tracepoints: add DECLARE_TRACE() and DEFINE_TRACE()
[linux-2.6/mini2440.git] / kernel / fork.c
blob0837d0deee5ff54597a67a4305818a6990682739
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/profile.h>
50 #include <linux/rmap.h>
51 #include <linux/acct.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/cn_proc.h>
54 #include <linux/freezer.h>
55 #include <linux/delayacct.h>
56 #include <linux/taskstats_kern.h>
57 #include <linux/random.h>
58 #include <linux/tty.h>
59 #include <linux/proc_fs.h>
60 #include <linux/blkdev.h>
61 #include <trace/sched.h>
63 #include <asm/pgtable.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/mmu_context.h>
67 #include <asm/cacheflush.h>
68 #include <asm/tlbflush.h>
71 * Protected counters by write_lock_irq(&tasklist_lock)
73 unsigned long total_forks; /* Handle normal Linux uptimes. */
74 int nr_threads; /* The idle threads do not count.. */
76 int max_threads; /* tunable limit on nr_threads */
78 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
80 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
82 DEFINE_TRACE(sched_process_fork);
84 int nr_processes(void)
86 int cpu;
87 int total = 0;
89 for_each_online_cpu(cpu)
90 total += per_cpu(process_counts, cpu);
92 return total;
95 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
96 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
97 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
98 static struct kmem_cache *task_struct_cachep;
99 #endif
101 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
102 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
104 #ifdef CONFIG_DEBUG_STACK_USAGE
105 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
106 #else
107 gfp_t mask = GFP_KERNEL;
108 #endif
109 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
112 static inline void free_thread_info(struct thread_info *ti)
114 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
116 #endif
118 /* SLAB cache for signal_struct structures (tsk->signal) */
119 static struct kmem_cache *signal_cachep;
121 /* SLAB cache for sighand_struct structures (tsk->sighand) */
122 struct kmem_cache *sighand_cachep;
124 /* SLAB cache for files_struct structures (tsk->files) */
125 struct kmem_cache *files_cachep;
127 /* SLAB cache for fs_struct structures (tsk->fs) */
128 struct kmem_cache *fs_cachep;
130 /* SLAB cache for vm_area_struct structures */
131 struct kmem_cache *vm_area_cachep;
133 /* SLAB cache for mm_struct structures (tsk->mm) */
134 static struct kmem_cache *mm_cachep;
136 void free_task(struct task_struct *tsk)
138 prop_local_destroy_single(&tsk->dirties);
139 free_thread_info(tsk->stack);
140 rt_mutex_debug_task_free(tsk);
141 free_task_struct(tsk);
143 EXPORT_SYMBOL(free_task);
145 void __put_task_struct(struct task_struct *tsk)
147 WARN_ON(!tsk->exit_state);
148 WARN_ON(atomic_read(&tsk->usage));
149 WARN_ON(tsk == current);
151 security_task_free(tsk);
152 free_uid(tsk->user);
153 put_group_info(tsk->group_info);
154 delayacct_tsk_free(tsk);
156 if (!profile_handoff_task(tsk))
157 free_task(tsk);
161 * macro override instead of weak attribute alias, to workaround
162 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
164 #ifndef arch_task_cache_init
165 #define arch_task_cache_init()
166 #endif
168 void __init fork_init(unsigned long mempages)
170 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
171 #ifndef ARCH_MIN_TASKALIGN
172 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
173 #endif
174 /* create a slab on which task_structs can be allocated */
175 task_struct_cachep =
176 kmem_cache_create("task_struct", sizeof(struct task_struct),
177 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
178 #endif
180 /* do the arch specific task caches init */
181 arch_task_cache_init();
184 * The default maximum number of threads is set to a safe
185 * value: the thread structures can take up at most half
186 * of memory.
188 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
191 * we need to allow at least 20 threads to boot a system
193 if(max_threads < 20)
194 max_threads = 20;
196 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
197 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
198 init_task.signal->rlim[RLIMIT_SIGPENDING] =
199 init_task.signal->rlim[RLIMIT_NPROC];
202 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
203 struct task_struct *src)
205 *dst = *src;
206 return 0;
209 static struct task_struct *dup_task_struct(struct task_struct *orig)
211 struct task_struct *tsk;
212 struct thread_info *ti;
213 int err;
215 prepare_to_copy(orig);
217 tsk = alloc_task_struct();
218 if (!tsk)
219 return NULL;
221 ti = alloc_thread_info(tsk);
222 if (!ti) {
223 free_task_struct(tsk);
224 return NULL;
227 err = arch_dup_task_struct(tsk, orig);
228 if (err)
229 goto out;
231 tsk->stack = ti;
233 err = prop_local_init_single(&tsk->dirties);
234 if (err)
235 goto out;
237 setup_thread_stack(tsk, orig);
239 #ifdef CONFIG_CC_STACKPROTECTOR
240 tsk->stack_canary = get_random_int();
241 #endif
243 /* One for us, one for whoever does the "release_task()" (usually parent) */
244 atomic_set(&tsk->usage,2);
245 atomic_set(&tsk->fs_excl, 0);
246 #ifdef CONFIG_BLK_DEV_IO_TRACE
247 tsk->btrace_seq = 0;
248 #endif
249 tsk->splice_pipe = NULL;
250 return tsk;
252 out:
253 free_thread_info(ti);
254 free_task_struct(tsk);
255 return NULL;
258 #ifdef CONFIG_MMU
259 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
261 struct vm_area_struct *mpnt, *tmp, **pprev;
262 struct rb_node **rb_link, *rb_parent;
263 int retval;
264 unsigned long charge;
265 struct mempolicy *pol;
267 down_write(&oldmm->mmap_sem);
268 flush_cache_dup_mm(oldmm);
270 * Not linked in yet - no deadlock potential:
272 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
274 mm->locked_vm = 0;
275 mm->mmap = NULL;
276 mm->mmap_cache = NULL;
277 mm->free_area_cache = oldmm->mmap_base;
278 mm->cached_hole_size = ~0UL;
279 mm->map_count = 0;
280 cpus_clear(mm->cpu_vm_mask);
281 mm->mm_rb = RB_ROOT;
282 rb_link = &mm->mm_rb.rb_node;
283 rb_parent = NULL;
284 pprev = &mm->mmap;
286 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
287 struct file *file;
289 if (mpnt->vm_flags & VM_DONTCOPY) {
290 long pages = vma_pages(mpnt);
291 mm->total_vm -= pages;
292 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
293 -pages);
294 continue;
296 charge = 0;
297 if (mpnt->vm_flags & VM_ACCOUNT) {
298 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
299 if (security_vm_enough_memory(len))
300 goto fail_nomem;
301 charge = len;
303 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
304 if (!tmp)
305 goto fail_nomem;
306 *tmp = *mpnt;
307 pol = mpol_dup(vma_policy(mpnt));
308 retval = PTR_ERR(pol);
309 if (IS_ERR(pol))
310 goto fail_nomem_policy;
311 vma_set_policy(tmp, pol);
312 tmp->vm_flags &= ~VM_LOCKED;
313 tmp->vm_mm = mm;
314 tmp->vm_next = NULL;
315 anon_vma_link(tmp);
316 file = tmp->vm_file;
317 if (file) {
318 struct inode *inode = file->f_path.dentry->d_inode;
319 get_file(file);
320 if (tmp->vm_flags & VM_DENYWRITE)
321 atomic_dec(&inode->i_writecount);
323 /* insert tmp into the share list, just after mpnt */
324 spin_lock(&file->f_mapping->i_mmap_lock);
325 tmp->vm_truncate_count = mpnt->vm_truncate_count;
326 flush_dcache_mmap_lock(file->f_mapping);
327 vma_prio_tree_add(tmp, mpnt);
328 flush_dcache_mmap_unlock(file->f_mapping);
329 spin_unlock(&file->f_mapping->i_mmap_lock);
333 * Clear hugetlb-related page reserves for children. This only
334 * affects MAP_PRIVATE mappings. Faults generated by the child
335 * are not guaranteed to succeed, even if read-only
337 if (is_vm_hugetlb_page(tmp))
338 reset_vma_resv_huge_pages(tmp);
341 * Link in the new vma and copy the page table entries.
343 *pprev = tmp;
344 pprev = &tmp->vm_next;
346 __vma_link_rb(mm, tmp, rb_link, rb_parent);
347 rb_link = &tmp->vm_rb.rb_right;
348 rb_parent = &tmp->vm_rb;
350 mm->map_count++;
351 retval = copy_page_range(mm, oldmm, mpnt);
353 if (tmp->vm_ops && tmp->vm_ops->open)
354 tmp->vm_ops->open(tmp);
356 if (retval)
357 goto out;
359 /* a new mm has just been created */
360 arch_dup_mmap(oldmm, mm);
361 retval = 0;
362 out:
363 up_write(&mm->mmap_sem);
364 flush_tlb_mm(oldmm);
365 up_write(&oldmm->mmap_sem);
366 return retval;
367 fail_nomem_policy:
368 kmem_cache_free(vm_area_cachep, tmp);
369 fail_nomem:
370 retval = -ENOMEM;
371 vm_unacct_memory(charge);
372 goto out;
375 static inline int mm_alloc_pgd(struct mm_struct * mm)
377 mm->pgd = pgd_alloc(mm);
378 if (unlikely(!mm->pgd))
379 return -ENOMEM;
380 return 0;
383 static inline void mm_free_pgd(struct mm_struct * mm)
385 pgd_free(mm, mm->pgd);
387 #else
388 #define dup_mmap(mm, oldmm) (0)
389 #define mm_alloc_pgd(mm) (0)
390 #define mm_free_pgd(mm)
391 #endif /* CONFIG_MMU */
393 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
395 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
396 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
398 #include <linux/init_task.h>
400 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
402 atomic_set(&mm->mm_users, 1);
403 atomic_set(&mm->mm_count, 1);
404 init_rwsem(&mm->mmap_sem);
405 INIT_LIST_HEAD(&mm->mmlist);
406 mm->flags = (current->mm) ? current->mm->flags
407 : MMF_DUMP_FILTER_DEFAULT;
408 mm->core_state = NULL;
409 mm->nr_ptes = 0;
410 set_mm_counter(mm, file_rss, 0);
411 set_mm_counter(mm, anon_rss, 0);
412 spin_lock_init(&mm->page_table_lock);
413 rwlock_init(&mm->ioctx_list_lock);
414 mm->ioctx_list = NULL;
415 mm->free_area_cache = TASK_UNMAPPED_BASE;
416 mm->cached_hole_size = ~0UL;
417 mm_init_owner(mm, p);
419 if (likely(!mm_alloc_pgd(mm))) {
420 mm->def_flags = 0;
421 mmu_notifier_mm_init(mm);
422 return mm;
425 free_mm(mm);
426 return NULL;
430 * Allocate and initialize an mm_struct.
432 struct mm_struct * mm_alloc(void)
434 struct mm_struct * mm;
436 mm = allocate_mm();
437 if (mm) {
438 memset(mm, 0, sizeof(*mm));
439 mm = mm_init(mm, current);
441 return mm;
445 * Called when the last reference to the mm
446 * is dropped: either by a lazy thread or by
447 * mmput. Free the page directory and the mm.
449 void __mmdrop(struct mm_struct *mm)
451 BUG_ON(mm == &init_mm);
452 mm_free_pgd(mm);
453 destroy_context(mm);
454 mmu_notifier_mm_destroy(mm);
455 free_mm(mm);
457 EXPORT_SYMBOL_GPL(__mmdrop);
460 * Decrement the use count and release all resources for an mm.
462 void mmput(struct mm_struct *mm)
464 might_sleep();
466 if (atomic_dec_and_test(&mm->mm_users)) {
467 exit_aio(mm);
468 exit_mmap(mm);
469 set_mm_exe_file(mm, NULL);
470 if (!list_empty(&mm->mmlist)) {
471 spin_lock(&mmlist_lock);
472 list_del(&mm->mmlist);
473 spin_unlock(&mmlist_lock);
475 put_swap_token(mm);
476 mmdrop(mm);
479 EXPORT_SYMBOL_GPL(mmput);
482 * get_task_mm - acquire a reference to the task's mm
484 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
485 * this kernel workthread has transiently adopted a user mm with use_mm,
486 * to do its AIO) is not set and if so returns a reference to it, after
487 * bumping up the use count. User must release the mm via mmput()
488 * after use. Typically used by /proc and ptrace.
490 struct mm_struct *get_task_mm(struct task_struct *task)
492 struct mm_struct *mm;
494 task_lock(task);
495 mm = task->mm;
496 if (mm) {
497 if (task->flags & PF_KTHREAD)
498 mm = NULL;
499 else
500 atomic_inc(&mm->mm_users);
502 task_unlock(task);
503 return mm;
505 EXPORT_SYMBOL_GPL(get_task_mm);
507 /* Please note the differences between mmput and mm_release.
508 * mmput is called whenever we stop holding onto a mm_struct,
509 * error success whatever.
511 * mm_release is called after a mm_struct has been removed
512 * from the current process.
514 * This difference is important for error handling, when we
515 * only half set up a mm_struct for a new process and need to restore
516 * the old one. Because we mmput the new mm_struct before
517 * restoring the old one. . .
518 * Eric Biederman 10 January 1998
520 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
522 struct completion *vfork_done = tsk->vfork_done;
524 /* Get rid of any cached register state */
525 deactivate_mm(tsk, mm);
527 /* notify parent sleeping on vfork() */
528 if (vfork_done) {
529 tsk->vfork_done = NULL;
530 complete(vfork_done);
534 * If we're exiting normally, clear a user-space tid field if
535 * requested. We leave this alone when dying by signal, to leave
536 * the value intact in a core dump, and to save the unnecessary
537 * trouble otherwise. Userland only wants this done for a sys_exit.
539 if (tsk->clear_child_tid
540 && !(tsk->flags & PF_SIGNALED)
541 && atomic_read(&mm->mm_users) > 1) {
542 u32 __user * tidptr = tsk->clear_child_tid;
543 tsk->clear_child_tid = NULL;
546 * We don't check the error code - if userspace has
547 * not set up a proper pointer then tough luck.
549 put_user(0, tidptr);
550 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
555 * Allocate a new mm structure and copy contents from the
556 * mm structure of the passed in task structure.
558 struct mm_struct *dup_mm(struct task_struct *tsk)
560 struct mm_struct *mm, *oldmm = current->mm;
561 int err;
563 if (!oldmm)
564 return NULL;
566 mm = allocate_mm();
567 if (!mm)
568 goto fail_nomem;
570 memcpy(mm, oldmm, sizeof(*mm));
572 /* Initializing for Swap token stuff */
573 mm->token_priority = 0;
574 mm->last_interval = 0;
576 if (!mm_init(mm, tsk))
577 goto fail_nomem;
579 if (init_new_context(tsk, mm))
580 goto fail_nocontext;
582 dup_mm_exe_file(oldmm, mm);
584 err = dup_mmap(mm, oldmm);
585 if (err)
586 goto free_pt;
588 mm->hiwater_rss = get_mm_rss(mm);
589 mm->hiwater_vm = mm->total_vm;
591 return mm;
593 free_pt:
594 mmput(mm);
596 fail_nomem:
597 return NULL;
599 fail_nocontext:
601 * If init_new_context() failed, we cannot use mmput() to free the mm
602 * because it calls destroy_context()
604 mm_free_pgd(mm);
605 free_mm(mm);
606 return NULL;
609 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
611 struct mm_struct * mm, *oldmm;
612 int retval;
614 tsk->min_flt = tsk->maj_flt = 0;
615 tsk->nvcsw = tsk->nivcsw = 0;
617 tsk->mm = NULL;
618 tsk->active_mm = NULL;
621 * Are we cloning a kernel thread?
623 * We need to steal a active VM for that..
625 oldmm = current->mm;
626 if (!oldmm)
627 return 0;
629 if (clone_flags & CLONE_VM) {
630 atomic_inc(&oldmm->mm_users);
631 mm = oldmm;
632 goto good_mm;
635 retval = -ENOMEM;
636 mm = dup_mm(tsk);
637 if (!mm)
638 goto fail_nomem;
640 good_mm:
641 /* Initializing for Swap token stuff */
642 mm->token_priority = 0;
643 mm->last_interval = 0;
645 tsk->mm = mm;
646 tsk->active_mm = mm;
647 return 0;
649 fail_nomem:
650 return retval;
653 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
655 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
656 /* We don't need to lock fs - think why ;-) */
657 if (fs) {
658 atomic_set(&fs->count, 1);
659 rwlock_init(&fs->lock);
660 fs->umask = old->umask;
661 read_lock(&old->lock);
662 fs->root = old->root;
663 path_get(&old->root);
664 fs->pwd = old->pwd;
665 path_get(&old->pwd);
666 read_unlock(&old->lock);
668 return fs;
671 struct fs_struct *copy_fs_struct(struct fs_struct *old)
673 return __copy_fs_struct(old);
676 EXPORT_SYMBOL_GPL(copy_fs_struct);
678 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
680 if (clone_flags & CLONE_FS) {
681 atomic_inc(&current->fs->count);
682 return 0;
684 tsk->fs = __copy_fs_struct(current->fs);
685 if (!tsk->fs)
686 return -ENOMEM;
687 return 0;
690 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
692 struct files_struct *oldf, *newf;
693 int error = 0;
696 * A background process may not have any files ...
698 oldf = current->files;
699 if (!oldf)
700 goto out;
702 if (clone_flags & CLONE_FILES) {
703 atomic_inc(&oldf->count);
704 goto out;
707 newf = dup_fd(oldf, &error);
708 if (!newf)
709 goto out;
711 tsk->files = newf;
712 error = 0;
713 out:
714 return error;
717 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
719 #ifdef CONFIG_BLOCK
720 struct io_context *ioc = current->io_context;
722 if (!ioc)
723 return 0;
725 * Share io context with parent, if CLONE_IO is set
727 if (clone_flags & CLONE_IO) {
728 tsk->io_context = ioc_task_link(ioc);
729 if (unlikely(!tsk->io_context))
730 return -ENOMEM;
731 } else if (ioprio_valid(ioc->ioprio)) {
732 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
733 if (unlikely(!tsk->io_context))
734 return -ENOMEM;
736 tsk->io_context->ioprio = ioc->ioprio;
738 #endif
739 return 0;
742 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
744 struct sighand_struct *sig;
746 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
747 atomic_inc(&current->sighand->count);
748 return 0;
750 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
751 rcu_assign_pointer(tsk->sighand, sig);
752 if (!sig)
753 return -ENOMEM;
754 atomic_set(&sig->count, 1);
755 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
756 return 0;
759 void __cleanup_sighand(struct sighand_struct *sighand)
761 if (atomic_dec_and_test(&sighand->count))
762 kmem_cache_free(sighand_cachep, sighand);
767 * Initialize POSIX timer handling for a thread group.
769 static void posix_cpu_timers_init_group(struct signal_struct *sig)
771 /* Thread group counters. */
772 thread_group_cputime_init(sig);
774 /* Expiration times and increments. */
775 sig->it_virt_expires = cputime_zero;
776 sig->it_virt_incr = cputime_zero;
777 sig->it_prof_expires = cputime_zero;
778 sig->it_prof_incr = cputime_zero;
780 /* Cached expiration times. */
781 sig->cputime_expires.prof_exp = cputime_zero;
782 sig->cputime_expires.virt_exp = cputime_zero;
783 sig->cputime_expires.sched_exp = 0;
785 /* The timer lists. */
786 INIT_LIST_HEAD(&sig->cpu_timers[0]);
787 INIT_LIST_HEAD(&sig->cpu_timers[1]);
788 INIT_LIST_HEAD(&sig->cpu_timers[2]);
791 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
793 struct signal_struct *sig;
794 int ret;
796 if (clone_flags & CLONE_THREAD) {
797 ret = thread_group_cputime_clone_thread(current);
798 if (likely(!ret)) {
799 atomic_inc(&current->signal->count);
800 atomic_inc(&current->signal->live);
802 return ret;
804 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
805 tsk->signal = sig;
806 if (!sig)
807 return -ENOMEM;
809 ret = copy_thread_group_keys(tsk);
810 if (ret < 0) {
811 kmem_cache_free(signal_cachep, sig);
812 return ret;
815 atomic_set(&sig->count, 1);
816 atomic_set(&sig->live, 1);
817 init_waitqueue_head(&sig->wait_chldexit);
818 sig->flags = 0;
819 sig->group_exit_code = 0;
820 sig->group_exit_task = NULL;
821 sig->group_stop_count = 0;
822 sig->curr_target = tsk;
823 init_sigpending(&sig->shared_pending);
824 INIT_LIST_HEAD(&sig->posix_timers);
826 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
827 sig->it_real_incr.tv64 = 0;
828 sig->real_timer.function = it_real_fn;
830 sig->leader = 0; /* session leadership doesn't inherit */
831 sig->tty_old_pgrp = NULL;
832 sig->tty = NULL;
834 sig->cutime = sig->cstime = cputime_zero;
835 sig->gtime = cputime_zero;
836 sig->cgtime = cputime_zero;
837 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
838 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
839 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
840 task_io_accounting_init(&sig->ioac);
841 taskstats_tgid_init(sig);
843 task_lock(current->group_leader);
844 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
845 task_unlock(current->group_leader);
847 posix_cpu_timers_init_group(sig);
849 acct_init_pacct(&sig->pacct);
851 tty_audit_fork(sig);
853 return 0;
856 void __cleanup_signal(struct signal_struct *sig)
858 thread_group_cputime_free(sig);
859 exit_thread_group_keys(sig);
860 tty_kref_put(sig->tty);
861 kmem_cache_free(signal_cachep, sig);
864 static void cleanup_signal(struct task_struct *tsk)
866 struct signal_struct *sig = tsk->signal;
868 atomic_dec(&sig->live);
870 if (atomic_dec_and_test(&sig->count))
871 __cleanup_signal(sig);
874 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
876 unsigned long new_flags = p->flags;
878 new_flags &= ~PF_SUPERPRIV;
879 new_flags |= PF_FORKNOEXEC;
880 new_flags |= PF_STARTING;
881 p->flags = new_flags;
882 clear_freeze_flag(p);
885 asmlinkage long sys_set_tid_address(int __user *tidptr)
887 current->clear_child_tid = tidptr;
889 return task_pid_vnr(current);
892 static void rt_mutex_init_task(struct task_struct *p)
894 spin_lock_init(&p->pi_lock);
895 #ifdef CONFIG_RT_MUTEXES
896 plist_head_init(&p->pi_waiters, &p->pi_lock);
897 p->pi_blocked_on = NULL;
898 #endif
901 #ifdef CONFIG_MM_OWNER
902 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
904 mm->owner = p;
906 #endif /* CONFIG_MM_OWNER */
909 * Initialize POSIX timer handling for a single task.
911 static void posix_cpu_timers_init(struct task_struct *tsk)
913 tsk->cputime_expires.prof_exp = cputime_zero;
914 tsk->cputime_expires.virt_exp = cputime_zero;
915 tsk->cputime_expires.sched_exp = 0;
916 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
917 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
918 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
922 * This creates a new process as a copy of the old one,
923 * but does not actually start it yet.
925 * It copies the registers, and all the appropriate
926 * parts of the process environment (as per the clone
927 * flags). The actual kick-off is left to the caller.
929 static struct task_struct *copy_process(unsigned long clone_flags,
930 unsigned long stack_start,
931 struct pt_regs *regs,
932 unsigned long stack_size,
933 int __user *child_tidptr,
934 struct pid *pid,
935 int trace)
937 int retval;
938 struct task_struct *p;
939 int cgroup_callbacks_done = 0;
941 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
942 return ERR_PTR(-EINVAL);
945 * Thread groups must share signals as well, and detached threads
946 * can only be started up within the thread group.
948 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
949 return ERR_PTR(-EINVAL);
952 * Shared signal handlers imply shared VM. By way of the above,
953 * thread groups also imply shared VM. Blocking this case allows
954 * for various simplifications in other code.
956 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
957 return ERR_PTR(-EINVAL);
959 retval = security_task_create(clone_flags);
960 if (retval)
961 goto fork_out;
963 retval = -ENOMEM;
964 p = dup_task_struct(current);
965 if (!p)
966 goto fork_out;
968 rt_mutex_init_task(p);
970 #ifdef CONFIG_PROVE_LOCKING
971 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
972 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
973 #endif
974 retval = -EAGAIN;
975 if (atomic_read(&p->user->processes) >=
976 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
977 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
978 p->user != current->nsproxy->user_ns->root_user)
979 goto bad_fork_free;
982 atomic_inc(&p->user->__count);
983 atomic_inc(&p->user->processes);
984 get_group_info(p->group_info);
987 * If multiple threads are within copy_process(), then this check
988 * triggers too late. This doesn't hurt, the check is only there
989 * to stop root fork bombs.
991 if (nr_threads >= max_threads)
992 goto bad_fork_cleanup_count;
994 if (!try_module_get(task_thread_info(p)->exec_domain->module))
995 goto bad_fork_cleanup_count;
997 if (p->binfmt && !try_module_get(p->binfmt->module))
998 goto bad_fork_cleanup_put_domain;
1000 p->did_exec = 0;
1001 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1002 copy_flags(clone_flags, p);
1003 INIT_LIST_HEAD(&p->children);
1004 INIT_LIST_HEAD(&p->sibling);
1005 #ifdef CONFIG_PREEMPT_RCU
1006 p->rcu_read_lock_nesting = 0;
1007 p->rcu_flipctr_idx = 0;
1008 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1009 p->vfork_done = NULL;
1010 spin_lock_init(&p->alloc_lock);
1012 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1013 init_sigpending(&p->pending);
1015 p->utime = cputime_zero;
1016 p->stime = cputime_zero;
1017 p->gtime = cputime_zero;
1018 p->utimescaled = cputime_zero;
1019 p->stimescaled = cputime_zero;
1020 p->prev_utime = cputime_zero;
1021 p->prev_stime = cputime_zero;
1023 p->default_timer_slack_ns = current->timer_slack_ns;
1025 #ifdef CONFIG_DETECT_SOFTLOCKUP
1026 p->last_switch_count = 0;
1027 p->last_switch_timestamp = 0;
1028 #endif
1030 task_io_accounting_init(&p->ioac);
1031 acct_clear_integrals(p);
1033 posix_cpu_timers_init(p);
1035 p->lock_depth = -1; /* -1 = no lock */
1036 do_posix_clock_monotonic_gettime(&p->start_time);
1037 p->real_start_time = p->start_time;
1038 monotonic_to_bootbased(&p->real_start_time);
1039 #ifdef CONFIG_SECURITY
1040 p->security = NULL;
1041 #endif
1042 p->cap_bset = current->cap_bset;
1043 p->io_context = NULL;
1044 p->audit_context = NULL;
1045 cgroup_fork(p);
1046 #ifdef CONFIG_NUMA
1047 p->mempolicy = mpol_dup(p->mempolicy);
1048 if (IS_ERR(p->mempolicy)) {
1049 retval = PTR_ERR(p->mempolicy);
1050 p->mempolicy = NULL;
1051 goto bad_fork_cleanup_cgroup;
1053 mpol_fix_fork_child_flag(p);
1054 #endif
1055 #ifdef CONFIG_TRACE_IRQFLAGS
1056 p->irq_events = 0;
1057 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1058 p->hardirqs_enabled = 1;
1059 #else
1060 p->hardirqs_enabled = 0;
1061 #endif
1062 p->hardirq_enable_ip = 0;
1063 p->hardirq_enable_event = 0;
1064 p->hardirq_disable_ip = _THIS_IP_;
1065 p->hardirq_disable_event = 0;
1066 p->softirqs_enabled = 1;
1067 p->softirq_enable_ip = _THIS_IP_;
1068 p->softirq_enable_event = 0;
1069 p->softirq_disable_ip = 0;
1070 p->softirq_disable_event = 0;
1071 p->hardirq_context = 0;
1072 p->softirq_context = 0;
1073 #endif
1074 #ifdef CONFIG_LOCKDEP
1075 p->lockdep_depth = 0; /* no locks held yet */
1076 p->curr_chain_key = 0;
1077 p->lockdep_recursion = 0;
1078 #endif
1080 #ifdef CONFIG_DEBUG_MUTEXES
1081 p->blocked_on = NULL; /* not blocked yet */
1082 #endif
1084 /* Perform scheduler related setup. Assign this task to a CPU. */
1085 sched_fork(p, clone_flags);
1087 if ((retval = security_task_alloc(p)))
1088 goto bad_fork_cleanup_policy;
1089 if ((retval = audit_alloc(p)))
1090 goto bad_fork_cleanup_security;
1091 /* copy all the process information */
1092 if ((retval = copy_semundo(clone_flags, p)))
1093 goto bad_fork_cleanup_audit;
1094 if ((retval = copy_files(clone_flags, p)))
1095 goto bad_fork_cleanup_semundo;
1096 if ((retval = copy_fs(clone_flags, p)))
1097 goto bad_fork_cleanup_files;
1098 if ((retval = copy_sighand(clone_flags, p)))
1099 goto bad_fork_cleanup_fs;
1100 if ((retval = copy_signal(clone_flags, p)))
1101 goto bad_fork_cleanup_sighand;
1102 if ((retval = copy_mm(clone_flags, p)))
1103 goto bad_fork_cleanup_signal;
1104 if ((retval = copy_keys(clone_flags, p)))
1105 goto bad_fork_cleanup_mm;
1106 if ((retval = copy_namespaces(clone_flags, p)))
1107 goto bad_fork_cleanup_keys;
1108 if ((retval = copy_io(clone_flags, p)))
1109 goto bad_fork_cleanup_namespaces;
1110 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1111 if (retval)
1112 goto bad_fork_cleanup_io;
1114 if (pid != &init_struct_pid) {
1115 retval = -ENOMEM;
1116 pid = alloc_pid(task_active_pid_ns(p));
1117 if (!pid)
1118 goto bad_fork_cleanup_io;
1120 if (clone_flags & CLONE_NEWPID) {
1121 retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1122 if (retval < 0)
1123 goto bad_fork_free_pid;
1127 p->pid = pid_nr(pid);
1128 p->tgid = p->pid;
1129 if (clone_flags & CLONE_THREAD)
1130 p->tgid = current->tgid;
1132 if (current->nsproxy != p->nsproxy) {
1133 retval = ns_cgroup_clone(p, pid);
1134 if (retval)
1135 goto bad_fork_free_pid;
1138 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1140 * Clear TID on mm_release()?
1142 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1143 #ifdef CONFIG_FUTEX
1144 p->robust_list = NULL;
1145 #ifdef CONFIG_COMPAT
1146 p->compat_robust_list = NULL;
1147 #endif
1148 INIT_LIST_HEAD(&p->pi_state_list);
1149 p->pi_state_cache = NULL;
1150 #endif
1152 * sigaltstack should be cleared when sharing the same VM
1154 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1155 p->sas_ss_sp = p->sas_ss_size = 0;
1158 * Syscall tracing should be turned off in the child regardless
1159 * of CLONE_PTRACE.
1161 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1162 #ifdef TIF_SYSCALL_EMU
1163 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1164 #endif
1165 clear_all_latency_tracing(p);
1167 /* Our parent execution domain becomes current domain
1168 These must match for thread signalling to apply */
1169 p->parent_exec_id = p->self_exec_id;
1171 /* ok, now we should be set up.. */
1172 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1173 p->pdeath_signal = 0;
1174 p->exit_state = 0;
1177 * Ok, make it visible to the rest of the system.
1178 * We dont wake it up yet.
1180 p->group_leader = p;
1181 INIT_LIST_HEAD(&p->thread_group);
1183 /* Now that the task is set up, run cgroup callbacks if
1184 * necessary. We need to run them before the task is visible
1185 * on the tasklist. */
1186 cgroup_fork_callbacks(p);
1187 cgroup_callbacks_done = 1;
1189 /* Need tasklist lock for parent etc handling! */
1190 write_lock_irq(&tasklist_lock);
1193 * The task hasn't been attached yet, so its cpus_allowed mask will
1194 * not be changed, nor will its assigned CPU.
1196 * The cpus_allowed mask of the parent may have changed after it was
1197 * copied first time - so re-copy it here, then check the child's CPU
1198 * to ensure it is on a valid CPU (and if not, just force it back to
1199 * parent's CPU). This avoids alot of nasty races.
1201 p->cpus_allowed = current->cpus_allowed;
1202 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1203 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1204 !cpu_online(task_cpu(p))))
1205 set_task_cpu(p, smp_processor_id());
1207 /* CLONE_PARENT re-uses the old parent */
1208 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1209 p->real_parent = current->real_parent;
1210 else
1211 p->real_parent = current;
1213 spin_lock(&current->sighand->siglock);
1216 * Process group and session signals need to be delivered to just the
1217 * parent before the fork or both the parent and the child after the
1218 * fork. Restart if a signal comes in before we add the new process to
1219 * it's process group.
1220 * A fatal signal pending means that current will exit, so the new
1221 * thread can't slip out of an OOM kill (or normal SIGKILL).
1223 recalc_sigpending();
1224 if (signal_pending(current)) {
1225 spin_unlock(&current->sighand->siglock);
1226 write_unlock_irq(&tasklist_lock);
1227 retval = -ERESTARTNOINTR;
1228 goto bad_fork_free_pid;
1231 if (clone_flags & CLONE_THREAD) {
1232 p->group_leader = current->group_leader;
1233 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1236 if (likely(p->pid)) {
1237 list_add_tail(&p->sibling, &p->real_parent->children);
1238 tracehook_finish_clone(p, clone_flags, trace);
1240 if (thread_group_leader(p)) {
1241 if (clone_flags & CLONE_NEWPID)
1242 p->nsproxy->pid_ns->child_reaper = p;
1244 p->signal->leader_pid = pid;
1245 tty_kref_put(p->signal->tty);
1246 p->signal->tty = tty_kref_get(current->signal->tty);
1247 set_task_pgrp(p, task_pgrp_nr(current));
1248 set_task_session(p, task_session_nr(current));
1249 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1250 attach_pid(p, PIDTYPE_SID, task_session(current));
1251 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1252 __get_cpu_var(process_counts)++;
1254 attach_pid(p, PIDTYPE_PID, pid);
1255 nr_threads++;
1258 total_forks++;
1259 spin_unlock(&current->sighand->siglock);
1260 write_unlock_irq(&tasklist_lock);
1261 proc_fork_connector(p);
1262 cgroup_post_fork(p);
1263 return p;
1265 bad_fork_free_pid:
1266 if (pid != &init_struct_pid)
1267 free_pid(pid);
1268 bad_fork_cleanup_io:
1269 put_io_context(p->io_context);
1270 bad_fork_cleanup_namespaces:
1271 exit_task_namespaces(p);
1272 bad_fork_cleanup_keys:
1273 exit_keys(p);
1274 bad_fork_cleanup_mm:
1275 if (p->mm)
1276 mmput(p->mm);
1277 bad_fork_cleanup_signal:
1278 cleanup_signal(p);
1279 bad_fork_cleanup_sighand:
1280 __cleanup_sighand(p->sighand);
1281 bad_fork_cleanup_fs:
1282 exit_fs(p); /* blocking */
1283 bad_fork_cleanup_files:
1284 exit_files(p); /* blocking */
1285 bad_fork_cleanup_semundo:
1286 exit_sem(p);
1287 bad_fork_cleanup_audit:
1288 audit_free(p);
1289 bad_fork_cleanup_security:
1290 security_task_free(p);
1291 bad_fork_cleanup_policy:
1292 #ifdef CONFIG_NUMA
1293 mpol_put(p->mempolicy);
1294 bad_fork_cleanup_cgroup:
1295 #endif
1296 cgroup_exit(p, cgroup_callbacks_done);
1297 delayacct_tsk_free(p);
1298 if (p->binfmt)
1299 module_put(p->binfmt->module);
1300 bad_fork_cleanup_put_domain:
1301 module_put(task_thread_info(p)->exec_domain->module);
1302 bad_fork_cleanup_count:
1303 put_group_info(p->group_info);
1304 atomic_dec(&p->user->processes);
1305 free_uid(p->user);
1306 bad_fork_free:
1307 free_task(p);
1308 fork_out:
1309 return ERR_PTR(retval);
1312 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1314 memset(regs, 0, sizeof(struct pt_regs));
1315 return regs;
1318 struct task_struct * __cpuinit fork_idle(int cpu)
1320 struct task_struct *task;
1321 struct pt_regs regs;
1323 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1324 &init_struct_pid, 0);
1325 if (!IS_ERR(task))
1326 init_idle(task, cpu);
1328 return task;
1332 * Ok, this is the main fork-routine.
1334 * It copies the process, and if successful kick-starts
1335 * it and waits for it to finish using the VM if required.
1337 long do_fork(unsigned long clone_flags,
1338 unsigned long stack_start,
1339 struct pt_regs *regs,
1340 unsigned long stack_size,
1341 int __user *parent_tidptr,
1342 int __user *child_tidptr)
1344 struct task_struct *p;
1345 int trace = 0;
1346 long nr;
1349 * We hope to recycle these flags after 2.6.26
1351 if (unlikely(clone_flags & CLONE_STOPPED)) {
1352 static int __read_mostly count = 100;
1354 if (count > 0 && printk_ratelimit()) {
1355 char comm[TASK_COMM_LEN];
1357 count--;
1358 printk(KERN_INFO "fork(): process `%s' used deprecated "
1359 "clone flags 0x%lx\n",
1360 get_task_comm(comm, current),
1361 clone_flags & CLONE_STOPPED);
1366 * When called from kernel_thread, don't do user tracing stuff.
1368 if (likely(user_mode(regs)))
1369 trace = tracehook_prepare_clone(clone_flags);
1371 p = copy_process(clone_flags, stack_start, regs, stack_size,
1372 child_tidptr, NULL, trace);
1374 * Do this prior waking up the new thread - the thread pointer
1375 * might get invalid after that point, if the thread exits quickly.
1377 if (!IS_ERR(p)) {
1378 struct completion vfork;
1380 trace_sched_process_fork(current, p);
1382 nr = task_pid_vnr(p);
1384 if (clone_flags & CLONE_PARENT_SETTID)
1385 put_user(nr, parent_tidptr);
1387 if (clone_flags & CLONE_VFORK) {
1388 p->vfork_done = &vfork;
1389 init_completion(&vfork);
1392 tracehook_report_clone(trace, regs, clone_flags, nr, p);
1395 * We set PF_STARTING at creation in case tracing wants to
1396 * use this to distinguish a fully live task from one that
1397 * hasn't gotten to tracehook_report_clone() yet. Now we
1398 * clear it and set the child going.
1400 p->flags &= ~PF_STARTING;
1402 if (unlikely(clone_flags & CLONE_STOPPED)) {
1404 * We'll start up with an immediate SIGSTOP.
1406 sigaddset(&p->pending.signal, SIGSTOP);
1407 set_tsk_thread_flag(p, TIF_SIGPENDING);
1408 __set_task_state(p, TASK_STOPPED);
1409 } else {
1410 wake_up_new_task(p, clone_flags);
1413 tracehook_report_clone_complete(trace, regs,
1414 clone_flags, nr, p);
1416 if (clone_flags & CLONE_VFORK) {
1417 freezer_do_not_count();
1418 wait_for_completion(&vfork);
1419 freezer_count();
1420 tracehook_report_vfork_done(p, nr);
1422 } else {
1423 nr = PTR_ERR(p);
1425 return nr;
1428 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1429 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1430 #endif
1432 static void sighand_ctor(void *data)
1434 struct sighand_struct *sighand = data;
1436 spin_lock_init(&sighand->siglock);
1437 init_waitqueue_head(&sighand->signalfd_wqh);
1440 void __init proc_caches_init(void)
1442 sighand_cachep = kmem_cache_create("sighand_cache",
1443 sizeof(struct sighand_struct), 0,
1444 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1445 sighand_ctor);
1446 signal_cachep = kmem_cache_create("signal_cache",
1447 sizeof(struct signal_struct), 0,
1448 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1449 files_cachep = kmem_cache_create("files_cache",
1450 sizeof(struct files_struct), 0,
1451 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1452 fs_cachep = kmem_cache_create("fs_cache",
1453 sizeof(struct fs_struct), 0,
1454 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1455 vm_area_cachep = kmem_cache_create("vm_area_struct",
1456 sizeof(struct vm_area_struct), 0,
1457 SLAB_PANIC, NULL);
1458 mm_cachep = kmem_cache_create("mm_struct",
1459 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1460 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1464 * Check constraints on flags passed to the unshare system call and
1465 * force unsharing of additional process context as appropriate.
1467 static void check_unshare_flags(unsigned long *flags_ptr)
1470 * If unsharing a thread from a thread group, must also
1471 * unshare vm.
1473 if (*flags_ptr & CLONE_THREAD)
1474 *flags_ptr |= CLONE_VM;
1477 * If unsharing vm, must also unshare signal handlers.
1479 if (*flags_ptr & CLONE_VM)
1480 *flags_ptr |= CLONE_SIGHAND;
1483 * If unsharing signal handlers and the task was created
1484 * using CLONE_THREAD, then must unshare the thread
1486 if ((*flags_ptr & CLONE_SIGHAND) &&
1487 (atomic_read(&current->signal->count) > 1))
1488 *flags_ptr |= CLONE_THREAD;
1491 * If unsharing namespace, must also unshare filesystem information.
1493 if (*flags_ptr & CLONE_NEWNS)
1494 *flags_ptr |= CLONE_FS;
1498 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1500 static int unshare_thread(unsigned long unshare_flags)
1502 if (unshare_flags & CLONE_THREAD)
1503 return -EINVAL;
1505 return 0;
1509 * Unshare the filesystem structure if it is being shared
1511 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1513 struct fs_struct *fs = current->fs;
1515 if ((unshare_flags & CLONE_FS) &&
1516 (fs && atomic_read(&fs->count) > 1)) {
1517 *new_fsp = __copy_fs_struct(current->fs);
1518 if (!*new_fsp)
1519 return -ENOMEM;
1522 return 0;
1526 * Unsharing of sighand is not supported yet
1528 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1530 struct sighand_struct *sigh = current->sighand;
1532 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1533 return -EINVAL;
1534 else
1535 return 0;
1539 * Unshare vm if it is being shared
1541 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1543 struct mm_struct *mm = current->mm;
1545 if ((unshare_flags & CLONE_VM) &&
1546 (mm && atomic_read(&mm->mm_users) > 1)) {
1547 return -EINVAL;
1550 return 0;
1554 * Unshare file descriptor table if it is being shared
1556 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1558 struct files_struct *fd = current->files;
1559 int error = 0;
1561 if ((unshare_flags & CLONE_FILES) &&
1562 (fd && atomic_read(&fd->count) > 1)) {
1563 *new_fdp = dup_fd(fd, &error);
1564 if (!*new_fdp)
1565 return error;
1568 return 0;
1572 * unshare allows a process to 'unshare' part of the process
1573 * context which was originally shared using clone. copy_*
1574 * functions used by do_fork() cannot be used here directly
1575 * because they modify an inactive task_struct that is being
1576 * constructed. Here we are modifying the current, active,
1577 * task_struct.
1579 asmlinkage long sys_unshare(unsigned long unshare_flags)
1581 int err = 0;
1582 struct fs_struct *fs, *new_fs = NULL;
1583 struct sighand_struct *new_sigh = NULL;
1584 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1585 struct files_struct *fd, *new_fd = NULL;
1586 struct nsproxy *new_nsproxy = NULL;
1587 int do_sysvsem = 0;
1589 check_unshare_flags(&unshare_flags);
1591 /* Return -EINVAL for all unsupported flags */
1592 err = -EINVAL;
1593 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1594 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1595 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1596 CLONE_NEWNET))
1597 goto bad_unshare_out;
1600 * CLONE_NEWIPC must also detach from the undolist: after switching
1601 * to a new ipc namespace, the semaphore arrays from the old
1602 * namespace are unreachable.
1604 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1605 do_sysvsem = 1;
1606 if ((err = unshare_thread(unshare_flags)))
1607 goto bad_unshare_out;
1608 if ((err = unshare_fs(unshare_flags, &new_fs)))
1609 goto bad_unshare_cleanup_thread;
1610 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1611 goto bad_unshare_cleanup_fs;
1612 if ((err = unshare_vm(unshare_flags, &new_mm)))
1613 goto bad_unshare_cleanup_sigh;
1614 if ((err = unshare_fd(unshare_flags, &new_fd)))
1615 goto bad_unshare_cleanup_vm;
1616 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1617 new_fs)))
1618 goto bad_unshare_cleanup_fd;
1620 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1621 if (do_sysvsem) {
1623 * CLONE_SYSVSEM is equivalent to sys_exit().
1625 exit_sem(current);
1628 if (new_nsproxy) {
1629 switch_task_namespaces(current, new_nsproxy);
1630 new_nsproxy = NULL;
1633 task_lock(current);
1635 if (new_fs) {
1636 fs = current->fs;
1637 current->fs = new_fs;
1638 new_fs = fs;
1641 if (new_mm) {
1642 mm = current->mm;
1643 active_mm = current->active_mm;
1644 current->mm = new_mm;
1645 current->active_mm = new_mm;
1646 activate_mm(active_mm, new_mm);
1647 new_mm = mm;
1650 if (new_fd) {
1651 fd = current->files;
1652 current->files = new_fd;
1653 new_fd = fd;
1656 task_unlock(current);
1659 if (new_nsproxy)
1660 put_nsproxy(new_nsproxy);
1662 bad_unshare_cleanup_fd:
1663 if (new_fd)
1664 put_files_struct(new_fd);
1666 bad_unshare_cleanup_vm:
1667 if (new_mm)
1668 mmput(new_mm);
1670 bad_unshare_cleanup_sigh:
1671 if (new_sigh)
1672 if (atomic_dec_and_test(&new_sigh->count))
1673 kmem_cache_free(sighand_cachep, new_sigh);
1675 bad_unshare_cleanup_fs:
1676 if (new_fs)
1677 put_fs_struct(new_fs);
1679 bad_unshare_cleanup_thread:
1680 bad_unshare_out:
1681 return err;
1685 * Helper to unshare the files of the current task.
1686 * We don't want to expose copy_files internals to
1687 * the exec layer of the kernel.
1690 int unshare_files(struct files_struct **displaced)
1692 struct task_struct *task = current;
1693 struct files_struct *copy = NULL;
1694 int error;
1696 error = unshare_fd(CLONE_FILES, &copy);
1697 if (error || !copy) {
1698 *displaced = NULL;
1699 return error;
1701 *displaced = task->files;
1702 task_lock(task);
1703 task->files = copy;
1704 task_unlock(task);
1705 return 0;