slab,slub: don't enable interrupts during early boot
[linux-2.6/mini2440.git] / mm / slab.c
blob453efcb1c98018f8812fd39ad0108b5b0b0a7051
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/kmemtrace.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
118 #include <asm/cacheflush.h>
119 #include <asm/tlbflush.h>
120 #include <asm/page.h>
123 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
124 * 0 for faster, smaller code (especially in the critical paths).
126 * STATS - 1 to collect stats for /proc/slabinfo.
127 * 0 for faster, smaller code (especially in the critical paths).
129 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
132 #ifdef CONFIG_DEBUG_SLAB
133 #define DEBUG 1
134 #define STATS 1
135 #define FORCED_DEBUG 1
136 #else
137 #define DEBUG 0
138 #define STATS 0
139 #define FORCED_DEBUG 0
140 #endif
142 /* Shouldn't this be in a header file somewhere? */
143 #define BYTES_PER_WORD sizeof(void *)
144 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
146 #ifndef ARCH_KMALLOC_MINALIGN
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
156 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
157 #endif
159 #ifndef ARCH_SLAB_MINALIGN
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
167 #define ARCH_SLAB_MINALIGN 0
168 #endif
170 #ifndef ARCH_KMALLOC_FLAGS
171 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172 #endif
174 /* Legal flag mask for kmem_cache_create(). */
175 #if DEBUG
176 # define CREATE_MASK (SLAB_RED_ZONE | \
177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
178 SLAB_CACHE_DMA | \
179 SLAB_STORE_USER | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
182 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
183 #else
184 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
185 SLAB_CACHE_DMA | \
186 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
187 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
188 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
189 #endif
192 * kmem_bufctl_t:
194 * Bufctl's are used for linking objs within a slab
195 * linked offsets.
197 * This implementation relies on "struct page" for locating the cache &
198 * slab an object belongs to.
199 * This allows the bufctl structure to be small (one int), but limits
200 * the number of objects a slab (not a cache) can contain when off-slab
201 * bufctls are used. The limit is the size of the largest general cache
202 * that does not use off-slab slabs.
203 * For 32bit archs with 4 kB pages, is this 56.
204 * This is not serious, as it is only for large objects, when it is unwise
205 * to have too many per slab.
206 * Note: This limit can be raised by introducing a general cache whose size
207 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
210 typedef unsigned int kmem_bufctl_t;
211 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
212 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
213 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
214 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
217 * struct slab
219 * Manages the objs in a slab. Placed either at the beginning of mem allocated
220 * for a slab, or allocated from an general cache.
221 * Slabs are chained into three list: fully used, partial, fully free slabs.
223 struct slab {
224 struct list_head list;
225 unsigned long colouroff;
226 void *s_mem; /* including colour offset */
227 unsigned int inuse; /* num of objs active in slab */
228 kmem_bufctl_t free;
229 unsigned short nodeid;
233 * struct slab_rcu
235 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
236 * arrange for kmem_freepages to be called via RCU. This is useful if
237 * we need to approach a kernel structure obliquely, from its address
238 * obtained without the usual locking. We can lock the structure to
239 * stabilize it and check it's still at the given address, only if we
240 * can be sure that the memory has not been meanwhile reused for some
241 * other kind of object (which our subsystem's lock might corrupt).
243 * rcu_read_lock before reading the address, then rcu_read_unlock after
244 * taking the spinlock within the structure expected at that address.
246 * We assume struct slab_rcu can overlay struct slab when destroying.
248 struct slab_rcu {
249 struct rcu_head head;
250 struct kmem_cache *cachep;
251 void *addr;
255 * struct array_cache
257 * Purpose:
258 * - LIFO ordering, to hand out cache-warm objects from _alloc
259 * - reduce the number of linked list operations
260 * - reduce spinlock operations
262 * The limit is stored in the per-cpu structure to reduce the data cache
263 * footprint.
266 struct array_cache {
267 unsigned int avail;
268 unsigned int limit;
269 unsigned int batchcount;
270 unsigned int touched;
271 spinlock_t lock;
272 void *entry[]; /*
273 * Must have this definition in here for the proper
274 * alignment of array_cache. Also simplifies accessing
275 * the entries.
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
283 #define BOOT_CPUCACHE_ENTRIES 1
284 struct arraycache_init {
285 struct array_cache cache;
286 void *entries[BOOT_CPUCACHE_ENTRIES];
290 * The slab lists for all objects.
292 struct kmem_list3 {
293 struct list_head slabs_partial; /* partial list first, better asm code */
294 struct list_head slabs_full;
295 struct list_head slabs_free;
296 unsigned long free_objects;
297 unsigned int free_limit;
298 unsigned int colour_next; /* Per-node cache coloring */
299 spinlock_t list_lock;
300 struct array_cache *shared; /* shared per node */
301 struct array_cache **alien; /* on other nodes */
302 unsigned long next_reap; /* updated without locking */
303 int free_touched; /* updated without locking */
307 * The slab allocator is initialized with interrupts disabled. Therefore, make
308 * sure early boot allocations don't accidentally enable interrupts.
310 static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK;
313 * Need this for bootstrapping a per node allocator.
315 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
316 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
317 #define CACHE_CACHE 0
318 #define SIZE_AC MAX_NUMNODES
319 #define SIZE_L3 (2 * MAX_NUMNODES)
321 static int drain_freelist(struct kmem_cache *cache,
322 struct kmem_list3 *l3, int tofree);
323 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
324 int node);
325 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
326 static void cache_reap(struct work_struct *unused);
329 * This function must be completely optimized away if a constant is passed to
330 * it. Mostly the same as what is in linux/slab.h except it returns an index.
332 static __always_inline int index_of(const size_t size)
334 extern void __bad_size(void);
336 if (__builtin_constant_p(size)) {
337 int i = 0;
339 #define CACHE(x) \
340 if (size <=x) \
341 return i; \
342 else \
343 i++;
344 #include <linux/kmalloc_sizes.h>
345 #undef CACHE
346 __bad_size();
347 } else
348 __bad_size();
349 return 0;
352 static int slab_early_init = 1;
354 #define INDEX_AC index_of(sizeof(struct arraycache_init))
355 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
357 static void kmem_list3_init(struct kmem_list3 *parent)
359 INIT_LIST_HEAD(&parent->slabs_full);
360 INIT_LIST_HEAD(&parent->slabs_partial);
361 INIT_LIST_HEAD(&parent->slabs_free);
362 parent->shared = NULL;
363 parent->alien = NULL;
364 parent->colour_next = 0;
365 spin_lock_init(&parent->list_lock);
366 parent->free_objects = 0;
367 parent->free_touched = 0;
370 #define MAKE_LIST(cachep, listp, slab, nodeid) \
371 do { \
372 INIT_LIST_HEAD(listp); \
373 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
374 } while (0)
376 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
377 do { \
378 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
379 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
380 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
381 } while (0)
384 * struct kmem_cache
386 * manages a cache.
389 struct kmem_cache {
390 /* 1) per-cpu data, touched during every alloc/free */
391 struct array_cache *array[NR_CPUS];
392 /* 2) Cache tunables. Protected by cache_chain_mutex */
393 unsigned int batchcount;
394 unsigned int limit;
395 unsigned int shared;
397 unsigned int buffer_size;
398 u32 reciprocal_buffer_size;
399 /* 3) touched by every alloc & free from the backend */
401 unsigned int flags; /* constant flags */
402 unsigned int num; /* # of objs per slab */
404 /* 4) cache_grow/shrink */
405 /* order of pgs per slab (2^n) */
406 unsigned int gfporder;
408 /* force GFP flags, e.g. GFP_DMA */
409 gfp_t gfpflags;
411 size_t colour; /* cache colouring range */
412 unsigned int colour_off; /* colour offset */
413 struct kmem_cache *slabp_cache;
414 unsigned int slab_size;
415 unsigned int dflags; /* dynamic flags */
417 /* constructor func */
418 void (*ctor)(void *obj);
420 /* 5) cache creation/removal */
421 const char *name;
422 struct list_head next;
424 /* 6) statistics */
425 #if STATS
426 unsigned long num_active;
427 unsigned long num_allocations;
428 unsigned long high_mark;
429 unsigned long grown;
430 unsigned long reaped;
431 unsigned long errors;
432 unsigned long max_freeable;
433 unsigned long node_allocs;
434 unsigned long node_frees;
435 unsigned long node_overflow;
436 atomic_t allochit;
437 atomic_t allocmiss;
438 atomic_t freehit;
439 atomic_t freemiss;
440 #endif
441 #if DEBUG
443 * If debugging is enabled, then the allocator can add additional
444 * fields and/or padding to every object. buffer_size contains the total
445 * object size including these internal fields, the following two
446 * variables contain the offset to the user object and its size.
448 int obj_offset;
449 int obj_size;
450 #endif
452 * We put nodelists[] at the end of kmem_cache, because we want to size
453 * this array to nr_node_ids slots instead of MAX_NUMNODES
454 * (see kmem_cache_init())
455 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
456 * is statically defined, so we reserve the max number of nodes.
458 struct kmem_list3 *nodelists[MAX_NUMNODES];
460 * Do not add fields after nodelists[]
464 #define CFLGS_OFF_SLAB (0x80000000UL)
465 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
467 #define BATCHREFILL_LIMIT 16
469 * Optimization question: fewer reaps means less probability for unnessary
470 * cpucache drain/refill cycles.
472 * OTOH the cpuarrays can contain lots of objects,
473 * which could lock up otherwise freeable slabs.
475 #define REAPTIMEOUT_CPUC (2*HZ)
476 #define REAPTIMEOUT_LIST3 (4*HZ)
478 #if STATS
479 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
480 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
481 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
482 #define STATS_INC_GROWN(x) ((x)->grown++)
483 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
484 #define STATS_SET_HIGH(x) \
485 do { \
486 if ((x)->num_active > (x)->high_mark) \
487 (x)->high_mark = (x)->num_active; \
488 } while (0)
489 #define STATS_INC_ERR(x) ((x)->errors++)
490 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
491 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
492 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
493 #define STATS_SET_FREEABLE(x, i) \
494 do { \
495 if ((x)->max_freeable < i) \
496 (x)->max_freeable = i; \
497 } while (0)
498 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
499 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
500 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
501 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
502 #else
503 #define STATS_INC_ACTIVE(x) do { } while (0)
504 #define STATS_DEC_ACTIVE(x) do { } while (0)
505 #define STATS_INC_ALLOCED(x) do { } while (0)
506 #define STATS_INC_GROWN(x) do { } while (0)
507 #define STATS_ADD_REAPED(x,y) do { } while (0)
508 #define STATS_SET_HIGH(x) do { } while (0)
509 #define STATS_INC_ERR(x) do { } while (0)
510 #define STATS_INC_NODEALLOCS(x) do { } while (0)
511 #define STATS_INC_NODEFREES(x) do { } while (0)
512 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
513 #define STATS_SET_FREEABLE(x, i) do { } while (0)
514 #define STATS_INC_ALLOCHIT(x) do { } while (0)
515 #define STATS_INC_ALLOCMISS(x) do { } while (0)
516 #define STATS_INC_FREEHIT(x) do { } while (0)
517 #define STATS_INC_FREEMISS(x) do { } while (0)
518 #endif
520 #if DEBUG
523 * memory layout of objects:
524 * 0 : objp
525 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
526 * the end of an object is aligned with the end of the real
527 * allocation. Catches writes behind the end of the allocation.
528 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
529 * redzone word.
530 * cachep->obj_offset: The real object.
531 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
532 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
533 * [BYTES_PER_WORD long]
535 static int obj_offset(struct kmem_cache *cachep)
537 return cachep->obj_offset;
540 static int obj_size(struct kmem_cache *cachep)
542 return cachep->obj_size;
545 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
547 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
548 return (unsigned long long*) (objp + obj_offset(cachep) -
549 sizeof(unsigned long long));
552 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
554 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
555 if (cachep->flags & SLAB_STORE_USER)
556 return (unsigned long long *)(objp + cachep->buffer_size -
557 sizeof(unsigned long long) -
558 REDZONE_ALIGN);
559 return (unsigned long long *) (objp + cachep->buffer_size -
560 sizeof(unsigned long long));
563 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
565 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
566 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
569 #else
571 #define obj_offset(x) 0
572 #define obj_size(cachep) (cachep->buffer_size)
573 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
574 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
575 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
577 #endif
579 #ifdef CONFIG_KMEMTRACE
580 size_t slab_buffer_size(struct kmem_cache *cachep)
582 return cachep->buffer_size;
584 EXPORT_SYMBOL(slab_buffer_size);
585 #endif
588 * Do not go above this order unless 0 objects fit into the slab.
590 #define BREAK_GFP_ORDER_HI 1
591 #define BREAK_GFP_ORDER_LO 0
592 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
595 * Functions for storing/retrieving the cachep and or slab from the page
596 * allocator. These are used to find the slab an obj belongs to. With kfree(),
597 * these are used to find the cache which an obj belongs to.
599 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
601 page->lru.next = (struct list_head *)cache;
604 static inline struct kmem_cache *page_get_cache(struct page *page)
606 page = compound_head(page);
607 BUG_ON(!PageSlab(page));
608 return (struct kmem_cache *)page->lru.next;
611 static inline void page_set_slab(struct page *page, struct slab *slab)
613 page->lru.prev = (struct list_head *)slab;
616 static inline struct slab *page_get_slab(struct page *page)
618 BUG_ON(!PageSlab(page));
619 return (struct slab *)page->lru.prev;
622 static inline struct kmem_cache *virt_to_cache(const void *obj)
624 struct page *page = virt_to_head_page(obj);
625 return page_get_cache(page);
628 static inline struct slab *virt_to_slab(const void *obj)
630 struct page *page = virt_to_head_page(obj);
631 return page_get_slab(page);
634 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
635 unsigned int idx)
637 return slab->s_mem + cache->buffer_size * idx;
641 * We want to avoid an expensive divide : (offset / cache->buffer_size)
642 * Using the fact that buffer_size is a constant for a particular cache,
643 * we can replace (offset / cache->buffer_size) by
644 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
646 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
647 const struct slab *slab, void *obj)
649 u32 offset = (obj - slab->s_mem);
650 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
654 * These are the default caches for kmalloc. Custom caches can have other sizes.
656 struct cache_sizes malloc_sizes[] = {
657 #define CACHE(x) { .cs_size = (x) },
658 #include <linux/kmalloc_sizes.h>
659 CACHE(ULONG_MAX)
660 #undef CACHE
662 EXPORT_SYMBOL(malloc_sizes);
664 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
665 struct cache_names {
666 char *name;
667 char *name_dma;
670 static struct cache_names __initdata cache_names[] = {
671 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
672 #include <linux/kmalloc_sizes.h>
673 {NULL,}
674 #undef CACHE
677 static struct arraycache_init initarray_cache __initdata =
678 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
679 static struct arraycache_init initarray_generic =
680 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
682 /* internal cache of cache description objs */
683 static struct kmem_cache cache_cache = {
684 .batchcount = 1,
685 .limit = BOOT_CPUCACHE_ENTRIES,
686 .shared = 1,
687 .buffer_size = sizeof(struct kmem_cache),
688 .name = "kmem_cache",
691 #define BAD_ALIEN_MAGIC 0x01020304ul
693 #ifdef CONFIG_LOCKDEP
696 * Slab sometimes uses the kmalloc slabs to store the slab headers
697 * for other slabs "off slab".
698 * The locking for this is tricky in that it nests within the locks
699 * of all other slabs in a few places; to deal with this special
700 * locking we put on-slab caches into a separate lock-class.
702 * We set lock class for alien array caches which are up during init.
703 * The lock annotation will be lost if all cpus of a node goes down and
704 * then comes back up during hotplug
706 static struct lock_class_key on_slab_l3_key;
707 static struct lock_class_key on_slab_alc_key;
709 static inline void init_lock_keys(void)
712 int q;
713 struct cache_sizes *s = malloc_sizes;
715 while (s->cs_size != ULONG_MAX) {
716 for_each_node(q) {
717 struct array_cache **alc;
718 int r;
719 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
720 if (!l3 || OFF_SLAB(s->cs_cachep))
721 continue;
722 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
723 alc = l3->alien;
725 * FIXME: This check for BAD_ALIEN_MAGIC
726 * should go away when common slab code is taught to
727 * work even without alien caches.
728 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
729 * for alloc_alien_cache,
731 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
732 continue;
733 for_each_node(r) {
734 if (alc[r])
735 lockdep_set_class(&alc[r]->lock,
736 &on_slab_alc_key);
739 s++;
742 #else
743 static inline void init_lock_keys(void)
746 #endif
749 * Guard access to the cache-chain.
751 static DEFINE_MUTEX(cache_chain_mutex);
752 static struct list_head cache_chain;
755 * chicken and egg problem: delay the per-cpu array allocation
756 * until the general caches are up.
758 static enum {
759 NONE,
760 PARTIAL_AC,
761 PARTIAL_L3,
762 FULL
763 } g_cpucache_up;
766 * used by boot code to determine if it can use slab based allocator
768 int slab_is_available(void)
770 return g_cpucache_up == FULL;
773 static DEFINE_PER_CPU(struct delayed_work, reap_work);
775 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
777 return cachep->array[smp_processor_id()];
780 static inline struct kmem_cache *__find_general_cachep(size_t size,
781 gfp_t gfpflags)
783 struct cache_sizes *csizep = malloc_sizes;
785 #if DEBUG
786 /* This happens if someone tries to call
787 * kmem_cache_create(), or __kmalloc(), before
788 * the generic caches are initialized.
790 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
791 #endif
792 if (!size)
793 return ZERO_SIZE_PTR;
795 while (size > csizep->cs_size)
796 csizep++;
799 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
800 * has cs_{dma,}cachep==NULL. Thus no special case
801 * for large kmalloc calls required.
803 #ifdef CONFIG_ZONE_DMA
804 if (unlikely(gfpflags & GFP_DMA))
805 return csizep->cs_dmacachep;
806 #endif
807 return csizep->cs_cachep;
810 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
812 return __find_general_cachep(size, gfpflags);
815 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
817 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
821 * Calculate the number of objects and left-over bytes for a given buffer size.
823 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
824 size_t align, int flags, size_t *left_over,
825 unsigned int *num)
827 int nr_objs;
828 size_t mgmt_size;
829 size_t slab_size = PAGE_SIZE << gfporder;
832 * The slab management structure can be either off the slab or
833 * on it. For the latter case, the memory allocated for a
834 * slab is used for:
836 * - The struct slab
837 * - One kmem_bufctl_t for each object
838 * - Padding to respect alignment of @align
839 * - @buffer_size bytes for each object
841 * If the slab management structure is off the slab, then the
842 * alignment will already be calculated into the size. Because
843 * the slabs are all pages aligned, the objects will be at the
844 * correct alignment when allocated.
846 if (flags & CFLGS_OFF_SLAB) {
847 mgmt_size = 0;
848 nr_objs = slab_size / buffer_size;
850 if (nr_objs > SLAB_LIMIT)
851 nr_objs = SLAB_LIMIT;
852 } else {
854 * Ignore padding for the initial guess. The padding
855 * is at most @align-1 bytes, and @buffer_size is at
856 * least @align. In the worst case, this result will
857 * be one greater than the number of objects that fit
858 * into the memory allocation when taking the padding
859 * into account.
861 nr_objs = (slab_size - sizeof(struct slab)) /
862 (buffer_size + sizeof(kmem_bufctl_t));
865 * This calculated number will be either the right
866 * amount, or one greater than what we want.
868 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
869 > slab_size)
870 nr_objs--;
872 if (nr_objs > SLAB_LIMIT)
873 nr_objs = SLAB_LIMIT;
875 mgmt_size = slab_mgmt_size(nr_objs, align);
877 *num = nr_objs;
878 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
881 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
883 static void __slab_error(const char *function, struct kmem_cache *cachep,
884 char *msg)
886 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
887 function, cachep->name, msg);
888 dump_stack();
892 * By default on NUMA we use alien caches to stage the freeing of
893 * objects allocated from other nodes. This causes massive memory
894 * inefficiencies when using fake NUMA setup to split memory into a
895 * large number of small nodes, so it can be disabled on the command
896 * line
899 static int use_alien_caches __read_mostly = 1;
900 static int numa_platform __read_mostly = 1;
901 static int __init noaliencache_setup(char *s)
903 use_alien_caches = 0;
904 return 1;
906 __setup("noaliencache", noaliencache_setup);
908 #ifdef CONFIG_NUMA
910 * Special reaping functions for NUMA systems called from cache_reap().
911 * These take care of doing round robin flushing of alien caches (containing
912 * objects freed on different nodes from which they were allocated) and the
913 * flushing of remote pcps by calling drain_node_pages.
915 static DEFINE_PER_CPU(unsigned long, reap_node);
917 static void init_reap_node(int cpu)
919 int node;
921 node = next_node(cpu_to_node(cpu), node_online_map);
922 if (node == MAX_NUMNODES)
923 node = first_node(node_online_map);
925 per_cpu(reap_node, cpu) = node;
928 static void next_reap_node(void)
930 int node = __get_cpu_var(reap_node);
932 node = next_node(node, node_online_map);
933 if (unlikely(node >= MAX_NUMNODES))
934 node = first_node(node_online_map);
935 __get_cpu_var(reap_node) = node;
938 #else
939 #define init_reap_node(cpu) do { } while (0)
940 #define next_reap_node(void) do { } while (0)
941 #endif
944 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
945 * via the workqueue/eventd.
946 * Add the CPU number into the expiration time to minimize the possibility of
947 * the CPUs getting into lockstep and contending for the global cache chain
948 * lock.
950 static void __cpuinit start_cpu_timer(int cpu)
952 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
955 * When this gets called from do_initcalls via cpucache_init(),
956 * init_workqueues() has already run, so keventd will be setup
957 * at that time.
959 if (keventd_up() && reap_work->work.func == NULL) {
960 init_reap_node(cpu);
961 INIT_DELAYED_WORK(reap_work, cache_reap);
962 schedule_delayed_work_on(cpu, reap_work,
963 __round_jiffies_relative(HZ, cpu));
967 static struct array_cache *alloc_arraycache(int node, int entries,
968 int batchcount, gfp_t gfp)
970 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
971 struct array_cache *nc = NULL;
973 nc = kmalloc_node(memsize, gfp, node);
975 * The array_cache structures contain pointers to free object.
976 * However, when such objects are allocated or transfered to another
977 * cache the pointers are not cleared and they could be counted as
978 * valid references during a kmemleak scan. Therefore, kmemleak must
979 * not scan such objects.
981 kmemleak_no_scan(nc);
982 if (nc) {
983 nc->avail = 0;
984 nc->limit = entries;
985 nc->batchcount = batchcount;
986 nc->touched = 0;
987 spin_lock_init(&nc->lock);
989 return nc;
993 * Transfer objects in one arraycache to another.
994 * Locking must be handled by the caller.
996 * Return the number of entries transferred.
998 static int transfer_objects(struct array_cache *to,
999 struct array_cache *from, unsigned int max)
1001 /* Figure out how many entries to transfer */
1002 int nr = min(min(from->avail, max), to->limit - to->avail);
1004 if (!nr)
1005 return 0;
1007 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1008 sizeof(void *) *nr);
1010 from->avail -= nr;
1011 to->avail += nr;
1012 to->touched = 1;
1013 return nr;
1016 #ifndef CONFIG_NUMA
1018 #define drain_alien_cache(cachep, alien) do { } while (0)
1019 #define reap_alien(cachep, l3) do { } while (0)
1021 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1023 return (struct array_cache **)BAD_ALIEN_MAGIC;
1026 static inline void free_alien_cache(struct array_cache **ac_ptr)
1030 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1032 return 0;
1035 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1036 gfp_t flags)
1038 return NULL;
1041 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1042 gfp_t flags, int nodeid)
1044 return NULL;
1047 #else /* CONFIG_NUMA */
1049 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1050 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1052 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1054 struct array_cache **ac_ptr;
1055 int memsize = sizeof(void *) * nr_node_ids;
1056 int i;
1058 if (limit > 1)
1059 limit = 12;
1060 ac_ptr = kmalloc_node(memsize, gfp, node);
1061 if (ac_ptr) {
1062 for_each_node(i) {
1063 if (i == node || !node_online(i)) {
1064 ac_ptr[i] = NULL;
1065 continue;
1067 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1068 if (!ac_ptr[i]) {
1069 for (i--; i >= 0; i--)
1070 kfree(ac_ptr[i]);
1071 kfree(ac_ptr);
1072 return NULL;
1076 return ac_ptr;
1079 static void free_alien_cache(struct array_cache **ac_ptr)
1081 int i;
1083 if (!ac_ptr)
1084 return;
1085 for_each_node(i)
1086 kfree(ac_ptr[i]);
1087 kfree(ac_ptr);
1090 static void __drain_alien_cache(struct kmem_cache *cachep,
1091 struct array_cache *ac, int node)
1093 struct kmem_list3 *rl3 = cachep->nodelists[node];
1095 if (ac->avail) {
1096 spin_lock(&rl3->list_lock);
1098 * Stuff objects into the remote nodes shared array first.
1099 * That way we could avoid the overhead of putting the objects
1100 * into the free lists and getting them back later.
1102 if (rl3->shared)
1103 transfer_objects(rl3->shared, ac, ac->limit);
1105 free_block(cachep, ac->entry, ac->avail, node);
1106 ac->avail = 0;
1107 spin_unlock(&rl3->list_lock);
1112 * Called from cache_reap() to regularly drain alien caches round robin.
1114 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1116 int node = __get_cpu_var(reap_node);
1118 if (l3->alien) {
1119 struct array_cache *ac = l3->alien[node];
1121 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1122 __drain_alien_cache(cachep, ac, node);
1123 spin_unlock_irq(&ac->lock);
1128 static void drain_alien_cache(struct kmem_cache *cachep,
1129 struct array_cache **alien)
1131 int i = 0;
1132 struct array_cache *ac;
1133 unsigned long flags;
1135 for_each_online_node(i) {
1136 ac = alien[i];
1137 if (ac) {
1138 spin_lock_irqsave(&ac->lock, flags);
1139 __drain_alien_cache(cachep, ac, i);
1140 spin_unlock_irqrestore(&ac->lock, flags);
1145 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1147 struct slab *slabp = virt_to_slab(objp);
1148 int nodeid = slabp->nodeid;
1149 struct kmem_list3 *l3;
1150 struct array_cache *alien = NULL;
1151 int node;
1153 node = numa_node_id();
1156 * Make sure we are not freeing a object from another node to the array
1157 * cache on this cpu.
1159 if (likely(slabp->nodeid == node))
1160 return 0;
1162 l3 = cachep->nodelists[node];
1163 STATS_INC_NODEFREES(cachep);
1164 if (l3->alien && l3->alien[nodeid]) {
1165 alien = l3->alien[nodeid];
1166 spin_lock(&alien->lock);
1167 if (unlikely(alien->avail == alien->limit)) {
1168 STATS_INC_ACOVERFLOW(cachep);
1169 __drain_alien_cache(cachep, alien, nodeid);
1171 alien->entry[alien->avail++] = objp;
1172 spin_unlock(&alien->lock);
1173 } else {
1174 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1175 free_block(cachep, &objp, 1, nodeid);
1176 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1178 return 1;
1180 #endif
1182 static void __cpuinit cpuup_canceled(long cpu)
1184 struct kmem_cache *cachep;
1185 struct kmem_list3 *l3 = NULL;
1186 int node = cpu_to_node(cpu);
1187 const struct cpumask *mask = cpumask_of_node(node);
1189 list_for_each_entry(cachep, &cache_chain, next) {
1190 struct array_cache *nc;
1191 struct array_cache *shared;
1192 struct array_cache **alien;
1194 /* cpu is dead; no one can alloc from it. */
1195 nc = cachep->array[cpu];
1196 cachep->array[cpu] = NULL;
1197 l3 = cachep->nodelists[node];
1199 if (!l3)
1200 goto free_array_cache;
1202 spin_lock_irq(&l3->list_lock);
1204 /* Free limit for this kmem_list3 */
1205 l3->free_limit -= cachep->batchcount;
1206 if (nc)
1207 free_block(cachep, nc->entry, nc->avail, node);
1209 if (!cpus_empty(*mask)) {
1210 spin_unlock_irq(&l3->list_lock);
1211 goto free_array_cache;
1214 shared = l3->shared;
1215 if (shared) {
1216 free_block(cachep, shared->entry,
1217 shared->avail, node);
1218 l3->shared = NULL;
1221 alien = l3->alien;
1222 l3->alien = NULL;
1224 spin_unlock_irq(&l3->list_lock);
1226 kfree(shared);
1227 if (alien) {
1228 drain_alien_cache(cachep, alien);
1229 free_alien_cache(alien);
1231 free_array_cache:
1232 kfree(nc);
1235 * In the previous loop, all the objects were freed to
1236 * the respective cache's slabs, now we can go ahead and
1237 * shrink each nodelist to its limit.
1239 list_for_each_entry(cachep, &cache_chain, next) {
1240 l3 = cachep->nodelists[node];
1241 if (!l3)
1242 continue;
1243 drain_freelist(cachep, l3, l3->free_objects);
1247 static int __cpuinit cpuup_prepare(long cpu)
1249 struct kmem_cache *cachep;
1250 struct kmem_list3 *l3 = NULL;
1251 int node = cpu_to_node(cpu);
1252 const int memsize = sizeof(struct kmem_list3);
1255 * We need to do this right in the beginning since
1256 * alloc_arraycache's are going to use this list.
1257 * kmalloc_node allows us to add the slab to the right
1258 * kmem_list3 and not this cpu's kmem_list3
1261 list_for_each_entry(cachep, &cache_chain, next) {
1263 * Set up the size64 kmemlist for cpu before we can
1264 * begin anything. Make sure some other cpu on this
1265 * node has not already allocated this
1267 if (!cachep->nodelists[node]) {
1268 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1269 if (!l3)
1270 goto bad;
1271 kmem_list3_init(l3);
1272 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1273 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1276 * The l3s don't come and go as CPUs come and
1277 * go. cache_chain_mutex is sufficient
1278 * protection here.
1280 cachep->nodelists[node] = l3;
1283 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1284 cachep->nodelists[node]->free_limit =
1285 (1 + nr_cpus_node(node)) *
1286 cachep->batchcount + cachep->num;
1287 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1291 * Now we can go ahead with allocating the shared arrays and
1292 * array caches
1294 list_for_each_entry(cachep, &cache_chain, next) {
1295 struct array_cache *nc;
1296 struct array_cache *shared = NULL;
1297 struct array_cache **alien = NULL;
1299 nc = alloc_arraycache(node, cachep->limit,
1300 cachep->batchcount, GFP_KERNEL);
1301 if (!nc)
1302 goto bad;
1303 if (cachep->shared) {
1304 shared = alloc_arraycache(node,
1305 cachep->shared * cachep->batchcount,
1306 0xbaadf00d, GFP_KERNEL);
1307 if (!shared) {
1308 kfree(nc);
1309 goto bad;
1312 if (use_alien_caches) {
1313 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1314 if (!alien) {
1315 kfree(shared);
1316 kfree(nc);
1317 goto bad;
1320 cachep->array[cpu] = nc;
1321 l3 = cachep->nodelists[node];
1322 BUG_ON(!l3);
1324 spin_lock_irq(&l3->list_lock);
1325 if (!l3->shared) {
1327 * We are serialised from CPU_DEAD or
1328 * CPU_UP_CANCELLED by the cpucontrol lock
1330 l3->shared = shared;
1331 shared = NULL;
1333 #ifdef CONFIG_NUMA
1334 if (!l3->alien) {
1335 l3->alien = alien;
1336 alien = NULL;
1338 #endif
1339 spin_unlock_irq(&l3->list_lock);
1340 kfree(shared);
1341 free_alien_cache(alien);
1343 return 0;
1344 bad:
1345 cpuup_canceled(cpu);
1346 return -ENOMEM;
1349 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1350 unsigned long action, void *hcpu)
1352 long cpu = (long)hcpu;
1353 int err = 0;
1355 switch (action) {
1356 case CPU_UP_PREPARE:
1357 case CPU_UP_PREPARE_FROZEN:
1358 mutex_lock(&cache_chain_mutex);
1359 err = cpuup_prepare(cpu);
1360 mutex_unlock(&cache_chain_mutex);
1361 break;
1362 case CPU_ONLINE:
1363 case CPU_ONLINE_FROZEN:
1364 start_cpu_timer(cpu);
1365 break;
1366 #ifdef CONFIG_HOTPLUG_CPU
1367 case CPU_DOWN_PREPARE:
1368 case CPU_DOWN_PREPARE_FROZEN:
1370 * Shutdown cache reaper. Note that the cache_chain_mutex is
1371 * held so that if cache_reap() is invoked it cannot do
1372 * anything expensive but will only modify reap_work
1373 * and reschedule the timer.
1375 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1376 /* Now the cache_reaper is guaranteed to be not running. */
1377 per_cpu(reap_work, cpu).work.func = NULL;
1378 break;
1379 case CPU_DOWN_FAILED:
1380 case CPU_DOWN_FAILED_FROZEN:
1381 start_cpu_timer(cpu);
1382 break;
1383 case CPU_DEAD:
1384 case CPU_DEAD_FROZEN:
1386 * Even if all the cpus of a node are down, we don't free the
1387 * kmem_list3 of any cache. This to avoid a race between
1388 * cpu_down, and a kmalloc allocation from another cpu for
1389 * memory from the node of the cpu going down. The list3
1390 * structure is usually allocated from kmem_cache_create() and
1391 * gets destroyed at kmem_cache_destroy().
1393 /* fall through */
1394 #endif
1395 case CPU_UP_CANCELED:
1396 case CPU_UP_CANCELED_FROZEN:
1397 mutex_lock(&cache_chain_mutex);
1398 cpuup_canceled(cpu);
1399 mutex_unlock(&cache_chain_mutex);
1400 break;
1402 return err ? NOTIFY_BAD : NOTIFY_OK;
1405 static struct notifier_block __cpuinitdata cpucache_notifier = {
1406 &cpuup_callback, NULL, 0
1410 * swap the static kmem_list3 with kmalloced memory
1412 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1413 int nodeid)
1415 struct kmem_list3 *ptr;
1417 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1418 BUG_ON(!ptr);
1420 memcpy(ptr, list, sizeof(struct kmem_list3));
1422 * Do not assume that spinlocks can be initialized via memcpy:
1424 spin_lock_init(&ptr->list_lock);
1426 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1427 cachep->nodelists[nodeid] = ptr;
1431 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1432 * size of kmem_list3.
1434 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1436 int node;
1438 for_each_online_node(node) {
1439 cachep->nodelists[node] = &initkmem_list3[index + node];
1440 cachep->nodelists[node]->next_reap = jiffies +
1441 REAPTIMEOUT_LIST3 +
1442 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1447 * Initialisation. Called after the page allocator have been initialised and
1448 * before smp_init().
1450 void __init kmem_cache_init(void)
1452 size_t left_over;
1453 struct cache_sizes *sizes;
1454 struct cache_names *names;
1455 int i;
1456 int order;
1457 int node;
1459 if (num_possible_nodes() == 1) {
1460 use_alien_caches = 0;
1461 numa_platform = 0;
1464 for (i = 0; i < NUM_INIT_LISTS; i++) {
1465 kmem_list3_init(&initkmem_list3[i]);
1466 if (i < MAX_NUMNODES)
1467 cache_cache.nodelists[i] = NULL;
1469 set_up_list3s(&cache_cache, CACHE_CACHE);
1472 * Fragmentation resistance on low memory - only use bigger
1473 * page orders on machines with more than 32MB of memory.
1475 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1476 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1478 /* Bootstrap is tricky, because several objects are allocated
1479 * from caches that do not exist yet:
1480 * 1) initialize the cache_cache cache: it contains the struct
1481 * kmem_cache structures of all caches, except cache_cache itself:
1482 * cache_cache is statically allocated.
1483 * Initially an __init data area is used for the head array and the
1484 * kmem_list3 structures, it's replaced with a kmalloc allocated
1485 * array at the end of the bootstrap.
1486 * 2) Create the first kmalloc cache.
1487 * The struct kmem_cache for the new cache is allocated normally.
1488 * An __init data area is used for the head array.
1489 * 3) Create the remaining kmalloc caches, with minimally sized
1490 * head arrays.
1491 * 4) Replace the __init data head arrays for cache_cache and the first
1492 * kmalloc cache with kmalloc allocated arrays.
1493 * 5) Replace the __init data for kmem_list3 for cache_cache and
1494 * the other cache's with kmalloc allocated memory.
1495 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1498 node = numa_node_id();
1500 /* 1) create the cache_cache */
1501 INIT_LIST_HEAD(&cache_chain);
1502 list_add(&cache_cache.next, &cache_chain);
1503 cache_cache.colour_off = cache_line_size();
1504 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1505 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1508 * struct kmem_cache size depends on nr_node_ids, which
1509 * can be less than MAX_NUMNODES.
1511 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1512 nr_node_ids * sizeof(struct kmem_list3 *);
1513 #if DEBUG
1514 cache_cache.obj_size = cache_cache.buffer_size;
1515 #endif
1516 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1517 cache_line_size());
1518 cache_cache.reciprocal_buffer_size =
1519 reciprocal_value(cache_cache.buffer_size);
1521 for (order = 0; order < MAX_ORDER; order++) {
1522 cache_estimate(order, cache_cache.buffer_size,
1523 cache_line_size(), 0, &left_over, &cache_cache.num);
1524 if (cache_cache.num)
1525 break;
1527 BUG_ON(!cache_cache.num);
1528 cache_cache.gfporder = order;
1529 cache_cache.colour = left_over / cache_cache.colour_off;
1530 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1531 sizeof(struct slab), cache_line_size());
1533 /* 2+3) create the kmalloc caches */
1534 sizes = malloc_sizes;
1535 names = cache_names;
1538 * Initialize the caches that provide memory for the array cache and the
1539 * kmem_list3 structures first. Without this, further allocations will
1540 * bug.
1543 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1544 sizes[INDEX_AC].cs_size,
1545 ARCH_KMALLOC_MINALIGN,
1546 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1547 NULL);
1549 if (INDEX_AC != INDEX_L3) {
1550 sizes[INDEX_L3].cs_cachep =
1551 kmem_cache_create(names[INDEX_L3].name,
1552 sizes[INDEX_L3].cs_size,
1553 ARCH_KMALLOC_MINALIGN,
1554 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1555 NULL);
1558 slab_early_init = 0;
1560 while (sizes->cs_size != ULONG_MAX) {
1562 * For performance, all the general caches are L1 aligned.
1563 * This should be particularly beneficial on SMP boxes, as it
1564 * eliminates "false sharing".
1565 * Note for systems short on memory removing the alignment will
1566 * allow tighter packing of the smaller caches.
1568 if (!sizes->cs_cachep) {
1569 sizes->cs_cachep = kmem_cache_create(names->name,
1570 sizes->cs_size,
1571 ARCH_KMALLOC_MINALIGN,
1572 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1573 NULL);
1575 #ifdef CONFIG_ZONE_DMA
1576 sizes->cs_dmacachep = kmem_cache_create(
1577 names->name_dma,
1578 sizes->cs_size,
1579 ARCH_KMALLOC_MINALIGN,
1580 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1581 SLAB_PANIC,
1582 NULL);
1583 #endif
1584 sizes++;
1585 names++;
1587 /* 4) Replace the bootstrap head arrays */
1589 struct array_cache *ptr;
1591 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1593 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1594 memcpy(ptr, cpu_cache_get(&cache_cache),
1595 sizeof(struct arraycache_init));
1597 * Do not assume that spinlocks can be initialized via memcpy:
1599 spin_lock_init(&ptr->lock);
1601 cache_cache.array[smp_processor_id()] = ptr;
1603 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1605 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1606 != &initarray_generic.cache);
1607 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1608 sizeof(struct arraycache_init));
1610 * Do not assume that spinlocks can be initialized via memcpy:
1612 spin_lock_init(&ptr->lock);
1614 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1615 ptr;
1617 /* 5) Replace the bootstrap kmem_list3's */
1619 int nid;
1621 for_each_online_node(nid) {
1622 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1624 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1625 &initkmem_list3[SIZE_AC + nid], nid);
1627 if (INDEX_AC != INDEX_L3) {
1628 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1629 &initkmem_list3[SIZE_L3 + nid], nid);
1634 /* 6) resize the head arrays to their final sizes */
1636 struct kmem_cache *cachep;
1637 mutex_lock(&cache_chain_mutex);
1638 list_for_each_entry(cachep, &cache_chain, next)
1639 if (enable_cpucache(cachep, GFP_NOWAIT))
1640 BUG();
1641 mutex_unlock(&cache_chain_mutex);
1644 /* Annotate slab for lockdep -- annotate the malloc caches */
1645 init_lock_keys();
1648 /* Done! */
1649 g_cpucache_up = FULL;
1652 * Register a cpu startup notifier callback that initializes
1653 * cpu_cache_get for all new cpus
1655 register_cpu_notifier(&cpucache_notifier);
1658 * The reap timers are started later, with a module init call: That part
1659 * of the kernel is not yet operational.
1663 void __init kmem_cache_init_late(void)
1666 * Interrupts are enabled now so all GFP allocations are safe.
1668 slab_gfp_mask = __GFP_BITS_MASK;
1671 static int __init cpucache_init(void)
1673 int cpu;
1676 * Register the timers that return unneeded pages to the page allocator
1678 for_each_online_cpu(cpu)
1679 start_cpu_timer(cpu);
1680 return 0;
1682 __initcall(cpucache_init);
1685 * Interface to system's page allocator. No need to hold the cache-lock.
1687 * If we requested dmaable memory, we will get it. Even if we
1688 * did not request dmaable memory, we might get it, but that
1689 * would be relatively rare and ignorable.
1691 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1693 struct page *page;
1694 int nr_pages;
1695 int i;
1697 #ifndef CONFIG_MMU
1699 * Nommu uses slab's for process anonymous memory allocations, and thus
1700 * requires __GFP_COMP to properly refcount higher order allocations
1702 flags |= __GFP_COMP;
1703 #endif
1705 flags |= cachep->gfpflags;
1706 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1707 flags |= __GFP_RECLAIMABLE;
1709 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1710 if (!page)
1711 return NULL;
1713 nr_pages = (1 << cachep->gfporder);
1714 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1715 add_zone_page_state(page_zone(page),
1716 NR_SLAB_RECLAIMABLE, nr_pages);
1717 else
1718 add_zone_page_state(page_zone(page),
1719 NR_SLAB_UNRECLAIMABLE, nr_pages);
1720 for (i = 0; i < nr_pages; i++)
1721 __SetPageSlab(page + i);
1722 return page_address(page);
1726 * Interface to system's page release.
1728 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1730 unsigned long i = (1 << cachep->gfporder);
1731 struct page *page = virt_to_page(addr);
1732 const unsigned long nr_freed = i;
1734 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1735 sub_zone_page_state(page_zone(page),
1736 NR_SLAB_RECLAIMABLE, nr_freed);
1737 else
1738 sub_zone_page_state(page_zone(page),
1739 NR_SLAB_UNRECLAIMABLE, nr_freed);
1740 while (i--) {
1741 BUG_ON(!PageSlab(page));
1742 __ClearPageSlab(page);
1743 page++;
1745 if (current->reclaim_state)
1746 current->reclaim_state->reclaimed_slab += nr_freed;
1747 free_pages((unsigned long)addr, cachep->gfporder);
1750 static void kmem_rcu_free(struct rcu_head *head)
1752 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1753 struct kmem_cache *cachep = slab_rcu->cachep;
1755 kmem_freepages(cachep, slab_rcu->addr);
1756 if (OFF_SLAB(cachep))
1757 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1760 #if DEBUG
1762 #ifdef CONFIG_DEBUG_PAGEALLOC
1763 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1764 unsigned long caller)
1766 int size = obj_size(cachep);
1768 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1770 if (size < 5 * sizeof(unsigned long))
1771 return;
1773 *addr++ = 0x12345678;
1774 *addr++ = caller;
1775 *addr++ = smp_processor_id();
1776 size -= 3 * sizeof(unsigned long);
1778 unsigned long *sptr = &caller;
1779 unsigned long svalue;
1781 while (!kstack_end(sptr)) {
1782 svalue = *sptr++;
1783 if (kernel_text_address(svalue)) {
1784 *addr++ = svalue;
1785 size -= sizeof(unsigned long);
1786 if (size <= sizeof(unsigned long))
1787 break;
1792 *addr++ = 0x87654321;
1794 #endif
1796 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1798 int size = obj_size(cachep);
1799 addr = &((char *)addr)[obj_offset(cachep)];
1801 memset(addr, val, size);
1802 *(unsigned char *)(addr + size - 1) = POISON_END;
1805 static void dump_line(char *data, int offset, int limit)
1807 int i;
1808 unsigned char error = 0;
1809 int bad_count = 0;
1811 printk(KERN_ERR "%03x:", offset);
1812 for (i = 0; i < limit; i++) {
1813 if (data[offset + i] != POISON_FREE) {
1814 error = data[offset + i];
1815 bad_count++;
1817 printk(" %02x", (unsigned char)data[offset + i]);
1819 printk("\n");
1821 if (bad_count == 1) {
1822 error ^= POISON_FREE;
1823 if (!(error & (error - 1))) {
1824 printk(KERN_ERR "Single bit error detected. Probably "
1825 "bad RAM.\n");
1826 #ifdef CONFIG_X86
1827 printk(KERN_ERR "Run memtest86+ or a similar memory "
1828 "test tool.\n");
1829 #else
1830 printk(KERN_ERR "Run a memory test tool.\n");
1831 #endif
1835 #endif
1837 #if DEBUG
1839 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1841 int i, size;
1842 char *realobj;
1844 if (cachep->flags & SLAB_RED_ZONE) {
1845 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1846 *dbg_redzone1(cachep, objp),
1847 *dbg_redzone2(cachep, objp));
1850 if (cachep->flags & SLAB_STORE_USER) {
1851 printk(KERN_ERR "Last user: [<%p>]",
1852 *dbg_userword(cachep, objp));
1853 print_symbol("(%s)",
1854 (unsigned long)*dbg_userword(cachep, objp));
1855 printk("\n");
1857 realobj = (char *)objp + obj_offset(cachep);
1858 size = obj_size(cachep);
1859 for (i = 0; i < size && lines; i += 16, lines--) {
1860 int limit;
1861 limit = 16;
1862 if (i + limit > size)
1863 limit = size - i;
1864 dump_line(realobj, i, limit);
1868 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1870 char *realobj;
1871 int size, i;
1872 int lines = 0;
1874 realobj = (char *)objp + obj_offset(cachep);
1875 size = obj_size(cachep);
1877 for (i = 0; i < size; i++) {
1878 char exp = POISON_FREE;
1879 if (i == size - 1)
1880 exp = POISON_END;
1881 if (realobj[i] != exp) {
1882 int limit;
1883 /* Mismatch ! */
1884 /* Print header */
1885 if (lines == 0) {
1886 printk(KERN_ERR
1887 "Slab corruption: %s start=%p, len=%d\n",
1888 cachep->name, realobj, size);
1889 print_objinfo(cachep, objp, 0);
1891 /* Hexdump the affected line */
1892 i = (i / 16) * 16;
1893 limit = 16;
1894 if (i + limit > size)
1895 limit = size - i;
1896 dump_line(realobj, i, limit);
1897 i += 16;
1898 lines++;
1899 /* Limit to 5 lines */
1900 if (lines > 5)
1901 break;
1904 if (lines != 0) {
1905 /* Print some data about the neighboring objects, if they
1906 * exist:
1908 struct slab *slabp = virt_to_slab(objp);
1909 unsigned int objnr;
1911 objnr = obj_to_index(cachep, slabp, objp);
1912 if (objnr) {
1913 objp = index_to_obj(cachep, slabp, objnr - 1);
1914 realobj = (char *)objp + obj_offset(cachep);
1915 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1916 realobj, size);
1917 print_objinfo(cachep, objp, 2);
1919 if (objnr + 1 < cachep->num) {
1920 objp = index_to_obj(cachep, slabp, objnr + 1);
1921 realobj = (char *)objp + obj_offset(cachep);
1922 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1923 realobj, size);
1924 print_objinfo(cachep, objp, 2);
1928 #endif
1930 #if DEBUG
1931 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1933 int i;
1934 for (i = 0; i < cachep->num; i++) {
1935 void *objp = index_to_obj(cachep, slabp, i);
1937 if (cachep->flags & SLAB_POISON) {
1938 #ifdef CONFIG_DEBUG_PAGEALLOC
1939 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1940 OFF_SLAB(cachep))
1941 kernel_map_pages(virt_to_page(objp),
1942 cachep->buffer_size / PAGE_SIZE, 1);
1943 else
1944 check_poison_obj(cachep, objp);
1945 #else
1946 check_poison_obj(cachep, objp);
1947 #endif
1949 if (cachep->flags & SLAB_RED_ZONE) {
1950 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1951 slab_error(cachep, "start of a freed object "
1952 "was overwritten");
1953 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1954 slab_error(cachep, "end of a freed object "
1955 "was overwritten");
1959 #else
1960 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1963 #endif
1966 * slab_destroy - destroy and release all objects in a slab
1967 * @cachep: cache pointer being destroyed
1968 * @slabp: slab pointer being destroyed
1970 * Destroy all the objs in a slab, and release the mem back to the system.
1971 * Before calling the slab must have been unlinked from the cache. The
1972 * cache-lock is not held/needed.
1974 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1976 void *addr = slabp->s_mem - slabp->colouroff;
1978 slab_destroy_debugcheck(cachep, slabp);
1979 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1980 struct slab_rcu *slab_rcu;
1982 slab_rcu = (struct slab_rcu *)slabp;
1983 slab_rcu->cachep = cachep;
1984 slab_rcu->addr = addr;
1985 call_rcu(&slab_rcu->head, kmem_rcu_free);
1986 } else {
1987 kmem_freepages(cachep, addr);
1988 if (OFF_SLAB(cachep))
1989 kmem_cache_free(cachep->slabp_cache, slabp);
1993 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1995 int i;
1996 struct kmem_list3 *l3;
1998 for_each_online_cpu(i)
1999 kfree(cachep->array[i]);
2001 /* NUMA: free the list3 structures */
2002 for_each_online_node(i) {
2003 l3 = cachep->nodelists[i];
2004 if (l3) {
2005 kfree(l3->shared);
2006 free_alien_cache(l3->alien);
2007 kfree(l3);
2010 kmem_cache_free(&cache_cache, cachep);
2015 * calculate_slab_order - calculate size (page order) of slabs
2016 * @cachep: pointer to the cache that is being created
2017 * @size: size of objects to be created in this cache.
2018 * @align: required alignment for the objects.
2019 * @flags: slab allocation flags
2021 * Also calculates the number of objects per slab.
2023 * This could be made much more intelligent. For now, try to avoid using
2024 * high order pages for slabs. When the gfp() functions are more friendly
2025 * towards high-order requests, this should be changed.
2027 static size_t calculate_slab_order(struct kmem_cache *cachep,
2028 size_t size, size_t align, unsigned long flags)
2030 unsigned long offslab_limit;
2031 size_t left_over = 0;
2032 int gfporder;
2034 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2035 unsigned int num;
2036 size_t remainder;
2038 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2039 if (!num)
2040 continue;
2042 if (flags & CFLGS_OFF_SLAB) {
2044 * Max number of objs-per-slab for caches which
2045 * use off-slab slabs. Needed to avoid a possible
2046 * looping condition in cache_grow().
2048 offslab_limit = size - sizeof(struct slab);
2049 offslab_limit /= sizeof(kmem_bufctl_t);
2051 if (num > offslab_limit)
2052 break;
2055 /* Found something acceptable - save it away */
2056 cachep->num = num;
2057 cachep->gfporder = gfporder;
2058 left_over = remainder;
2061 * A VFS-reclaimable slab tends to have most allocations
2062 * as GFP_NOFS and we really don't want to have to be allocating
2063 * higher-order pages when we are unable to shrink dcache.
2065 if (flags & SLAB_RECLAIM_ACCOUNT)
2066 break;
2069 * Large number of objects is good, but very large slabs are
2070 * currently bad for the gfp()s.
2072 if (gfporder >= slab_break_gfp_order)
2073 break;
2076 * Acceptable internal fragmentation?
2078 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2079 break;
2081 return left_over;
2084 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2086 if (g_cpucache_up == FULL)
2087 return enable_cpucache(cachep, gfp);
2089 if (g_cpucache_up == NONE) {
2091 * Note: the first kmem_cache_create must create the cache
2092 * that's used by kmalloc(24), otherwise the creation of
2093 * further caches will BUG().
2095 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2098 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2099 * the first cache, then we need to set up all its list3s,
2100 * otherwise the creation of further caches will BUG().
2102 set_up_list3s(cachep, SIZE_AC);
2103 if (INDEX_AC == INDEX_L3)
2104 g_cpucache_up = PARTIAL_L3;
2105 else
2106 g_cpucache_up = PARTIAL_AC;
2107 } else {
2108 cachep->array[smp_processor_id()] =
2109 kmalloc(sizeof(struct arraycache_init), gfp);
2111 if (g_cpucache_up == PARTIAL_AC) {
2112 set_up_list3s(cachep, SIZE_L3);
2113 g_cpucache_up = PARTIAL_L3;
2114 } else {
2115 int node;
2116 for_each_online_node(node) {
2117 cachep->nodelists[node] =
2118 kmalloc_node(sizeof(struct kmem_list3),
2119 gfp, node);
2120 BUG_ON(!cachep->nodelists[node]);
2121 kmem_list3_init(cachep->nodelists[node]);
2125 cachep->nodelists[numa_node_id()]->next_reap =
2126 jiffies + REAPTIMEOUT_LIST3 +
2127 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2129 cpu_cache_get(cachep)->avail = 0;
2130 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2131 cpu_cache_get(cachep)->batchcount = 1;
2132 cpu_cache_get(cachep)->touched = 0;
2133 cachep->batchcount = 1;
2134 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2135 return 0;
2139 * kmem_cache_create - Create a cache.
2140 * @name: A string which is used in /proc/slabinfo to identify this cache.
2141 * @size: The size of objects to be created in this cache.
2142 * @align: The required alignment for the objects.
2143 * @flags: SLAB flags
2144 * @ctor: A constructor for the objects.
2146 * Returns a ptr to the cache on success, NULL on failure.
2147 * Cannot be called within a int, but can be interrupted.
2148 * The @ctor is run when new pages are allocated by the cache.
2150 * @name must be valid until the cache is destroyed. This implies that
2151 * the module calling this has to destroy the cache before getting unloaded.
2152 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2153 * therefore applications must manage it themselves.
2155 * The flags are
2157 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2158 * to catch references to uninitialised memory.
2160 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2161 * for buffer overruns.
2163 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2164 * cacheline. This can be beneficial if you're counting cycles as closely
2165 * as davem.
2167 struct kmem_cache *
2168 kmem_cache_create (const char *name, size_t size, size_t align,
2169 unsigned long flags, void (*ctor)(void *))
2171 size_t left_over, slab_size, ralign;
2172 struct kmem_cache *cachep = NULL, *pc;
2173 gfp_t gfp;
2176 * Sanity checks... these are all serious usage bugs.
2178 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2179 size > KMALLOC_MAX_SIZE) {
2180 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2181 name);
2182 BUG();
2186 * We use cache_chain_mutex to ensure a consistent view of
2187 * cpu_online_mask as well. Please see cpuup_callback
2189 if (slab_is_available()) {
2190 get_online_cpus();
2191 mutex_lock(&cache_chain_mutex);
2194 list_for_each_entry(pc, &cache_chain, next) {
2195 char tmp;
2196 int res;
2199 * This happens when the module gets unloaded and doesn't
2200 * destroy its slab cache and no-one else reuses the vmalloc
2201 * area of the module. Print a warning.
2203 res = probe_kernel_address(pc->name, tmp);
2204 if (res) {
2205 printk(KERN_ERR
2206 "SLAB: cache with size %d has lost its name\n",
2207 pc->buffer_size);
2208 continue;
2211 if (!strcmp(pc->name, name)) {
2212 printk(KERN_ERR
2213 "kmem_cache_create: duplicate cache %s\n", name);
2214 dump_stack();
2215 goto oops;
2219 #if DEBUG
2220 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2221 #if FORCED_DEBUG
2223 * Enable redzoning and last user accounting, except for caches with
2224 * large objects, if the increased size would increase the object size
2225 * above the next power of two: caches with object sizes just above a
2226 * power of two have a significant amount of internal fragmentation.
2228 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2229 2 * sizeof(unsigned long long)))
2230 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2231 if (!(flags & SLAB_DESTROY_BY_RCU))
2232 flags |= SLAB_POISON;
2233 #endif
2234 if (flags & SLAB_DESTROY_BY_RCU)
2235 BUG_ON(flags & SLAB_POISON);
2236 #endif
2238 * Always checks flags, a caller might be expecting debug support which
2239 * isn't available.
2241 BUG_ON(flags & ~CREATE_MASK);
2244 * Check that size is in terms of words. This is needed to avoid
2245 * unaligned accesses for some archs when redzoning is used, and makes
2246 * sure any on-slab bufctl's are also correctly aligned.
2248 if (size & (BYTES_PER_WORD - 1)) {
2249 size += (BYTES_PER_WORD - 1);
2250 size &= ~(BYTES_PER_WORD - 1);
2253 /* calculate the final buffer alignment: */
2255 /* 1) arch recommendation: can be overridden for debug */
2256 if (flags & SLAB_HWCACHE_ALIGN) {
2258 * Default alignment: as specified by the arch code. Except if
2259 * an object is really small, then squeeze multiple objects into
2260 * one cacheline.
2262 ralign = cache_line_size();
2263 while (size <= ralign / 2)
2264 ralign /= 2;
2265 } else {
2266 ralign = BYTES_PER_WORD;
2270 * Redzoning and user store require word alignment or possibly larger.
2271 * Note this will be overridden by architecture or caller mandated
2272 * alignment if either is greater than BYTES_PER_WORD.
2274 if (flags & SLAB_STORE_USER)
2275 ralign = BYTES_PER_WORD;
2277 if (flags & SLAB_RED_ZONE) {
2278 ralign = REDZONE_ALIGN;
2279 /* If redzoning, ensure that the second redzone is suitably
2280 * aligned, by adjusting the object size accordingly. */
2281 size += REDZONE_ALIGN - 1;
2282 size &= ~(REDZONE_ALIGN - 1);
2285 /* 2) arch mandated alignment */
2286 if (ralign < ARCH_SLAB_MINALIGN) {
2287 ralign = ARCH_SLAB_MINALIGN;
2289 /* 3) caller mandated alignment */
2290 if (ralign < align) {
2291 ralign = align;
2293 /* disable debug if necessary */
2294 if (ralign > __alignof__(unsigned long long))
2295 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2297 * 4) Store it.
2299 align = ralign;
2301 if (slab_is_available())
2302 gfp = GFP_KERNEL;
2303 else
2304 gfp = GFP_NOWAIT;
2306 /* Get cache's description obj. */
2307 cachep = kmem_cache_zalloc(&cache_cache, gfp);
2308 if (!cachep)
2309 goto oops;
2311 #if DEBUG
2312 cachep->obj_size = size;
2315 * Both debugging options require word-alignment which is calculated
2316 * into align above.
2318 if (flags & SLAB_RED_ZONE) {
2319 /* add space for red zone words */
2320 cachep->obj_offset += sizeof(unsigned long long);
2321 size += 2 * sizeof(unsigned long long);
2323 if (flags & SLAB_STORE_USER) {
2324 /* user store requires one word storage behind the end of
2325 * the real object. But if the second red zone needs to be
2326 * aligned to 64 bits, we must allow that much space.
2328 if (flags & SLAB_RED_ZONE)
2329 size += REDZONE_ALIGN;
2330 else
2331 size += BYTES_PER_WORD;
2333 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2334 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2335 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2336 cachep->obj_offset += PAGE_SIZE - size;
2337 size = PAGE_SIZE;
2339 #endif
2340 #endif
2343 * Determine if the slab management is 'on' or 'off' slab.
2344 * (bootstrapping cannot cope with offslab caches so don't do
2345 * it too early on.)
2347 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2349 * Size is large, assume best to place the slab management obj
2350 * off-slab (should allow better packing of objs).
2352 flags |= CFLGS_OFF_SLAB;
2354 size = ALIGN(size, align);
2356 left_over = calculate_slab_order(cachep, size, align, flags);
2358 if (!cachep->num) {
2359 printk(KERN_ERR
2360 "kmem_cache_create: couldn't create cache %s.\n", name);
2361 kmem_cache_free(&cache_cache, cachep);
2362 cachep = NULL;
2363 goto oops;
2365 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2366 + sizeof(struct slab), align);
2369 * If the slab has been placed off-slab, and we have enough space then
2370 * move it on-slab. This is at the expense of any extra colouring.
2372 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2373 flags &= ~CFLGS_OFF_SLAB;
2374 left_over -= slab_size;
2377 if (flags & CFLGS_OFF_SLAB) {
2378 /* really off slab. No need for manual alignment */
2379 slab_size =
2380 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2383 cachep->colour_off = cache_line_size();
2384 /* Offset must be a multiple of the alignment. */
2385 if (cachep->colour_off < align)
2386 cachep->colour_off = align;
2387 cachep->colour = left_over / cachep->colour_off;
2388 cachep->slab_size = slab_size;
2389 cachep->flags = flags;
2390 cachep->gfpflags = 0;
2391 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2392 cachep->gfpflags |= GFP_DMA;
2393 cachep->buffer_size = size;
2394 cachep->reciprocal_buffer_size = reciprocal_value(size);
2396 if (flags & CFLGS_OFF_SLAB) {
2397 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2399 * This is a possibility for one of the malloc_sizes caches.
2400 * But since we go off slab only for object size greater than
2401 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2402 * this should not happen at all.
2403 * But leave a BUG_ON for some lucky dude.
2405 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2407 cachep->ctor = ctor;
2408 cachep->name = name;
2410 if (setup_cpu_cache(cachep, gfp)) {
2411 __kmem_cache_destroy(cachep);
2412 cachep = NULL;
2413 goto oops;
2416 /* cache setup completed, link it into the list */
2417 list_add(&cachep->next, &cache_chain);
2418 oops:
2419 if (!cachep && (flags & SLAB_PANIC))
2420 panic("kmem_cache_create(): failed to create slab `%s'\n",
2421 name);
2422 if (slab_is_available()) {
2423 mutex_unlock(&cache_chain_mutex);
2424 put_online_cpus();
2426 return cachep;
2428 EXPORT_SYMBOL(kmem_cache_create);
2430 #if DEBUG
2431 static void check_irq_off(void)
2433 BUG_ON(!irqs_disabled());
2436 static void check_irq_on(void)
2438 BUG_ON(irqs_disabled());
2441 static void check_spinlock_acquired(struct kmem_cache *cachep)
2443 #ifdef CONFIG_SMP
2444 check_irq_off();
2445 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2446 #endif
2449 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2451 #ifdef CONFIG_SMP
2452 check_irq_off();
2453 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2454 #endif
2457 #else
2458 #define check_irq_off() do { } while(0)
2459 #define check_irq_on() do { } while(0)
2460 #define check_spinlock_acquired(x) do { } while(0)
2461 #define check_spinlock_acquired_node(x, y) do { } while(0)
2462 #endif
2464 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2465 struct array_cache *ac,
2466 int force, int node);
2468 static void do_drain(void *arg)
2470 struct kmem_cache *cachep = arg;
2471 struct array_cache *ac;
2472 int node = numa_node_id();
2474 check_irq_off();
2475 ac = cpu_cache_get(cachep);
2476 spin_lock(&cachep->nodelists[node]->list_lock);
2477 free_block(cachep, ac->entry, ac->avail, node);
2478 spin_unlock(&cachep->nodelists[node]->list_lock);
2479 ac->avail = 0;
2482 static void drain_cpu_caches(struct kmem_cache *cachep)
2484 struct kmem_list3 *l3;
2485 int node;
2487 on_each_cpu(do_drain, cachep, 1);
2488 check_irq_on();
2489 for_each_online_node(node) {
2490 l3 = cachep->nodelists[node];
2491 if (l3 && l3->alien)
2492 drain_alien_cache(cachep, l3->alien);
2495 for_each_online_node(node) {
2496 l3 = cachep->nodelists[node];
2497 if (l3)
2498 drain_array(cachep, l3, l3->shared, 1, node);
2503 * Remove slabs from the list of free slabs.
2504 * Specify the number of slabs to drain in tofree.
2506 * Returns the actual number of slabs released.
2508 static int drain_freelist(struct kmem_cache *cache,
2509 struct kmem_list3 *l3, int tofree)
2511 struct list_head *p;
2512 int nr_freed;
2513 struct slab *slabp;
2515 nr_freed = 0;
2516 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2518 spin_lock_irq(&l3->list_lock);
2519 p = l3->slabs_free.prev;
2520 if (p == &l3->slabs_free) {
2521 spin_unlock_irq(&l3->list_lock);
2522 goto out;
2525 slabp = list_entry(p, struct slab, list);
2526 #if DEBUG
2527 BUG_ON(slabp->inuse);
2528 #endif
2529 list_del(&slabp->list);
2531 * Safe to drop the lock. The slab is no longer linked
2532 * to the cache.
2534 l3->free_objects -= cache->num;
2535 spin_unlock_irq(&l3->list_lock);
2536 slab_destroy(cache, slabp);
2537 nr_freed++;
2539 out:
2540 return nr_freed;
2543 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2544 static int __cache_shrink(struct kmem_cache *cachep)
2546 int ret = 0, i = 0;
2547 struct kmem_list3 *l3;
2549 drain_cpu_caches(cachep);
2551 check_irq_on();
2552 for_each_online_node(i) {
2553 l3 = cachep->nodelists[i];
2554 if (!l3)
2555 continue;
2557 drain_freelist(cachep, l3, l3->free_objects);
2559 ret += !list_empty(&l3->slabs_full) ||
2560 !list_empty(&l3->slabs_partial);
2562 return (ret ? 1 : 0);
2566 * kmem_cache_shrink - Shrink a cache.
2567 * @cachep: The cache to shrink.
2569 * Releases as many slabs as possible for a cache.
2570 * To help debugging, a zero exit status indicates all slabs were released.
2572 int kmem_cache_shrink(struct kmem_cache *cachep)
2574 int ret;
2575 BUG_ON(!cachep || in_interrupt());
2577 get_online_cpus();
2578 mutex_lock(&cache_chain_mutex);
2579 ret = __cache_shrink(cachep);
2580 mutex_unlock(&cache_chain_mutex);
2581 put_online_cpus();
2582 return ret;
2584 EXPORT_SYMBOL(kmem_cache_shrink);
2587 * kmem_cache_destroy - delete a cache
2588 * @cachep: the cache to destroy
2590 * Remove a &struct kmem_cache object from the slab cache.
2592 * It is expected this function will be called by a module when it is
2593 * unloaded. This will remove the cache completely, and avoid a duplicate
2594 * cache being allocated each time a module is loaded and unloaded, if the
2595 * module doesn't have persistent in-kernel storage across loads and unloads.
2597 * The cache must be empty before calling this function.
2599 * The caller must guarantee that noone will allocate memory from the cache
2600 * during the kmem_cache_destroy().
2602 void kmem_cache_destroy(struct kmem_cache *cachep)
2604 BUG_ON(!cachep || in_interrupt());
2606 /* Find the cache in the chain of caches. */
2607 get_online_cpus();
2608 mutex_lock(&cache_chain_mutex);
2610 * the chain is never empty, cache_cache is never destroyed
2612 list_del(&cachep->next);
2613 if (__cache_shrink(cachep)) {
2614 slab_error(cachep, "Can't free all objects");
2615 list_add(&cachep->next, &cache_chain);
2616 mutex_unlock(&cache_chain_mutex);
2617 put_online_cpus();
2618 return;
2621 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2622 synchronize_rcu();
2624 __kmem_cache_destroy(cachep);
2625 mutex_unlock(&cache_chain_mutex);
2626 put_online_cpus();
2628 EXPORT_SYMBOL(kmem_cache_destroy);
2631 * Get the memory for a slab management obj.
2632 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2633 * always come from malloc_sizes caches. The slab descriptor cannot
2634 * come from the same cache which is getting created because,
2635 * when we are searching for an appropriate cache for these
2636 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2637 * If we are creating a malloc_sizes cache here it would not be visible to
2638 * kmem_find_general_cachep till the initialization is complete.
2639 * Hence we cannot have slabp_cache same as the original cache.
2641 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2642 int colour_off, gfp_t local_flags,
2643 int nodeid)
2645 struct slab *slabp;
2647 if (OFF_SLAB(cachep)) {
2648 /* Slab management obj is off-slab. */
2649 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2650 local_flags, nodeid);
2652 * If the first object in the slab is leaked (it's allocated
2653 * but no one has a reference to it), we want to make sure
2654 * kmemleak does not treat the ->s_mem pointer as a reference
2655 * to the object. Otherwise we will not report the leak.
2657 kmemleak_scan_area(slabp, offsetof(struct slab, list),
2658 sizeof(struct list_head), local_flags);
2659 if (!slabp)
2660 return NULL;
2661 } else {
2662 slabp = objp + colour_off;
2663 colour_off += cachep->slab_size;
2665 slabp->inuse = 0;
2666 slabp->colouroff = colour_off;
2667 slabp->s_mem = objp + colour_off;
2668 slabp->nodeid = nodeid;
2669 slabp->free = 0;
2670 return slabp;
2673 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2675 return (kmem_bufctl_t *) (slabp + 1);
2678 static void cache_init_objs(struct kmem_cache *cachep,
2679 struct slab *slabp)
2681 int i;
2683 for (i = 0; i < cachep->num; i++) {
2684 void *objp = index_to_obj(cachep, slabp, i);
2685 #if DEBUG
2686 /* need to poison the objs? */
2687 if (cachep->flags & SLAB_POISON)
2688 poison_obj(cachep, objp, POISON_FREE);
2689 if (cachep->flags & SLAB_STORE_USER)
2690 *dbg_userword(cachep, objp) = NULL;
2692 if (cachep->flags & SLAB_RED_ZONE) {
2693 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2694 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2697 * Constructors are not allowed to allocate memory from the same
2698 * cache which they are a constructor for. Otherwise, deadlock.
2699 * They must also be threaded.
2701 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2702 cachep->ctor(objp + obj_offset(cachep));
2704 if (cachep->flags & SLAB_RED_ZONE) {
2705 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2706 slab_error(cachep, "constructor overwrote the"
2707 " end of an object");
2708 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2709 slab_error(cachep, "constructor overwrote the"
2710 " start of an object");
2712 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2713 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2714 kernel_map_pages(virt_to_page(objp),
2715 cachep->buffer_size / PAGE_SIZE, 0);
2716 #else
2717 if (cachep->ctor)
2718 cachep->ctor(objp);
2719 #endif
2720 slab_bufctl(slabp)[i] = i + 1;
2722 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2725 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2727 if (CONFIG_ZONE_DMA_FLAG) {
2728 if (flags & GFP_DMA)
2729 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2730 else
2731 BUG_ON(cachep->gfpflags & GFP_DMA);
2735 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2736 int nodeid)
2738 void *objp = index_to_obj(cachep, slabp, slabp->free);
2739 kmem_bufctl_t next;
2741 slabp->inuse++;
2742 next = slab_bufctl(slabp)[slabp->free];
2743 #if DEBUG
2744 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2745 WARN_ON(slabp->nodeid != nodeid);
2746 #endif
2747 slabp->free = next;
2749 return objp;
2752 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2753 void *objp, int nodeid)
2755 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2757 #if DEBUG
2758 /* Verify that the slab belongs to the intended node */
2759 WARN_ON(slabp->nodeid != nodeid);
2761 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2762 printk(KERN_ERR "slab: double free detected in cache "
2763 "'%s', objp %p\n", cachep->name, objp);
2764 BUG();
2766 #endif
2767 slab_bufctl(slabp)[objnr] = slabp->free;
2768 slabp->free = objnr;
2769 slabp->inuse--;
2773 * Map pages beginning at addr to the given cache and slab. This is required
2774 * for the slab allocator to be able to lookup the cache and slab of a
2775 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2777 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2778 void *addr)
2780 int nr_pages;
2781 struct page *page;
2783 page = virt_to_page(addr);
2785 nr_pages = 1;
2786 if (likely(!PageCompound(page)))
2787 nr_pages <<= cache->gfporder;
2789 do {
2790 page_set_cache(page, cache);
2791 page_set_slab(page, slab);
2792 page++;
2793 } while (--nr_pages);
2797 * Grow (by 1) the number of slabs within a cache. This is called by
2798 * kmem_cache_alloc() when there are no active objs left in a cache.
2800 static int cache_grow(struct kmem_cache *cachep,
2801 gfp_t flags, int nodeid, void *objp)
2803 struct slab *slabp;
2804 size_t offset;
2805 gfp_t local_flags;
2806 struct kmem_list3 *l3;
2809 * Be lazy and only check for valid flags here, keeping it out of the
2810 * critical path in kmem_cache_alloc().
2812 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2813 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2815 /* Take the l3 list lock to change the colour_next on this node */
2816 check_irq_off();
2817 l3 = cachep->nodelists[nodeid];
2818 spin_lock(&l3->list_lock);
2820 /* Get colour for the slab, and cal the next value. */
2821 offset = l3->colour_next;
2822 l3->colour_next++;
2823 if (l3->colour_next >= cachep->colour)
2824 l3->colour_next = 0;
2825 spin_unlock(&l3->list_lock);
2827 offset *= cachep->colour_off;
2829 if (local_flags & __GFP_WAIT)
2830 local_irq_enable();
2833 * The test for missing atomic flag is performed here, rather than
2834 * the more obvious place, simply to reduce the critical path length
2835 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2836 * will eventually be caught here (where it matters).
2838 kmem_flagcheck(cachep, flags);
2841 * Get mem for the objs. Attempt to allocate a physical page from
2842 * 'nodeid'.
2844 if (!objp)
2845 objp = kmem_getpages(cachep, local_flags, nodeid);
2846 if (!objp)
2847 goto failed;
2849 /* Get slab management. */
2850 slabp = alloc_slabmgmt(cachep, objp, offset,
2851 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2852 if (!slabp)
2853 goto opps1;
2855 slab_map_pages(cachep, slabp, objp);
2857 cache_init_objs(cachep, slabp);
2859 if (local_flags & __GFP_WAIT)
2860 local_irq_disable();
2861 check_irq_off();
2862 spin_lock(&l3->list_lock);
2864 /* Make slab active. */
2865 list_add_tail(&slabp->list, &(l3->slabs_free));
2866 STATS_INC_GROWN(cachep);
2867 l3->free_objects += cachep->num;
2868 spin_unlock(&l3->list_lock);
2869 return 1;
2870 opps1:
2871 kmem_freepages(cachep, objp);
2872 failed:
2873 if (local_flags & __GFP_WAIT)
2874 local_irq_disable();
2875 return 0;
2878 #if DEBUG
2881 * Perform extra freeing checks:
2882 * - detect bad pointers.
2883 * - POISON/RED_ZONE checking
2885 static void kfree_debugcheck(const void *objp)
2887 if (!virt_addr_valid(objp)) {
2888 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2889 (unsigned long)objp);
2890 BUG();
2894 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2896 unsigned long long redzone1, redzone2;
2898 redzone1 = *dbg_redzone1(cache, obj);
2899 redzone2 = *dbg_redzone2(cache, obj);
2902 * Redzone is ok.
2904 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2905 return;
2907 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2908 slab_error(cache, "double free detected");
2909 else
2910 slab_error(cache, "memory outside object was overwritten");
2912 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2913 obj, redzone1, redzone2);
2916 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2917 void *caller)
2919 struct page *page;
2920 unsigned int objnr;
2921 struct slab *slabp;
2923 BUG_ON(virt_to_cache(objp) != cachep);
2925 objp -= obj_offset(cachep);
2926 kfree_debugcheck(objp);
2927 page = virt_to_head_page(objp);
2929 slabp = page_get_slab(page);
2931 if (cachep->flags & SLAB_RED_ZONE) {
2932 verify_redzone_free(cachep, objp);
2933 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2934 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2936 if (cachep->flags & SLAB_STORE_USER)
2937 *dbg_userword(cachep, objp) = caller;
2939 objnr = obj_to_index(cachep, slabp, objp);
2941 BUG_ON(objnr >= cachep->num);
2942 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2944 #ifdef CONFIG_DEBUG_SLAB_LEAK
2945 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2946 #endif
2947 if (cachep->flags & SLAB_POISON) {
2948 #ifdef CONFIG_DEBUG_PAGEALLOC
2949 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2950 store_stackinfo(cachep, objp, (unsigned long)caller);
2951 kernel_map_pages(virt_to_page(objp),
2952 cachep->buffer_size / PAGE_SIZE, 0);
2953 } else {
2954 poison_obj(cachep, objp, POISON_FREE);
2956 #else
2957 poison_obj(cachep, objp, POISON_FREE);
2958 #endif
2960 return objp;
2963 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2965 kmem_bufctl_t i;
2966 int entries = 0;
2968 /* Check slab's freelist to see if this obj is there. */
2969 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2970 entries++;
2971 if (entries > cachep->num || i >= cachep->num)
2972 goto bad;
2974 if (entries != cachep->num - slabp->inuse) {
2975 bad:
2976 printk(KERN_ERR "slab: Internal list corruption detected in "
2977 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2978 cachep->name, cachep->num, slabp, slabp->inuse);
2979 for (i = 0;
2980 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2981 i++) {
2982 if (i % 16 == 0)
2983 printk("\n%03x:", i);
2984 printk(" %02x", ((unsigned char *)slabp)[i]);
2986 printk("\n");
2987 BUG();
2990 #else
2991 #define kfree_debugcheck(x) do { } while(0)
2992 #define cache_free_debugcheck(x,objp,z) (objp)
2993 #define check_slabp(x,y) do { } while(0)
2994 #endif
2996 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2998 int batchcount;
2999 struct kmem_list3 *l3;
3000 struct array_cache *ac;
3001 int node;
3003 retry:
3004 check_irq_off();
3005 node = numa_node_id();
3006 ac = cpu_cache_get(cachep);
3007 batchcount = ac->batchcount;
3008 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3010 * If there was little recent activity on this cache, then
3011 * perform only a partial refill. Otherwise we could generate
3012 * refill bouncing.
3014 batchcount = BATCHREFILL_LIMIT;
3016 l3 = cachep->nodelists[node];
3018 BUG_ON(ac->avail > 0 || !l3);
3019 spin_lock(&l3->list_lock);
3021 /* See if we can refill from the shared array */
3022 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
3023 goto alloc_done;
3025 while (batchcount > 0) {
3026 struct list_head *entry;
3027 struct slab *slabp;
3028 /* Get slab alloc is to come from. */
3029 entry = l3->slabs_partial.next;
3030 if (entry == &l3->slabs_partial) {
3031 l3->free_touched = 1;
3032 entry = l3->slabs_free.next;
3033 if (entry == &l3->slabs_free)
3034 goto must_grow;
3037 slabp = list_entry(entry, struct slab, list);
3038 check_slabp(cachep, slabp);
3039 check_spinlock_acquired(cachep);
3042 * The slab was either on partial or free list so
3043 * there must be at least one object available for
3044 * allocation.
3046 BUG_ON(slabp->inuse >= cachep->num);
3048 while (slabp->inuse < cachep->num && batchcount--) {
3049 STATS_INC_ALLOCED(cachep);
3050 STATS_INC_ACTIVE(cachep);
3051 STATS_SET_HIGH(cachep);
3053 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3054 node);
3056 check_slabp(cachep, slabp);
3058 /* move slabp to correct slabp list: */
3059 list_del(&slabp->list);
3060 if (slabp->free == BUFCTL_END)
3061 list_add(&slabp->list, &l3->slabs_full);
3062 else
3063 list_add(&slabp->list, &l3->slabs_partial);
3066 must_grow:
3067 l3->free_objects -= ac->avail;
3068 alloc_done:
3069 spin_unlock(&l3->list_lock);
3071 if (unlikely(!ac->avail)) {
3072 int x;
3073 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3075 /* cache_grow can reenable interrupts, then ac could change. */
3076 ac = cpu_cache_get(cachep);
3077 if (!x && ac->avail == 0) /* no objects in sight? abort */
3078 return NULL;
3080 if (!ac->avail) /* objects refilled by interrupt? */
3081 goto retry;
3083 ac->touched = 1;
3084 return ac->entry[--ac->avail];
3087 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3088 gfp_t flags)
3090 might_sleep_if(flags & __GFP_WAIT);
3091 #if DEBUG
3092 kmem_flagcheck(cachep, flags);
3093 #endif
3096 #if DEBUG
3097 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3098 gfp_t flags, void *objp, void *caller)
3100 if (!objp)
3101 return objp;
3102 if (cachep->flags & SLAB_POISON) {
3103 #ifdef CONFIG_DEBUG_PAGEALLOC
3104 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3105 kernel_map_pages(virt_to_page(objp),
3106 cachep->buffer_size / PAGE_SIZE, 1);
3107 else
3108 check_poison_obj(cachep, objp);
3109 #else
3110 check_poison_obj(cachep, objp);
3111 #endif
3112 poison_obj(cachep, objp, POISON_INUSE);
3114 if (cachep->flags & SLAB_STORE_USER)
3115 *dbg_userword(cachep, objp) = caller;
3117 if (cachep->flags & SLAB_RED_ZONE) {
3118 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3119 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3120 slab_error(cachep, "double free, or memory outside"
3121 " object was overwritten");
3122 printk(KERN_ERR
3123 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3124 objp, *dbg_redzone1(cachep, objp),
3125 *dbg_redzone2(cachep, objp));
3127 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3128 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3130 #ifdef CONFIG_DEBUG_SLAB_LEAK
3132 struct slab *slabp;
3133 unsigned objnr;
3135 slabp = page_get_slab(virt_to_head_page(objp));
3136 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3137 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3139 #endif
3140 objp += obj_offset(cachep);
3141 if (cachep->ctor && cachep->flags & SLAB_POISON)
3142 cachep->ctor(objp);
3143 #if ARCH_SLAB_MINALIGN
3144 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3145 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3146 objp, ARCH_SLAB_MINALIGN);
3148 #endif
3149 return objp;
3151 #else
3152 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3153 #endif
3155 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3157 if (cachep == &cache_cache)
3158 return false;
3160 return should_failslab(obj_size(cachep), flags);
3163 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3165 void *objp;
3166 struct array_cache *ac;
3168 check_irq_off();
3170 ac = cpu_cache_get(cachep);
3171 if (likely(ac->avail)) {
3172 STATS_INC_ALLOCHIT(cachep);
3173 ac->touched = 1;
3174 objp = ac->entry[--ac->avail];
3175 } else {
3176 STATS_INC_ALLOCMISS(cachep);
3177 objp = cache_alloc_refill(cachep, flags);
3180 * To avoid a false negative, if an object that is in one of the
3181 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3182 * treat the array pointers as a reference to the object.
3184 kmemleak_erase(&ac->entry[ac->avail]);
3185 return objp;
3188 #ifdef CONFIG_NUMA
3190 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3192 * If we are in_interrupt, then process context, including cpusets and
3193 * mempolicy, may not apply and should not be used for allocation policy.
3195 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3197 int nid_alloc, nid_here;
3199 if (in_interrupt() || (flags & __GFP_THISNODE))
3200 return NULL;
3201 nid_alloc = nid_here = numa_node_id();
3202 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3203 nid_alloc = cpuset_mem_spread_node();
3204 else if (current->mempolicy)
3205 nid_alloc = slab_node(current->mempolicy);
3206 if (nid_alloc != nid_here)
3207 return ____cache_alloc_node(cachep, flags, nid_alloc);
3208 return NULL;
3212 * Fallback function if there was no memory available and no objects on a
3213 * certain node and fall back is permitted. First we scan all the
3214 * available nodelists for available objects. If that fails then we
3215 * perform an allocation without specifying a node. This allows the page
3216 * allocator to do its reclaim / fallback magic. We then insert the
3217 * slab into the proper nodelist and then allocate from it.
3219 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3221 struct zonelist *zonelist;
3222 gfp_t local_flags;
3223 struct zoneref *z;
3224 struct zone *zone;
3225 enum zone_type high_zoneidx = gfp_zone(flags);
3226 void *obj = NULL;
3227 int nid;
3229 if (flags & __GFP_THISNODE)
3230 return NULL;
3232 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3233 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3235 retry:
3237 * Look through allowed nodes for objects available
3238 * from existing per node queues.
3240 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3241 nid = zone_to_nid(zone);
3243 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3244 cache->nodelists[nid] &&
3245 cache->nodelists[nid]->free_objects) {
3246 obj = ____cache_alloc_node(cache,
3247 flags | GFP_THISNODE, nid);
3248 if (obj)
3249 break;
3253 if (!obj) {
3255 * This allocation will be performed within the constraints
3256 * of the current cpuset / memory policy requirements.
3257 * We may trigger various forms of reclaim on the allowed
3258 * set and go into memory reserves if necessary.
3260 if (local_flags & __GFP_WAIT)
3261 local_irq_enable();
3262 kmem_flagcheck(cache, flags);
3263 obj = kmem_getpages(cache, local_flags, -1);
3264 if (local_flags & __GFP_WAIT)
3265 local_irq_disable();
3266 if (obj) {
3268 * Insert into the appropriate per node queues
3270 nid = page_to_nid(virt_to_page(obj));
3271 if (cache_grow(cache, flags, nid, obj)) {
3272 obj = ____cache_alloc_node(cache,
3273 flags | GFP_THISNODE, nid);
3274 if (!obj)
3276 * Another processor may allocate the
3277 * objects in the slab since we are
3278 * not holding any locks.
3280 goto retry;
3281 } else {
3282 /* cache_grow already freed obj */
3283 obj = NULL;
3287 return obj;
3291 * A interface to enable slab creation on nodeid
3293 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3294 int nodeid)
3296 struct list_head *entry;
3297 struct slab *slabp;
3298 struct kmem_list3 *l3;
3299 void *obj;
3300 int x;
3302 l3 = cachep->nodelists[nodeid];
3303 BUG_ON(!l3);
3305 retry:
3306 check_irq_off();
3307 spin_lock(&l3->list_lock);
3308 entry = l3->slabs_partial.next;
3309 if (entry == &l3->slabs_partial) {
3310 l3->free_touched = 1;
3311 entry = l3->slabs_free.next;
3312 if (entry == &l3->slabs_free)
3313 goto must_grow;
3316 slabp = list_entry(entry, struct slab, list);
3317 check_spinlock_acquired_node(cachep, nodeid);
3318 check_slabp(cachep, slabp);
3320 STATS_INC_NODEALLOCS(cachep);
3321 STATS_INC_ACTIVE(cachep);
3322 STATS_SET_HIGH(cachep);
3324 BUG_ON(slabp->inuse == cachep->num);
3326 obj = slab_get_obj(cachep, slabp, nodeid);
3327 check_slabp(cachep, slabp);
3328 l3->free_objects--;
3329 /* move slabp to correct slabp list: */
3330 list_del(&slabp->list);
3332 if (slabp->free == BUFCTL_END)
3333 list_add(&slabp->list, &l3->slabs_full);
3334 else
3335 list_add(&slabp->list, &l3->slabs_partial);
3337 spin_unlock(&l3->list_lock);
3338 goto done;
3340 must_grow:
3341 spin_unlock(&l3->list_lock);
3342 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3343 if (x)
3344 goto retry;
3346 return fallback_alloc(cachep, flags);
3348 done:
3349 return obj;
3353 * kmem_cache_alloc_node - Allocate an object on the specified node
3354 * @cachep: The cache to allocate from.
3355 * @flags: See kmalloc().
3356 * @nodeid: node number of the target node.
3357 * @caller: return address of caller, used for debug information
3359 * Identical to kmem_cache_alloc but it will allocate memory on the given
3360 * node, which can improve the performance for cpu bound structures.
3362 * Fallback to other node is possible if __GFP_THISNODE is not set.
3364 static __always_inline void *
3365 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3366 void *caller)
3368 unsigned long save_flags;
3369 void *ptr;
3371 flags &= slab_gfp_mask;
3373 lockdep_trace_alloc(flags);
3375 if (slab_should_failslab(cachep, flags))
3376 return NULL;
3378 cache_alloc_debugcheck_before(cachep, flags);
3379 local_irq_save(save_flags);
3381 if (unlikely(nodeid == -1))
3382 nodeid = numa_node_id();
3384 if (unlikely(!cachep->nodelists[nodeid])) {
3385 /* Node not bootstrapped yet */
3386 ptr = fallback_alloc(cachep, flags);
3387 goto out;
3390 if (nodeid == numa_node_id()) {
3392 * Use the locally cached objects if possible.
3393 * However ____cache_alloc does not allow fallback
3394 * to other nodes. It may fail while we still have
3395 * objects on other nodes available.
3397 ptr = ____cache_alloc(cachep, flags);
3398 if (ptr)
3399 goto out;
3401 /* ___cache_alloc_node can fall back to other nodes */
3402 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3403 out:
3404 local_irq_restore(save_flags);
3405 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3406 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3407 flags);
3409 if (unlikely((flags & __GFP_ZERO) && ptr))
3410 memset(ptr, 0, obj_size(cachep));
3412 return ptr;
3415 static __always_inline void *
3416 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3418 void *objp;
3420 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3421 objp = alternate_node_alloc(cache, flags);
3422 if (objp)
3423 goto out;
3425 objp = ____cache_alloc(cache, flags);
3428 * We may just have run out of memory on the local node.
3429 * ____cache_alloc_node() knows how to locate memory on other nodes
3431 if (!objp)
3432 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3434 out:
3435 return objp;
3437 #else
3439 static __always_inline void *
3440 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3442 return ____cache_alloc(cachep, flags);
3445 #endif /* CONFIG_NUMA */
3447 static __always_inline void *
3448 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3450 unsigned long save_flags;
3451 void *objp;
3453 flags &= slab_gfp_mask;
3455 lockdep_trace_alloc(flags);
3457 if (slab_should_failslab(cachep, flags))
3458 return NULL;
3460 cache_alloc_debugcheck_before(cachep, flags);
3461 local_irq_save(save_flags);
3462 objp = __do_cache_alloc(cachep, flags);
3463 local_irq_restore(save_flags);
3464 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3465 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3466 flags);
3467 prefetchw(objp);
3469 if (unlikely((flags & __GFP_ZERO) && objp))
3470 memset(objp, 0, obj_size(cachep));
3472 return objp;
3476 * Caller needs to acquire correct kmem_list's list_lock
3478 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3479 int node)
3481 int i;
3482 struct kmem_list3 *l3;
3484 for (i = 0; i < nr_objects; i++) {
3485 void *objp = objpp[i];
3486 struct slab *slabp;
3488 slabp = virt_to_slab(objp);
3489 l3 = cachep->nodelists[node];
3490 list_del(&slabp->list);
3491 check_spinlock_acquired_node(cachep, node);
3492 check_slabp(cachep, slabp);
3493 slab_put_obj(cachep, slabp, objp, node);
3494 STATS_DEC_ACTIVE(cachep);
3495 l3->free_objects++;
3496 check_slabp(cachep, slabp);
3498 /* fixup slab chains */
3499 if (slabp->inuse == 0) {
3500 if (l3->free_objects > l3->free_limit) {
3501 l3->free_objects -= cachep->num;
3502 /* No need to drop any previously held
3503 * lock here, even if we have a off-slab slab
3504 * descriptor it is guaranteed to come from
3505 * a different cache, refer to comments before
3506 * alloc_slabmgmt.
3508 slab_destroy(cachep, slabp);
3509 } else {
3510 list_add(&slabp->list, &l3->slabs_free);
3512 } else {
3513 /* Unconditionally move a slab to the end of the
3514 * partial list on free - maximum time for the
3515 * other objects to be freed, too.
3517 list_add_tail(&slabp->list, &l3->slabs_partial);
3522 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3524 int batchcount;
3525 struct kmem_list3 *l3;
3526 int node = numa_node_id();
3528 batchcount = ac->batchcount;
3529 #if DEBUG
3530 BUG_ON(!batchcount || batchcount > ac->avail);
3531 #endif
3532 check_irq_off();
3533 l3 = cachep->nodelists[node];
3534 spin_lock(&l3->list_lock);
3535 if (l3->shared) {
3536 struct array_cache *shared_array = l3->shared;
3537 int max = shared_array->limit - shared_array->avail;
3538 if (max) {
3539 if (batchcount > max)
3540 batchcount = max;
3541 memcpy(&(shared_array->entry[shared_array->avail]),
3542 ac->entry, sizeof(void *) * batchcount);
3543 shared_array->avail += batchcount;
3544 goto free_done;
3548 free_block(cachep, ac->entry, batchcount, node);
3549 free_done:
3550 #if STATS
3552 int i = 0;
3553 struct list_head *p;
3555 p = l3->slabs_free.next;
3556 while (p != &(l3->slabs_free)) {
3557 struct slab *slabp;
3559 slabp = list_entry(p, struct slab, list);
3560 BUG_ON(slabp->inuse);
3562 i++;
3563 p = p->next;
3565 STATS_SET_FREEABLE(cachep, i);
3567 #endif
3568 spin_unlock(&l3->list_lock);
3569 ac->avail -= batchcount;
3570 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3574 * Release an obj back to its cache. If the obj has a constructed state, it must
3575 * be in this state _before_ it is released. Called with disabled ints.
3577 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3579 struct array_cache *ac = cpu_cache_get(cachep);
3581 check_irq_off();
3582 kmemleak_free_recursive(objp, cachep->flags);
3583 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3586 * Skip calling cache_free_alien() when the platform is not numa.
3587 * This will avoid cache misses that happen while accessing slabp (which
3588 * is per page memory reference) to get nodeid. Instead use a global
3589 * variable to skip the call, which is mostly likely to be present in
3590 * the cache.
3592 if (numa_platform && cache_free_alien(cachep, objp))
3593 return;
3595 if (likely(ac->avail < ac->limit)) {
3596 STATS_INC_FREEHIT(cachep);
3597 ac->entry[ac->avail++] = objp;
3598 return;
3599 } else {
3600 STATS_INC_FREEMISS(cachep);
3601 cache_flusharray(cachep, ac);
3602 ac->entry[ac->avail++] = objp;
3607 * kmem_cache_alloc - Allocate an object
3608 * @cachep: The cache to allocate from.
3609 * @flags: See kmalloc().
3611 * Allocate an object from this cache. The flags are only relevant
3612 * if the cache has no available objects.
3614 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3616 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3618 trace_kmem_cache_alloc(_RET_IP_, ret,
3619 obj_size(cachep), cachep->buffer_size, flags);
3621 return ret;
3623 EXPORT_SYMBOL(kmem_cache_alloc);
3625 #ifdef CONFIG_KMEMTRACE
3626 void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3628 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3630 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3631 #endif
3634 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3635 * @cachep: the cache we're checking against
3636 * @ptr: pointer to validate
3638 * This verifies that the untrusted pointer looks sane;
3639 * it is _not_ a guarantee that the pointer is actually
3640 * part of the slab cache in question, but it at least
3641 * validates that the pointer can be dereferenced and
3642 * looks half-way sane.
3644 * Currently only used for dentry validation.
3646 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3648 unsigned long addr = (unsigned long)ptr;
3649 unsigned long min_addr = PAGE_OFFSET;
3650 unsigned long align_mask = BYTES_PER_WORD - 1;
3651 unsigned long size = cachep->buffer_size;
3652 struct page *page;
3654 if (unlikely(addr < min_addr))
3655 goto out;
3656 if (unlikely(addr > (unsigned long)high_memory - size))
3657 goto out;
3658 if (unlikely(addr & align_mask))
3659 goto out;
3660 if (unlikely(!kern_addr_valid(addr)))
3661 goto out;
3662 if (unlikely(!kern_addr_valid(addr + size - 1)))
3663 goto out;
3664 page = virt_to_page(ptr);
3665 if (unlikely(!PageSlab(page)))
3666 goto out;
3667 if (unlikely(page_get_cache(page) != cachep))
3668 goto out;
3669 return 1;
3670 out:
3671 return 0;
3674 #ifdef CONFIG_NUMA
3675 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3677 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3678 __builtin_return_address(0));
3680 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3681 obj_size(cachep), cachep->buffer_size,
3682 flags, nodeid);
3684 return ret;
3686 EXPORT_SYMBOL(kmem_cache_alloc_node);
3688 #ifdef CONFIG_KMEMTRACE
3689 void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3690 gfp_t flags,
3691 int nodeid)
3693 return __cache_alloc_node(cachep, flags, nodeid,
3694 __builtin_return_address(0));
3696 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3697 #endif
3699 static __always_inline void *
3700 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3702 struct kmem_cache *cachep;
3703 void *ret;
3705 cachep = kmem_find_general_cachep(size, flags);
3706 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3707 return cachep;
3708 ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3710 trace_kmalloc_node((unsigned long) caller, ret,
3711 size, cachep->buffer_size, flags, node);
3713 return ret;
3716 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3717 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3719 return __do_kmalloc_node(size, flags, node,
3720 __builtin_return_address(0));
3722 EXPORT_SYMBOL(__kmalloc_node);
3724 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3725 int node, unsigned long caller)
3727 return __do_kmalloc_node(size, flags, node, (void *)caller);
3729 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3730 #else
3731 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3733 return __do_kmalloc_node(size, flags, node, NULL);
3735 EXPORT_SYMBOL(__kmalloc_node);
3736 #endif /* CONFIG_DEBUG_SLAB */
3737 #endif /* CONFIG_NUMA */
3740 * __do_kmalloc - allocate memory
3741 * @size: how many bytes of memory are required.
3742 * @flags: the type of memory to allocate (see kmalloc).
3743 * @caller: function caller for debug tracking of the caller
3745 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3746 void *caller)
3748 struct kmem_cache *cachep;
3749 void *ret;
3751 /* If you want to save a few bytes .text space: replace
3752 * __ with kmem_.
3753 * Then kmalloc uses the uninlined functions instead of the inline
3754 * functions.
3756 cachep = __find_general_cachep(size, flags);
3757 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3758 return cachep;
3759 ret = __cache_alloc(cachep, flags, caller);
3761 trace_kmalloc((unsigned long) caller, ret,
3762 size, cachep->buffer_size, flags);
3764 return ret;
3768 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3769 void *__kmalloc(size_t size, gfp_t flags)
3771 return __do_kmalloc(size, flags, __builtin_return_address(0));
3773 EXPORT_SYMBOL(__kmalloc);
3775 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3777 return __do_kmalloc(size, flags, (void *)caller);
3779 EXPORT_SYMBOL(__kmalloc_track_caller);
3781 #else
3782 void *__kmalloc(size_t size, gfp_t flags)
3784 return __do_kmalloc(size, flags, NULL);
3786 EXPORT_SYMBOL(__kmalloc);
3787 #endif
3790 * kmem_cache_free - Deallocate an object
3791 * @cachep: The cache the allocation was from.
3792 * @objp: The previously allocated object.
3794 * Free an object which was previously allocated from this
3795 * cache.
3797 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3799 unsigned long flags;
3801 local_irq_save(flags);
3802 debug_check_no_locks_freed(objp, obj_size(cachep));
3803 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3804 debug_check_no_obj_freed(objp, obj_size(cachep));
3805 __cache_free(cachep, objp);
3806 local_irq_restore(flags);
3808 trace_kmem_cache_free(_RET_IP_, objp);
3810 EXPORT_SYMBOL(kmem_cache_free);
3813 * kfree - free previously allocated memory
3814 * @objp: pointer returned by kmalloc.
3816 * If @objp is NULL, no operation is performed.
3818 * Don't free memory not originally allocated by kmalloc()
3819 * or you will run into trouble.
3821 void kfree(const void *objp)
3823 struct kmem_cache *c;
3824 unsigned long flags;
3826 trace_kfree(_RET_IP_, objp);
3828 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3829 return;
3830 local_irq_save(flags);
3831 kfree_debugcheck(objp);
3832 c = virt_to_cache(objp);
3833 debug_check_no_locks_freed(objp, obj_size(c));
3834 debug_check_no_obj_freed(objp, obj_size(c));
3835 __cache_free(c, (void *)objp);
3836 local_irq_restore(flags);
3838 EXPORT_SYMBOL(kfree);
3840 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3842 return obj_size(cachep);
3844 EXPORT_SYMBOL(kmem_cache_size);
3846 const char *kmem_cache_name(struct kmem_cache *cachep)
3848 return cachep->name;
3850 EXPORT_SYMBOL_GPL(kmem_cache_name);
3853 * This initializes kmem_list3 or resizes various caches for all nodes.
3855 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3857 int node;
3858 struct kmem_list3 *l3;
3859 struct array_cache *new_shared;
3860 struct array_cache **new_alien = NULL;
3862 for_each_online_node(node) {
3864 if (use_alien_caches) {
3865 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3866 if (!new_alien)
3867 goto fail;
3870 new_shared = NULL;
3871 if (cachep->shared) {
3872 new_shared = alloc_arraycache(node,
3873 cachep->shared*cachep->batchcount,
3874 0xbaadf00d, gfp);
3875 if (!new_shared) {
3876 free_alien_cache(new_alien);
3877 goto fail;
3881 l3 = cachep->nodelists[node];
3882 if (l3) {
3883 struct array_cache *shared = l3->shared;
3885 spin_lock_irq(&l3->list_lock);
3887 if (shared)
3888 free_block(cachep, shared->entry,
3889 shared->avail, node);
3891 l3->shared = new_shared;
3892 if (!l3->alien) {
3893 l3->alien = new_alien;
3894 new_alien = NULL;
3896 l3->free_limit = (1 + nr_cpus_node(node)) *
3897 cachep->batchcount + cachep->num;
3898 spin_unlock_irq(&l3->list_lock);
3899 kfree(shared);
3900 free_alien_cache(new_alien);
3901 continue;
3903 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3904 if (!l3) {
3905 free_alien_cache(new_alien);
3906 kfree(new_shared);
3907 goto fail;
3910 kmem_list3_init(l3);
3911 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3912 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3913 l3->shared = new_shared;
3914 l3->alien = new_alien;
3915 l3->free_limit = (1 + nr_cpus_node(node)) *
3916 cachep->batchcount + cachep->num;
3917 cachep->nodelists[node] = l3;
3919 return 0;
3921 fail:
3922 if (!cachep->next.next) {
3923 /* Cache is not active yet. Roll back what we did */
3924 node--;
3925 while (node >= 0) {
3926 if (cachep->nodelists[node]) {
3927 l3 = cachep->nodelists[node];
3929 kfree(l3->shared);
3930 free_alien_cache(l3->alien);
3931 kfree(l3);
3932 cachep->nodelists[node] = NULL;
3934 node--;
3937 return -ENOMEM;
3940 struct ccupdate_struct {
3941 struct kmem_cache *cachep;
3942 struct array_cache *new[NR_CPUS];
3945 static void do_ccupdate_local(void *info)
3947 struct ccupdate_struct *new = info;
3948 struct array_cache *old;
3950 check_irq_off();
3951 old = cpu_cache_get(new->cachep);
3953 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3954 new->new[smp_processor_id()] = old;
3957 /* Always called with the cache_chain_mutex held */
3958 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3959 int batchcount, int shared, gfp_t gfp)
3961 struct ccupdate_struct *new;
3962 int i;
3964 new = kzalloc(sizeof(*new), gfp);
3965 if (!new)
3966 return -ENOMEM;
3968 for_each_online_cpu(i) {
3969 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3970 batchcount, gfp);
3971 if (!new->new[i]) {
3972 for (i--; i >= 0; i--)
3973 kfree(new->new[i]);
3974 kfree(new);
3975 return -ENOMEM;
3978 new->cachep = cachep;
3980 on_each_cpu(do_ccupdate_local, (void *)new, 1);
3982 check_irq_on();
3983 cachep->batchcount = batchcount;
3984 cachep->limit = limit;
3985 cachep->shared = shared;
3987 for_each_online_cpu(i) {
3988 struct array_cache *ccold = new->new[i];
3989 if (!ccold)
3990 continue;
3991 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3992 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3993 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3994 kfree(ccold);
3996 kfree(new);
3997 return alloc_kmemlist(cachep, gfp);
4000 /* Called with cache_chain_mutex held always */
4001 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4003 int err;
4004 int limit, shared;
4007 * The head array serves three purposes:
4008 * - create a LIFO ordering, i.e. return objects that are cache-warm
4009 * - reduce the number of spinlock operations.
4010 * - reduce the number of linked list operations on the slab and
4011 * bufctl chains: array operations are cheaper.
4012 * The numbers are guessed, we should auto-tune as described by
4013 * Bonwick.
4015 if (cachep->buffer_size > 131072)
4016 limit = 1;
4017 else if (cachep->buffer_size > PAGE_SIZE)
4018 limit = 8;
4019 else if (cachep->buffer_size > 1024)
4020 limit = 24;
4021 else if (cachep->buffer_size > 256)
4022 limit = 54;
4023 else
4024 limit = 120;
4027 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4028 * allocation behaviour: Most allocs on one cpu, most free operations
4029 * on another cpu. For these cases, an efficient object passing between
4030 * cpus is necessary. This is provided by a shared array. The array
4031 * replaces Bonwick's magazine layer.
4032 * On uniprocessor, it's functionally equivalent (but less efficient)
4033 * to a larger limit. Thus disabled by default.
4035 shared = 0;
4036 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4037 shared = 8;
4039 #if DEBUG
4041 * With debugging enabled, large batchcount lead to excessively long
4042 * periods with disabled local interrupts. Limit the batchcount
4044 if (limit > 32)
4045 limit = 32;
4046 #endif
4047 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4048 if (err)
4049 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4050 cachep->name, -err);
4051 return err;
4055 * Drain an array if it contains any elements taking the l3 lock only if
4056 * necessary. Note that the l3 listlock also protects the array_cache
4057 * if drain_array() is used on the shared array.
4059 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4060 struct array_cache *ac, int force, int node)
4062 int tofree;
4064 if (!ac || !ac->avail)
4065 return;
4066 if (ac->touched && !force) {
4067 ac->touched = 0;
4068 } else {
4069 spin_lock_irq(&l3->list_lock);
4070 if (ac->avail) {
4071 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4072 if (tofree > ac->avail)
4073 tofree = (ac->avail + 1) / 2;
4074 free_block(cachep, ac->entry, tofree, node);
4075 ac->avail -= tofree;
4076 memmove(ac->entry, &(ac->entry[tofree]),
4077 sizeof(void *) * ac->avail);
4079 spin_unlock_irq(&l3->list_lock);
4084 * cache_reap - Reclaim memory from caches.
4085 * @w: work descriptor
4087 * Called from workqueue/eventd every few seconds.
4088 * Purpose:
4089 * - clear the per-cpu caches for this CPU.
4090 * - return freeable pages to the main free memory pool.
4092 * If we cannot acquire the cache chain mutex then just give up - we'll try
4093 * again on the next iteration.
4095 static void cache_reap(struct work_struct *w)
4097 struct kmem_cache *searchp;
4098 struct kmem_list3 *l3;
4099 int node = numa_node_id();
4100 struct delayed_work *work = to_delayed_work(w);
4102 if (!mutex_trylock(&cache_chain_mutex))
4103 /* Give up. Setup the next iteration. */
4104 goto out;
4106 list_for_each_entry(searchp, &cache_chain, next) {
4107 check_irq_on();
4110 * We only take the l3 lock if absolutely necessary and we
4111 * have established with reasonable certainty that
4112 * we can do some work if the lock was obtained.
4114 l3 = searchp->nodelists[node];
4116 reap_alien(searchp, l3);
4118 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4121 * These are racy checks but it does not matter
4122 * if we skip one check or scan twice.
4124 if (time_after(l3->next_reap, jiffies))
4125 goto next;
4127 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4129 drain_array(searchp, l3, l3->shared, 0, node);
4131 if (l3->free_touched)
4132 l3->free_touched = 0;
4133 else {
4134 int freed;
4136 freed = drain_freelist(searchp, l3, (l3->free_limit +
4137 5 * searchp->num - 1) / (5 * searchp->num));
4138 STATS_ADD_REAPED(searchp, freed);
4140 next:
4141 cond_resched();
4143 check_irq_on();
4144 mutex_unlock(&cache_chain_mutex);
4145 next_reap_node();
4146 out:
4147 /* Set up the next iteration */
4148 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4151 #ifdef CONFIG_SLABINFO
4153 static void print_slabinfo_header(struct seq_file *m)
4156 * Output format version, so at least we can change it
4157 * without _too_ many complaints.
4159 #if STATS
4160 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4161 #else
4162 seq_puts(m, "slabinfo - version: 2.1\n");
4163 #endif
4164 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4165 "<objperslab> <pagesperslab>");
4166 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4167 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4168 #if STATS
4169 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4170 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4171 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4172 #endif
4173 seq_putc(m, '\n');
4176 static void *s_start(struct seq_file *m, loff_t *pos)
4178 loff_t n = *pos;
4180 mutex_lock(&cache_chain_mutex);
4181 if (!n)
4182 print_slabinfo_header(m);
4184 return seq_list_start(&cache_chain, *pos);
4187 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4189 return seq_list_next(p, &cache_chain, pos);
4192 static void s_stop(struct seq_file *m, void *p)
4194 mutex_unlock(&cache_chain_mutex);
4197 static int s_show(struct seq_file *m, void *p)
4199 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4200 struct slab *slabp;
4201 unsigned long active_objs;
4202 unsigned long num_objs;
4203 unsigned long active_slabs = 0;
4204 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4205 const char *name;
4206 char *error = NULL;
4207 int node;
4208 struct kmem_list3 *l3;
4210 active_objs = 0;
4211 num_slabs = 0;
4212 for_each_online_node(node) {
4213 l3 = cachep->nodelists[node];
4214 if (!l3)
4215 continue;
4217 check_irq_on();
4218 spin_lock_irq(&l3->list_lock);
4220 list_for_each_entry(slabp, &l3->slabs_full, list) {
4221 if (slabp->inuse != cachep->num && !error)
4222 error = "slabs_full accounting error";
4223 active_objs += cachep->num;
4224 active_slabs++;
4226 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4227 if (slabp->inuse == cachep->num && !error)
4228 error = "slabs_partial inuse accounting error";
4229 if (!slabp->inuse && !error)
4230 error = "slabs_partial/inuse accounting error";
4231 active_objs += slabp->inuse;
4232 active_slabs++;
4234 list_for_each_entry(slabp, &l3->slabs_free, list) {
4235 if (slabp->inuse && !error)
4236 error = "slabs_free/inuse accounting error";
4237 num_slabs++;
4239 free_objects += l3->free_objects;
4240 if (l3->shared)
4241 shared_avail += l3->shared->avail;
4243 spin_unlock_irq(&l3->list_lock);
4245 num_slabs += active_slabs;
4246 num_objs = num_slabs * cachep->num;
4247 if (num_objs - active_objs != free_objects && !error)
4248 error = "free_objects accounting error";
4250 name = cachep->name;
4251 if (error)
4252 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4254 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4255 name, active_objs, num_objs, cachep->buffer_size,
4256 cachep->num, (1 << cachep->gfporder));
4257 seq_printf(m, " : tunables %4u %4u %4u",
4258 cachep->limit, cachep->batchcount, cachep->shared);
4259 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4260 active_slabs, num_slabs, shared_avail);
4261 #if STATS
4262 { /* list3 stats */
4263 unsigned long high = cachep->high_mark;
4264 unsigned long allocs = cachep->num_allocations;
4265 unsigned long grown = cachep->grown;
4266 unsigned long reaped = cachep->reaped;
4267 unsigned long errors = cachep->errors;
4268 unsigned long max_freeable = cachep->max_freeable;
4269 unsigned long node_allocs = cachep->node_allocs;
4270 unsigned long node_frees = cachep->node_frees;
4271 unsigned long overflows = cachep->node_overflow;
4273 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4274 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4275 reaped, errors, max_freeable, node_allocs,
4276 node_frees, overflows);
4278 /* cpu stats */
4280 unsigned long allochit = atomic_read(&cachep->allochit);
4281 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4282 unsigned long freehit = atomic_read(&cachep->freehit);
4283 unsigned long freemiss = atomic_read(&cachep->freemiss);
4285 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4286 allochit, allocmiss, freehit, freemiss);
4288 #endif
4289 seq_putc(m, '\n');
4290 return 0;
4294 * slabinfo_op - iterator that generates /proc/slabinfo
4296 * Output layout:
4297 * cache-name
4298 * num-active-objs
4299 * total-objs
4300 * object size
4301 * num-active-slabs
4302 * total-slabs
4303 * num-pages-per-slab
4304 * + further values on SMP and with statistics enabled
4307 static const struct seq_operations slabinfo_op = {
4308 .start = s_start,
4309 .next = s_next,
4310 .stop = s_stop,
4311 .show = s_show,
4314 #define MAX_SLABINFO_WRITE 128
4316 * slabinfo_write - Tuning for the slab allocator
4317 * @file: unused
4318 * @buffer: user buffer
4319 * @count: data length
4320 * @ppos: unused
4322 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4323 size_t count, loff_t *ppos)
4325 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4326 int limit, batchcount, shared, res;
4327 struct kmem_cache *cachep;
4329 if (count > MAX_SLABINFO_WRITE)
4330 return -EINVAL;
4331 if (copy_from_user(&kbuf, buffer, count))
4332 return -EFAULT;
4333 kbuf[MAX_SLABINFO_WRITE] = '\0';
4335 tmp = strchr(kbuf, ' ');
4336 if (!tmp)
4337 return -EINVAL;
4338 *tmp = '\0';
4339 tmp++;
4340 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4341 return -EINVAL;
4343 /* Find the cache in the chain of caches. */
4344 mutex_lock(&cache_chain_mutex);
4345 res = -EINVAL;
4346 list_for_each_entry(cachep, &cache_chain, next) {
4347 if (!strcmp(cachep->name, kbuf)) {
4348 if (limit < 1 || batchcount < 1 ||
4349 batchcount > limit || shared < 0) {
4350 res = 0;
4351 } else {
4352 res = do_tune_cpucache(cachep, limit,
4353 batchcount, shared,
4354 GFP_KERNEL);
4356 break;
4359 mutex_unlock(&cache_chain_mutex);
4360 if (res >= 0)
4361 res = count;
4362 return res;
4365 static int slabinfo_open(struct inode *inode, struct file *file)
4367 return seq_open(file, &slabinfo_op);
4370 static const struct file_operations proc_slabinfo_operations = {
4371 .open = slabinfo_open,
4372 .read = seq_read,
4373 .write = slabinfo_write,
4374 .llseek = seq_lseek,
4375 .release = seq_release,
4378 #ifdef CONFIG_DEBUG_SLAB_LEAK
4380 static void *leaks_start(struct seq_file *m, loff_t *pos)
4382 mutex_lock(&cache_chain_mutex);
4383 return seq_list_start(&cache_chain, *pos);
4386 static inline int add_caller(unsigned long *n, unsigned long v)
4388 unsigned long *p;
4389 int l;
4390 if (!v)
4391 return 1;
4392 l = n[1];
4393 p = n + 2;
4394 while (l) {
4395 int i = l/2;
4396 unsigned long *q = p + 2 * i;
4397 if (*q == v) {
4398 q[1]++;
4399 return 1;
4401 if (*q > v) {
4402 l = i;
4403 } else {
4404 p = q + 2;
4405 l -= i + 1;
4408 if (++n[1] == n[0])
4409 return 0;
4410 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4411 p[0] = v;
4412 p[1] = 1;
4413 return 1;
4416 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4418 void *p;
4419 int i;
4420 if (n[0] == n[1])
4421 return;
4422 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4423 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4424 continue;
4425 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4426 return;
4430 static void show_symbol(struct seq_file *m, unsigned long address)
4432 #ifdef CONFIG_KALLSYMS
4433 unsigned long offset, size;
4434 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4436 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4437 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4438 if (modname[0])
4439 seq_printf(m, " [%s]", modname);
4440 return;
4442 #endif
4443 seq_printf(m, "%p", (void *)address);
4446 static int leaks_show(struct seq_file *m, void *p)
4448 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4449 struct slab *slabp;
4450 struct kmem_list3 *l3;
4451 const char *name;
4452 unsigned long *n = m->private;
4453 int node;
4454 int i;
4456 if (!(cachep->flags & SLAB_STORE_USER))
4457 return 0;
4458 if (!(cachep->flags & SLAB_RED_ZONE))
4459 return 0;
4461 /* OK, we can do it */
4463 n[1] = 0;
4465 for_each_online_node(node) {
4466 l3 = cachep->nodelists[node];
4467 if (!l3)
4468 continue;
4470 check_irq_on();
4471 spin_lock_irq(&l3->list_lock);
4473 list_for_each_entry(slabp, &l3->slabs_full, list)
4474 handle_slab(n, cachep, slabp);
4475 list_for_each_entry(slabp, &l3->slabs_partial, list)
4476 handle_slab(n, cachep, slabp);
4477 spin_unlock_irq(&l3->list_lock);
4479 name = cachep->name;
4480 if (n[0] == n[1]) {
4481 /* Increase the buffer size */
4482 mutex_unlock(&cache_chain_mutex);
4483 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4484 if (!m->private) {
4485 /* Too bad, we are really out */
4486 m->private = n;
4487 mutex_lock(&cache_chain_mutex);
4488 return -ENOMEM;
4490 *(unsigned long *)m->private = n[0] * 2;
4491 kfree(n);
4492 mutex_lock(&cache_chain_mutex);
4493 /* Now make sure this entry will be retried */
4494 m->count = m->size;
4495 return 0;
4497 for (i = 0; i < n[1]; i++) {
4498 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4499 show_symbol(m, n[2*i+2]);
4500 seq_putc(m, '\n');
4503 return 0;
4506 static const struct seq_operations slabstats_op = {
4507 .start = leaks_start,
4508 .next = s_next,
4509 .stop = s_stop,
4510 .show = leaks_show,
4513 static int slabstats_open(struct inode *inode, struct file *file)
4515 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4516 int ret = -ENOMEM;
4517 if (n) {
4518 ret = seq_open(file, &slabstats_op);
4519 if (!ret) {
4520 struct seq_file *m = file->private_data;
4521 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4522 m->private = n;
4523 n = NULL;
4525 kfree(n);
4527 return ret;
4530 static const struct file_operations proc_slabstats_operations = {
4531 .open = slabstats_open,
4532 .read = seq_read,
4533 .llseek = seq_lseek,
4534 .release = seq_release_private,
4536 #endif
4538 static int __init slab_proc_init(void)
4540 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4541 #ifdef CONFIG_DEBUG_SLAB_LEAK
4542 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4543 #endif
4544 return 0;
4546 module_init(slab_proc_init);
4547 #endif
4550 * ksize - get the actual amount of memory allocated for a given object
4551 * @objp: Pointer to the object
4553 * kmalloc may internally round up allocations and return more memory
4554 * than requested. ksize() can be used to determine the actual amount of
4555 * memory allocated. The caller may use this additional memory, even though
4556 * a smaller amount of memory was initially specified with the kmalloc call.
4557 * The caller must guarantee that objp points to a valid object previously
4558 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4559 * must not be freed during the duration of the call.
4561 size_t ksize(const void *objp)
4563 BUG_ON(!objp);
4564 if (unlikely(objp == ZERO_SIZE_PTR))
4565 return 0;
4567 return obj_size(virt_to_cache(objp));
4569 EXPORT_SYMBOL(ksize);