr = kmap_atomic(page, KM_USER0);
202 offset = start & (PAGE_CACHE_SIZE - 1);
203 write_extent_buffer(leaf, kaddr + offset, ptr, size);
204 kunmap_atomic(kaddr, KM_USER0);
205 page_cache_release(page);
207 btrfs_mark_buffer_dirty(leaf);
208 btrfs_free_path(path);
210 BTRFS_I(inode)->disk_i_size = inode->i_size;
211 btrfs_update_inode(trans, root, inode);
212 return 0;
213 fail:
214 btrfs_free_path(path);
215 return err;
220 * conditionally insert an inline extent into the file. This
221 * does the checks required to make sure the data is small enough
222 * to fit as an inline extent.
224 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
225 struct btrfs_root *root,
226 struct inode *inode, u64 start, u64 end,
227 size_t compressed_size,
228 struct page **compressed_pages)
230 u64 isize = i_size_read(inode);
231 u64 actual_end = min(end + 1, isize);
232 u64 inline_len = actual_end - start;
233 u64 aligned_end = (end + root->sectorsize - 1) &
234 ~((u64)root->sectorsize - 1);
235 u64 hint_byte;
236 u64 data_len = inline_len;
237 int ret;
239 if (compressed_size)
240 data_len = compressed_size;
242 if (start > 0 ||
243 actual_end >= PAGE_CACHE_SIZE ||
244 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
245 (!compressed_size &&
246 (actual_end & (root->sectorsize - 1)) == 0) ||
247 end + 1 < isize ||
248 data_len > root->fs_info->max_inline) {
249 return 1;
252 ret = btrfs_drop_extents(trans, root, inode, start,
253 aligned_end, start, &hint_byte);
254 BUG_ON(ret);
256 if (isize > actual_end)
257 inline_len = min_t(u64, isize, actual_end);
258 ret = insert_inline_extent(trans, root, inode, start,
259 inline_len, compressed_size,
260 compressed_pages);
261 BUG_ON(ret);
262 btrfs_drop_extent_cache(inode, start, aligned_end, 0);
263 return 0;
266 struct async_extent {
267 u64 start;
268 u64 ram_size;
269 u64 compressed_size;
270 struct page **pages;
271 unsigned long nr_pages;
272 struct list_head list;
275 struct async_cow {
276 struct inode *inode;
277 struct btrfs_root *root;
278 struct page *locked_page;
279 u64 start;
280 u64 end;
281 struct list_head extents;
282 struct btrfs_work work;
285 static noinline int add_async_extent(struct async_cow *cow,
286 u64 start, u64 ram_size,
287 u64 compressed_size,
288 struct page **pages,
289 unsigned long nr_pages)
291 struct async_extent *async_extent;
293 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
294 async_extent->start = start;
295 async_extent->ram_size = ram_size;
296 async_extent->compressed_size = compressed_size;
297 async_extent->pages = pages;
298 async_extent->nr_pages = nr_pages;
299 list_add_tail(&async_extent->list, &cow->extents);
300 return 0;
304 * we create compressed extents in two phases. The first
305 * phase compresses a range of pages that have already been
306 * locked (both pages and state bits are locked).
308 * This is done inside an ordered work queue, and the compression
309 * is spread across many cpus. The actual IO submission is step
310 * two, and the ordered work queue takes care of making sure that
311 * happens in the same order things were put onto the queue by
312 * writepages and friends.
314 * If this code finds it can't get good compression, it puts an
315 * entry onto the work queue to write the uncompressed bytes. This
316 * makes sure that both compressed inodes and uncompressed inodes
317 * are written in the same order that pdflush sent them down.
319 static noinline int compress_file_range(struct inode *inode,
320 struct page *locked_page,
321 u64 start, u64 end,
322 struct async_cow *async_cow,
323 int *num_added)
325 struct btrfs_root *root = BTRFS_I(inode)->root;
326 struct btrfs_trans_handle *trans;
327 u64 num_bytes;
328 u64 orig_start;
329 u64 disk_num_bytes;
330 u64 blocksize = root->sectorsize;
331 u64 actual_end;
332 u64 isize = i_size_read(inode);
333 int ret = 0;
334 struct page **pages = NULL;
335 unsigned long nr_pages;
336 unsigned long nr_pages_ret = 0;
337 unsigned long total_compressed = 0;
338 unsigned long total_in = 0;
339 unsigned long max_compressed = 128 * 1024;
340 unsigned long max_uncompressed = 128 * 1024;
341 int i;
342 int will_compress;
344 orig_start = start;
346 actual_end = min_t(u64, isize, end + 1);
347 again:
348 will_compress = 0;
349 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
350 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
352 total_compressed = actual_end - start;
354 /* we want to make sure that amount of ram required to uncompress
355 * an extent is reasonable, so we limit the total size in ram
356 * of a compressed extent to 128k. This is a crucial number
357 * because it also controls how easily we can spread reads across
358 * cpus for decompression.
360 * We also want to make sure the amount of IO required to do
361 * a random read is reasonably small, so we limit the size of
362 * a compressed extent to 128k.
364 total_compressed = min(total_compressed, max_uncompressed);
365 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
366 num_bytes = max(blocksize, num_bytes);
367 disk_num_bytes = num_bytes;
368 total_in = 0;
369 ret = 0;
372 * we do compression for mount -o compress and when the
373 * inode has not been flagged as nocompress. This flag can
374 * change at any time if we discover bad compression ratios.
376 if (!btrfs_test_flag(inode, NOCOMPRESS) &&
377 btrfs_test_opt(root, COMPRESS)) {
378 WARN_ON(pages);
379 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
381 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
382 total_compressed, pages,
383 nr_pages, &nr_pages_ret,
384 &total_in,
385 &total_compressed,
386 max_compressed);
388 if (!ret) {
389 unsigned long offset = total_compressed &
390 (PAGE_CACHE_SIZE - 1);
391 struct page *page = pages[nr_pages_ret - 1];
392 char *kaddr;
394 /* zero the tail end of the last page, we might be
395 * sending it down to disk
397 if (offset) {
398 kaddr = kmap_atomic(page, KM_USER0);
399 memset(kaddr + offset, 0,
400 PAGE_CACHE_SIZE - offset);
401 kunmap_atomic(kaddr, KM_USER0);
403 will_compress = 1;
406 if (start == 0) {
407 trans = btrfs_join_transaction(root, 1);
408 BUG_ON(!trans);
409 btrfs_set_trans_block_group(trans, inode);
411 /* lets try to make an inline extent */
412 if (ret || total_in < (actual_end - start)) {
413 /* we didn't compress the entire range, try
414 * to make an uncompressed inline extent.
416 ret = cow_file_range_inline(trans, root, inode,
417 start, end, 0, NULL);
418 } else {
419 /* try making a compressed inline extent */
420 ret = cow_file_range_inline(trans, root, inode,
421 start, end,
422 total_compressed, pages);
424 btrfs_end_transaction(trans, root);
425 if (ret == 0) {
427 * inline extent creation worked, we don't need
428 * to create any more async work items. Unlock
429 * and free up our temp pages.
431 extent_clear_unlock_delalloc(inode,
432 &BTRFS_I(inode)->io_tree,
433 start, end, NULL, 1, 0,
434 0, 1, 1, 1);
435 ret = 0;
436 goto free_pages_out;
440 if (will_compress) {
442 * we aren't doing an inline extent round the compressed size
443 * up to a block size boundary so the allocator does sane
444 * things
446 total_compressed = (total_compressed + blocksize - 1) &
447 ~(blocksize - 1);
450 * one last check to make sure the compression is really a
451 * win, compare the page count read with the blocks on disk
453 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
454 ~(PAGE_CACHE_SIZE - 1);
455 if (total_compressed >= total_in) {
456 will_compress = 0;
457 } else {
458 disk_num_bytes = total_compressed;
459 num_bytes = total_in;
462 if (!will_compress && pages) {
464 * the compression code ran but failed to make things smaller,
465 * free any pages it allocated and our page pointer array
467 for (i = 0; i < nr_pages_ret; i++) {
468 WARN_ON(pages[i]->mapping);
469 page_cache_release(pages[i]);
471 kfree(pages);
472 pages = NULL;
473 total_compressed = 0;
474 nr_pages_ret = 0;
476 /* flag the file so we don't compress in the future */
477 btrfs_set_flag(inode, NOCOMPRESS);
479 if (will_compress) {
480 *num_added += 1;
482 /* the async work queues will take care of doing actual
483 * allocation on disk for these compressed pages,
484 * and will submit them to the elevator.
486 add_async_extent(async_cow, start, num_bytes,
487 total_compressed, pages, nr_pages_ret);
489 if (start + num_bytes < end && start + num_bytes < actual_end) {
490 start += num_bytes;
491 pages = NULL;
492 cond_resched();
493 goto again;
495 } else {
497 * No compression, but we still need to write the pages in
498 * the file we've been given so far. redirty the locked
499 * page if it corresponds to our extent and set things up
500 * for the async work queue to run cow_file_range to do
501 * the normal delalloc dance
503 if (page_offset(locked_page) >= start &&
504 page_offset(locked_page) <= end) {
505 __set_page_dirty_nobuffers(locked_page);
506 /* unlocked later on in the async handlers */
508 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
509 *num_added += 1;
512 out:
513 return 0;
515 free_pages_out:
516 for (i = 0; i < nr_pages_ret; i++) {
517 WARN_ON(pages[i]->mapping);
518 page_cache_release(pages[i]);
520 kfree(pages);
522 goto out;
526 * phase two of compressed writeback. This is the ordered portion
527 * of the code, which only gets called in the order the work was
528 * queued. We walk all the async extents created by compress_file_range
529 * and send them down to the disk.
531 static noinline int submit_compressed_extents(struct inode *inode,
532 struct async_cow *async_cow)
534 struct async_extent *async_extent;
535 u64 alloc_hint = 0;
536 struct btrfs_trans_handle *trans;
537 struct btrfs_key ins;
538 struct extent_map *em;
539 struct btrfs_root *root = BTRFS_I(inode)->root;
540 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
541 struct extent_io_tree *io_tree;
542 int ret;
544 if (list_empty(&async_cow->extents))
545 return 0;
547 trans = btrfs_join_transaction(root, 1);
549 while (!list_empty(&async_cow->extents)) {
550 async_extent = list_entry(async_cow->extents.next,
551 struct async_extent, list);
552 list_del(&async_extent->list);
554 io_tree = &BTRFS_I(inode)->io_tree;
556 /* did the compression code fall back to uncompressed IO? */
557 if (!async_extent->pages) {
558 int page_started = 0;
559 unsigned long nr_written = 0;
561 lock_extent(io_tree, async_extent->start,
562 async_extent->start +
563 async_extent->ram_size - 1, GFP_NOFS);
565 /* allocate blocks */
566 cow_file_range(inode, async_cow->locked_page,
567 async_extent->start,
568 async_extent->start +
569 async_extent->ram_size - 1,
570 &page_started, &nr_written, 0);
573 * if page_started, cow_file_range inserted an
574 * inline extent and took care of all the unlocking
575 * and IO for us. Otherwise, we need to submit
576 * all those pages down to the drive.
578 if (!page_started)
579 extent_write_locked_range(io_tree,
580 inode, async_extent->start,
581 async_extent->start +
582 async_extent->ram_size - 1,
583 btrfs_get_extent,
584 WB_SYNC_ALL);
585 kfree(async_extent);
586 cond_resched();
587 continue;
590 lock_extent(io_tree, async_extent->start,
591 async_extent->start + async_extent->ram_size - 1,
592 GFP_NOFS);
594 * here we're doing allocation and writeback of the
595 * compressed pages
597 btrfs_drop_extent_cache(inode, async_extent->start,
598 async_extent->start +
599 async_extent->ram_size - 1, 0);
601 ret = btrfs_reserve_extent(trans, root,
602 async_extent->compressed_size,
603 async_extent->compressed_size,
604 0, alloc_hint,
605 (u64)-1, &ins, 1);
606 BUG_ON(ret);
607 em = alloc_extent_map(GFP_NOFS);
608 em->start = async_extent->start;
609 em->len = async_extent->ram_size;
610 em->orig_start = em->start;
612 em->block_start = ins.objectid;
613 em->block_len = ins.offset;
614 em->bdev = root->fs_info->fs_devices->latest_bdev;
615 set_bit(EXTENT_FLAG_PINNED, &em->flags);
616 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
618 while (1) {
619 spin_lock(&em_tree->lock);
620 ret = add_extent_mapping(em_tree, em);
621 spin_unlock(&em_tree->lock);
622 if (ret != -EEXIST) {
623 free_extent_map(em);
624 break;
626 btrfs_drop_extent_cache(inode, async_extent->start,
627 async_extent->start +
628 async_extent->ram_size - 1, 0);
631 ret = btrfs_add_ordered_extent(inode, async_extent->start,
632 ins.objectid,
633 async_extent->ram_size,
634 ins.offset,
635 BTRFS_ORDERED_COMPRESSED);
636 BUG_ON(ret);
638 btrfs_end_transaction(trans, root);
641 * clear dirty, set writeback and unlock the pages.
643 extent_clear_unlock_delalloc(inode,
644 &BTRFS_I(inode)->io_tree,
645 async_extent->start,
646 async_extent->start +
647 async_extent->ram_size - 1,
648 NULL, 1, 1, 0, 1, 1, 0);
650 ret = btrfs_submit_compressed_write(inode,
651 async_extent->start,
652 async_extent->ram_size,
653 ins.objectid,
654 ins.offset, async_extent->pages,
655 async_extent->nr_pages);
657 BUG_ON(ret);
658 trans = btrfs_join_transaction(root, 1);
659 alloc_hint = ins.objectid + ins.offset;
660 kfree(async_extent);
661 cond_resched();
664 btrfs_end_transaction(trans, root);
665 return 0;
669 * when extent_io.c finds a delayed allocation range in the file,
670 * the call backs end up in this code. The basic idea is to
671 * allocate extents on disk for the range, and create ordered data structs
672 * in ram to track those extents.
674 * locked_page is the page that writepage had locked already. We use
675 * it to make sure we don't do extra locks or unlocks.
677 * *page_started is set to one if we unlock locked_page and do everything
678 * required to start IO on it. It may be clean and already done with
679 * IO when we return.
681 static noinline int cow_file_range(struct inode *inode,
682 struct page *locked_page,
683 u64 start, u64 end, int *page_started,
684 unsigned long *nr_written,
685 int unlock)
687 struct btrfs_root *root = BTRFS_I(inode)->root;
688 struct btrfs_trans_handle *trans;
689 u64 alloc_hint = 0;
690 u64 num_bytes;
691 unsigned long ram_size;
692 u64 disk_num_bytes;
693 u64 cur_alloc_size;
694 u64 blocksize = root->sectorsize;
695 u64 actual_end;
696 u64 isize = i_size_read(inode);
697 struct btrfs_key ins;
698 struct extent_map *em;
699 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
700 int ret = 0;
702 trans = btrfs_join_transaction(root, 1);
703 BUG_ON(!trans);
704 btrfs_set_trans_block_group(trans, inode);
706 actual_end = min_t(u64, isize, end + 1);
708 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
709 num_bytes = max(blocksize, num_bytes);
710 disk_num_bytes = num_bytes;
711 ret = 0;
713 if (start == 0) {
714 /* lets try to make an inline extent */
715 ret = cow_file_range_inline(trans, root, inode,
716 start, end, 0, NULL);
717 if (ret == 0) {
718 extent_clear_unlock_delalloc(inode,
719 &BTRFS_I(inode)->io_tree,
720 start, end, NULL, 1, 1,
721 1, 1, 1, 1);
722 *nr_written = *nr_written +
723 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
724 *page_started = 1;
725 ret = 0;
726 goto out;
730 BUG_ON(disk_num_bytes >
731 btrfs_super_total_bytes(&root->fs_info->super_copy));
733 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
735 while (disk_num_bytes > 0) {
736 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
737 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
738 root->sectorsize, 0, alloc_hint,
739 (u64)-1, &ins, 1);
740 BUG_ON(ret);
742 em = alloc_extent_map(GFP_NOFS);
743 em->start = start;
744 em->orig_start = em->start;
746 ram_size = ins.offset;
747 em->len = ins.offset;
749 em->block_start = ins.objectid;
750 em->block_len = ins.offset;
751 em->bdev = root->fs_info->fs_devices->latest_bdev;
752 set_bit(EXTENT_FLAG_PINNED, &em->flags);
754 while (1) {
755 spin_lock(&em_tree->lock);
756 ret = add_extent_mapping(em_tree, em);
757 spin_unlock(&em_tree->lock);
758 if (ret != -EEXIST) {
759 free_extent_map(em);
760 break;
762 btrfs_drop_extent_cache(inode, start,
763 start + ram_size - 1, 0);
766 cur_alloc_size = ins.offset;
767 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
768 ram_size, cur_alloc_size, 0);
769 BUG_ON(ret);
771 if (root->root_key.objectid ==
772 BTRFS_DATA_RELOC_TREE_OBJECTID) {
773 ret = btrfs_reloc_clone_csums(inode, start,
774 cur_alloc_size);
775 BUG_ON(ret);
778 if (disk_num_bytes < cur_alloc_size)
779 break;
781 /* we're not doing compressed IO, don't unlock the first
782 * page (which the caller expects to stay locked), don't
783 * clear any dirty bits and don't set any writeback bits
785 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
786 start, start + ram_size - 1,
787 locked_page, unlock, 1,
788 1, 0, 0, 0);
789 disk_num_bytes -= cur_alloc_size;
790 num_bytes -= cur_alloc_size;
791 alloc_hint = ins.objectid + ins.offset;
792 start += cur_alloc_size;
794 out:
795 ret = 0;
796 btrfs_end_transaction(trans, root);
798 return ret;
802 * work queue call back to started compression on a file and pages
804 static noinline void async_cow_start(struct btrfs_work *work)
806 struct async_cow *async_cow;
807 int num_added = 0;
808 async_cow = container_of(work, struct async_cow, work);
810 compress_file_range(async_cow->inode, async_cow->locked_page,
811 async_cow->start, async_cow->end, async_cow,
812 &num_added);
813 if (num_added == 0)
814 async_cow->inode = NULL;
818 * work queue call back to submit previously compressed pages
820 static noinline void async_cow_submit(struct btrfs_work *work)
822 struct async_cow *async_cow;
823 struct btrfs_root *root;
824 unsigned long nr_pages;
826 async_cow = container_of(work, struct async_cow, work);
828 root = async_cow->root;
829 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
830 PAGE_CACHE_SHIFT;
832 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
834 if (atomic_read(&root->fs_info->async_delalloc_pages) <
835 5 * 1042 * 1024 &&
836 waitqueue_active(&root->fs_info->async_submit_wait))
837 wake_up(&root->fs_info->async_submit_wait);
839 if (async_cow->inode)
840 submit_compressed_extents(async_cow->inode, async_cow);
843 static noinline void async_cow_free(struct btrfs_work *work)
845 struct async_cow *async_cow;
846 async_cow = container_of(work, struct async_cow, work);
847 kfree(async_cow);
850 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
851 u64 start, u64 end, int *page_started,
852 unsigned long *nr_written)
854 struct async_cow *async_cow;
855 struct btrfs_root *root = BTRFS_I(inode)->root;
856 unsigned long nr_pages;
857 u64 cur_end;
858 int limit = 10 * 1024 * 1042;
860 if (!btrfs_test_opt(root, COMPRESS)) {
861 return cow_file_range(inode, locked_page, start, end,
862 page_started, nr_written, 1);
865 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
866 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
867 while (start < end) {
868 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
869 async_cow->inode = inode;
870 async_cow->root = root;
871 async_cow->locked_page = locked_page;
872 async_cow->start = start;
874 if (btrfs_test_flag(inode, NOCOMPRESS))
875 cur_end = end;
876 else
877 cur_end = min(end, start + 512 * 1024 - 1);
879 async_cow->end = cur_end;
880 INIT_LIST_HEAD(&async_cow->extents);
882 async_cow->work.func = async_cow_start;
883 async_cow->work.ordered_func = async_cow_submit;
884 async_cow->work.ordered_free = async_cow_free;
885 async_cow->work.flags = 0;
887 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
888 PAGE_CACHE_SHIFT;
889 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
891 btrfs_queue_worker(&root->fs_info->delalloc_workers,
892 &async_cow->work);
894 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
895 wait_event(root->fs_info->async_submit_wait,
896 (atomic_read(&root->fs_info->async_delalloc_pages) <
897 limit));
900 while (atomic_read(&root->fs_info->async_submit_draining) &&
901 atomic_read(&root->fs_info->async_delalloc_pages)) {
902 wait_event(root->fs_info->async_submit_wait,
903 (atomic_read(&root->fs_info->async_delalloc_pages) ==
904 0));
907 *nr_written += nr_pages;
908 start = cur_end + 1;
910 *page_started = 1;
911 return 0;
914 static noinline int csum_exist_in_range(struct btrfs_root *root,
915 u64 bytenr, u64 num_bytes)
917 int ret;
918 struct btrfs_ordered_sum *sums;
919 LIST_HEAD(list);
921 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
922 bytenr + num_bytes - 1, &list);
923 if (ret == 0 && list_empty(&list))
924 return 0;
926 while (!list_empty(&list)) {
927 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
928 list_del(&sums->list);
929 kfree(sums);
931 return 1;
935 * when nowcow writeback call back. This checks for snapshots or COW copies
936 * of the extents that exist in the file, and COWs the file as required.
938 * If no cow copies or snapshots exist, we write directly to the existing
939 * blocks on disk
941 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
942 u64 start, u64 end, int *page_started, int force,
943 unsigned long *nr_written)
945 struct btrfs_root *root = BTRFS_I(inode)->root;
946 struct btrfs_trans_handle *trans;
947 struct extent_buffer *leaf;
948 struct btrfs_path *path;
949 struct btrfs_file_extent_item *fi;
950 struct btrfs_key found_key;
951 u64 cow_start;
952 u64 cur_offset;
953 u64 extent_end;
954 u64 disk_bytenr;
955 u64 num_bytes;
956 int extent_type;
957 int ret;
958 int type;
959 int nocow;
960 int check_prev = 1;
962 path = btrfs_alloc_path();
963 BUG_ON(!path);
964 trans = btrfs_join_transaction(root, 1);
965 BUG_ON(!trans);
967 cow_start = (u64)-1;
968 cur_offset = start;
969 while (1) {
970 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
971 cur_offset, 0);
972 BUG_ON(ret < 0);
973 if (ret > 0 && path->slots[0] > 0 && check_prev) {
974 leaf = path->nodes[0];
975 btrfs_item_key_to_cpu(leaf, &found_key,
976 path->slots[0] - 1);
977 if (found_key.objectid == inode->i_ino &&
978 found_key.type == BTRFS_EXTENT_DATA_KEY)
979 path->slots[0]--;
981 check_prev = 0;
982 next_slot:
983 leaf = path->nodes[0];
984 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
985 ret = btrfs_next_leaf(root, path);
986 if (ret < 0)
987 BUG_ON(1);
988 if (ret > 0)
989 break;
990 leaf = path->nodes[0];
993 nocow = 0;
994 disk_bytenr = 0;
995 num_bytes = 0;
996 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
998 if (found_key.objectid > inode->i_ino ||
999 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1000 found_key.offset > end)
1001 break;
1003 if (found_key.offset > cur_offset) {
1004 extent_end = found_key.offset;
1005 goto out_check;
1008 fi = btrfs_item_ptr(leaf, path->slots[0],
1009 struct btrfs_file_extent_item);
1010 extent_type = btrfs_file_extent_type(leaf, fi);
1012 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1013 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1014 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1015 extent_end = found_key.offset +
1016 btrfs_file_extent_num_bytes(leaf, fi);
1017 if (extent_end <= start) {
1018 path->slots[0]++;
1019 goto next_slot;
1021 if (disk_bytenr == 0)
1022 goto out_check;
1023 if (btrfs_file_extent_compression(leaf, fi) ||
1024 btrfs_file_extent_encryption(leaf, fi) ||
1025 btrfs_file_extent_other_encoding(leaf, fi))
1026 goto out_check;
1027 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1028 goto out_check;
1029 if (btrfs_extent_readonly(root, disk_bytenr))
1030 goto out_check;
1031 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1032 disk_bytenr))
1033 goto out_check;
1034 disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1035 disk_bytenr += cur_offset - found_key.offset;
1036 num_bytes = min(end + 1, extent_end) - cur_offset;
1038 * force cow if csum exists in the range.
1039 * this ensure that csum for a given extent are
1040 * either valid or do not exist.
1042 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1043 goto out_check;
1044 nocow = 1;
1045 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1046 extent_end = found_key.offset +
1047 btrfs_file_extent_inline_len(leaf, fi);
1048 extent_end = ALIGN(extent_end, root->sectorsize);
1049 } else {
1050 BUG_ON(1);
1052 out_check:
1053 if (extent_end <= start) {
1054 path->slots[0]++;
1055 goto next_slot;
1057 if (!nocow) {
1058 if (cow_start == (u64)-1)
1059 cow_start = cur_offset;
1060 cur_offset = extent_end;
1061 if (cur_offset > end)
1062 break;
1063 path->slots[0]++;
1064 goto next_slot;
1067 btrfs_release_path(root, path);
1068 if (cow_start != (u64)-1) {
1069 ret = cow_file_range(inode, locked_page, cow_start,
1070 found_key.offset - 1, page_started,
1071 nr_written, 1);
1072 BUG_ON(ret);
1073 cow_start = (u64)-1;
1076 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1077 struct extent_map *em;
1078 struct extent_map_tree *em_tree;
1079 em_tree = &BTRFS_I(inode)->extent_tree;
1080 em = alloc_extent_map(GFP_NOFS);
1081 em->start = cur_offset;
1082 em->orig_start = em->start;
1083 em->len = num_bytes;
1084 em->block_len = num_bytes;
1085 em->block_start = disk_bytenr;
1086 em->bdev = root->fs_info->fs_devices->latest_bdev;
1087 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1088 while (1) {
1089 spin_lock(&em_tree->lock);
1090 ret = add_extent_mapping(em_tree, em);
1091 spin_unlock(&em_tree->lock);
1092 if (ret != -EEXIST) {
1093 free_extent_map(em);
1094 break;
1096 btrfs_drop_extent_cache(inode, em->start,
1097 em->start + em->len - 1, 0);
1099 type = BTRFS_ORDERED_PREALLOC;
1100 } else {
1101 type = BTRFS_ORDERED_NOCOW;
1104 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1105 num_bytes, num_bytes, type);
1106 BUG_ON(ret);
1108 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1109 cur_offset, cur_offset + num_bytes - 1,
1110 locked_page, 1, 1, 1, 0, 0, 0);
1111 cur_offset = extent_end;
1112 if (cur_offset > end)
1113 break;
1115 btrfs_release_path(root, path);
1117 if (cur_offset <= end && cow_start == (u64)-1)
1118 cow_start = cur_offset;
1119 if (cow_start != (u64)-1) {
1120 ret = cow_file_range(inode, locked_page, cow_start, end,
1121 page_started, nr_written, 1);
1122 BUG_ON(ret);
1125 ret = btrfs_end_transaction(trans, root);
1126 BUG_ON(ret);
1127 btrfs_free_path(path);
1128 return 0;
1132 * extent_io.c call back to do delayed allocation processing
1134 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1135 u64 start, u64 end, int *page_started,
1136 unsigned long *nr_written)
1138 int ret;
1140 if (btrfs_test_flag(inode, NODATACOW))
1141 ret = run_delalloc_nocow(inode, locked_page, start, end,
1142 page_started, 1, nr_written);
1143 else if (btrfs_test_flag(inode, PREALLOC))
1144 ret = run_delalloc_nocow(inode, locked_page, start, end,
1145 page_started, 0, nr_written);
1146 else
1147 ret = cow_file_range_async(inode, locked_page, start, end,
1148 page_started, nr_written);
1150 return ret;
1154 * extent_io.c set_bit_hook, used to track delayed allocation
1155 * bytes in this file, and to maintain the list of inodes that
1156 * have pending delalloc work to be done.
1158 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1159 unsigned long old, unsigned long bits)
1162 * set_bit and clear bit hooks normally require _irqsave/restore
1163 * but in this case, we are only testeing for the DELALLOC
1164 * bit, which is only set or cleared with irqs on
1166 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1167 struct btrfs_root *root = BTRFS_I(inode)->root;
1168 spin_lock(&root->fs_info->delalloc_lock);
1169 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1170 root->fs_info->delalloc_bytes += end - start + 1;
1171 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1172 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1173 &root->fs_info->delalloc_inodes);
1175 spin_unlock(&root->fs_info->delalloc_lock);
1177 return 0;
1181 * extent_io.c clear_bit_hook, see set_bit_hook for why
1183 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1184 unsigned long old, unsigned long bits)
1187 * set_bit and clear bit hooks normally require _irqsave/restore
1188 * but in this case, we are only testeing for the DELALLOC
1189 * bit, which is only set or cleared with irqs on
1191 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1192 struct btrfs_root *root = BTRFS_I(inode)->root;
1194 spin_lock(&root->fs_info->delalloc_lock);
1195 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1196 printk(KERN_INFO "btrfs warning: delalloc account "
1197 "%llu %llu\n",
1198 (unsigned long long)end - start + 1,
1199 (unsigned long long)
1200 root->fs_info->delalloc_bytes);
1201 root->fs_info->delalloc_bytes = 0;
1202 BTRFS_I(inode)->delalloc_bytes = 0;
1203 } else {
1204 root->fs_info->delalloc_bytes -= end - start + 1;
1205 BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1207 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1208 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1209 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1211 spin_unlock(&root->fs_info->delalloc_lock);
1213 return 0;
1217 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1218 * we don't create bios that span stripes or chunks
1220 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1221 size_t size, struct bio *bio,
1222 unsigned long bio_flags)
1224 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1225 struct btrfs_mapping_tree *map_tree;
1226 u64 logical = (u64)bio->bi_sector << 9;
1227 u64 length = 0;
1228 u64 map_length;
1229 int ret;
1231 if (bio_flags & EXTENT_BIO_COMPRESSED)
1232 return 0;
1234 length = bio->bi_size;
1235 map_tree = &root->fs_info->mapping_tree;
1236 map_length = length;
1237 ret = btrfs_map_block(map_tree, READ, logical,
1238 &map_length, NULL, 0);
1240 if (map_length < length + size)
1241 return 1;
1242 return 0;
1246 * in order to insert checksums into the metadata in large chunks,
1247 * we wait until bio submission time. All the pages in the bio are
1248 * checksummed and sums are attached onto the ordered extent record.
1250 * At IO completion time the cums attached on the ordered extent record
1251 * are inserted into the btree
1253 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1254 struct bio *bio, int mirror_num,
1255 unsigned long bio_flags)
1257 struct btrfs_root *root = BTRFS_I(inode)->root;
1258 int ret = 0;
1260 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1261 BUG_ON(ret);
1262 return 0;
1266 * in order to insert checksums into the metadata in large chunks,
1267 * we wait until bio submission time. All the pages in the bio are
1268 * checksummed and sums are attached onto the ordered extent record.
1270 * At IO completion time the cums attached on the ordered extent record
1271 * are inserted into the btree
1273 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1274 int mirror_num, unsigned long bio_flags)
1276 struct btrfs_root *root = BTRFS_I(inode)->root;
1277 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1281 * extent_io.c submission hook. This does the right thing for csum calculation
1282 * on write, or reading the csums from the tree before a read
1284 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1285 int mirror_num, unsigned long bio_flags)
1287 struct btrfs_root *root = BTRFS_I(inode)->root;
1288 int ret = 0;
1289 int skip_sum;
1291 skip_sum = btrfs_test_flag(inode, NODATASUM);
1293 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1294 BUG_ON(ret);
1296 if (!(rw & (1 << BIO_RW))) {
1297 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1298 return btrfs_submit_compressed_read(inode, bio,
1299 mirror_num, bio_flags);
1300 } else if (!skip_sum)
1301 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1302 goto mapit;
1303 } else if (!skip_sum) {
1304 /* csum items have already been cloned */
1305 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1306 goto mapit;
1307 /* we're doing a write, do the async checksumming */
1308 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1309 inode, rw, bio, mirror_num,
1310 bio_flags, __btrfs_submit_bio_start,
1311 __btrfs_submit_bio_done);
1314 mapit:
1315 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1319 * given a list of ordered sums record them in the inode. This happens
1320 * at IO completion time based on sums calculated at bio submission time.
1322 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1323 struct inode *inode, u64 file_offset,
1324 struct list_head *list)
1326 struct list_head *cur;
1327 struct btrfs_ordered_sum *sum;
1329 btrfs_set_trans_block_group(trans, inode);
1330 list_for_each(cur, list) {
1331 sum = list_entry(cur, struct btrfs_ordered_sum, list);
1332 btrfs_csum_file_blocks(trans,
1333 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1335 return 0;
1338 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1340 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1341 WARN_ON(1);
1342 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1343 GFP_NOFS);
1346 /* see btrfs_writepage_start_hook for details on why this is required */
1347 struct btrfs_writepage_fixup {
1348 struct page *page;
1349 struct btrfs_work work;
1352 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1354 struct btrfs_writepage_fixup *fixup;
1355 struct btrfs_ordered_extent *ordered;
1356 struct page *page;
1357 struct inode *inode;
1358 u64 page_start;
1359 u64 page_end;
1361 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1362 page = fixup->page;
1363 again:
1364 lock_page(page);
1365 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1366 ClearPageChecked(page);
1367 goto out_page;
1370 inode = page->mapping->host;
1371 page_start = page_offset(page);
1372 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1374 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1376 /* already ordered? We're done */
1377 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1378 EXTENT_ORDERED, 0)) {
1379 goto out;
1382 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1383 if (ordered) {
1384 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1385 page_end, GFP_NOFS);
1386 unlock_page(page);
1387 btrfs_start_ordered_extent(inode, ordered, 1);
1388 goto again;
1391 btrfs_set_extent_delalloc(inode, page_start, page_end);
1392 ClearPageChecked(page);
1393 out:
1394 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1395 out_page:
1396 unlock_page(page);
1397 page_cache_release(page);
1401 * There are a few paths in the higher layers of the kernel that directly
1402 * set the page dirty bit without asking the filesystem if it is a
1403 * good idea. This causes problems because we want to make sure COW
1404 * properly happens and the data=ordered rules are followed.
1406 * In our case any range that doesn't have the ORDERED bit set
1407 * hasn't been properly setup for IO. We kick off an async process
1408 * to fix it up. The async helper will wait for ordered extents, set
1409 * the delalloc bit and make it safe to write the page.
1411 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1413 struct inode *inode = page->mapping->host;
1414 struct btrfs_writepage_fixup *fixup;
1415 struct btrfs_root *root = BTRFS_I(inode)->root;
1416 int ret;
1418 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1419 EXTENT_ORDERED, 0);
1420 if (ret)
1421 return 0;
1423 if (PageChecked(page))
1424 return -EAGAIN;
1426 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1427 if (!fixup)
1428 return -EAGAIN;
1430 SetPageChecked(page);
1431 page_cache_get(page);
1432 fixup->work.func = btrfs_writepage_fixup_worker;
1433 fixup->page = page;
1434 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1435 return -EAGAIN;
1438 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1439 struct inode *inode, u64 file_pos,
1440 u64 disk_bytenr, u64 disk_num_bytes,
1441 u64 num_bytes, u64 ram_bytes,
1442 u8 compression, u8 encryption,
1443 u16 other_encoding, int extent_type)
1445 struct btrfs_root *root = BTRFS_I(inode)->root;
1446 struct btrfs_file_extent_item *fi;
1447 struct btrfs_path *path;
1448 struct extent_buffer *leaf;
1449 struct btrfs_key ins;
1450 u64 hint;
1451 int ret;
1453 path = btrfs_alloc_path();
1454 BUG_ON(!path);
1456 ret = btrfs_drop_extents(trans, root, inode, file_pos,
1457 file_pos + num_bytes, file_pos, &hint);
1458 BUG_ON(ret);
1460 ins.objectid = inode->i_ino;
1461 ins.offset = file_pos;
1462 ins.type = BTRFS_EXTENT_DATA_KEY;
1463 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1464 BUG_ON(ret);
1465 leaf = path->nodes[0];
1466 fi = btrfs_item_ptr(leaf, path->slots[0],
1467 struct btrfs_file_extent_item);
1468 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1469 btrfs_set_file_extent_type(leaf, fi, extent_type);
1470 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1471 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1472 btrfs_set_file_extent_offset(leaf, fi, 0);
1473 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1474 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1475 btrfs_set_file_extent_compression(leaf, fi, compression);
1476 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1477 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1478 btrfs_mark_buffer_dirty(leaf);
1480 inode_add_bytes(inode, num_bytes);
1481 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1483 ins.objectid = disk_bytenr;
1484 ins.offset = disk_num_bytes;
1485 ins.type = BTRFS_EXTENT_ITEM_KEY;
1486 ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1487 root->root_key.objectid,
1488 trans->transid, inode->i_ino, &ins);
1489 BUG_ON(ret);
1491 btrfs_free_path(path);
1492 return 0;
1495 /* as ordered data IO finishes, this gets called so we can finish
1496 * an ordered extent if the range of bytes in the file it covers are
1497 * fully written.
1499 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1501 struct btrfs_root *root = BTRFS_I(inode)->root;
1502 struct btrfs_trans_handle *trans;
1503 struct btrfs_ordered_extent *ordered_extent;
1504 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1505 int compressed = 0;
1506 int ret;
1508 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1509 if (!ret)
1510 return 0;
1512 trans = btrfs_join_transaction(root, 1);
1514 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1515 BUG_ON(!ordered_extent);
1516 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1517 goto nocow;
1519 lock_extent(io_tree, ordered_extent->file_offset,
1520 ordered_extent->file_offset + ordered_extent->len - 1,
1521 GFP_NOFS);
1523 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1524 compressed = 1;
1525 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1526 BUG_ON(compressed);
1527 ret = btrfs_mark_extent_written(trans, root, inode,
1528 ordered_extent->file_offset,
1529 ordered_extent->file_offset +
1530 ordered_extent->len);
1531 BUG_ON(ret);
1532 } else {
1533 ret = insert_reserved_file_extent(trans, inode,
1534 ordered_extent->file_offset,
1535 ordered_extent->start,
1536 ordered_extent->disk_len,
1537 ordered_extent->len,
1538 ordered_extent->len,
1539 compressed, 0, 0,
1540 BTRFS_FILE_EXTENT_REG);
1541 BUG_ON(ret);
1543 unlock_extent(io_tree, ordered_extent->file_offset,
1544 ordered_extent->file_offset + ordered_extent->len - 1,
1545 GFP_NOFS);
1546 nocow:
1547 add_pending_csums(trans, inode, ordered_extent->file_offset,
1548 &ordered_extent->list);
1550 mutex_lock(&BTRFS_I(inode)->extent_mutex);
1551 btrfs_ordered_update_i_size(inode, ordered_extent);
1552 btrfs_update_inode(trans, root, inode);
1553 btrfs_remove_ordered_extent(inode, ordered_extent);
1554 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1556 /* once for us */
1557 btrfs_put_ordered_extent(ordered_extent);
1558 /* once for the tree */
1559 btrfs_put_ordered_extent(ordered_extent);
1561 btrfs_end_transaction(trans, root);
1562 return 0;
1565 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1566 struct extent_state *state, int uptodate)
1568 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1572 * When IO fails, either with EIO or csum verification fails, we
1573 * try other mirrors that might have a good copy of the data. This
1574 * io_failure_record is used to record state as we go through all the
1575 * mirrors. If another mirror has good data, the page is set up to date
1576 * and things continue. If a good mirror can't be found, the original
1577 * bio end_io callback is called to indicate things have failed.
1579 struct io_failure_record {
1580 struct page *page;
1581 u64 start;
1582 u64 len;
1583 u64 logical;
1584 unsigned long bio_flags;
1585 int last_mirror;
1588 static int btrfs_io_failed_hook(struct bio *failed_bio,
1589 struct page *page, u64 start, u64 end,
1590 struct extent_state *state)
1592 struct io_failure_record *failrec = NULL;
1593 u64 private;
1594 struct extent_map *em;
1595 struct inode *inode = page->mapping->host;
1596 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1597 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1598 struct bio *bio;
1599 int num_copies;
1600 int ret;
1601 int rw;
1602 u64 logical;
1604 ret = get_state_private(failure_tree, start, &private);
1605 if (ret) {
1606 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1607 if (!failrec)
1608 return -ENOMEM;
1609 failrec->start = start;
1610 failrec->len = end - start + 1;
1611 failrec->last_mirror = 0;
1612 failrec->bio_flags = 0;
1614 spin_lock(&em_tree->lock);
1615 em = lookup_extent_mapping(em_tree, start, failrec->len);
1616 if (em->start > start || em->start + em->len < start) {
1617 free_extent_map(em);
1618 em = NULL;
1620 spin_unlock(&em_tree->lock);
1622 if (!em || IS_ERR(em)) {
1623 kfree(failrec);
1624 return -EIO;
1626 logical = start - em->start;
1627 logical = em->block_start + logical;
1628 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1629 logical = em->block_start;
1630 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1632 failrec->logical = logical;
1633 free_extent_map(em);
1634 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1635 EXTENT_DIRTY, GFP_NOFS);
1636 set_state_private(failure_tree, start,
1637 (u64)(unsigned long)failrec);
1638 } else {
1639 failrec = (struct io_failure_record *)(unsigned long)private;
1641 num_copies = btrfs_num_copies(
1642 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1643 failrec->logical, failrec->len);
1644 failrec->last_mirror++;
1645 if (!state) {
1646 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1647 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1648 failrec->start,
1649 EXTENT_LOCKED);
1650 if (state && state->start != failrec->start)
1651 state = NULL;
1652 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1654 if (!state || failrec->last_mirror > num_copies) {
1655 set_state_private(failure_tree, failrec->start, 0);
1656 clear_extent_bits(failure_tree, failrec->start,
1657 failrec->start + failrec->len - 1,
1658 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1659 kfree(failrec);
1660 return -EIO;
1662 bio = bio_alloc(GFP_NOFS, 1);
1663 bio->bi_private = state;
1664 bio->bi_end_io = failed_bio->bi_end_io;
1665 bio->bi_sector = failrec->logical >> 9;
1666 bio->bi_bdev = failed_bio->bi_bdev;
1667 bio->bi_size = 0;
1669 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1670 if (failed_bio->bi_rw & (1 << BIO_RW))
1671 rw = WRITE;
1672 else
1673 rw = READ;
1675 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1676 failrec->last_mirror,
1677 failrec->bio_flags);
1678 return 0;
1682 * each time an IO finishes, we do a fast check in the IO failure tree
1683 * to see if we need to process or clean up an io_failure_record
1685 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1687 u64 private;
1688 u64 private_failure;
1689 struct io_failure_record *failure;
1690 int ret;
1692 private = 0;
1693 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1694 (u64)-1, 1, EXTENT_DIRTY)) {
1695 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1696 start, &private_failure);
1697 if (ret == 0) {
1698 failure = (struct io_failure_record *)(unsigned long)
1699 private_failure;
1700 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1701 failure->start, 0);
1702 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1703 failure->start,
1704 failure->start + failure->len - 1,
1705 EXTENT_DIRTY | EXTENT_LOCKED,
1706 GFP_NOFS);
1707 kfree(failure);
1710 return 0;
1714 * when reads are done, we need to check csums to verify the data is correct
1715 * if there's a match, we allow the bio to finish. If not, we go through
1716 * the io_failure_record routines to find good copies
1718 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1719 struct extent_state *state)
1721 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1722 struct inode *inode = page->mapping->host;
1723 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1724 char *kaddr;
1725 u64 private = ~(u32)0;
1726 int ret;
1727 struct btrfs_root *root = BTRFS_I(inode)->root;
1728 u32 csum = ~(u32)0;
1730 if (PageChecked(page)) {
1731 ClearPageChecked(page);
1732 goto good;
1734 if (btrfs_test_flag(inode, NODATASUM))
1735 return 0;
1737 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1738 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1739 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1740 GFP_NOFS);
1741 return 0;
1744 if (state && state->start == start) {
1745 private = state->private;
1746 ret = 0;
1747 } else {
1748 ret = get_state_private(io_tree, start, &private);
1750 kaddr = kmap_atomic(page, KM_USER0);
1751 if (ret)
1752 goto zeroit;
1754 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1755 btrfs_csum_final(csum, (char *)&csum);
1756 if (csum != private)
1757 goto zeroit;
1759 kunmap_atomic(kaddr, KM_USER0);
1760 good:
1761 /* if the io failure tree for this inode is non-empty,
1762 * check to see if we've recovered from a failed IO
1764 btrfs_clean_io_failures(inode, start);
1765 return 0;
1767 zeroit:
1768 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1769 "private %llu\n", page->mapping->host->i_ino,
1770 (unsigned long long)start, csum,
1771 (unsigned long long)private);
1772 memset(kaddr + offset, 1, end - start + 1);
1773 flush_dcache_page(page);
1774 kunmap_atomic(kaddr, KM_USER0);
1775 if (private == 0)
1776 return 0;
1777 return -EIO;
1781 * This creates an orphan entry for the given inode in case something goes
1782 * wrong in the middle of an unlink/truncate.
1784 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1786 struct btrfs_root *root = BTRFS_I(inode)->root;
1787 int ret = 0;
1789 spin_lock(&root->list_lock);
1791 /* already on the orphan list, we're good */
1792 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1793 spin_unlock(&root->list_lock);
1794 return 0;
1797 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1799 spin_unlock(&root->list_lock);
1802 * insert an orphan item to track this unlinked/truncated file
1804 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1806 return ret;
1810 * We have done the truncate/delete so we can go ahead and remove the orphan
1811 * item for this particular inode.
1813 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1815 struct btrfs_root *root = BTRFS_I(inode)->root;
1816 int ret = 0;
1818 spin_lock(&root->list_lock);
1820 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1821 spin_unlock(&root->list_lock);
1822 return 0;
1825 list_del_init(&BTRFS_I(inode)->i_orphan);
1826 if (!trans) {
1827 spin_unlock(&root->list_lock);
1828 return 0;
1831 spin_unlock(&root->list_lock);
1833 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1835 return ret;
1839 * this cleans up any orphans that may be left on the list from the last use
1840 * of this root.
1842 void btrfs_orphan_cleanup(struct btrfs_root *root)
1844 struct btrfs_path *path;
1845 struct extent_buffer *leaf;
1846 struct btrfs_item *item;
1847 struct btrfs_key key, found_key;
1848 struct btrfs_trans_handle *trans;
1849 struct inode *inode;
1850 int ret = 0, nr_unlink = 0, nr_truncate = 0;
1852 path = btrfs_alloc_path();
1853 if (!path)
1854 return;
1855 path->reada = -1;
1857 key.objectid = BTRFS_ORPHAN_OBJECTID;
1858 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1859 key.offset = (u64)-1;
1862 while (1) {
1863 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1864 if (ret < 0) {
1865 printk(KERN_ERR "Error searching slot for orphan: %d"
1866 "\n", ret);
1867 break;
1871 * if ret == 0 means we found what we were searching for, which
1872 * is weird, but possible, so only screw with path if we didnt
1873 * find the key and see if we have stuff that matches
1875 if (ret > 0) {
1876 if (path->slots[0] == 0)
1877 break;
1878 path->slots[0]--;
1881 /* pull out the item */
1882 leaf = path->nodes[0];
1883 item = btrfs_item_nr(leaf, path->slots[0]);
1884 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1886 /* make sure the item matches what we want */
1887 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1888 break;
1889 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1890 break;
1892 /* release the path since we're done with it */
1893 btrfs_release_path(root, path);
1896 * this is where we are basically btrfs_lookup, without the
1897 * crossing root thing. we store the inode number in the
1898 * offset of the orphan item.
1900 inode = btrfs_iget_locked(root->fs_info->sb,
1901 found_key.offset, root);
1902 if (!inode)
1903 break;
1905 if (inode->i_state & I_NEW) {
1906 BTRFS_I(inode)->root = root;
1908 /* have to set the location manually */
1909 BTRFS_I(inode)->location.objectid = inode->i_ino;
1910 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1911 BTRFS_I(inode)->location.offset = 0;
1913 btrfs_read_locked_inode(inode);
1914 unlock_new_inode(inode);
1918 * add this inode to the orphan list so btrfs_orphan_del does
1919 * the proper thing when we hit it
1921 spin_lock(&root->list_lock);
1922 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1923 spin_unlock(&root->list_lock);
1926 * if this is a bad inode, means we actually succeeded in
1927 * removing the inode, but not the orphan record, which means
1928 * we need to manually delete the orphan since iput will just
1929 * do a destroy_inode
1931 if (is_bad_inode(inode)) {
1932 trans = btrfs_start_transaction(root, 1);
1933 btrfs_orphan_del(trans, inode);
1934 btrfs_end_transaction(trans, root);
1935 iput(inode);
1936 continue;
1939 /* if we have links, this was a truncate, lets do that */
1940 if (inode->i_nlink) {
1941 nr_truncate++;
1942 btrfs_truncate(inode);
1943 } else {
1944 nr_unlink++;
1947 /* this will do delete_inode and everything for us */
1948 iput(inode);
1951 if (nr_unlink)
1952 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1953 if (nr_truncate)
1954 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1956 btrfs_free_path(path);
1960 * read an inode from the btree into the in-memory inode
1962 void btrfs_read_locked_inode(struct inode *inode)
1964 struct btrfs_path *path;
1965 struct extent_buffer *leaf;
1966 struct btrfs_inode_item *inode_item;
1967 struct btrfs_timespec *tspec;
1968 struct btrfs_root *root = BTRFS_I(inode)->root;
1969 struct btrfs_key location;
1970 u64 alloc_group_block;
1971 u32 rdev;
1972 int ret;
1974 path = btrfs_alloc_path();
1975 BUG_ON(!path);
1976 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1978 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1979 if (ret)
1980 goto make_bad;
1982 leaf = path->nodes[0];
1983 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1984 struct btrfs_inode_item);
1986 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1987 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1988 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1989 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1990 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1992 tspec = btrfs_inode_atime(inode_item);
1993 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1994 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1996 tspec = btrfs_inode_mtime(inode_item);
1997 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1998 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2000 tspec = btrfs_inode_ctime(inode_item);
2001 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2002 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2004 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2005 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2006 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2007 inode->i_generation = BTRFS_I(inode)->generation;
2008 inode->i_rdev = 0;
2009 rdev = btrfs_inode_rdev(leaf, inode_item);
2011 BTRFS_I(inode)->index_cnt = (u64)-1;
2012 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2014 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2015 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2016 alloc_group_block, 0);
2017 btrfs_free_path(path);
2018 inode_item = NULL;
2020 switch (inode->i_mode & S_IFMT) {
2021 case S_IFREG:
2022 inode->i_mapping->a_ops = &btrfs_aops;
2023 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2024 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2025 inode->i_fop = &btrfs_file_operations;
2026 inode->i_op = &btrfs_file_inode_operations;
2027 break;
2028 case S_IFDIR:
2029 inode->i_fop = &btrfs_dir_file_operations;
2030 if (root == root->fs_info->tree_root)
2031 inode->i_op = &btrfs_dir_ro_inode_operations;
2032 else
2033 inode->i_op = &btrfs_dir_inode_operations;
2034 break;
2035 case S_IFLNK:
2036 inode->i_op = &btrfs_symlink_inode_operations;
2037 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2038 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2039 break;
2040 default:
2041 init_special_inode(inode, inode->i_mode, rdev);
2042 break;
2044 return;
2046 make_bad:
2047 btrfs_free_path(path);
2048 make_bad_inode(inode);
2052 * given a leaf and an inode, copy the inode fields into the leaf
2054 static void fill_inode_item(struct btrfs_trans_handle *trans,
2055 struct extent_buffer *leaf,
2056 struct btrfs_inode_item *item,
2057 struct inode *inode)
2059 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2060 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2061 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2062 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2063 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2065 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2066 inode->i_atime.tv_sec);
2067 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2068 inode->i_atime.tv_nsec);
2070 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2071 inode->i_mtime.tv_sec);
2072 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2073 inode->i_mtime.tv_nsec);
2075 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2076 inode->i_ctime.tv_sec);
2077 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2078 inode->i_ctime.tv_nsec);
2080 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2081 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2082 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2083 btrfs_set_inode_transid(leaf, item, trans->transid);
2084 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2085 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2086 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2090 * copy everything in the in-memory inode into the btree.
2092 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2093 struct btrfs_root *root, struct inode *inode)
2095 struct btrfs_inode_item *inode_item;
2096 struct btrfs_path *path;
2097 struct extent_buffer *leaf;
2098 int ret;
2100 path = btrfs_alloc_path();
2101 BUG_ON(!path);
2102 ret = btrfs_lookup_inode(trans, root, path,
2103 &BTRFS_I(inode)->location, 1);
2104 if (ret) {
2105 if (ret > 0)
2106 ret = -ENOENT;
2107 goto failed;
2110 leaf = path->nodes[0];
2111 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2112 struct btrfs_inode_item);
2114 fill_inode_item(trans, leaf, inode_item, inode);
2115 btrfs_mark_buffer_dirty(leaf);
2116 btrfs_set_inode_last_trans(trans, inode);
2117 ret = 0;
2118 failed:
2119 btrfs_free_path(path);
2120 return ret;
2125 * unlink helper that gets used here in inode.c and in the tree logging
2126 * recovery code. It remove a link in a directory with a given name, and
2127 * also drops the back refs in the inode to the directory
2129 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2130 struct btrfs_root *root,
2131 struct inode *dir, struct inode *inode,
2132 const char *name, int name_len)
2134 struct btrfs_path *path;
2135 int ret = 0;
2136 struct extent_buffer *leaf;
2137 struct btrfs_dir_item *di;
2138 struct btrfs_key key;
2139 u64 index;
2141 path = btrfs_alloc_path();
2142 if (!path) {
2143 ret = -ENOMEM;
2144 goto err;
2147 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2148 name, name_len, -1);
2149 if (IS_ERR(di)) {
2150 ret = PTR_ERR(di);
2151 goto err;
2153 if (!di) {
2154 ret = -ENOENT;
2155 goto err;
2157 leaf = path->nodes[0];
2158 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2159 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2160 if (ret)
2161 goto err;
2162 btrfs_release_path(root, path);
2164 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2165 inode->i_ino,
2166 dir->i_ino, &index);
2167 if (ret) {
2168 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2169 "inode %lu parent %lu\n", name_len, name,
2170 inode->i_ino, dir->i_ino);
2171 goto err;
2174 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2175 index, name, name_len, -1);
2176 if (IS_ERR(di)) {
2177 ret = PTR_ERR(di);
2178 goto err;
2180 if (!di) {
2181 ret = -ENOENT;
2182 goto err;
2184 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2185 btrfs_release_path(root, path);
2187 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2188 inode, dir->i_ino);
2189 BUG_ON(ret != 0 && ret != -ENOENT);
2190 if (ret != -ENOENT)
2191 BTRFS_I(dir)->log_dirty_trans = trans->transid;
2193 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2194 dir, index);
2195 BUG_ON(ret);
2196 err:
2197 btrfs_free_path(path);
2198 if (ret)
2199 goto out;
2201 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2202 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2203 btrfs_update_inode(trans, root, dir);
2204 btrfs_drop_nlink(inode);
2205 ret = btrfs_update_inode(trans, root, inode);
2206 dir->i_sb->s_dirt = 1;
2207 out:
2208 return ret;
2211 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2213 struct btrfs_root *root;
2214 struct btrfs_trans_handle *trans;
2215 struct inode *inode = dentry->d_inode;
2216 int ret;
2217 unsigned long nr = 0;
2219 root = BTRFS_I(dir)->root;
2221 ret = btrfs_check_free_space(root, 1, 1);
2222 if (ret)
2223 goto fail;
2225 trans = btrfs_start_transaction(root, 1);
2227 btrfs_set_trans_block_group(trans, dir);
2228 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2229 dentry->d_name.name, dentry->d_name.len);
2231 if (inode->i_nlink == 0)
2232 ret = btrfs_orphan_add(trans, inode);
2234 nr = trans->blocks_used;
2236 btrfs_end_transaction_throttle(trans, root);
2237 fail:
2238 btrfs_btree_balance_dirty(root, nr);
2239 return ret;
2242 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2244 struct inode *inode = dentry->d_inode;
2245 int err = 0;
2246 int ret;
2247 struct btrfs_root *root = BTRFS_I(dir)->root;
2248 struct btrfs_trans_handle *trans;
2249 unsigned long nr = 0;
2252 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2253 * the root of a subvolume or snapshot
2255 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2256 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2257 return -ENOTEMPTY;
2260 ret = btrfs_check_free_space(root, 1, 1);
2261 if (ret)
2262 goto fail;
2264 trans = btrfs_start_transaction(root, 1);
2265 btrfs_set_trans_block_group(trans, dir);
2267 err = btrfs_orphan_add(trans, inode);
2268 if (err)
2269 goto fail_trans;
2271 /* now the directory is empty */
2272 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2273 dentry->d_name.name, dentry->d_name.len);
2274 if (!err)
2275 btrfs_i_size_write(inode, 0);
2277 fail_trans:
2278 nr = trans->blocks_used;
2279 ret = btrfs_end_transaction_throttle(trans, root);
2280 fail:
2281 btrfs_btree_balance_dirty(root, nr);
2283 if (ret && !err)
2284 err = ret;
2285 return err;
2288 #if 0
2290 * when truncating bytes in a file, it is possible to avoid reading
2291 * the leaves that contain only checksum items. This can be the
2292 * majority of the IO required to delete a large file, but it must
2293 * be done carefully.
2295 * The keys in the level just above the leaves are checked to make sure
2296 * the lowest key in a given leaf is a csum key, and starts at an offset
2297 * after the new size.
2299 * Then the key for the next leaf is checked to make sure it also has
2300 * a checksum item for the same file. If it does, we know our target leaf
2301 * contains only checksum items, and it can be safely freed without reading
2302 * it.
2304 * This is just an optimization targeted at large files. It may do
2305 * nothing. It will return 0 unless things went badly.
2307 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2308 struct btrfs_root *root,
2309 struct btrfs_path *path,
2310 struct inode *inode, u64 new_size)
2312 struct btrfs_key key;
2313 int ret;
2314 int nritems;
2315 struct btrfs_key found_key;
2316 struct btrfs_key other_key;
2317 struct btrfs_leaf_ref *ref;
2318 u64 leaf_gen;
2319 u64 leaf_start;
2321 path->lowest_level = 1;
2322 key.objectid = inode->i_ino;
2323 key.type = BTRFS_CSUM_ITEM_KEY;
2324 key.offset = new_size;
2325 again:
2326 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2327 if (ret < 0)
2328 goto out;
2330 if (path->nodes[1] == NULL) {
2331 ret = 0;
2332 goto out;
2334 ret = 0;
2335 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2336 nritems = btrfs_header_nritems(path->nodes[1]);
2338 if (!nritems)
2339 goto out;
2341 if (path->slots[1] >= nritems)
2342 goto next_node;
2344 /* did we find a key greater than anything we want to delete? */
2345 if (found_key.objectid > inode->i_ino ||
2346 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2347 goto out;
2349 /* we check the next key in the node to make sure the leave contains
2350 * only checksum items. This comparison doesn't work if our
2351 * leaf is the last one in the node
2353 if (path->slots[1] + 1 >= nritems) {
2354 next_node:
2355 /* search forward from the last key in the node, this
2356 * will bring us into the next node in the tree
2358 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2360 /* unlikely, but we inc below, so check to be safe */
2361 if (found_key.offset == (u64)-1)
2362 goto out;
2364 /* search_forward needs a path with locks held, do the
2365 * search again for the original key. It is possible
2366 * this will race with a balance and return a path that
2367 * we could modify, but this drop is just an optimization
2368 * and is allowed to miss some leaves.
2370 btrfs_release_path(root, path);
2371 found_key.offset++;
2373 /* setup a max key for search_forward */
2374 other_key.offset = (u64)-1;
2375 other_key.type = key.type;
2376 other_key.objectid = key.objectid;
2378 path->keep_locks = 1;
2379 ret = btrfs_search_forward(root, &found_key, &other_key,
2380 path, 0, 0);
2381 path->keep_locks = 0;
2382 if (ret || found_key.objectid != key.objectid ||
2383 found_key.type != key.type) {
2384 ret = 0;
2385 goto out;
2388 key.offset = found_key.offset;
2389 btrfs_release_path(root, path);
2390 cond_resched();
2391 goto again;
2394 /* we know there's one more slot after us in the tree,
2395 * read that key so we can verify it is also a checksum item
2397 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2399 if (found_key.objectid < inode->i_ino)
2400 goto next_key;
2402 if (found_key.type != key.type || found_key.offset < new_size)
2403 goto next_key;
2406 * if the key for the next leaf isn't a csum key from this objectid,
2407 * we can't be sure there aren't good items inside this leaf.
2408 * Bail out
2410 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2411 goto out;
2413 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2414 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2416 * it is safe to delete this leaf, it contains only
2417 * csum items from this inode at an offset >= new_size
2419 ret = btrfs_del_leaf(trans, root, path, leaf_start);
2420 BUG_ON(ret);
2422 if (root->ref_cows && leaf_gen < trans->transid) {
2423 ref = btrfs_alloc_leaf_ref(root, 0);
2424 if (ref) {
2425 ref->root_gen = root->root_key.offset;
2426 ref->bytenr = leaf_start;
2427 ref->owner = 0;
2428 ref->generation = leaf_gen;
2429 ref->nritems = 0;
2431 ret = btrfs_add_leaf_ref(root, ref, 0);
2432 WARN_ON(ret);
2433 btrfs_free_leaf_ref(root, ref);
2434 } else {
2435 WARN_ON(1);
2438 next_key:
2439 btrfs_release_path(root, path);
2441 if (other_key.objectid == inode->i_ino &&
2442 other_key.type == key.type && other_key.offset > key.offset) {
2443 key.offset = other_key.offset;
2444 cond_resched();
2445 goto again;
2447 ret = 0;
2448 out:
2449 /* fixup any changes we've made to the path */
2450 path->lowest_level = 0;
2451 path->keep_locks = 0;
2452 btrfs_release_path(root, path);
2453 return ret;
2456 #endif
2459 * this can truncate away extent items, csum items and directory items.
2460 * It starts at a high offset and removes keys until it can't find
2461 * any higher than new_size
2463 * csum items that cross the new i_size are truncated to the new size
2464 * as well.
2466 * min_type is the minimum key type to truncate down to. If set to 0, this
2467 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2469 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2470 struct btrfs_root *root,
2471 struct inode *inode,
2472 u64 new_size, u32 min_type)
2474 int ret;
2475 struct btrfs_path *path;
2476 struct btrfs_key key;
2477 struct btrfs_key found_key;
2478 u32 found_type;
2479 struct extent_buffer *leaf;
2480 struct btrfs_file_extent_item *fi;
2481 u64 extent_start = 0;
2482 u64 extent_num_bytes = 0;
2483 u64 item_end = 0;
2484 u64 root_gen = 0;
2485 u64 root_owner = 0;
2486 int found_extent;
2487 int del_item;
2488 int pending_del_nr = 0;
2489 int pending_del_slot = 0;
2490 int extent_type = -1;
2491 int encoding;
2492 u64 mask = root->sectorsize - 1;
2494 if (root->ref_cows)
2495 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2496 path = btrfs_alloc_path();
2497 path->reada = -1;
2498 BUG_ON(!path);
2500 /* FIXME, add redo link to tree so we don't leak on crash */
2501 key.objectid = inode->i_ino;
2502 key.offset = (u64)-1;
2503 key.type = (u8)-1;
2505 btrfs_init_path(path);
2507 search_again:
2508 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2509 if (ret < 0)
2510 goto error;
2512 if (ret > 0) {
2513 /* there are no items in the tree for us to truncate, we're
2514 * done
2516 if (path->slots[0] == 0) {
2517 ret = 0;
2518 goto error;
2520 path->slots[0]--;
2523 while (1) {
2524 fi = NULL;
2525 leaf = path->nodes[0];
2526 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2527 found_type = btrfs_key_type(&found_key);
2528 encoding = 0;
2530 if (found_key.objectid != inode->i_ino)
2531 break;
2533 if (found_type < min_type)
2534 break;
2536 item_end = found_key.offset;
2537 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2538 fi = btrfs_item_ptr(leaf, path->slots[0],
2539 struct btrfs_file_extent_item);
2540 extent_type = btrfs_file_extent_type(leaf, fi);
2541 encoding = btrfs_file_extent_compression(leaf, fi);
2542 encoding |= btrfs_file_extent_encryption(leaf, fi);
2543 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2545 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2546 item_end +=
2547 btrfs_file_extent_num_bytes(leaf, fi);
2548 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2549 item_end += btrfs_file_extent_inline_len(leaf,
2550 fi);
2552 item_end--;
2554 if (item_end < new_size) {
2555 if (found_type == BTRFS_DIR_ITEM_KEY)
2556 found_type = BTRFS_INODE_ITEM_KEY;
2557 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2558 found_type = BTRFS_EXTENT_DATA_KEY;
2559 else if (found_type == BTRFS_EXTENT_DATA_KEY)
2560 found_type = BTRFS_XATTR_ITEM_KEY;
2561 else if (found_type == BTRFS_XATTR_ITEM_KEY)
2562 found_type = BTRFS_INODE_REF_KEY;
2563 else if (found_type)
2564 found_type--;
2565 else
2566 break;
2567 btrfs_set_key_type(&key, found_type);
2568 goto next;
2570 if (found_key.offset >= new_size)
2571 del_item = 1;
2572 else
2573 del_item = 0;
2574 found_extent = 0;
2576 /* FIXME, shrink the extent if the ref count is only 1 */
2577 if (found_type != BTRFS_EXTENT_DATA_KEY)
2578 goto delete;
2580 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2581 u64 num_dec;
2582 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2583 if (!del_item && !encoding) {
2584 u64 orig_num_bytes =
2585 btrfs_file_extent_num_bytes(leaf, fi);
2586 extent_num_bytes = new_size -
2587 found_key.offset + root->sectorsize - 1;
2588 extent_num_bytes = extent_num_bytes &
2589 ~((u64)root->sectorsize - 1);
2590 btrfs_set_file_extent_num_bytes(leaf, fi,
2591 extent_num_bytes);
2592 num_dec = (orig_num_bytes -
2593 extent_num_bytes);
2594 if (root->ref_cows && extent_start != 0)
2595 inode_sub_bytes(inode, num_dec);
2596 btrfs_mark_buffer_dirty(leaf);
2597 } else {
2598 extent_num_bytes =
2599 btrfs_file_extent_disk_num_bytes(leaf,
2600 fi);
2601 /* FIXME blocksize != 4096 */
2602 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2603 if (extent_start != 0) {
2604 found_extent = 1;
2605 if (root->ref_cows)
2606 inode_sub_bytes(inode, num_dec);
2608 root_gen = btrfs_header_generation(leaf);
2609 root_owner = btrfs_header_owner(leaf);
2611 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2613 * we can't truncate inline items that have had
2614 * special encodings
2616 if (!del_item &&
2617 btrfs_file_extent_compression(leaf, fi) == 0 &&
2618 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2619 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2620 u32 size = new_size - found_key.offset;
2622 if (root->ref_cows) {
2623 inode_sub_bytes(inode, item_end + 1 -
2624 new_size);
2626 size =
2627 btrfs_file_extent_calc_inline_size(size);
2628 ret = btrfs_truncate_item(trans, root, path,
2629 size, 1);
2630 BUG_ON(ret);
2631 } else if (root->ref_cows) {
2632 inode_sub_bytes(inode, item_end + 1 -
2633 found_key.offset);
2636 delete:
2637 if (del_item) {
2638 if (!pending_del_nr) {
2639 /* no pending yet, add ourselves */
2640 pending_del_slot = path->slots[0];
2641 pending_del_nr = 1;
2642 } else if (pending_del_nr &&
2643 path->slots[0] + 1 == pending_del_slot) {
2644 /* hop on the pending chunk */
2645 pending_del_nr++;
2646 pending_del_slot = path->slots[0];
2647 } else {
2648 BUG();
2650 } else {
2651 break;
2653 if (found_extent) {
2654 ret = btrfs_free_extent(trans, root, extent_start,
2655 extent_num_bytes,
2656 leaf->start, root_owner,
2657 root_gen, inode->i_ino, 0);
2658 BUG_ON(ret);
2660 next:
2661 if (path->slots[0] == 0) {
2662 if (pending_del_nr)
2663 goto del_pending;
2664 btrfs_release_path(root, path);
2665 goto search_again;
2668 path->slots[0]--;
2669 if (pending_del_nr &&
2670 path->slots[0] + 1 != pending_del_slot) {
2671 struct btrfs_key debug;
2672 del_pending:
2673 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2674 pending_del_slot);
2675 ret = btrfs_del_items(trans, root, path,
2676 pending_del_slot,
2677 pending_del_nr);
2678 BUG_ON(ret);
2679 pending_del_nr = 0;
2680 btrfs_release_path(root, path);
2681 goto search_again;
2684 ret = 0;
2685 error:
2686 if (pending_del_nr) {
2687 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2688 pending_del_nr);
2690 btrfs_free_path(path);
2691 inode->i_sb->s_dirt = 1;
2692 return ret;
2696 * taken from block_truncate_page, but does cow as it zeros out
2697 * any bytes left in the last page in the file.
2699 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2701 struct inode *inode = mapping->host;
2702 struct btrfs_root *root = BTRFS_I(inode)->root;
2703 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2704 struct btrfs_ordered_extent *ordered;
2705 char *kaddr;
2706 u32 blocksize = root->sectorsize;
2707 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2708 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2709 struct page *page;
2710 int ret = 0;
2711 u64 page_start;
2712 u64 page_end;
2714 if ((offset & (blocksize - 1)) == 0)
2715 goto out;
2717 ret = -ENOMEM;
2718 again:
2719 page = grab_cache_page(mapping, index);
2720 if (!page)
2721 goto out;
2723 page_start = page_offset(page);
2724 page_end = page_start + PAGE_CACHE_SIZE - 1;
2726 if (!PageUptodate(page)) {
2727 ret = btrfs_readpage(NULL, page);
2728 lock_page(page);
2729 if (page->mapping != mapping) {
2730 unlock_page(page);
2731 page_cache_release(page);
2732 goto again;
2734 if (!PageUptodate(page)) {
2735 ret = -EIO;
2736 goto out_unlock;
2739 wait_on_page_writeback(page);
2741 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2742 set_page_extent_mapped(page);
2744 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2745 if (ordered) {
2746 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2747 unlock_page(page);
2748 page_cache_release(page);
2749 btrfs_start_ordered_extent(inode, ordered, 1);
2750 btrfs_put_ordered_extent(ordered);
2751 goto again;
2754 btrfs_set_extent_delalloc(inode, page_start, page_end);
2755 ret = 0;
2756 if (offset != PAGE_CACHE_SIZE) {
2757 kaddr = kmap(page);
2758 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2759 flush_dcache_page(page);
2760 kunmap(page);
2762 ClearPageChecked(page);
2763 set_page_dirty(page);
2764 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2766 out_unlock:
2767 unlock_page(page);
2768 page_cache_release(page);
2769 out:
2770 return ret;
2773 int btrfs_cont_expand(struct inode *inode, loff_t size)
2775 struct btrfs_trans_handle *trans;
2776 struct btrfs_root *root = BTRFS_I(inode)->root;
2777 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2778 struct extent_map *em;
2779 u64 mask = root->sectorsize - 1;
2780 u64 hole_start = (inode->i_size + mask) & ~mask;
2781 u64 block_end = (size + mask) & ~mask;
2782 u64 last_byte;
2783 u64 cur_offset;
2784 u64 hole_size;
2785 int err;
2787 if (size <= hole_start)
2788 return 0;
2790 err = btrfs_check_free_space(root, 1, 0);
2791 if (err)
2792 return err;
2794 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2796 while (1) {
2797 struct btrfs_ordered_extent *ordered;
2798 btrfs_wait_ordered_range(inode, hole_start,
2799 block_end - hole_start);
2800 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2801 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2802 if (!ordered)
2803 break;
2804 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2805 btrfs_put_ordered_extent(ordered);
2808 trans = btrfs_start_transaction(root, 1);
2809 btrfs_set_trans_block_group(trans, inode);
2811 cur_offset = hole_start;
2812 while (1) {
2813 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2814 block_end - cur_offset, 0);
2815 BUG_ON(IS_ERR(em) || !em);
2816 last_byte = min(extent_map_end(em), block_end);
2817 last_byte = (last_byte + mask) & ~mask;
2818 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2819 u64 hint_byte = 0;
2820 hole_size = last_byte - cur_offset;
2821 err = btrfs_drop_extents(trans, root, inode,
2822 cur_offset,
2823 cur_offset + hole_size,
2824 cur_offset, &hint_byte);
2825 if (err)
2826 break;
2827 err = btrfs_insert_file_extent(trans, root,
2828 inode->i_ino, cur_offset, 0,
2829 0, hole_size, 0, hole_size,
2830 0, 0, 0);
2831 btrfs_drop_extent_cache(inode, hole_start,
2832 last_byte - 1, 0);
2834 free_extent_map(em);
2835 cur_offset = last_byte;
2836 if (err || cur_offset >= block_end)
2837 break;
2840 btrfs_end_transaction(trans, root);
2841 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2842 return err;
2845 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2847 struct inode *inode = dentry->d_inode;
2848 int err;
2850 err = inode_change_ok(inode, attr);
2851 if (err)
2852 return err;
2854 if (S_ISREG(inode->i_mode) &&
2855 attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2856 err = btrfs_cont_expand(inode, attr->ia_size);
2857 if (err)
2858 return err;
2861 err = inode_setattr(inode, attr);
2863 if (!err && ((attr->ia_valid & ATTR_MODE)))
2864 err = btrfs_acl_chmod(inode);
2865 return err;
2868 void btrfs_delete_inode(struct inode *inode)
2870 struct btrfs_trans_handle *trans;
2871 struct btrfs_root *root = BTRFS_I(inode)->root;
2872 unsigned long nr;
2873 int ret;
2875 truncate_inode_pages(&inode->i_data, 0);
2876 if (is_bad_inode(inode)) {
2877 btrfs_orphan_del(NULL, inode);
2878 goto no_delete;
2880 btrfs_wait_ordered_range(inode, 0, (u64)-1);
2882 btrfs_i_size_write(inode, 0);
2883 trans = btrfs_join_transaction(root, 1);
2885 btrfs_set_trans_block_group(trans, inode);
2886 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2887 if (ret) {
2888 btrfs_orphan_del(NULL, inode);
2889 goto no_delete_lock;
2892 btrfs_orphan_del(trans, inode);
2894 nr = trans->blocks_used;
2895 clear_inode(inode);
2897 btrfs_end_transaction(trans, root);
2898 btrfs_btree_balance_dirty(root, nr);
2899 return;
2901 no_delete_lock:
2902 nr = trans->blocks_used;
2903 btrfs_end_transaction(trans, root);
2904 btrfs_btree_balance_dirty(root, nr);
2905 no_delete:
2906 clear_inode(inode);
2910 * this returns the key found in the dir entry in the location pointer.
2911 * If no dir entries were found, location->objectid is 0.
2913 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2914 struct btrfs_key *location)
2916 const char *name = dentry->d_name.name;
2917 int namelen = dentry->d_name.len;
2918 struct btrfs_dir_item *di;
2919 struct btrfs_path *path;
2920 struct btrfs_root *root = BTRFS_I(dir)->root;
2921 int ret = 0;
2923 path = btrfs_alloc_path();
2924 BUG_ON(!path);
2926 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2927 namelen, 0);
2928 if (IS_ERR(di))
2929 ret = PTR_ERR(di);
2931 if (!di || IS_ERR(di))
2932 goto out_err;
2934 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2935 out:
2936 btrfs_free_path(path);
2937 return ret;
2938 out_err:
2939 location->objectid = 0;
2940 goto out;
2944 * when we hit a tree root in a directory, the btrfs part of the inode
2945 * needs to be changed to reflect the root directory of the tree root. This
2946 * is kind of like crossing a mount point.
2948 static int fixup_tree_root_location(struct btrfs_root *root,
2949 struct btrfs_key *location,
2950 struct btrfs_root **sub_root,
2951 struct dentry *dentry)
2953 struct btrfs_root_item *ri;
2955 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2956 return 0;
2957 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2958 return 0;
2960 *sub_root = btrfs_read_fs_root(root->fs_info, location,
2961 dentry->d_name.name,
2962 dentry->d_name.len);
2963 if (IS_ERR(*sub_root))
2964 return PTR_ERR(*sub_root);
2966 ri = &(*sub_root)->root_item;
2967 location->objectid = btrfs_root_dirid(ri);
2968 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2969 location->offset = 0;
2971 return 0;
2974 static noinline void init_btrfs_i(struct inode *inode)
2976 struct btrfs_inode *bi = BTRFS_I(inode);
2978 bi->i_acl = NULL;
2979 bi->i_default_acl = NULL;
2981 bi->generation = 0;
2982 bi->sequence = 0;
2983 bi->last_trans = 0;
2984 bi->logged_trans = 0;
2985 bi->delalloc_bytes = 0;
2986 bi->disk_i_size = 0;
2987 bi->flags = 0;
2988 bi->index_cnt = (u64)-1;
2989 bi->log_dirty_trans = 0;
2990 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2991 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2992 inode->i_mapping, GFP_NOFS);
2993 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2994 inode->i_mapping, GFP_NOFS);
2995 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2996 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2997 mutex_init(&BTRFS_I(inode)->extent_mutex);
2998 mutex_init(&BTRFS_I(inode)->log_mutex);
3001 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3003 struct btrfs_iget_args *args = p;
3004 inode->i_ino = args->ino;
3005 init_btrfs_i(inode);
3006 BTRFS_I(inode)->root = args->root;
3007 return 0;
3010 static int btrfs_find_actor(struct inode *inode, void *opaque)
3012 struct btrfs_iget_args *args = opaque;
3013 return args->ino == inode->i_ino &&
3014 args->root == BTRFS_I(inode)->root;
3017 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
3018 struct btrfs_root *root, int wait)
3020 struct inode *inode;
3021 struct btrfs_iget_args args;
3022 args.ino = objectid;
3023 args.root = root;
3025 if (wait) {
3026 inode = ilookup5(s, objectid, btrfs_find_actor,
3027 (void *)&args);
3028 } else {
3029 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
3030 (void *)&args);
3032 return inode;
3035 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3036 struct btrfs_root *root)
3038 struct inode *inode;
3039 struct btrfs_iget_args args;
3040 args.ino = objectid;
3041 args.root = root;
3043 inode = iget5_locked(s, objectid, btrfs_find_actor,
3044 btrfs_init_locked_inode,
3045 (void *)&args);
3046 return inode;
3049 /* Get an inode object given its location and corresponding root.
3050 * Returns in *is_new if the inode was read from disk
3052 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3053 struct btrfs_root *root, int *is_new)
3055 struct inode *inode;
3057 inode = btrfs_iget_locked(s, location->objectid, root);
3058 if (!inode)
3059 return ERR_PTR(-EACCES);
3061 if (inode->i_state & I_NEW) {
3062 BTRFS_I(inode)->root = root;
3063 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3064 btrfs_read_locked_inode(inode);
3065 unlock_new_inode(inode);
3066 if (is_new)
3067 *is_new = 1;
3068 } else {
3069 if (is_new)
3070 *is_new = 0;
3073 return inode;
3076 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3078 struct inode *inode;
3079 struct btrfs_inode *bi = BTRFS_I(dir);
3080 struct btrfs_root *root = bi->root;
3081 struct btrfs_root *sub_root = root;
3082 struct btrfs_key location;
3083 int ret, new;
3085 if (dentry->d_name.len > BTRFS_NAME_LEN)
3086 return ERR_PTR(-ENAMETOOLONG);
3088 ret = btrfs_inode_by_name(dir, dentry, &location);
3090 if (ret < 0)
3091 return ERR_PTR(ret);
3093 inode = NULL;
3094 if (location.objectid) {
3095 ret = fixup_tree_root_location(root, &location, &sub_root,
3096 dentry);
3097 if (ret < 0)
3098 return ERR_PTR(ret);
3099 if (ret > 0)
3100 return ERR_PTR(-ENOENT);
3101 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3102 if (IS_ERR(inode))
3103 return ERR_CAST(inode);
3105 return inode;
3108 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3109 struct nameidata *nd)
3111 struct inode *inode;
3113 if (dentry->d_name.len > BTRFS_NAME_LEN)
3114 return ERR_PTR(-ENAMETOOLONG);
3116 inode = btrfs_lookup_dentry(dir, dentry);
3117 if (IS_ERR(inode))
3118 return ERR_CAST(inode);
3120 return d_splice_alias(inode, dentry);
3123 static unsigned char btrfs_filetype_table[] = {
3124 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3127 static int btrfs_real_readdir(struct file *filp, void *dirent,
3128 filldir_t filldir)
3130 struct inode *inode = filp->f_dentry->d_inode;
3131 struct btrfs_root *root = BTRFS_I(inode)->root;
3132 struct btrfs_item *item;
3133 struct btrfs_dir_item *di;
3134 struct btrfs_key key;
3135 struct btrfs_key found_key;
3136 struct btrfs_path *path;
3137 int ret;
3138 u32 nritems;
3139 struct extent_buffer *leaf;
3140 int slot;
3141 int advance;
3142 unsigned char d_type;
3143 int over = 0;
3144 u32 di_cur;
3145 u32 di_total;
3146 u32 di_len;
3147 int key_type = BTRFS_DIR_INDEX_KEY;
3148 char tmp_name[32];
3149 char *name_ptr;
3150 int name_len;
3152 /* FIXME, use a real flag for deciding about the key type */
3153 if (root->fs_info->tree_root == root)
3154 key_type = BTRFS_DIR_ITEM_KEY;
3156 /* special case for "." */
3157 if (filp->f_pos == 0) {
3158 over = filldir(dirent, ".", 1,
3159 1, inode->i_ino,
3160 DT_DIR);
3161 if (over)
3162 return 0;
3163 filp->f_pos = 1;
3165 /* special case for .., just use the back ref */
3166 if (filp->f_pos == 1) {
3167 u64 pino = parent_ino(filp->f_path.dentry);
3168 over = filldir(dirent, "..", 2,
3169 2, pino, DT_DIR);
3170 if (over)
3171 return 0;
3172 filp->f_pos = 2;
3174 path = btrfs_alloc_path();
3175 path->reada = 2;
3177 btrfs_set_key_type(&key, key_type);
3178 key.offset = filp->f_pos;
3179 key.objectid = inode->i_ino;
3181 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3182 if (ret < 0)
3183 goto err;
3184 advance = 0;
3186 while (1) {
3187 leaf = path->nodes[0];
3188 nritems = btrfs_header_nritems(leaf);
3189 slot = path->slots[0];
3190 if (advance || slot >= nritems) {
3191 if (slot >= nritems - 1) {
3192 ret = btrfs_next_leaf(root, path);
3193 if (ret)
3194 break;
3195 leaf = path->nodes[0];
3196 nritems = btrfs_header_nritems(leaf);
3197 slot = path->slots[0];
3198 } else {
3199 slot++;
3200 path->slots[0]++;
3204 advance = 1;
3205 item = btrfs_item_nr(leaf, slot);
3206 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3208 if (found_key.objectid != key.objectid)
3209 break;
3210 if (btrfs_key_type(&found_key) != key_type)
3211 break;
3212 if (found_key.offset < filp->f_pos)
3213 continue;
3215 filp->f_pos = found_key.offset;
3217 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3218 di_cur = 0;
3219 di_total = btrfs_item_size(leaf, item);
3221 while (di_cur < di_total) {
3222 struct btrfs_key location;
3224 name_len = btrfs_dir_name_len(leaf, di);
3225 if (name_len <= sizeof(tmp_name)) {
3226 name_ptr = tmp_name;
3227 } else {
3228 name_ptr = kmalloc(name_len, GFP_NOFS);
3229 if (!name_ptr) {
3230 ret = -ENOMEM;
3231 goto err;
3234 read_extent_buffer(leaf, name_ptr,
3235 (unsigned long)(di + 1), name_len);
3237 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3238 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3240 /* is this a reference to our own snapshot? If so
3241 * skip it
3243 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3244 location.objectid == root->root_key.objectid) {
3245 over = 0;
3246 goto skip;
3248 over = filldir(dirent, name_ptr, name_len,
3249 found_key.offset, location.objectid,
3250 d_type);
3252 skip:
3253 if (name_ptr != tmp_name)
3254 kfree(name_ptr);
3256 if (over)
3257 goto nopos;
3258 di_len = btrfs_dir_name_len(leaf, di) +
3259 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3260 di_cur += di_len;
3261 di = (struct btrfs_dir_item *)((char *)di + di_len);
3265 /* Reached end of directory/root. Bump pos past the last item. */
3266 if (key_type == BTRFS_DIR_INDEX_KEY)
3267 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
3268 else
3269 filp->f_pos++;
3270 nopos:
3271 ret = 0;
3272 err:
3273 btrfs_free_path(path);
3274 return ret;
3277 int btrfs_write_inode(struct inode *inode, int wait)
3279 struct btrfs_root *root = BTRFS_I(inode)->root;
3280 struct btrfs_trans_handle *trans;
3281 int ret = 0;
3283 if (root->fs_info->btree_inode == inode)
3284 return 0;
3286 if (wait) {
3287 trans = btrfs_join_transaction(root, 1);
3288 btrfs_set_trans_block_group(trans, inode);
3289 ret = btrfs_commit_transaction(trans, root);
3291 return ret;
3295 * This is somewhat expensive, updating the tree every time the
3296 * inode changes. But, it is most likely to find the inode in cache.
3297 * FIXME, needs more benchmarking...there are no reasons other than performance
3298 * to keep or drop this code.
3300 void btrfs_dirty_inode(struct inode *inode)
3302 struct btrfs_root *root = BTRFS_I(inode)->root;
3303 struct btrfs_trans_handle *trans;
3305 trans = btrfs_join_transaction(root, 1);
3306 btrfs_set_trans_block_group(trans, inode);
3307 btrfs_update_inode(trans, root, inode);
3308 btrfs_end_transaction(trans, root);
3312 * find the highest existing sequence number in a directory
3313 * and then set the in-memory index_cnt variable to reflect
3314 * free sequence numbers
3316 static int btrfs_set_inode_index_count(struct inode *inode)
3318 struct btrfs_root *root = BTRFS_I(inode)->root;
3319 struct btrfs_key key, found_key;
3320 struct btrfs_path *path;
3321 struct extent_buffer *leaf;
3322 int ret;
3324 key.objectid = inode->i_ino;
3325 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3326 key.offset = (u64)-1;
3328 path = btrfs_alloc_path();
3329 if (!path)
3330 return -ENOMEM;
3332 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3333 if (ret < 0)
3334 goto out;
3335 /* FIXME: we should be able to handle this */
3336 if (ret == 0)
3337 goto out;
3338 ret = 0;
3341 * MAGIC NUMBER EXPLANATION:
3342 * since we search a directory based on f_pos we have to start at 2
3343 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3344 * else has to start at 2
3346 if (path->slots[0] == 0) {
3347 BTRFS_I(inode)->index_cnt = 2;
3348 goto out;
3351 path->slots[0]--;
3353 leaf = path->nodes[0];
3354 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3356 if (found_key.objectid != inode->i_ino ||
3357 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3358 BTRFS_I(inode)->index_cnt = 2;
3359 goto out;
3362 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3363 out:
3364 btrfs_free_path(path);
3365 return ret;
3369 * helper to find a free sequence number in a given directory. This current
3370 * code is very simple, later versions will do smarter things in the btree
3372 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3374 int ret = 0;
3376 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3377 ret = btrfs_set_inode_index_count(dir);
3378 if (ret)
3379 return ret;
3382 *index = BTRFS_I(dir)->index_cnt;
3383 BTRFS_I(dir)->index_cnt++;
3385 return ret;
3388 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3389 struct btrfs_root *root,
3390 struct inode *dir,
3391 const char *name, int name_len,
3392 u64 ref_objectid, u64 objectid,
3393 u64 alloc_hint, int mode, u64 *index)
3395 struct inode *inode;
3396 struct btrfs_inode_item *inode_item;
3397 struct btrfs_key *location;
3398 struct btrfs_path *path;
3399 struct btrfs_inode_ref *ref;
3400 struct btrfs_key key[2];
3401 u32 sizes[2];
3402 unsigned long ptr;
3403 int ret;
3404 int owner;
3406 path = btrfs_alloc_path();
3407 BUG_ON(!path);
3409 inode = new_inode(root->fs_info->sb);
3410 if (!inode)
3411 return ERR_PTR(-ENOMEM);
3413 if (dir) {
3414 ret = btrfs_set_inode_index(dir, index);
3415 if (ret)
3416 return ERR_PTR(ret);
3419 * index_cnt is ignored for everything but a dir,
3420 * btrfs_get_inode_index_count has an explanation for the magic
3421 * number
3423 init_btrfs_i(inode);
3424 BTRFS_I(inode)->index_cnt = 2;
3425 BTRFS_I(inode)->root = root;
3426 BTRFS_I(inode)->generation = trans->transid;
3428 if (mode & S_IFDIR)
3429 owner = 0;
3430 else
3431 owner = 1;
3432 BTRFS_I(inode)->block_group =
3433 btrfs_find_block_group(root, 0, alloc_hint, owner);
3434 if ((mode & S_IFREG)) {
3435 if (btrfs_test_opt(root, NODATASUM))
3436 btrfs_set_flag(inode, NODATASUM);
3437 if (btrfs_test_opt(root, NODATACOW))
3438 btrfs_set_flag(inode, NODATACOW);
3441 key[0].objectid = objectid;
3442 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3443 key[0].offset = 0;
3445 key[1].objectid = objectid;
3446 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3447 key[1].offset = ref_objectid;
3449 sizes[0] = sizeof(struct btrfs_inode_item);
3450 sizes[1] = name_len + sizeof(*ref);
3452 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3453 if (ret != 0)
3454 goto fail;
3456 if (objectid > root->highest_inode)
3457 root->highest_inode = objectid;
3459 inode->i_uid = current_fsuid();
3460 inode->i_gid = current_fsgid();
3461 inode->i_mode = mode;
3462 inode->i_ino = objectid;
3463 inode_set_bytes(inode, 0);
3464 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3465 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3466 struct btrfs_inode_item);
3467 fill_inode_item(trans, path->nodes[0], inode_item, inode);
3469 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3470 struct btrfs_inode_ref);
3471 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3472 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3473 ptr = (unsigned long)(ref + 1);
3474 write_extent_buffer(path->nodes[0], name, ptr, name_len);
3476 btrfs_mark_buffer_dirty(path->nodes[0]);
3477 btrfs_free_path(path);
3479 location = &BTRFS_I(inode)->location;
3480 location->objectid = objectid;
3481 location->offset = 0;
3482 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3484 insert_inode_hash(inode);
3485 return inode;
3486 fail:
3487 if (dir)
3488 BTRFS_I(dir)->index_cnt--;
3489 btrfs_free_path(path);
3490 return ERR_PTR(ret);
3493 static inline u8 btrfs_inode_type(struct inode *inode)
3495 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3499 * utility function to add 'inode' into 'parent_inode' with
3500 * a give name and a given sequence number.
3501 * if 'add_backref' is true, also insert a backref from the
3502 * inode to the parent directory.
3504 int btrfs_add_link(struct btrfs_trans_handle *trans,
3505 struct inode *parent_inode, struct inode *inode,
3506 const char *name, int name_len, int add_backref, u64 index)
3508 int ret;
3509 struct btrfs_key key;
3510 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3512 key.objectid = inode->i_ino;
3513 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3514 key.offset = 0;
3516 ret = btrfs_insert_dir_item(trans, root, name, name_len,
3517 parent_inode->i_ino,
3518 &key, btrfs_inode_type(inode),
3519 index);
3520 if (ret == 0) {
3521 if (add_backref) {
3522 ret = btrfs_insert_inode_ref(trans, root,
3523 name, name_len,
3524 inode->i_ino,
3525 parent_inode->i_ino,
3526 index);
3528 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3529 name_len * 2);
3530 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3531 ret = btrfs_update_inode(trans, root, parent_inode);
3533 return ret;
3536 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3537 struct dentry *dentry, struct inode *inode,
3538 int backref, u64 index)
3540 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3541 inode, dentry->d_name.name,
3542 dentry->d_name.len, backref, index);
3543 if (!err) {
3544 d_instantiate(dentry, inode);
3545 return 0;
3547 if (err > 0)
3548 err = -EEXIST;
3549 return err;
3552 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3553 int mode, dev_t rdev)
3555 struct btrfs_trans_handle *trans;
3556 struct btrfs_root *root = BTRFS_I(dir)->root;
3557 struct inode *inode = NULL;
3558 int err;
3559 int drop_inode = 0;
3560 u64 objectid;
3561 unsigned long nr = 0;
3562 u64 index = 0;
3564 if (!new_valid_dev(rdev))
3565 return -EINVAL;
3567 err = btrfs_check_free_space(root, 1, 0);
3568 if (err)
3569 goto fail;
3571 trans = btrfs_start_transaction(root, 1);
3572 btrfs_set_trans_block_group(trans, dir);
3574 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3575 if (err) {
3576 err = -ENOSPC;
3577 goto out_unlock;
3580 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3581 dentry->d_name.len,
3582 dentry->d_parent->d_inode->i_ino, objectid,
3583 BTRFS_I(dir)->block_group, mode, &index);
3584 err = PTR_ERR(inode);
3585 if (IS_ERR(inode))
3586 goto out_unlock;
3588 err = btrfs_init_acl(inode, dir);
3589 if (err) {
3590 drop_inode = 1;
3591 goto out_unlock;
3594 btrfs_set_trans_block_group(trans, inode);
3595 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3596 if (err)
3597 drop_inode = 1;
3598 else {
3599 inode->i_op = &btrfs_special_inode_operations;
3600 init_special_inode(inode, inode->i_mode, rdev);
3601 btrfs_update_inode(trans, root, inode);
3603 dir->i_sb->s_dirt = 1;
3604 btrfs_update_inode_block_group(trans, inode);
3605 btrfs_update_inode_block_group(trans, dir);
3606 out_unlock:
3607 nr = trans->blocks_used;
3608 btrfs_end_transaction_throttle(trans, root);
3609 fail:
3610 if (drop_inode) {
3611 inode_dec_link_count(inode);
3612 iput(inode);
3614 btrfs_btree_balance_dirty(root, nr);
3615 return err;
3618 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3619 int mode, struct nameidata *nd)
3621 struct btrfs_trans_handle *trans;
3622 struct btrfs_root *root = BTRFS_I(dir)->root;
3623 struct inode *inode = NULL;
3624 int err;
3625 int drop_inode = 0;
3626 unsigned long nr = 0;
3627 u64 objectid;
3628 u64 index = 0;
3630 err = btrfs_check_free_space(root, 1, 0);
3631 if (err)
3632 goto fail;
3633 trans = btrfs_start_transaction(root, 1);
3634 btrfs_set_trans_block_group(trans, dir);
3636 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3637 if (err) {
3638 err = -ENOSPC;
3639 goto out_unlock;
3642 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3643 dentry->d_name.len,
3644 dentry->d_parent->d_inode->i_ino,
3645 objectid, BTRFS_I(dir)->block_group, mode,
3646 &index);
3647 err = PTR_ERR(inode);
3648 if (IS_ERR(inode))
3649 goto out_unlock;
3651 err = btrfs_init_acl(inode, dir);
3652 if (err) {
3653 drop_inode = 1;
3654 goto out_unlock;
3657 btrfs_set_trans_block_group(trans, inode);
3658 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3659 if (err)
3660 drop_inode = 1;
3661 else {
3662 inode->i_mapping->a_ops = &btrfs_aops;
3663 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3664 inode->i_fop = &btrfs_file_operations;
3665 inode->i_op = &btrfs_file_inode_operations;
3666 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3668 dir->i_sb->s_dirt = 1;
3669 btrfs_update_inode_block_group(trans, inode);
3670 btrfs_update_inode_block_group(trans, dir);
3671 out_unlock:
3672 nr = trans->blocks_used;
3673 btrfs_end_transaction_throttle(trans, root);
3674 fail:
3675 if (drop_inode) {
3676 inode_dec_link_count(inode);
3677 iput(inode);
3679 btrfs_btree_balance_dirty(root, nr);
3680 return err;
3683 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3684 struct dentry *dentry)
3686 struct btrfs_trans_handle *trans;
3687 struct btrfs_root *root = BTRFS_I(dir)->root;
3688 struct inode *inode = old_dentry->d_inode;
3689 u64 index;
3690 unsigned long nr = 0;
3691 int err;
3692 int drop_inode = 0;
3694 if (inode->i_nlink == 0)
3695 return -ENOENT;
3697 btrfs_inc_nlink(inode);
3698 err = btrfs_check_free_space(root, 1, 0);
3699 if (err)
3700 goto fail;
3701 err = btrfs_set_inode_index(dir, &index);
3702 if (err)
3703 goto fail;
3705 trans = btrfs_start_transaction(root, 1);
3707 btrfs_set_trans_block_group(trans, dir);
3708 atomic_inc(&inode->i_count);
3710 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3712 if (err)
3713 drop_inode = 1;
3715 dir->i_sb->s_dirt = 1;
3716 btrfs_update_inode_block_group(trans, dir);
3717 err = btrfs_update_inode(trans, root, inode);
3719 if (err)
3720 drop_inode = 1;
3722 nr = trans->blocks_used;
3723 btrfs_end_transaction_throttle(trans, root);
3724 fail:
3725 if (drop_inode) {
3726 inode_dec_link_count(inode);
3727 iput(inode);
3729 btrfs_btree_balance_dirty(root, nr);
3730 return err;
3733 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3735 struct inode *inode = NULL;
3736 struct btrfs_trans_handle *trans;
3737 struct btrfs_root *root = BTRFS_I(dir)->root;
3738 int err = 0;
3739 int drop_on_err = 0;
3740 u64 objectid = 0;
3741 u64 index = 0;
3742 unsigned long nr = 1;
3744 err = btrfs_check_free_space(root, 1, 0);
3745 if (err)
3746 goto out_unlock;
3748 trans = btrfs_start_transaction(root, 1);
3749 btrfs_set_trans_block_group(trans, dir);
3751 if (IS_ERR(trans)) {
3752 err = PTR_ERR(trans);
3753 goto out_unlock;
3756 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3757 if (err) {
3758 err = -ENOSPC;
3759 goto out_unlock;
3762 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3763 dentry->d_name.len,
3764 dentry->d_parent->d_inode->i_ino, objectid,
3765 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3766 &index);
3767 if (IS_ERR(inode)) {
3768 err = PTR_ERR(inode);
3769 goto out_fail;
3772 drop_on_err = 1;
3774 err = btrfs_init_acl(inode, dir);
3775 if (err)
3776 goto out_fail;
3778 inode->i_op = &btrfs_dir_inode_operations;
3779 inode->i_fop = &btrfs_dir_file_operations;
3780 btrfs_set_trans_block_group(trans, inode);
3782 btrfs_i_size_write(inode, 0);
3783 err = btrfs_update_inode(trans, root, inode);
3784 if (err)
3785 goto out_fail;
3787 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3788 inode, dentry->d_name.name,
3789 dentry->d_name.len, 0, index);
3790 if (err)
3791 goto out_fail;
3793 d_instantiate(dentry, inode);
3794 drop_on_err = 0;
3795 dir->i_sb->s_dirt = 1;
3796 btrfs_update_inode_block_group(trans, inode);
3797 btrfs_update_inode_block_group(trans, dir);
3799 out_fail:
3800 nr = trans->blocks_used;
3801 btrfs_end_transaction_throttle(trans, root);
3803 out_unlock:
3804 if (drop_on_err)
3805 iput(inode);
3806 btrfs_btree_balance_dirty(root, nr);
3807 return err;
3810 /* helper for btfs_get_extent. Given an existing extent in the tree,
3811 * and an extent that you want to insert, deal with overlap and insert
3812 * the new extent into the tree.
3814 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3815 struct extent_map *existing,
3816 struct extent_map *em,
3817 u64 map_start, u64 map_len)
3819 u64 start_diff;
3821 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3822 start_diff = map_start - em->start;
3823 em->start = map_start;
3824 em->len = map_len;
3825 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3826 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3827 em->block_start += start_diff;
3828 em->block_len -= start_diff;
3830 return add_extent_mapping(em_tree, em);
3833 static noinline int uncompress_inline(struct btrfs_path *path,
3834 struct inode *inode, struct page *page,
3835 size_t pg_offset, u64 extent_offset,
3836 struct btrfs_file_extent_item *item)
3838 int ret;
3839 struct extent_buffer *leaf = path->nodes[0];
3840 char *tmp;
3841 size_t max_size;
3842 unsigned long inline_size;
3843 unsigned long ptr;
3845 WARN_ON(pg_offset != 0);
3846 max_size = btrfs_file_extent_ram_bytes(leaf, item);
3847 inline_size = btrfs_file_extent_inline_item_len(leaf,
3848 btrfs_item_nr(leaf, path->slots[0]));
3849 tmp = kmalloc(inline_size, GFP_NOFS);
3850 ptr = btrfs_file_extent_inline_start(item);
3852 read_extent_buffer(leaf, tmp, ptr, inline_size);
3854 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3855 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3856 inline_size, max_size);
3857 if (ret) {
3858 char *kaddr = kmap_atomic(page, KM_USER0);
3859 unsigned long copy_size = min_t(u64,
3860 PAGE_CACHE_SIZE - pg_offset,
3861 max_size - extent_offset);
3862 memset(kaddr + pg_offset, 0, copy_size);
3863 kunmap_atomic(kaddr, KM_USER0);
3865 kfree(tmp);
3866 return 0;
3870 * a bit scary, this does extent mapping from logical file offset to the disk.
3871 * the ugly parts come from merging extents from the disk with the in-ram
3872 * representation. This gets more complex because of the data=ordered code,
3873 * where the in-ram extents might be locked pending data=ordered completion.
3875 * This also copies inline extents directly into the page.
3878 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3879 size_t pg_offset, u64 start, u64 len,
3880 int create)
3882 int ret;
3883 int err = 0;
3884 u64 bytenr;
3885 u64 extent_start = 0;
3886 u64 extent_end = 0;
3887 u64 objectid = inode->i_ino;
3888 u32 found_type;
3889 struct btrfs_path *path = NULL;
3890 struct btrfs_root *root = BTRFS_I(inode)->root;
3891 struct btrfs_file_extent_item *item;
3892 struct extent_buffer *leaf;
3893 struct btrfs_key found_key;
3894 struct extent_map *em = NULL;
3895 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3896 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3897 struct btrfs_trans_handle *trans = NULL;
3898 int compressed;
3900 again:
3901 spin_lock(&em_tree->lock);
3902 em = lookup_extent_mapping(em_tree, start, len);
3903 if (em)
3904 em->bdev = root->fs_info->fs_devices->latest_bdev;
3905 spin_unlock(&em_tree->lock);
3907 if (em) {
3908 if (em->start > start || em->start + em->len <= start)
3909 free_extent_map(em);
3910 else if (em->block_start == EXTENT_MAP_INLINE && page)
3911 free_extent_map(em);
3912 else
3913 goto out;
3915 em = alloc_extent_map(GFP_NOFS);
3916 if (!em) {
3917 err = -ENOMEM;
3918 goto out;
3920 em->bdev = root->fs_info->fs_devices->latest_bdev;
3921 em->start = EXTENT_MAP_HOLE;
3922 em->orig_start = EXTENT_MAP_HOLE;
3923 em->len = (u64)-1;
3924 em->block_len = (u64)-1;
3926 if (!path) {
3927 path = btrfs_alloc_path();
3928 BUG_ON(!path);
3931 ret = btrfs_lookup_file_extent(trans, root, path,
3932 objectid, start, trans != NULL);
3933 if (ret < 0) {
3934 err = ret;
3935 goto out;
3938 if (ret != 0) {
3939 if (path->slots[0] == 0)
3940 goto not_found;
3941 path->slots[0]--;
3944 leaf = path->nodes[0];
3945 item = btrfs_item_ptr(leaf, path->slots[0],
3946 struct btrfs_file_extent_item);
3947 /* are we inside the extent that was found? */
3948 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3949 found_type = btrfs_key_type(&found_key);
3950 if (found_key.objectid != objectid ||
3951 found_type != BTRFS_EXTENT_DATA_KEY) {
3952 goto not_found;
3955 found_type = btrfs_file_extent_type(leaf, item);
3956 extent_start = found_key.offset;
3957 compressed = btrfs_file_extent_compression(leaf, item);
3958 if (found_type == BTRFS_FILE_EXTENT_REG ||
3959 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3960 extent_end = extent_start +
3961 btrfs_file_extent_num_bytes(leaf, item);
3962 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3963 size_t size;
3964 size = btrfs_file_extent_inline_len(leaf, item);
3965 extent_end = (extent_start + size + root->sectorsize - 1) &
3966 ~((u64)root->sectorsize - 1);
3969 if (start >= extent_end) {
3970 path->slots[0]++;
3971 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3972 ret = btrfs_next_leaf(root, path);
3973 if (ret < 0) {
3974 err = ret;
3975 goto out;
3977 if (ret > 0)
3978 goto not_found;
3979 leaf = path->nodes[0];
3981 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3982 if (found_key.objectid != objectid ||
3983 found_key.type != BTRFS_EXTENT_DATA_KEY)
3984 goto not_found;
3985 if (start + len <= found_key.offset)
3986 goto not_found;
3987 em->start = start;
3988 em->len = found_key.offset - start;
3989 goto not_found_em;
3992 if (found_type == BTRFS_FILE_EXTENT_REG ||
3993 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3994 em->start = extent_start;
3995 em->len = extent_end - extent_start;
3996 em->orig_start = extent_start -
3997 btrfs_file_extent_offset(leaf, item);
3998 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
3999 if (bytenr == 0) {
4000 em->block_start = EXTENT_MAP_HOLE;
4001 goto insert;
4003 if (compressed) {
4004 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4005 em->block_start = bytenr;
4006 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4007 item);
4008 } else {
4009 bytenr += btrfs_file_extent_offset(leaf, item);
4010 em->block_start = bytenr;
4011 em->block_len = em->len;
4012 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4013 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4015 goto insert;
4016 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4017 unsigned long ptr;
4018 char *map;
4019 size_t size;
4020 size_t extent_offset;
4021 size_t copy_size;
4023 em->block_start = EXTENT_MAP_INLINE;
4024 if (!page || create) {
4025 em->start = extent_start;
4026 em->len = extent_end - extent_start;
4027 goto out;
4030 size = btrfs_file_extent_inline_len(leaf, item);
4031 extent_offset = page_offset(page) + pg_offset - extent_start;
4032 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4033 size - extent_offset);
4034 em->start = extent_start + extent_offset;
4035 em->len = (copy_size + root->sectorsize - 1) &
4036 ~((u64)root->sectorsize - 1);
4037 em->orig_start = EXTENT_MAP_INLINE;
4038 if (compressed)
4039 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4040 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4041 if (create == 0 && !PageUptodate(page)) {
4042 if (btrfs_file_extent_compression(leaf, item) ==
4043 BTRFS_COMPRESS_ZLIB) {
4044 ret = uncompress_inline(path, inode, page,
4045 pg_offset,
4046 extent_offset, item);
4047 BUG_ON(ret);
4048 } else {
4049 map = kmap(page);
4050 read_extent_buffer(leaf, map + pg_offset, ptr,
4051 copy_size);
4052 kunmap(page);
4054 flush_dcache_page(page);
4055 } else if (create && PageUptodate(page)) {
4056 if (!trans) {
4057 kunmap(page);
4058 free_extent_map(em);
4059 em = NULL;
4060 btrfs_release_path(root, path);
4061 trans = btrfs_join_transaction(root, 1);
4062 goto again;
4064 map = kmap(page);
4065 write_extent_buffer(leaf, map + pg_offset, ptr,
4066 copy_size);
4067 kunmap(page);
4068 btrfs_mark_buffer_dirty(leaf);
4070 set_extent_uptodate(io_tree, em->start,
4071 extent_map_end(em) - 1, GFP_NOFS);
4072 goto insert;
4073 } else {
4074 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4075 WARN_ON(1);
4077 not_found:
4078 em->start = start;
4079 em->len = len;
4080 not_found_em:
4081 em->block_start = EXTENT_MAP_HOLE;
4082 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4083 insert:
4084 btrfs_release_path(root, path);
4085 if (em->start > start || extent_map_end(em) <= start) {
4086 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4087 "[%llu %llu]\n", (unsigned long long)em->start,
4088 (unsigned long long)em->len,
4089 (unsigned long long)start,
4090 (unsigned long long)len);
4091 err = -EIO;
4092 goto out;
4095 err = 0;
4096 spin_lock(&em_tree->lock);
4097 ret = add_extent_mapping(em_tree, em);
4098 /* it is possible that someone inserted the extent into the tree
4099 * while we had the lock dropped. It is also possible that
4100 * an overlapping map exists in the tree
4102 if (ret == -EEXIST) {
4103 struct extent_map *existing;
4105 ret = 0;
4107 existing = lookup_extent_mapping(em_tree, start, len);
4108 if (existing && (existing->start > start ||
4109 existing->start + existing->len <= start)) {
4110 free_extent_map(existing);
4111 existing = NULL;
4113 if (!existing) {
4114 existing = lookup_extent_mapping(em_tree, em->start,
4115 em->len);
4116 if (existing) {
4117 err = merge_extent_mapping(em_tree, existing,
4118 em, start,
4119 root->sectorsize);
4120 free_extent_map(existing);
4121 if (err) {
4122 free_extent_map(em);
4123 em = NULL;
4125 } else {
4126 err = -EIO;
4127 free_extent_map(em);
4128 em = NULL;
4130 } else {
4131 free_extent_map(em);
4132 em = existing;
4133 err = 0;
4136 spin_unlock(&em_tree->lock);
4137 out:
4138 if (path)
4139 btrfs_free_path(path);
4140 if (trans) {
4141 ret = btrfs_end_transaction(trans, root);
4142 if (!err)
4143 err = ret;
4145 if (err) {
4146 free_extent_map(em);
4147 WARN_ON(1);
4148 return ERR_PTR(err);
4150 return em;
4153 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4154 const struct iovec *iov, loff_t offset,
4155 unsigned long nr_segs)
4157 return -EINVAL;
4160 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
4162 return extent_bmap(mapping, iblock, btrfs_get_extent);
4165 int btrfs_readpage(struct file *file, struct page *page)
4167 struct extent_io_tree *tree;
4168 tree = &BTRFS_I(page->mapping->host)->io_tree;
4169 return extent_read_full_page(tree, page, btrfs_get_extent);
4172 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4174 struct extent_io_tree *tree;
4177 if (current->flags & PF_MEMALLOC) {
4178 redirty_page_for_writepage(wbc, page);
4179 unlock_page(page);
4180 return 0;
4182 tree = &BTRFS_I(page->mapping->host)->io_tree;
4183 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4186 int btrfs_writepages(struct address_space *mapping,
4187 struct writeback_control *wbc)
4189 struct extent_io_tree *tree;
4191 tree = &BTRFS_I(mapping->host)->io_tree;
4192 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4195 static int
4196 btrfs_readpages(struct file *file, struct address_space *mapping,
4197 struct list_head *pages, unsigned nr_pages)
4199 struct extent_io_tree *tree;
4200 tree = &BTRFS_I(mapping->host)->io_tree;
4201 return extent_readpages(tree, mapping, pages, nr_pages,
4202 btrfs_get_extent);
4204 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4206 struct extent_io_tree *tree;
4207 struct extent_map_tree *map;
4208 int ret;
4210 tree = &BTRFS_I(page->mapping->host)->io_tree;
4211 map = &BTRFS_I(page->mapping->host)->extent_tree;
4212 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4213 if (ret == 1) {
4214 ClearPagePrivate(page);
4215 set_page_private(page, 0);
4216 page_cache_release(page);
4218 return ret;
4221 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4223 if (PageWriteback(page) || PageDirty(page))
4224 return 0;
4225 return __btrfs_releasepage(page, gfp_flags);
4228 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4230 struct extent_io_tree *tree;
4231 struct btrfs_ordered_extent *ordered;
4232 u64 page_start = page_offset(page);
4233 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4235 wait_on_page_writeback(page);
4236 tree = &BTRFS_I(page->mapping->host)->io_tree;
4237 if (offset) {
4238 btrfs_releasepage(page, GFP_NOFS);
4239 return;
4242 lock_extent(tree, page_start, page_end, GFP_NOFS);
4243 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4244 page_offset(page));
4245 if (ordered) {
4247 * IO on this page will never be started, so we need
4248 * to account for any ordered extents now
4250 clear_extent_bit(tree, page_start, page_end,
4251 EXTENT_DIRTY | EXTENT_DELALLOC |
4252 EXTENT_LOCKED, 1, 0, GFP_NOFS);
4253 btrfs_finish_ordered_io(page->mapping->host,
4254 page_start, page_end);
4255 btrfs_put_ordered_extent(ordered);
4256 lock_extent(tree, page_start, page_end, GFP_NOFS);
4258 clear_extent_bit(tree, page_start, page_end,
4259 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4260 EXTENT_ORDERED,
4261 1, 1, GFP_NOFS);
4262 __btrfs_releasepage(page, GFP_NOFS);
4264 ClearPageChecked(page);
4265 if (PagePrivate(page)) {
4266 ClearPagePrivate(page);
4267 set_page_private(page, 0);
4268 page_cache_release(page);
4273 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4274 * called from a page fault handler when a page is first dirtied. Hence we must
4275 * be careful to check for EOF conditions here. We set the page up correctly
4276 * for a written page which means we get ENOSPC checking when writing into
4277 * holes and correct delalloc and unwritten extent mapping on filesystems that
4278 * support these features.
4280 * We are not allowed to take the i_mutex here so we have to play games to
4281 * protect against truncate races as the page could now be beyond EOF. Because
4282 * vmtruncate() writes the inode size before removing pages, once we have the
4283 * page lock we can determine safely if the page is beyond EOF. If it is not
4284 * beyond EOF, then the page is guaranteed safe against truncation until we
4285 * unlock the page.
4287 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4289 struct inode *inode = fdentry(vma->vm_file)->d_inode;
4290 struct btrfs_root *root = BTRFS_I(inode)->root;
4291 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4292 struct btrfs_ordered_extent *ordered;
4293 char *kaddr;
4294 unsigned long zero_start;
4295 loff_t size;
4296 int ret;
4297 u64 page_start;
4298 u64 page_end;
4300 ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
4301 if (ret)
4302 goto out;
4304 ret = -EINVAL;
4305 again:
4306 lock_page(page);
4307 size = i_size_read(inode);
4308 page_start = page_offset(page);
4309 page_end = page_start + PAGE_CACHE_SIZE - 1;
4311 if ((page->mapping != inode->i_mapping) ||
4312 (page_start >= size)) {
4313 /* page got truncated out from underneath us */
4314 goto out_unlock;
4316 wait_on_page_writeback(page);
4318 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4319 set_page_extent_mapped(page);
4322 * we can't set the delalloc bits if there are pending ordered
4323 * extents. Drop our locks and wait for them to finish
4325 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4326 if (ordered) {
4327 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4328 unlock_page(page);
4329 btrfs_start_ordered_extent(inode, ordered, 1);
4330 btrfs_put_ordered_extent(ordered);
4331 goto again;
4334 btrfs_set_extent_delalloc(inode, page_start, page_end);
4335 ret = 0;
4337 /* page is wholly or partially inside EOF */
4338 if (page_start + PAGE_CACHE_SIZE > size)
4339 zero_start = size & ~PAGE_CACHE_MASK;
4340 else
4341 zero_start = PAGE_CACHE_SIZE;
4343 if (zero_start != PAGE_CACHE_SIZE) {
4344 kaddr = kmap(page);
4345 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4346 flush_dcache_page(page);
4347 kunmap(page);
4349 ClearPageChecked(page);
4350 set_page_dirty(page);
4351 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4353 out_unlock:
4354 unlock_page(page);
4355 out:
4356 return ret;
4359 static void btrfs_truncate(struct inode *inode)
4361 struct btrfs_root *root = BTRFS_I(inode)->root;
4362 int ret;
4363 struct btrfs_trans_handle *trans;
4364 unsigned long nr;
4365 u64 mask = root->sectorsize - 1;
4367 if (!S_ISREG(inode->i_mode))
4368 return;
4369 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4370 return;
4372 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4373 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4375 trans = btrfs_start_transaction(root, 1);
4376 btrfs_set_trans_block_group(trans, inode);
4377 btrfs_i_size_write(inode, inode->i_size);
4379 ret = btrfs_orphan_add(trans, inode);
4380 if (ret)
4381 goto out;
4382 /* FIXME, add redo link to tree so we don't leak on crash */
4383 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4384 BTRFS_EXTENT_DATA_KEY);
4385 btrfs_update_inode(trans, root, inode);
4387 ret = btrfs_orphan_del(trans, inode);
4388 BUG_ON(ret);
4390 out:
4391 nr = trans->blocks_used;
4392 ret = btrfs_end_transaction_throttle(trans, root);
4393 BUG_ON(ret);
4394 btrfs_btree_balance_dirty(root, nr);
4398 * create a new subvolume directory/inode (helper for the ioctl).
4400 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4401 struct btrfs_root *new_root, struct dentry *dentry,
4402 u64 new_dirid, u64 alloc_hint)
4404 struct inode *inode;
4405 int error;
4406 u64 index = 0;
4408 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4409 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4410 if (IS_ERR(inode))
4411 return PTR_ERR(inode);
4412 inode->i_op = &btrfs_dir_inode_operations;
4413 inode->i_fop = &btrfs_dir_file_operations;
4415 inode->i_nlink = 1;
4416 btrfs_i_size_write(inode, 0);
4418 error = btrfs_update_inode(trans, new_root, inode);
4419 if (error)
4420 return error;
4422 d_instantiate(dentry, inode);
4423 return 0;
4426 /* helper function for file defrag and space balancing. This
4427 * forces readahead on a given range of bytes in an inode
4429 unsigned long btrfs_force_ra(struct address_space *mapping,
4430 struct file_ra_state *ra, struct file *file,
4431 pgoff_t offset, pgoff_t last_index)
4433 pgoff_t req_size = last_index - offset + 1;
4435 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4436 return offset + req_size;
4439 struct inode *btrfs_alloc_inode(struct super_block *sb)
4441 struct btrfs_inode *ei;
4443 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4444 if (!ei)
4445 return NULL;
4446 ei->last_trans = 0;
4447 ei->logged_trans = 0;
4448 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4449 ei->i_acl = BTRFS_ACL_NOT_CACHED;
4450 ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4451 INIT_LIST_HEAD(&ei->i_orphan);
4452 return &ei->vfs_inode;
4455 void btrfs_destroy_inode(struct inode *inode)
4457 struct btrfs_ordered_extent *ordered;
4458 WARN_ON(!list_empty(&inode->i_dentry));
4459 WARN_ON(inode->i_data.nrpages);
4461 if (BTRFS_I(inode)->i_acl &&
4462 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4463 posix_acl_release(BTRFS_I(inode)->i_acl);
4464 if (BTRFS_I(inode)->i_default_acl &&
4465 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4466 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4468 spin_lock(&BTRFS_I(inode)->root->list_lock);
4469 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4470 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4471 " list\n", inode->i_ino);
4472 dump_stack();
4474 spin_unlock(&BTRFS_I(inode)->root->list_lock);
4476 while (1) {
4477 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4478 if (!ordered)
4479 break;
4480 else {
4481 printk(KERN_ERR "btrfs found ordered "
4482 "extent %llu %llu on inode cleanup\n",
4483 (unsigned long long)ordered->file_offset,
4484 (unsigned long long)ordered->len);
4485 btrfs_remove_ordered_extent(inode, ordered);
4486 btrfs_put_ordered_extent(ordered);
4487 btrfs_put_ordered_extent(ordered);
4490 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4491 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4494 static void init_once(void *foo)
4496 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4498 inode_init_once(&ei->vfs_inode);
4501 void btrfs_destroy_cachep(void)
4503 if (btrfs_inode_cachep)
4504 kmem_cache_destroy(btrfs_inode_cachep);
4505 if (btrfs_trans_handle_cachep)
4506 kmem_cache_destroy(btrfs_trans_handle_cachep);
4507 if (btrfs_transaction_cachep)
4508 kmem_cache_destroy(btrfs_transaction_cachep);
4509 if (btrfs_bit_radix_cachep)
4510 kmem_cache_destroy(btrfs_bit_radix_cachep);
4511 if (btrfs_path_cachep)
4512 kmem_cache_destroy(btrfs_path_cachep);
4515 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4516 unsigned long extra_flags,
4517 void (*ctor)(void *))
4519 return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4520 SLAB_MEM_SPREAD | extra_flags), ctor);
4523 int btrfs_init_cachep(void)
4525 btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4526 sizeof(struct btrfs_inode),
4527 0, init_once);
4528 if (!btrfs_inode_cachep)
4529 goto fail;
4530 btrfs_trans_handle_cachep =
4531 btrfs_cache_create("btrfs_trans_handle_cache",
4532 sizeof(struct btrfs_trans_handle),
4533 0, NULL);
4534 if (!btrfs_trans_handle_cachep)
4535 goto fail;
4536 btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4537 sizeof(struct btrfs_transaction),
4538 0, NULL);
4539 if (!btrfs_transaction_cachep)
4540 goto fail;
4541 btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4542 sizeof(struct btrfs_path),
4543 0, NULL);
4544 if (!btrfs_path_cachep)
4545 goto fail;
4546 btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4547 SLAB_DESTROY_BY_RCU, NULL);
4548 if (!btrfs_bit_radix_cachep)
4549 goto fail;
4550 return 0;
4551 fail:
4552 btrfs_destroy_cachep();
4553 return -ENOMEM;
4556 static int btrfs_getattr(struct vfsmount *mnt,
4557 struct dentry *dentry, struct kstat *stat)
4559 struct inode *inode = dentry->d_inode;
4560 generic_fillattr(inode, stat);
4561 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4562 stat->blksize = PAGE_CACHE_SIZE;
4563 stat->blocks = (inode_get_bytes(inode) +
4564 BTRFS_I(inode)->delalloc_bytes) >> 9;
4565 return 0;
4568 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4569 struct inode *new_dir, struct dentry *new_dentry)
4571 struct btrfs_trans_handle *trans;
4572 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4573 struct inode *new_inode = new_dentry->d_inode;
4574 struct inode *old_inode = old_dentry->d_inode;
4575 struct timespec ctime = CURRENT_TIME;
4576 u64 index = 0;
4577 int ret;
4579 /* we're not allowed to rename between subvolumes */
4580 if (BTRFS_I(old_inode)->root->root_key.objectid !=
4581 BTRFS_I(new_dir)->root->root_key.objectid)
4582 return -EXDEV;
4584 if (S_ISDIR(old_inode->i_mode) && new_inode &&
4585 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4586 return -ENOTEMPTY;
4589 /* to rename a snapshot or subvolume, we need to juggle the
4590 * backrefs. This isn't coded yet
4592 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4593 return -EXDEV;
4595 ret = btrfs_check_free_space(root, 1, 0);
4596 if (ret)
4597 goto out_unlock;
4599 trans = btrfs_start_transaction(root, 1);
4601 btrfs_set_trans_block_group(trans, new_dir);
4603 btrfs_inc_nlink(old_dentry->d_inode);
4604 old_dir->i_ctime = old_dir->i_mtime = ctime;
4605 new_dir->i_ctime = new_dir->i_mtime = ctime;
4606 old_inode->i_ctime = ctime;
4608 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4609 old_dentry->d_name.name,
4610 old_dentry->d_name.len);
4611 if (ret)
4612 goto out_fail;
4614 if (new_inode) {
4615 new_inode->i_ctime = CURRENT_TIME;
4616 ret = btrfs_unlink_inode(trans, root, new_dir,
4617 new_dentry->d_inode,
4618 new_dentry->d_name.name,
4619 new_dentry->d_name.len);
4620 if (ret)
4621 goto out_fail;
4622 if (new_inode->i_nlink == 0) {
4623 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4624 if (ret)
4625 goto out_fail;
4629 ret = btrfs_set_inode_index(new_dir, &index);
4630 if (ret)
4631 goto out_fail;
4633 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4634 old_inode, new_dentry->d_name.name,
4635 new_dentry->d_name.len, 1, index);
4636 if (ret)
4637 goto out_fail;
4639 out_fail:
4640 btrfs_end_transaction_throttle(trans, root);
4641 out_unlock:
4642 return ret;
4646 * some fairly slow code that needs optimization. This walks the list
4647 * of all the inodes with pending delalloc and forces them to disk.
4649 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4651 struct list_head *head = &root->fs_info->delalloc_inodes;
4652 struct btrfs_inode *binode;
4653 struct inode *inode;
4655 if (root->fs_info->sb->s_flags & MS_RDONLY)
4656 return -EROFS;
4658 spin_lock(&root->fs_info->delalloc_lock);
4659 while (!list_empty(head)) {
4660 binode = list_entry(head->next, struct btrfs_inode,
4661 delalloc_inodes);
4662 inode = igrab(&binode->vfs_inode);
4663 if (!inode)
4664 list_del_init(&binode->delalloc_inodes);
4665 spin_unlock(&root->fs_info->delalloc_lock);
4666 if (inode) {
4667 filemap_flush(inode->i_mapping);
4668 iput(inode);
4670 cond_resched();
4671 spin_lock(&root->fs_info->delalloc_lock);
4673 spin_unlock(&root->fs_info->delalloc_lock);
4675 /* the filemap_flush will queue IO into the worker threads, but
4676 * we have to make sure the IO is actually started and that
4677 * ordered extents get created before we return
4679 atomic_inc(&root->fs_info->async_submit_draining);
4680 while (atomic_read(&root->fs_info->nr_async_submits) ||
4681 atomic_read(&root->fs_info->async_delalloc_pages)) {
4682 wait_event(root->fs_info->async_submit_wait,
4683 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4684 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4686 atomic_dec(&root->fs_info->async_submit_draining);
4687 return 0;
4690 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4691 const char *symname)
4693 struct btrfs_trans_handle *trans;
4694 struct btrfs_root *root = BTRFS_I(dir)->root;
4695 struct btrfs_path *path;
4696 struct btrfs_key key;
4697 struct inode *inode = NULL;
4698 int err;
4699 int drop_inode = 0;
4700 u64 objectid;
4701 u64 index = 0 ;
4702 int name_len;
4703 int datasize;
4704 unsigned long ptr;
4705 struct btrfs_file_extent_item *ei;
4706 struct extent_buffer *leaf;
4707 unsigned long nr = 0;
4709 name_len = strlen(symname) + 1;
4710 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4711 return -ENAMETOOLONG;
4713 err = btrfs_check_free_space(root, 1, 0);
4714 if (err)
4715 goto out_fail;
4717 trans = btrfs_start_transaction(root, 1);
4718 btrfs_set_trans_block_group(trans, dir);
4720 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4721 if (err) {
4722 err = -ENOSPC;
4723 goto out_unlock;
4726 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4727 dentry->d_name.len,
4728 dentry->d_parent->d_inode->i_ino, objectid,
4729 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4730 &index);
4731 err = PTR_ERR(inode);
4732 if (IS_ERR(inode))
4733 goto out_unlock;
4735 err = btrfs_init_acl(inode, dir);
4736 if (err) {
4737 drop_inode = 1;
4738 goto out_unlock;
4741 btrfs_set_trans_block_group(trans, inode);
4742 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4743 if (err)
4744 drop_inode = 1;
4745 else {
4746 inode->i_mapping->a_ops = &btrfs_aops;
4747 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4748 inode->i_fop = &btrfs_file_operations;
4749 inode->i_op = &btrfs_file_inode_operations;
4750 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4752 dir->i_sb->s_dirt = 1;
4753 btrfs_update_inode_block_group(trans, inode);
4754 btrfs_update_inode_block_group(trans, dir);
4755 if (drop_inode)
4756 goto out_unlock;
4758 path = btrfs_alloc_path();
4759 BUG_ON(!path);
4760 key.objectid = inode->i_ino;
4761 key.offset = 0;
4762 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4763 datasize = btrfs_file_extent_calc_inline_size(name_len);
4764 err = btrfs_insert_empty_item(trans, root, path, &key,
4765 datasize);
4766 if (err) {
4767 drop_inode = 1;
4768 goto out_unlock;
4770 leaf = path->nodes[0];
4771 ei = btrfs_item_ptr(leaf, path->slots[0],
4772 struct btrfs_file_extent_item);
4773 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4774 btrfs_set_file_extent_type(leaf, ei,
4775 BTRFS_FILE_EXTENT_INLINE);
4776 btrfs_set_file_extent_encryption(leaf, ei, 0);
4777 btrfs_set_file_extent_compression(leaf, ei, 0);
4778 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4779 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4781 ptr = btrfs_file_extent_inline_start(ei);
4782 write_extent_buffer(leaf, symname, ptr, name_len);
4783 btrfs_mark_buffer_dirty(leaf);
4784 btrfs_free_path(path);
4786 inode->i_op = &btrfs_symlink_inode_operations;
4787 inode->i_mapping->a_ops = &btrfs_symlink_aops;
4788 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4789 inode_set_bytes(inode, name_len);
4790 btrfs_i_size_write(inode, name_len - 1);
4791 err = btrfs_update_inode(trans, root, inode);
4792 if (err)
4793 drop_inode = 1;
4795 out_unlock:
4796 nr = trans->blocks_used;
4797 btrfs_end_transaction_throttle(trans, root);
4798 out_fail:
4799 if (drop_inode) {
4800 inode_dec_link_count(inode);
4801 iput(inode);
4803 btrfs_btree_balance_dirty(root, nr);
4804 return err;
4807 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4808 u64 alloc_hint, int mode)
4810 struct btrfs_trans_handle *trans;
4811 struct btrfs_root *root = BTRFS_I(inode)->root;
4812 struct btrfs_key ins;
4813 u64 alloc_size;
4814 u64 cur_offset = start;
4815 u64 num_bytes = end - start;
4816 int ret = 0;
4818 trans = btrfs_join_transaction(root, 1);
4819 BUG_ON(!trans);
4820 btrfs_set_trans_block_group(trans, inode);
4822 while (num_bytes > 0) {
4823 alloc_size = min(num_bytes, root->fs_info->max_extent);
4824 ret = btrfs_reserve_extent(trans, root, alloc_size,
4825 root->sectorsize, 0, alloc_hint,
4826 (u64)-1, &ins, 1);
4827 if (ret) {
4828 WARN_ON(1);
4829 goto out;
4831 ret = insert_reserved_file_extent(trans, inode,
4832 cur_offset, ins.objectid,
4833 ins.offset, ins.offset,
4834 ins.offset, 0, 0, 0,
4835 BTRFS_FILE_EXTENT_PREALLOC);
4836 BUG_ON(ret);
4837 num_bytes -= ins.offset;
4838 cur_offset += ins.offset;
4839 alloc_hint = ins.objectid + ins.offset;
4841 out:
4842 if (cur_offset > start) {
4843 inode->i_ctime = CURRENT_TIME;
4844 btrfs_set_flag(inode, PREALLOC);
4845 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4846 cur_offset > i_size_read(inode))
4847 btrfs_i_size_write(inode, cur_offset);
4848 ret = btrfs_update_inode(trans, root, inode);
4849 BUG_ON(ret);
4852 btrfs_end_transaction(trans, root);
4853 return ret;
4856 static long btrfs_fallocate(struct inode *inode, int mode,
4857 loff_t offset, loff_t len)
4859 u64 cur_offset;
4860 u64 last_byte;
4861 u64 alloc_start;
4862 u64 alloc_end;
4863 u64 alloc_hint = 0;
4864 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
4865 struct extent_map *em;
4866 int ret;
4868 alloc_start = offset & ~mask;
4869 alloc_end = (offset + len + mask) & ~mask;
4871 mutex_lock(&inode->i_mutex);
4872 if (alloc_start > inode->i_size) {
4873 ret = btrfs_cont_expand(inode, alloc_start);
4874 if (ret)
4875 goto out;
4878 while (1) {
4879 struct btrfs_ordered_extent *ordered;
4880 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
4881 alloc_end - 1, GFP_NOFS);
4882 ordered = btrfs_lookup_first_ordered_extent(inode,
4883 alloc_end - 1);
4884 if (ordered &&
4885 ordered->file_offset + ordered->len > alloc_start &&
4886 ordered->file_offset < alloc_end) {
4887 btrfs_put_ordered_extent(ordered);
4888 unlock_extent(&BTRFS_I(inode)->io_tree,
4889 alloc_start, alloc_end - 1, GFP_NOFS);
4890 btrfs_wait_ordered_range(inode, alloc_start,
4891 alloc_end - alloc_start);
4892 } else {
4893 if (ordered)
4894 btrfs_put_ordered_extent(ordered);
4895 break;
4899 cur_offset = alloc_start;
4900 while (1) {
4901 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4902 alloc_end - cur_offset, 0);
4903 BUG_ON(IS_ERR(em) || !em);
4904 last_byte = min(extent_map_end(em), alloc_end);
4905 last_byte = (last_byte + mask) & ~mask;
4906 if (em->block_start == EXTENT_MAP_HOLE) {
4907 ret = prealloc_file_range(inode, cur_offset,
4908 last_byte, alloc_hint, mode);
4909 if (ret < 0) {
4910 free_extent_map(em);
4911 break;
4914 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
4915 alloc_hint = em->block_start;
4916 free_extent_map(em);
4918 cur_offset = last_byte;
4919 if (cur_offset >= alloc_end) {
4920 ret = 0;
4921 break;
4924 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
4925 GFP_NOFS);
4926 out:
4927 mutex_unlock(&inode->i_mutex);
4928 return ret;
4931 static int btrfs_set_page_dirty(struct page *page)
4933 return __set_page_dirty_nobuffers(page);
4936 static int btrfs_permission(struct inode *inode, int mask)
4938 if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4939 return -EACCES;
4940 return generic_permission(inode, mask, btrfs_check_acl);
4943 static struct inode_operations btrfs_dir_inode_operations = {
4944 .getattr = btrfs_getattr,
4945 .lookup = btrfs_lookup,
4946 .create = btrfs_create,
4947 .unlink = btrfs_unlink,
4948 .link = btrfs_link,
4949 .mkdir = btrfs_mkdir,
4950 .rmdir = btrfs_rmdir,
4951 .rename = btrfs_rename,
4952 .symlink = btrfs_symlink,
4953 .setattr = btrfs_setattr,
4954 .mknod = btrfs_mknod,
4955 .setxattr = btrfs_setxattr,
4956 .getxattr = btrfs_getxattr,
4957 .listxattr = btrfs_listxattr,
4958 .removexattr = btrfs_removexattr,
4959 .permission = btrfs_permission,
4961 static struct inode_operations btrfs_dir_ro_inode_operations = {
4962 .lookup = btrfs_lookup,
4963 .permission = btrfs_permission,
4965 static struct file_operations btrfs_dir_file_operations = {
4966 .llseek = generic_file_llseek,
4967 .read = generic_read_dir,
4968 .readdir = btrfs_real_readdir,
4969 .unlocked_ioctl = btrfs_ioctl,
4970 #ifdef CONFIG_COMPAT
4971 .compat_ioctl = btrfs_ioctl,
4972 #endif
4973 .release = btrfs_release_file,
4974 .fsync = btrfs_sync_file,
4977 static struct extent_io_ops btrfs_extent_io_ops = {
4978 .fill_delalloc = run_delalloc_range,
4979 .submit_bio_hook = btrfs_submit_bio_hook,
4980 .merge_bio_hook = btrfs_merge_bio_hook,
4981 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4982 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
4983 .writepage_start_hook = btrfs_writepage_start_hook,
4984 .readpage_io_failed_hook = btrfs_io_failed_hook,
4985 .set_bit_hook = btrfs_set_bit_hook,
4986 .clear_bit_hook = btrfs_clear_bit_hook,
4989 static struct address_space_operations btrfs_aops = {
4990 .readpage = btrfs_readpage,
4991 .writepage = btrfs_writepage,
4992 .writepages = btrfs_writepages,
4993 .readpages = btrfs_readpages,
4994 .sync_page = block_sync_page,
4995 .bmap = btrfs_bmap,
4996 .direct_IO = btrfs_direct_IO,
4997 .invalidatepage = btrfs_invalidatepage,
4998 .releasepage = btrfs_releasepage,
4999 .set_page_dirty = btrfs_set_page_dirty,
5002 static struct address_space_operations btrfs_symlink_aops = {
5003 .readpage = btrfs_readpage,
5004 .writepage = btrfs_writepage,
5005 .invalidatepage = btrfs_invalidatepage,
5006 .releasepage = btrfs_releasepage,
5009 static struct inode_operations btrfs_file_inode_operations = {
5010 .truncate = btrfs_truncate,
5011 .getattr = btrfs_getattr,
5012 .setattr = btrfs_setattr,
5013 .setxattr = btrfs_setxattr,
5014 .getxattr = btrfs_getxattr,
5015 .listxattr = btrfs_listxattr,
5016 .removexattr = btrfs_removexattr,
5017 .permission = btrfs_permission,
5018 .fallocate = btrfs_fallocate,
5020 static struct inode_operations btrfs_special_inode_operations = {
5021 .getattr = btrfs_getattr,
5022 .setattr = btrfs_setattr,
5023 .permission = btrfs_permission,
5024 .setxattr = btrfs_setxattr,
5025 .getxattr = btrfs_getxattr,
5026 .listxattr = btrfs_listxattr,
5027 .removexattr = btrfs_removexattr,
5029 static struct inode_operations btrfs_symlink_inode_operations = {
5030 .readlink = generic_readlink,
5031 .follow_link = page_follow_link_light,
5032 .put_link = page_put_link,
5033 .permission = btrfs_permission,