2 * linux/fs/jbd/revoke.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
6 * Copyright 2000 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Journal revoke routines for the generic filesystem journaling code;
13 * part of the ext2fs journaling system.
15 * Revoke is the mechanism used to prevent old log records for deleted
16 * metadata from being replayed on top of newer data using the same
17 * blocks. The revoke mechanism is used in two separate places:
19 * + Commit: during commit we write the entire list of the current
20 * transaction's revoked blocks to the journal
22 * + Recovery: during recovery we record the transaction ID of all
23 * revoked blocks. If there are multiple revoke records in the log
24 * for a single block, only the last one counts, and if there is a log
25 * entry for a block beyond the last revoke, then that log entry still
28 * We can get interactions between revokes and new log data within a
31 * Block is revoked and then journaled:
32 * The desired end result is the journaling of the new block, so we
33 * cancel the revoke before the transaction commits.
35 * Block is journaled and then revoked:
36 * The revoke must take precedence over the write of the block, so we
37 * need either to cancel the journal entry or to write the revoke
38 * later in the log than the log block. In this case, we choose the
39 * latter: journaling a block cancels any revoke record for that block
40 * in the current transaction, so any revoke for that block in the
41 * transaction must have happened after the block was journaled and so
42 * the revoke must take precedence.
44 * Block is revoked and then written as data:
45 * The data write is allowed to succeed, but the revoke is _not_
46 * cancelled. We still need to prevent old log records from
47 * overwriting the new data. We don't even need to clear the revoke
50 * Revoke information on buffers is a tri-state value:
52 * RevokeValid clear: no cached revoke status, need to look it up
53 * RevokeValid set, Revoked clear:
54 * buffer has not been revoked, and cancel_revoke
56 * RevokeValid set, Revoked set:
57 * buffer has been revoked.
63 #include <linux/time.h>
65 #include <linux/jbd.h>
66 #include <linux/errno.h>
67 #include <linux/slab.h>
68 #include <linux/list.h>
69 #include <linux/init.h>
71 #include <linux/log2.h>
73 static struct kmem_cache
*revoke_record_cache
;
74 static struct kmem_cache
*revoke_table_cache
;
76 /* Each revoke record represents one single revoked block. During
77 journal replay, this involves recording the transaction ID of the
78 last transaction to revoke this block. */
80 struct jbd_revoke_record_s
82 struct list_head hash
;
83 tid_t sequence
; /* Used for recovery only */
84 unsigned long blocknr
;
88 /* The revoke table is just a simple hash table of revoke records. */
89 struct jbd_revoke_table_s
91 /* It is conceivable that we might want a larger hash table
92 * for recovery. Must be a power of two. */
95 struct list_head
*hash_table
;
100 static void write_one_revoke_record(journal_t
*, transaction_t
*,
101 struct journal_head
**, int *,
102 struct jbd_revoke_record_s
*);
103 static void flush_descriptor(journal_t
*, struct journal_head
*, int);
106 /* Utility functions to maintain the revoke table */
108 /* Borrowed from buffer.c: this is a tried and tested block hash function */
109 static inline int hash(journal_t
*journal
, unsigned long block
)
111 struct jbd_revoke_table_s
*table
= journal
->j_revoke
;
112 int hash_shift
= table
->hash_shift
;
114 return ((block
<< (hash_shift
- 6)) ^
116 (block
<< (hash_shift
- 12))) & (table
->hash_size
- 1);
119 static int insert_revoke_hash(journal_t
*journal
, unsigned long blocknr
,
122 struct list_head
*hash_list
;
123 struct jbd_revoke_record_s
*record
;
126 record
= kmem_cache_alloc(revoke_record_cache
, GFP_NOFS
);
130 record
->sequence
= seq
;
131 record
->blocknr
= blocknr
;
132 hash_list
= &journal
->j_revoke
->hash_table
[hash(journal
, blocknr
)];
133 spin_lock(&journal
->j_revoke_lock
);
134 list_add(&record
->hash
, hash_list
);
135 spin_unlock(&journal
->j_revoke_lock
);
139 if (!journal_oom_retry
)
141 jbd_debug(1, "ENOMEM in %s, retrying\n", __func__
);
146 /* Find a revoke record in the journal's hash table. */
148 static struct jbd_revoke_record_s
*find_revoke_record(journal_t
*journal
,
149 unsigned long blocknr
)
151 struct list_head
*hash_list
;
152 struct jbd_revoke_record_s
*record
;
154 hash_list
= &journal
->j_revoke
->hash_table
[hash(journal
, blocknr
)];
156 spin_lock(&journal
->j_revoke_lock
);
157 record
= (struct jbd_revoke_record_s
*) hash_list
->next
;
158 while (&(record
->hash
) != hash_list
) {
159 if (record
->blocknr
== blocknr
) {
160 spin_unlock(&journal
->j_revoke_lock
);
163 record
= (struct jbd_revoke_record_s
*) record
->hash
.next
;
165 spin_unlock(&journal
->j_revoke_lock
);
169 int __init
journal_init_revoke_caches(void)
171 revoke_record_cache
= kmem_cache_create("revoke_record",
172 sizeof(struct jbd_revoke_record_s
),
174 SLAB_HWCACHE_ALIGN
|SLAB_TEMPORARY
,
176 if (!revoke_record_cache
)
179 revoke_table_cache
= kmem_cache_create("revoke_table",
180 sizeof(struct jbd_revoke_table_s
),
181 0, SLAB_TEMPORARY
, NULL
);
182 if (!revoke_table_cache
) {
183 kmem_cache_destroy(revoke_record_cache
);
184 revoke_record_cache
= NULL
;
190 void journal_destroy_revoke_caches(void)
192 kmem_cache_destroy(revoke_record_cache
);
193 revoke_record_cache
= NULL
;
194 kmem_cache_destroy(revoke_table_cache
);
195 revoke_table_cache
= NULL
;
198 /* Initialise the revoke table for a given journal to a given size. */
200 int journal_init_revoke(journal_t
*journal
, int hash_size
)
204 J_ASSERT (journal
->j_revoke_table
[0] == NULL
);
208 while((tmp
>>= 1UL) != 0UL)
211 journal
->j_revoke_table
[0] = kmem_cache_alloc(revoke_table_cache
, GFP_KERNEL
);
212 if (!journal
->j_revoke_table
[0])
214 journal
->j_revoke
= journal
->j_revoke_table
[0];
216 /* Check that the hash_size is a power of two */
217 J_ASSERT(is_power_of_2(hash_size
));
219 journal
->j_revoke
->hash_size
= hash_size
;
221 journal
->j_revoke
->hash_shift
= shift
;
223 journal
->j_revoke
->hash_table
=
224 kmalloc(hash_size
* sizeof(struct list_head
), GFP_KERNEL
);
225 if (!journal
->j_revoke
->hash_table
) {
226 kmem_cache_free(revoke_table_cache
, journal
->j_revoke_table
[0]);
227 journal
->j_revoke
= NULL
;
231 for (tmp
= 0; tmp
< hash_size
; tmp
++)
232 INIT_LIST_HEAD(&journal
->j_revoke
->hash_table
[tmp
]);
234 journal
->j_revoke_table
[1] = kmem_cache_alloc(revoke_table_cache
, GFP_KERNEL
);
235 if (!journal
->j_revoke_table
[1]) {
236 kfree(journal
->j_revoke_table
[0]->hash_table
);
237 kmem_cache_free(revoke_table_cache
, journal
->j_revoke_table
[0]);
241 journal
->j_revoke
= journal
->j_revoke_table
[1];
243 /* Check that the hash_size is a power of two */
244 J_ASSERT(is_power_of_2(hash_size
));
246 journal
->j_revoke
->hash_size
= hash_size
;
248 journal
->j_revoke
->hash_shift
= shift
;
250 journal
->j_revoke
->hash_table
=
251 kmalloc(hash_size
* sizeof(struct list_head
), GFP_KERNEL
);
252 if (!journal
->j_revoke
->hash_table
) {
253 kfree(journal
->j_revoke_table
[0]->hash_table
);
254 kmem_cache_free(revoke_table_cache
, journal
->j_revoke_table
[0]);
255 kmem_cache_free(revoke_table_cache
, journal
->j_revoke_table
[1]);
256 journal
->j_revoke
= NULL
;
260 for (tmp
= 0; tmp
< hash_size
; tmp
++)
261 INIT_LIST_HEAD(&journal
->j_revoke
->hash_table
[tmp
]);
263 spin_lock_init(&journal
->j_revoke_lock
);
268 /* Destoy a journal's revoke table. The table must already be empty! */
270 void journal_destroy_revoke(journal_t
*journal
)
272 struct jbd_revoke_table_s
*table
;
273 struct list_head
*hash_list
;
276 table
= journal
->j_revoke_table
[0];
280 for (i
=0; i
<table
->hash_size
; i
++) {
281 hash_list
= &table
->hash_table
[i
];
282 J_ASSERT (list_empty(hash_list
));
285 kfree(table
->hash_table
);
286 kmem_cache_free(revoke_table_cache
, table
);
287 journal
->j_revoke
= NULL
;
289 table
= journal
->j_revoke_table
[1];
293 for (i
=0; i
<table
->hash_size
; i
++) {
294 hash_list
= &table
->hash_table
[i
];
295 J_ASSERT (list_empty(hash_list
));
298 kfree(table
->hash_table
);
299 kmem_cache_free(revoke_table_cache
, table
);
300 journal
->j_revoke
= NULL
;
307 * journal_revoke: revoke a given buffer_head from the journal. This
308 * prevents the block from being replayed during recovery if we take a
309 * crash after this current transaction commits. Any subsequent
310 * metadata writes of the buffer in this transaction cancel the
313 * Note that this call may block --- it is up to the caller to make
314 * sure that there are no further calls to journal_write_metadata
315 * before the revoke is complete. In ext3, this implies calling the
316 * revoke before clearing the block bitmap when we are deleting
319 * Revoke performs a journal_forget on any buffer_head passed in as a
320 * parameter, but does _not_ forget the buffer_head if the bh was only
323 * bh_in may not be a journalled buffer - it may have come off
324 * the hash tables without an attached journal_head.
326 * If bh_in is non-zero, journal_revoke() will decrement its b_count
330 int journal_revoke(handle_t
*handle
, unsigned long blocknr
,
331 struct buffer_head
*bh_in
)
333 struct buffer_head
*bh
= NULL
;
335 struct block_device
*bdev
;
340 BUFFER_TRACE(bh_in
, "enter");
342 journal
= handle
->h_transaction
->t_journal
;
343 if (!journal_set_features(journal
, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE
)){
344 J_ASSERT (!"Cannot set revoke feature!");
348 bdev
= journal
->j_fs_dev
;
352 bh
= __find_get_block(bdev
, blocknr
, journal
->j_blocksize
);
354 BUFFER_TRACE(bh
, "found on hash");
356 #ifdef JBD_EXPENSIVE_CHECKING
358 struct buffer_head
*bh2
;
360 /* If there is a different buffer_head lying around in
361 * memory anywhere... */
362 bh2
= __find_get_block(bdev
, blocknr
, journal
->j_blocksize
);
364 /* ... and it has RevokeValid status... */
365 if (bh2
!= bh
&& buffer_revokevalid(bh2
))
366 /* ...then it better be revoked too,
367 * since it's illegal to create a revoke
368 * record against a buffer_head which is
369 * not marked revoked --- that would
370 * risk missing a subsequent revoke
372 J_ASSERT_BH(bh2
, buffer_revoked(bh2
));
378 /* We really ought not ever to revoke twice in a row without
379 first having the revoke cancelled: it's illegal to free a
380 block twice without allocating it in between! */
382 if (!J_EXPECT_BH(bh
, !buffer_revoked(bh
),
383 "inconsistent data on disk")) {
388 set_buffer_revoked(bh
);
389 set_buffer_revokevalid(bh
);
391 BUFFER_TRACE(bh_in
, "call journal_forget");
392 journal_forget(handle
, bh_in
);
394 BUFFER_TRACE(bh
, "call brelse");
399 jbd_debug(2, "insert revoke for block %lu, bh_in=%p\n", blocknr
, bh_in
);
400 err
= insert_revoke_hash(journal
, blocknr
,
401 handle
->h_transaction
->t_tid
);
402 BUFFER_TRACE(bh_in
, "exit");
407 * Cancel an outstanding revoke. For use only internally by the
408 * journaling code (called from journal_get_write_access).
410 * We trust buffer_revoked() on the buffer if the buffer is already
411 * being journaled: if there is no revoke pending on the buffer, then we
412 * don't do anything here.
414 * This would break if it were possible for a buffer to be revoked and
415 * discarded, and then reallocated within the same transaction. In such
416 * a case we would have lost the revoked bit, but when we arrived here
417 * the second time we would still have a pending revoke to cancel. So,
418 * do not trust the Revoked bit on buffers unless RevokeValid is also
421 * The caller must have the journal locked.
423 int journal_cancel_revoke(handle_t
*handle
, struct journal_head
*jh
)
425 struct jbd_revoke_record_s
*record
;
426 journal_t
*journal
= handle
->h_transaction
->t_journal
;
428 int did_revoke
= 0; /* akpm: debug */
429 struct buffer_head
*bh
= jh2bh(jh
);
431 jbd_debug(4, "journal_head %p, cancelling revoke\n", jh
);
433 /* Is the existing Revoke bit valid? If so, we trust it, and
434 * only perform the full cancel if the revoke bit is set. If
435 * not, we can't trust the revoke bit, and we need to do the
436 * full search for a revoke record. */
437 if (test_set_buffer_revokevalid(bh
)) {
438 need_cancel
= test_clear_buffer_revoked(bh
);
441 clear_buffer_revoked(bh
);
445 record
= find_revoke_record(journal
, bh
->b_blocknr
);
447 jbd_debug(4, "cancelled existing revoke on "
448 "blocknr %llu\n", (unsigned long long)bh
->b_blocknr
);
449 spin_lock(&journal
->j_revoke_lock
);
450 list_del(&record
->hash
);
451 spin_unlock(&journal
->j_revoke_lock
);
452 kmem_cache_free(revoke_record_cache
, record
);
457 #ifdef JBD_EXPENSIVE_CHECKING
458 /* There better not be one left behind by now! */
459 record
= find_revoke_record(journal
, bh
->b_blocknr
);
460 J_ASSERT_JH(jh
, record
== NULL
);
463 /* Finally, have we just cleared revoke on an unhashed
464 * buffer_head? If so, we'd better make sure we clear the
465 * revoked status on any hashed alias too, otherwise the revoke
466 * state machine will get very upset later on. */
468 struct buffer_head
*bh2
;
469 bh2
= __find_get_block(bh
->b_bdev
, bh
->b_blocknr
, bh
->b_size
);
472 clear_buffer_revoked(bh2
);
479 /* journal_switch_revoke table select j_revoke for next transaction
480 * we do not want to suspend any processing until all revokes are
483 void journal_switch_revoke_table(journal_t
*journal
)
487 if (journal
->j_revoke
== journal
->j_revoke_table
[0])
488 journal
->j_revoke
= journal
->j_revoke_table
[1];
490 journal
->j_revoke
= journal
->j_revoke_table
[0];
492 for (i
= 0; i
< journal
->j_revoke
->hash_size
; i
++)
493 INIT_LIST_HEAD(&journal
->j_revoke
->hash_table
[i
]);
497 * Write revoke records to the journal for all entries in the current
498 * revoke hash, deleting the entries as we go.
500 * Called with the journal lock held.
503 void journal_write_revoke_records(journal_t
*journal
,
504 transaction_t
*transaction
)
506 struct journal_head
*descriptor
;
507 struct jbd_revoke_record_s
*record
;
508 struct jbd_revoke_table_s
*revoke
;
509 struct list_head
*hash_list
;
510 int i
, offset
, count
;
516 /* select revoke table for committing transaction */
517 revoke
= journal
->j_revoke
== journal
->j_revoke_table
[0] ?
518 journal
->j_revoke_table
[1] : journal
->j_revoke_table
[0];
520 for (i
= 0; i
< revoke
->hash_size
; i
++) {
521 hash_list
= &revoke
->hash_table
[i
];
523 while (!list_empty(hash_list
)) {
524 record
= (struct jbd_revoke_record_s
*)
526 write_one_revoke_record(journal
, transaction
,
527 &descriptor
, &offset
,
530 list_del(&record
->hash
);
531 kmem_cache_free(revoke_record_cache
, record
);
535 flush_descriptor(journal
, descriptor
, offset
);
536 jbd_debug(1, "Wrote %d revoke records\n", count
);
540 * Write out one revoke record. We need to create a new descriptor
541 * block if the old one is full or if we have not already created one.
544 static void write_one_revoke_record(journal_t
*journal
,
545 transaction_t
*transaction
,
546 struct journal_head
**descriptorp
,
548 struct jbd_revoke_record_s
*record
)
550 struct journal_head
*descriptor
;
552 journal_header_t
*header
;
554 /* If we are already aborting, this all becomes a noop. We
555 still need to go round the loop in
556 journal_write_revoke_records in order to free all of the
557 revoke records: only the IO to the journal is omitted. */
558 if (is_journal_aborted(journal
))
561 descriptor
= *descriptorp
;
564 /* Make sure we have a descriptor with space left for the record */
566 if (offset
== journal
->j_blocksize
) {
567 flush_descriptor(journal
, descriptor
, offset
);
573 descriptor
= journal_get_descriptor_buffer(journal
);
576 header
= (journal_header_t
*) &jh2bh(descriptor
)->b_data
[0];
577 header
->h_magic
= cpu_to_be32(JFS_MAGIC_NUMBER
);
578 header
->h_blocktype
= cpu_to_be32(JFS_REVOKE_BLOCK
);
579 header
->h_sequence
= cpu_to_be32(transaction
->t_tid
);
581 /* Record it so that we can wait for IO completion later */
582 JBUFFER_TRACE(descriptor
, "file as BJ_LogCtl");
583 journal_file_buffer(descriptor
, transaction
, BJ_LogCtl
);
585 offset
= sizeof(journal_revoke_header_t
);
586 *descriptorp
= descriptor
;
589 * ((__be32
*)(&jh2bh(descriptor
)->b_data
[offset
])) =
590 cpu_to_be32(record
->blocknr
);
596 * Flush a revoke descriptor out to the journal. If we are aborting,
597 * this is a noop; otherwise we are generating a buffer which needs to
598 * be waited for during commit, so it has to go onto the appropriate
599 * journal buffer list.
602 static void flush_descriptor(journal_t
*journal
,
603 struct journal_head
*descriptor
,
606 journal_revoke_header_t
*header
;
607 struct buffer_head
*bh
= jh2bh(descriptor
);
609 if (is_journal_aborted(journal
)) {
614 header
= (journal_revoke_header_t
*) jh2bh(descriptor
)->b_data
;
615 header
->r_count
= cpu_to_be32(offset
);
616 set_buffer_jwrite(bh
);
617 BUFFER_TRACE(bh
, "write");
618 set_buffer_dirty(bh
);
619 ll_rw_block(SWRITE
, 1, &bh
);
624 * Revoke support for recovery.
626 * Recovery needs to be able to:
628 * record all revoke records, including the tid of the latest instance
629 * of each revoke in the journal
631 * check whether a given block in a given transaction should be replayed
632 * (ie. has not been revoked by a revoke record in that or a subsequent
635 * empty the revoke table after recovery.
639 * First, setting revoke records. We create a new revoke record for
640 * every block ever revoked in the log as we scan it for recovery, and
641 * we update the existing records if we find multiple revokes for a
645 int journal_set_revoke(journal_t
*journal
,
646 unsigned long blocknr
,
649 struct jbd_revoke_record_s
*record
;
651 record
= find_revoke_record(journal
, blocknr
);
653 /* If we have multiple occurrences, only record the
654 * latest sequence number in the hashed record */
655 if (tid_gt(sequence
, record
->sequence
))
656 record
->sequence
= sequence
;
659 return insert_revoke_hash(journal
, blocknr
, sequence
);
663 * Test revoke records. For a given block referenced in the log, has
664 * that block been revoked? A revoke record with a given transaction
665 * sequence number revokes all blocks in that transaction and earlier
666 * ones, but later transactions still need replayed.
669 int journal_test_revoke(journal_t
*journal
,
670 unsigned long blocknr
,
673 struct jbd_revoke_record_s
*record
;
675 record
= find_revoke_record(journal
, blocknr
);
678 if (tid_gt(sequence
, record
->sequence
))
684 * Finally, once recovery is over, we need to clear the revoke table so
685 * that it can be reused by the running filesystem.
688 void journal_clear_revoke(journal_t
*journal
)
691 struct list_head
*hash_list
;
692 struct jbd_revoke_record_s
*record
;
693 struct jbd_revoke_table_s
*revoke
;
695 revoke
= journal
->j_revoke
;
697 for (i
= 0; i
< revoke
->hash_size
; i
++) {
698 hash_list
= &revoke
->hash_table
[i
];
699 while (!list_empty(hash_list
)) {
700 record
= (struct jbd_revoke_record_s
*) hash_list
->next
;
701 list_del(&record
->hash
);
702 kmem_cache_free(revoke_record_cache
, record
);