2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/irq.h>
36 #include <linux/module.h>
37 #include <linux/percpu.h>
38 #include <linux/hrtimer.h>
39 #include <linux/notifier.h>
40 #include <linux/syscalls.h>
41 #include <linux/kallsyms.h>
42 #include <linux/interrupt.h>
43 #include <linux/tick.h>
44 #include <linux/seq_file.h>
45 #include <linux/err.h>
47 #include <asm/uaccess.h>
50 * ktime_get - get the monotonic time in ktime_t format
52 * returns the time in ktime_t format
54 ktime_t
ktime_get(void)
60 return timespec_to_ktime(now
);
62 EXPORT_SYMBOL_GPL(ktime_get
);
65 * ktime_get_real - get the real (wall-) time in ktime_t format
67 * returns the time in ktime_t format
69 ktime_t
ktime_get_real(void)
75 return timespec_to_ktime(now
);
78 EXPORT_SYMBOL_GPL(ktime_get_real
);
83 * Note: If we want to add new timer bases, we have to skip the two
84 * clock ids captured by the cpu-timers. We do this by holding empty
85 * entries rather than doing math adjustment of the clock ids.
86 * This ensures that we capture erroneous accesses to these clock ids
87 * rather than moving them into the range of valid clock id's.
89 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
95 .index
= CLOCK_REALTIME
,
96 .get_time
= &ktime_get_real
,
97 .resolution
= KTIME_LOW_RES
,
100 .index
= CLOCK_MONOTONIC
,
101 .get_time
= &ktime_get
,
102 .resolution
= KTIME_LOW_RES
,
108 * ktime_get_ts - get the monotonic clock in timespec format
109 * @ts: pointer to timespec variable
111 * The function calculates the monotonic clock from the realtime
112 * clock and the wall_to_monotonic offset and stores the result
113 * in normalized timespec format in the variable pointed to by @ts.
115 void ktime_get_ts(struct timespec
*ts
)
117 struct timespec tomono
;
121 seq
= read_seqbegin(&xtime_lock
);
123 tomono
= wall_to_monotonic
;
125 } while (read_seqretry(&xtime_lock
, seq
));
127 set_normalized_timespec(ts
, ts
->tv_sec
+ tomono
.tv_sec
,
128 ts
->tv_nsec
+ tomono
.tv_nsec
);
130 EXPORT_SYMBOL_GPL(ktime_get_ts
);
133 * Get the coarse grained time at the softirq based on xtime and
136 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
138 ktime_t xtim
, tomono
;
139 struct timespec xts
, tom
;
143 seq
= read_seqbegin(&xtime_lock
);
145 getnstimeofday(&xts
);
149 tom
= wall_to_monotonic
;
150 } while (read_seqretry(&xtime_lock
, seq
));
152 xtim
= timespec_to_ktime(xts
);
153 tomono
= timespec_to_ktime(tom
);
154 base
->clock_base
[CLOCK_REALTIME
].softirq_time
= xtim
;
155 base
->clock_base
[CLOCK_MONOTONIC
].softirq_time
=
156 ktime_add(xtim
, tomono
);
160 * Helper function to check, whether the timer is running the callback
163 static inline int hrtimer_callback_running(struct hrtimer
*timer
)
165 return timer
->state
& HRTIMER_STATE_CALLBACK
;
169 * Functions and macros which are different for UP/SMP systems are kept in a
175 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
176 * means that all timers which are tied to this base via timer->base are
177 * locked, and the base itself is locked too.
179 * So __run_timers/migrate_timers can safely modify all timers which could
180 * be found on the lists/queues.
182 * When the timer's base is locked, and the timer removed from list, it is
183 * possible to set timer->base = NULL and drop the lock: the timer remains
187 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
188 unsigned long *flags
)
190 struct hrtimer_clock_base
*base
;
194 if (likely(base
!= NULL
)) {
195 spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
196 if (likely(base
== timer
->base
))
198 /* The timer has migrated to another CPU: */
199 spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
206 * Switch the timer base to the current CPU when possible.
208 static inline struct hrtimer_clock_base
*
209 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
211 struct hrtimer_clock_base
*new_base
;
212 struct hrtimer_cpu_base
*new_cpu_base
;
214 new_cpu_base
= &__get_cpu_var(hrtimer_bases
);
215 new_base
= &new_cpu_base
->clock_base
[base
->index
];
217 if (base
!= new_base
) {
219 * We are trying to schedule the timer on the local CPU.
220 * However we can't change timer's base while it is running,
221 * so we keep it on the same CPU. No hassle vs. reprogramming
222 * the event source in the high resolution case. The softirq
223 * code will take care of this when the timer function has
224 * completed. There is no conflict as we hold the lock until
225 * the timer is enqueued.
227 if (unlikely(hrtimer_callback_running(timer
)))
230 /* See the comment in lock_timer_base() */
232 spin_unlock(&base
->cpu_base
->lock
);
233 spin_lock(&new_base
->cpu_base
->lock
);
234 timer
->base
= new_base
;
239 #else /* CONFIG_SMP */
241 static inline struct hrtimer_clock_base
*
242 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
244 struct hrtimer_clock_base
*base
= timer
->base
;
246 spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
251 # define switch_hrtimer_base(t, b) (b)
253 #endif /* !CONFIG_SMP */
256 * Functions for the union type storage format of ktime_t which are
257 * too large for inlining:
259 #if BITS_PER_LONG < 64
260 # ifndef CONFIG_KTIME_SCALAR
262 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
264 * @nsec: the scalar nsec value to add
266 * Returns the sum of kt and nsec in ktime_t format
268 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
272 if (likely(nsec
< NSEC_PER_SEC
)) {
275 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
277 tmp
= ktime_set((long)nsec
, rem
);
280 return ktime_add(kt
, tmp
);
283 EXPORT_SYMBOL_GPL(ktime_add_ns
);
284 # endif /* !CONFIG_KTIME_SCALAR */
287 * Divide a ktime value by a nanosecond value
289 unsigned long ktime_divns(const ktime_t kt
, s64 div
)
294 dclc
= dns
= ktime_to_ns(kt
);
296 /* Make sure the divisor is less than 2^32: */
302 do_div(dclc
, (unsigned long) div
);
304 return (unsigned long) dclc
;
306 #endif /* BITS_PER_LONG >= 64 */
308 /* High resolution timer related functions */
309 #ifdef CONFIG_HIGH_RES_TIMERS
312 * High resolution timer enabled ?
314 static int hrtimer_hres_enabled __read_mostly
= 1;
317 * Enable / Disable high resolution mode
319 static int __init
setup_hrtimer_hres(char *str
)
321 if (!strcmp(str
, "off"))
322 hrtimer_hres_enabled
= 0;
323 else if (!strcmp(str
, "on"))
324 hrtimer_hres_enabled
= 1;
330 __setup("highres=", setup_hrtimer_hres
);
333 * hrtimer_high_res_enabled - query, if the highres mode is enabled
335 static inline int hrtimer_is_hres_enabled(void)
337 return hrtimer_hres_enabled
;
341 * Is the high resolution mode active ?
343 static inline int hrtimer_hres_active(void)
345 return __get_cpu_var(hrtimer_bases
).hres_active
;
349 * Reprogram the event source with checking both queues for the
351 * Called with interrupts disabled and base->lock held
353 static void hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
)
356 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
359 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
361 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
362 struct hrtimer
*timer
;
366 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
367 expires
= ktime_sub(timer
->expires
, base
->offset
);
368 if (expires
.tv64
< cpu_base
->expires_next
.tv64
)
369 cpu_base
->expires_next
= expires
;
372 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
373 tick_program_event(cpu_base
->expires_next
, 1);
377 * Shared reprogramming for clock_realtime and clock_monotonic
379 * When a timer is enqueued and expires earlier than the already enqueued
380 * timers, we have to check, whether it expires earlier than the timer for
381 * which the clock event device was armed.
383 * Called with interrupts disabled and base->cpu_base.lock held
385 static int hrtimer_reprogram(struct hrtimer
*timer
,
386 struct hrtimer_clock_base
*base
)
388 ktime_t
*expires_next
= &__get_cpu_var(hrtimer_bases
).expires_next
;
389 ktime_t expires
= ktime_sub(timer
->expires
, base
->offset
);
393 * When the callback is running, we do not reprogram the clock event
394 * device. The timer callback is either running on a different CPU or
395 * the callback is executed in the hrtimer_interupt context. The
396 * reprogramming is handled either by the softirq, which called the
397 * callback or at the end of the hrtimer_interrupt.
399 if (hrtimer_callback_running(timer
))
402 if (expires
.tv64
>= expires_next
->tv64
)
406 * Clockevents returns -ETIME, when the event was in the past.
408 res
= tick_program_event(expires
, 0);
409 if (!IS_ERR_VALUE(res
))
410 *expires_next
= expires
;
416 * Retrigger next event is called after clock was set
418 * Called with interrupts disabled via on_each_cpu()
420 static void retrigger_next_event(void *arg
)
422 struct hrtimer_cpu_base
*base
;
423 struct timespec realtime_offset
;
426 if (!hrtimer_hres_active())
430 seq
= read_seqbegin(&xtime_lock
);
431 set_normalized_timespec(&realtime_offset
,
432 -wall_to_monotonic
.tv_sec
,
433 -wall_to_monotonic
.tv_nsec
);
434 } while (read_seqretry(&xtime_lock
, seq
));
436 base
= &__get_cpu_var(hrtimer_bases
);
438 /* Adjust CLOCK_REALTIME offset */
439 spin_lock(&base
->lock
);
440 base
->clock_base
[CLOCK_REALTIME
].offset
=
441 timespec_to_ktime(realtime_offset
);
443 hrtimer_force_reprogram(base
);
444 spin_unlock(&base
->lock
);
448 * Clock realtime was set
450 * Change the offset of the realtime clock vs. the monotonic
453 * We might have to reprogram the high resolution timer interrupt. On
454 * SMP we call the architecture specific code to retrigger _all_ high
455 * resolution timer interrupts. On UP we just disable interrupts and
456 * call the high resolution interrupt code.
458 void clock_was_set(void)
460 /* Retrigger the CPU local events everywhere */
461 on_each_cpu(retrigger_next_event
, NULL
, 0, 1);
465 * During resume we might have to reprogram the high resolution timer
466 * interrupt (on the local CPU):
468 void hres_timers_resume(void)
470 WARN_ON_ONCE(num_online_cpus() > 1);
472 /* Retrigger the CPU local events: */
473 retrigger_next_event(NULL
);
477 * Check, whether the timer is on the callback pending list
479 static inline int hrtimer_cb_pending(const struct hrtimer
*timer
)
481 return timer
->state
& HRTIMER_STATE_PENDING
;
485 * Remove a timer from the callback pending list
487 static inline void hrtimer_remove_cb_pending(struct hrtimer
*timer
)
489 list_del_init(&timer
->cb_entry
);
493 * Initialize the high resolution related parts of cpu_base
495 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
497 base
->expires_next
.tv64
= KTIME_MAX
;
498 base
->hres_active
= 0;
499 INIT_LIST_HEAD(&base
->cb_pending
);
503 * Initialize the high resolution related parts of a hrtimer
505 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
)
507 INIT_LIST_HEAD(&timer
->cb_entry
);
511 * When High resolution timers are active, try to reprogram. Note, that in case
512 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
513 * check happens. The timer gets enqueued into the rbtree. The reprogramming
514 * and expiry check is done in the hrtimer_interrupt or in the softirq.
516 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
517 struct hrtimer_clock_base
*base
)
519 if (base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
)) {
521 /* Timer is expired, act upon the callback mode */
522 switch(timer
->cb_mode
) {
523 case HRTIMER_CB_IRQSAFE_NO_RESTART
:
525 * We can call the callback from here. No restart
526 * happens, so no danger of recursion
528 BUG_ON(timer
->function(timer
) != HRTIMER_NORESTART
);
530 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
:
532 * This is solely for the sched tick emulation with
533 * dynamic tick support to ensure that we do not
534 * restart the tick right on the edge and end up with
535 * the tick timer in the softirq ! The calling site
536 * takes care of this.
539 case HRTIMER_CB_IRQSAFE
:
540 case HRTIMER_CB_SOFTIRQ
:
542 * Move everything else into the softirq pending list !
544 list_add_tail(&timer
->cb_entry
,
545 &base
->cpu_base
->cb_pending
);
546 timer
->state
= HRTIMER_STATE_PENDING
;
547 raise_softirq(HRTIMER_SOFTIRQ
);
557 * Switch to high resolution mode
559 static int hrtimer_switch_to_hres(void)
561 struct hrtimer_cpu_base
*base
= &__get_cpu_var(hrtimer_bases
);
564 if (base
->hres_active
)
567 local_irq_save(flags
);
569 if (tick_init_highres()) {
570 local_irq_restore(flags
);
573 base
->hres_active
= 1;
574 base
->clock_base
[CLOCK_REALTIME
].resolution
= KTIME_HIGH_RES
;
575 base
->clock_base
[CLOCK_MONOTONIC
].resolution
= KTIME_HIGH_RES
;
577 tick_setup_sched_timer();
579 /* "Retrigger" the interrupt to get things going */
580 retrigger_next_event(NULL
);
581 local_irq_restore(flags
);
582 printk(KERN_INFO
"Switched to high resolution mode on CPU %d\n",
589 static inline int hrtimer_hres_active(void) { return 0; }
590 static inline int hrtimer_is_hres_enabled(void) { return 0; }
591 static inline int hrtimer_switch_to_hres(void) { return 0; }
592 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
) { }
593 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
594 struct hrtimer_clock_base
*base
)
598 static inline int hrtimer_cb_pending(struct hrtimer
*timer
) { return 0; }
599 static inline void hrtimer_remove_cb_pending(struct hrtimer
*timer
) { }
600 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
601 static inline void hrtimer_init_timer_hres(struct hrtimer
*timer
) { }
603 #endif /* CONFIG_HIGH_RES_TIMERS */
605 #ifdef CONFIG_TIMER_STATS
606 void __timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
, void *addr
)
608 if (timer
->start_site
)
611 timer
->start_site
= addr
;
612 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
613 timer
->start_pid
= current
->pid
;
618 * Counterpart to lock_timer_base above:
621 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
623 spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
627 * hrtimer_forward - forward the timer expiry
628 * @timer: hrtimer to forward
629 * @now: forward past this time
630 * @interval: the interval to forward
632 * Forward the timer expiry so it will expire in the future.
633 * Returns the number of overruns.
636 hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
638 unsigned long orun
= 1;
641 delta
= ktime_sub(now
, timer
->expires
);
646 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
647 interval
.tv64
= timer
->base
->resolution
.tv64
;
649 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
650 s64 incr
= ktime_to_ns(interval
);
652 orun
= ktime_divns(delta
, incr
);
653 timer
->expires
= ktime_add_ns(timer
->expires
, incr
* orun
);
654 if (timer
->expires
.tv64
> now
.tv64
)
657 * This (and the ktime_add() below) is the
658 * correction for exact:
662 timer
->expires
= ktime_add(timer
->expires
, interval
);
664 * Make sure, that the result did not wrap with a very large
667 if (timer
->expires
.tv64
< 0)
668 timer
->expires
= ktime_set(KTIME_SEC_MAX
, 0);
672 EXPORT_SYMBOL_GPL(hrtimer_forward
);
675 * enqueue_hrtimer - internal function to (re)start a timer
677 * The timer is inserted in expiry order. Insertion into the
678 * red black tree is O(log(n)). Must hold the base lock.
680 static void enqueue_hrtimer(struct hrtimer
*timer
,
681 struct hrtimer_clock_base
*base
, int reprogram
)
683 struct rb_node
**link
= &base
->active
.rb_node
;
684 struct rb_node
*parent
= NULL
;
685 struct hrtimer
*entry
;
688 * Find the right place in the rbtree:
692 entry
= rb_entry(parent
, struct hrtimer
, node
);
694 * We dont care about collisions. Nodes with
695 * the same expiry time stay together.
697 if (timer
->expires
.tv64
< entry
->expires
.tv64
)
698 link
= &(*link
)->rb_left
;
700 link
= &(*link
)->rb_right
;
704 * Insert the timer to the rbtree and check whether it
705 * replaces the first pending timer
707 if (!base
->first
|| timer
->expires
.tv64
<
708 rb_entry(base
->first
, struct hrtimer
, node
)->expires
.tv64
) {
710 * Reprogram the clock event device. When the timer is already
711 * expired hrtimer_enqueue_reprogram has either called the
712 * callback or added it to the pending list and raised the
715 * This is a NOP for !HIGHRES
717 if (reprogram
&& hrtimer_enqueue_reprogram(timer
, base
))
720 base
->first
= &timer
->node
;
723 rb_link_node(&timer
->node
, parent
, link
);
724 rb_insert_color(&timer
->node
, &base
->active
);
726 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
727 * state of a possibly running callback.
729 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
733 * __remove_hrtimer - internal function to remove a timer
735 * Caller must hold the base lock.
737 * High resolution timer mode reprograms the clock event device when the
738 * timer is the one which expires next. The caller can disable this by setting
739 * reprogram to zero. This is useful, when the context does a reprogramming
740 * anyway (e.g. timer interrupt)
742 static void __remove_hrtimer(struct hrtimer
*timer
,
743 struct hrtimer_clock_base
*base
,
744 unsigned long newstate
, int reprogram
)
746 /* High res. callback list. NOP for !HIGHRES */
747 if (hrtimer_cb_pending(timer
))
748 hrtimer_remove_cb_pending(timer
);
751 * Remove the timer from the rbtree and replace the
752 * first entry pointer if necessary.
754 if (base
->first
== &timer
->node
) {
755 base
->first
= rb_next(&timer
->node
);
756 /* Reprogram the clock event device. if enabled */
757 if (reprogram
&& hrtimer_hres_active())
758 hrtimer_force_reprogram(base
->cpu_base
);
760 rb_erase(&timer
->node
, &base
->active
);
762 timer
->state
= newstate
;
766 * remove hrtimer, called with base lock held
769 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
771 if (hrtimer_is_queued(timer
)) {
775 * Remove the timer and force reprogramming when high
776 * resolution mode is active and the timer is on the current
777 * CPU. If we remove a timer on another CPU, reprogramming is
778 * skipped. The interrupt event on this CPU is fired and
779 * reprogramming happens in the interrupt handler. This is a
780 * rare case and less expensive than a smp call.
782 timer_stats_hrtimer_clear_start_info(timer
);
783 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
784 __remove_hrtimer(timer
, base
, HRTIMER_STATE_INACTIVE
,
792 * hrtimer_start - (re)start an relative timer on the current CPU
793 * @timer: the timer to be added
795 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
799 * 1 when the timer was active
802 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
804 struct hrtimer_clock_base
*base
, *new_base
;
808 base
= lock_hrtimer_base(timer
, &flags
);
810 /* Remove an active timer from the queue: */
811 ret
= remove_hrtimer(timer
, base
);
813 /* Switch the timer base, if necessary: */
814 new_base
= switch_hrtimer_base(timer
, base
);
816 if (mode
== HRTIMER_MODE_REL
) {
817 tim
= ktime_add(tim
, new_base
->get_time());
819 * CONFIG_TIME_LOW_RES is a temporary way for architectures
820 * to signal that they simply return xtime in
821 * do_gettimeoffset(). In this case we want to round up by
822 * resolution when starting a relative timer, to avoid short
823 * timeouts. This will go away with the GTOD framework.
825 #ifdef CONFIG_TIME_LOW_RES
826 tim
= ktime_add(tim
, base
->resolution
);
829 timer
->expires
= tim
;
831 timer_stats_hrtimer_set_start_info(timer
);
834 * Only allow reprogramming if the new base is on this CPU.
835 * (it might still be on another CPU if the timer was pending)
837 enqueue_hrtimer(timer
, new_base
,
838 new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
));
840 unlock_hrtimer_base(timer
, &flags
);
844 EXPORT_SYMBOL_GPL(hrtimer_start
);
847 * hrtimer_try_to_cancel - try to deactivate a timer
848 * @timer: hrtimer to stop
851 * 0 when the timer was not active
852 * 1 when the timer was active
853 * -1 when the timer is currently excuting the callback function and
856 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
858 struct hrtimer_clock_base
*base
;
862 base
= lock_hrtimer_base(timer
, &flags
);
864 if (!hrtimer_callback_running(timer
))
865 ret
= remove_hrtimer(timer
, base
);
867 unlock_hrtimer_base(timer
, &flags
);
872 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
875 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
876 * @timer: the timer to be cancelled
879 * 0 when the timer was not active
880 * 1 when the timer was active
882 int hrtimer_cancel(struct hrtimer
*timer
)
885 int ret
= hrtimer_try_to_cancel(timer
);
892 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
895 * hrtimer_get_remaining - get remaining time for the timer
896 * @timer: the timer to read
898 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
900 struct hrtimer_clock_base
*base
;
904 base
= lock_hrtimer_base(timer
, &flags
);
905 rem
= ktime_sub(timer
->expires
, base
->get_time());
906 unlock_hrtimer_base(timer
, &flags
);
910 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
912 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
914 * hrtimer_get_next_event - get the time until next expiry event
916 * Returns the delta to the next expiry event or KTIME_MAX if no timer
919 ktime_t
hrtimer_get_next_event(void)
921 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
922 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
923 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
927 spin_lock_irqsave(&cpu_base
->lock
, flags
);
929 if (!hrtimer_hres_active()) {
930 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
931 struct hrtimer
*timer
;
936 timer
= rb_entry(base
->first
, struct hrtimer
, node
);
937 delta
.tv64
= timer
->expires
.tv64
;
938 delta
= ktime_sub(delta
, base
->get_time());
939 if (delta
.tv64
< mindelta
.tv64
)
940 mindelta
.tv64
= delta
.tv64
;
944 spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
946 if (mindelta
.tv64
< 0)
953 * hrtimer_init - initialize a timer to the given clock
954 * @timer: the timer to be initialized
955 * @clock_id: the clock to be used
956 * @mode: timer mode abs/rel
958 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
959 enum hrtimer_mode mode
)
961 struct hrtimer_cpu_base
*cpu_base
;
963 memset(timer
, 0, sizeof(struct hrtimer
));
965 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
967 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
968 clock_id
= CLOCK_MONOTONIC
;
970 timer
->base
= &cpu_base
->clock_base
[clock_id
];
971 hrtimer_init_timer_hres(timer
);
973 #ifdef CONFIG_TIMER_STATS
974 timer
->start_site
= NULL
;
975 timer
->start_pid
= -1;
976 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
979 EXPORT_SYMBOL_GPL(hrtimer_init
);
982 * hrtimer_get_res - get the timer resolution for a clock
983 * @which_clock: which clock to query
984 * @tp: pointer to timespec variable to store the resolution
986 * Store the resolution of the clock selected by @which_clock in the
987 * variable pointed to by @tp.
989 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
991 struct hrtimer_cpu_base
*cpu_base
;
993 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
994 *tp
= ktime_to_timespec(cpu_base
->clock_base
[which_clock
].resolution
);
998 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1000 #ifdef CONFIG_HIGH_RES_TIMERS
1003 * High resolution timer interrupt
1004 * Called with interrupts disabled
1006 void hrtimer_interrupt(struct clock_event_device
*dev
)
1008 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1009 struct hrtimer_clock_base
*base
;
1010 ktime_t expires_next
, now
;
1013 BUG_ON(!cpu_base
->hres_active
);
1014 cpu_base
->nr_events
++;
1015 dev
->next_event
.tv64
= KTIME_MAX
;
1020 expires_next
.tv64
= KTIME_MAX
;
1022 base
= cpu_base
->clock_base
;
1024 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1026 struct rb_node
*node
;
1028 spin_lock(&cpu_base
->lock
);
1030 basenow
= ktime_add(now
, base
->offset
);
1032 while ((node
= base
->first
)) {
1033 struct hrtimer
*timer
;
1035 timer
= rb_entry(node
, struct hrtimer
, node
);
1037 if (basenow
.tv64
< timer
->expires
.tv64
) {
1040 expires
= ktime_sub(timer
->expires
,
1042 if (expires
.tv64
< expires_next
.tv64
)
1043 expires_next
= expires
;
1047 /* Move softirq callbacks to the pending list */
1048 if (timer
->cb_mode
== HRTIMER_CB_SOFTIRQ
) {
1049 __remove_hrtimer(timer
, base
,
1050 HRTIMER_STATE_PENDING
, 0);
1051 list_add_tail(&timer
->cb_entry
,
1052 &base
->cpu_base
->cb_pending
);
1057 __remove_hrtimer(timer
, base
,
1058 HRTIMER_STATE_CALLBACK
, 0);
1059 timer_stats_account_hrtimer(timer
);
1062 * Note: We clear the CALLBACK bit after
1063 * enqueue_hrtimer to avoid reprogramming of
1064 * the event hardware. This happens at the end
1065 * of this function anyway.
1067 if (timer
->function(timer
) != HRTIMER_NORESTART
) {
1068 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1069 enqueue_hrtimer(timer
, base
, 0);
1071 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1073 spin_unlock(&cpu_base
->lock
);
1077 cpu_base
->expires_next
= expires_next
;
1079 /* Reprogramming necessary ? */
1080 if (expires_next
.tv64
!= KTIME_MAX
) {
1081 if (tick_program_event(expires_next
, 0))
1085 /* Raise softirq ? */
1087 raise_softirq(HRTIMER_SOFTIRQ
);
1090 static void run_hrtimer_softirq(struct softirq_action
*h
)
1092 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1094 spin_lock_irq(&cpu_base
->lock
);
1096 while (!list_empty(&cpu_base
->cb_pending
)) {
1097 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1098 struct hrtimer
*timer
;
1101 timer
= list_entry(cpu_base
->cb_pending
.next
,
1102 struct hrtimer
, cb_entry
);
1104 timer_stats_account_hrtimer(timer
);
1106 fn
= timer
->function
;
1107 __remove_hrtimer(timer
, timer
->base
, HRTIMER_STATE_CALLBACK
, 0);
1108 spin_unlock_irq(&cpu_base
->lock
);
1110 restart
= fn(timer
);
1112 spin_lock_irq(&cpu_base
->lock
);
1114 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1115 if (restart
== HRTIMER_RESTART
) {
1116 BUG_ON(hrtimer_active(timer
));
1118 * Enqueue the timer, allow reprogramming of the event
1121 enqueue_hrtimer(timer
, timer
->base
, 1);
1122 } else if (hrtimer_active(timer
)) {
1124 * If the timer was rearmed on another CPU, reprogram
1127 if (timer
->base
->first
== &timer
->node
)
1128 hrtimer_reprogram(timer
, timer
->base
);
1131 spin_unlock_irq(&cpu_base
->lock
);
1134 #endif /* CONFIG_HIGH_RES_TIMERS */
1137 * Expire the per base hrtimer-queue:
1139 static inline void run_hrtimer_queue(struct hrtimer_cpu_base
*cpu_base
,
1142 struct rb_node
*node
;
1143 struct hrtimer_clock_base
*base
= &cpu_base
->clock_base
[index
];
1148 if (base
->get_softirq_time
)
1149 base
->softirq_time
= base
->get_softirq_time();
1151 spin_lock_irq(&cpu_base
->lock
);
1153 while ((node
= base
->first
)) {
1154 struct hrtimer
*timer
;
1155 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1158 timer
= rb_entry(node
, struct hrtimer
, node
);
1159 if (base
->softirq_time
.tv64
<= timer
->expires
.tv64
)
1162 #ifdef CONFIG_HIGH_RES_TIMERS
1163 WARN_ON_ONCE(timer
->cb_mode
== HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
);
1165 timer_stats_account_hrtimer(timer
);
1167 fn
= timer
->function
;
1168 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1169 spin_unlock_irq(&cpu_base
->lock
);
1171 restart
= fn(timer
);
1173 spin_lock_irq(&cpu_base
->lock
);
1175 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1176 if (restart
!= HRTIMER_NORESTART
) {
1177 BUG_ON(hrtimer_active(timer
));
1178 enqueue_hrtimer(timer
, base
, 0);
1181 spin_unlock_irq(&cpu_base
->lock
);
1185 * Called from timer softirq every jiffy, expire hrtimers:
1187 * For HRT its the fall back code to run the softirq in the timer
1188 * softirq context in case the hrtimer initialization failed or has
1189 * not been done yet.
1191 void hrtimer_run_queues(void)
1193 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1196 if (hrtimer_hres_active())
1200 * This _is_ ugly: We have to check in the softirq context,
1201 * whether we can switch to highres and / or nohz mode. The
1202 * clocksource switch happens in the timer interrupt with
1203 * xtime_lock held. Notification from there only sets the
1204 * check bit in the tick_oneshot code, otherwise we might
1205 * deadlock vs. xtime_lock.
1207 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1208 if (hrtimer_switch_to_hres())
1211 hrtimer_get_softirq_time(cpu_base
);
1213 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
1214 run_hrtimer_queue(cpu_base
, i
);
1218 * Sleep related functions:
1220 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1222 struct hrtimer_sleeper
*t
=
1223 container_of(timer
, struct hrtimer_sleeper
, timer
);
1224 struct task_struct
*task
= t
->task
;
1228 wake_up_process(task
);
1230 return HRTIMER_NORESTART
;
1233 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1235 sl
->timer
.function
= hrtimer_wakeup
;
1237 #ifdef CONFIG_HIGH_RES_TIMERS
1238 sl
->timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_RESTART
;
1242 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1244 hrtimer_init_sleeper(t
, current
);
1247 set_current_state(TASK_INTERRUPTIBLE
);
1248 hrtimer_start(&t
->timer
, t
->timer
.expires
, mode
);
1250 if (likely(t
->task
))
1253 hrtimer_cancel(&t
->timer
);
1254 mode
= HRTIMER_MODE_ABS
;
1256 } while (t
->task
&& !signal_pending(current
));
1258 return t
->task
== NULL
;
1261 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1263 struct hrtimer_sleeper t
;
1264 struct timespec __user
*rmtp
;
1268 restart
->fn
= do_no_restart_syscall
;
1270 hrtimer_init(&t
.timer
, restart
->arg0
, HRTIMER_MODE_ABS
);
1271 t
.timer
.expires
.tv64
= ((u64
)restart
->arg3
<< 32) | (u64
) restart
->arg2
;
1273 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1276 rmtp
= (struct timespec __user
*) restart
->arg1
;
1278 time
= ktime_sub(t
.timer
.expires
, t
.timer
.base
->get_time());
1281 tu
= ktime_to_timespec(time
);
1282 if (copy_to_user(rmtp
, &tu
, sizeof(tu
)))
1286 restart
->fn
= hrtimer_nanosleep_restart
;
1288 /* The other values in restart are already filled in */
1289 return -ERESTART_RESTARTBLOCK
;
1292 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1293 const enum hrtimer_mode mode
, const clockid_t clockid
)
1295 struct restart_block
*restart
;
1296 struct hrtimer_sleeper t
;
1300 hrtimer_init(&t
.timer
, clockid
, mode
);
1301 t
.timer
.expires
= timespec_to_ktime(*rqtp
);
1302 if (do_nanosleep(&t
, mode
))
1305 /* Absolute timers do not update the rmtp value and restart: */
1306 if (mode
== HRTIMER_MODE_ABS
)
1307 return -ERESTARTNOHAND
;
1310 rem
= ktime_sub(t
.timer
.expires
, t
.timer
.base
->get_time());
1313 tu
= ktime_to_timespec(rem
);
1314 if (copy_to_user(rmtp
, &tu
, sizeof(tu
)))
1318 restart
= ¤t_thread_info()->restart_block
;
1319 restart
->fn
= hrtimer_nanosleep_restart
;
1320 restart
->arg0
= (unsigned long) t
.timer
.base
->index
;
1321 restart
->arg1
= (unsigned long) rmtp
;
1322 restart
->arg2
= t
.timer
.expires
.tv64
& 0xFFFFFFFF;
1323 restart
->arg3
= t
.timer
.expires
.tv64
>> 32;
1325 return -ERESTART_RESTARTBLOCK
;
1329 sys_nanosleep(struct timespec __user
*rqtp
, struct timespec __user
*rmtp
)
1333 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1336 if (!timespec_valid(&tu
))
1339 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1343 * Functions related to boot-time initialization:
1345 static void __devinit
init_hrtimers_cpu(int cpu
)
1347 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1350 spin_lock_init(&cpu_base
->lock
);
1351 lockdep_set_class(&cpu_base
->lock
, &cpu_base
->lock_key
);
1353 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
1354 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1356 hrtimer_init_hres(cpu_base
);
1359 #ifdef CONFIG_HOTPLUG_CPU
1361 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1362 struct hrtimer_clock_base
*new_base
)
1364 struct hrtimer
*timer
;
1365 struct rb_node
*node
;
1367 while ((node
= rb_first(&old_base
->active
))) {
1368 timer
= rb_entry(node
, struct hrtimer
, node
);
1369 BUG_ON(hrtimer_callback_running(timer
));
1370 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_INACTIVE
, 0);
1371 timer
->base
= new_base
;
1373 * Enqueue the timer. Allow reprogramming of the event device
1375 enqueue_hrtimer(timer
, new_base
, 1);
1379 static void migrate_hrtimers(int cpu
)
1381 struct hrtimer_cpu_base
*old_base
, *new_base
;
1384 BUG_ON(cpu_online(cpu
));
1385 old_base
= &per_cpu(hrtimer_bases
, cpu
);
1386 new_base
= &get_cpu_var(hrtimer_bases
);
1388 tick_cancel_sched_timer(cpu
);
1390 local_irq_disable();
1391 double_spin_lock(&new_base
->lock
, &old_base
->lock
,
1392 smp_processor_id() < cpu
);
1394 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1395 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1396 &new_base
->clock_base
[i
]);
1399 double_spin_unlock(&new_base
->lock
, &old_base
->lock
,
1400 smp_processor_id() < cpu
);
1402 put_cpu_var(hrtimer_bases
);
1404 #endif /* CONFIG_HOTPLUG_CPU */
1406 static int __cpuinit
hrtimer_cpu_notify(struct notifier_block
*self
,
1407 unsigned long action
, void *hcpu
)
1409 long cpu
= (long)hcpu
;
1413 case CPU_UP_PREPARE
:
1414 init_hrtimers_cpu(cpu
);
1417 #ifdef CONFIG_HOTPLUG_CPU
1419 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &cpu
);
1420 migrate_hrtimers(cpu
);
1431 static struct notifier_block __cpuinitdata hrtimers_nb
= {
1432 .notifier_call
= hrtimer_cpu_notify
,
1435 void __init
hrtimers_init(void)
1437 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1438 (void *)(long)smp_processor_id());
1439 register_cpu_notifier(&hrtimers_nb
);
1440 #ifdef CONFIG_HIGH_RES_TIMERS
1441 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
, NULL
);