SG: work with the SCSI fixed maximum allocations.
[linux-2.6/mini2440.git] / drivers / scsi / scsi_lib.c
blobeb4911a6164116119067282d37c0fe36e8c56a8f
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/scatterlist.h>
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_cmnd.h>
24 #include <scsi/scsi_dbg.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_driver.h>
27 #include <scsi/scsi_eh.h>
28 #include <scsi/scsi_host.h>
30 #include "scsi_priv.h"
31 #include "scsi_logging.h"
34 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
35 #define SG_MEMPOOL_SIZE 2
38 * The maximum number of SG segments that we will put inside a scatterlist
39 * (unless chaining is used). Should ideally fit inside a single page, to
40 * avoid a higher order allocation.
42 #define SCSI_MAX_SG_SEGMENTS 128
44 struct scsi_host_sg_pool {
45 size_t size;
46 char *name;
47 struct kmem_cache *slab;
48 mempool_t *pool;
51 #define SP(x) { x, "sgpool-" #x }
52 static struct scsi_host_sg_pool scsi_sg_pools[] = {
53 SP(8),
54 SP(16),
55 #if (SCSI_MAX_SG_SEGMENTS > 16)
56 SP(32),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58 SP(64),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60 SP(128),
61 #endif
62 #endif
63 #endif
65 #undef SP
67 static void scsi_run_queue(struct request_queue *q);
70 * Function: scsi_unprep_request()
72 * Purpose: Remove all preparation done for a request, including its
73 * associated scsi_cmnd, so that it can be requeued.
75 * Arguments: req - request to unprepare
77 * Lock status: Assumed that no locks are held upon entry.
79 * Returns: Nothing.
81 static void scsi_unprep_request(struct request *req)
83 struct scsi_cmnd *cmd = req->special;
85 req->cmd_flags &= ~REQ_DONTPREP;
86 req->special = NULL;
88 scsi_put_command(cmd);
92 * Function: scsi_queue_insert()
94 * Purpose: Insert a command in the midlevel queue.
96 * Arguments: cmd - command that we are adding to queue.
97 * reason - why we are inserting command to queue.
99 * Lock status: Assumed that lock is not held upon entry.
101 * Returns: Nothing.
103 * Notes: We do this for one of two cases. Either the host is busy
104 * and it cannot accept any more commands for the time being,
105 * or the device returned QUEUE_FULL and can accept no more
106 * commands.
107 * Notes: This could be called either from an interrupt context or a
108 * normal process context.
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
112 struct Scsi_Host *host = cmd->device->host;
113 struct scsi_device *device = cmd->device;
114 struct request_queue *q = device->request_queue;
115 unsigned long flags;
117 SCSI_LOG_MLQUEUE(1,
118 printk("Inserting command %p into mlqueue\n", cmd));
121 * Set the appropriate busy bit for the device/host.
123 * If the host/device isn't busy, assume that something actually
124 * completed, and that we should be able to queue a command now.
126 * Note that the prior mid-layer assumption that any host could
127 * always queue at least one command is now broken. The mid-layer
128 * will implement a user specifiable stall (see
129 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 * if a command is requeued with no other commands outstanding
131 * either for the device or for the host.
133 if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 host->host_blocked = host->max_host_blocked;
135 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 device->device_blocked = device->max_device_blocked;
139 * Decrement the counters, since these commands are no longer
140 * active on the host/device.
142 scsi_device_unbusy(device);
145 * Requeue this command. It will go before all other commands
146 * that are already in the queue.
148 * NOTE: there is magic here about the way the queue is plugged if
149 * we have no outstanding commands.
151 * Although we *don't* plug the queue, we call the request
152 * function. The SCSI request function detects the blocked condition
153 * and plugs the queue appropriately.
155 spin_lock_irqsave(q->queue_lock, flags);
156 blk_requeue_request(q, cmd->request);
157 spin_unlock_irqrestore(q->queue_lock, flags);
159 scsi_run_queue(q);
161 return 0;
165 * scsi_execute - insert request and wait for the result
166 * @sdev: scsi device
167 * @cmd: scsi command
168 * @data_direction: data direction
169 * @buffer: data buffer
170 * @bufflen: len of buffer
171 * @sense: optional sense buffer
172 * @timeout: request timeout in seconds
173 * @retries: number of times to retry request
174 * @flags: or into request flags;
176 * returns the req->errors value which is the scsi_cmnd result
177 * field.
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180 int data_direction, void *buffer, unsigned bufflen,
181 unsigned char *sense, int timeout, int retries, int flags)
183 struct request *req;
184 int write = (data_direction == DMA_TO_DEVICE);
185 int ret = DRIVER_ERROR << 24;
187 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
189 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
190 buffer, bufflen, __GFP_WAIT))
191 goto out;
193 req->cmd_len = COMMAND_SIZE(cmd[0]);
194 memcpy(req->cmd, cmd, req->cmd_len);
195 req->sense = sense;
196 req->sense_len = 0;
197 req->retries = retries;
198 req->timeout = timeout;
199 req->cmd_type = REQ_TYPE_BLOCK_PC;
200 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
203 * head injection *required* here otherwise quiesce won't work
205 blk_execute_rq(req->q, NULL, req, 1);
207 ret = req->errors;
208 out:
209 blk_put_request(req);
211 return ret;
213 EXPORT_SYMBOL(scsi_execute);
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217 int data_direction, void *buffer, unsigned bufflen,
218 struct scsi_sense_hdr *sshdr, int timeout, int retries)
220 char *sense = NULL;
221 int result;
223 if (sshdr) {
224 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225 if (!sense)
226 return DRIVER_ERROR << 24;
228 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229 sense, timeout, retries, 0);
230 if (sshdr)
231 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
233 kfree(sense);
234 return result;
236 EXPORT_SYMBOL(scsi_execute_req);
238 struct scsi_io_context {
239 void *data;
240 void (*done)(void *data, char *sense, int result, int resid);
241 char sense[SCSI_SENSE_BUFFERSIZE];
244 static struct kmem_cache *scsi_io_context_cache;
246 static void scsi_end_async(struct request *req, int uptodate)
248 struct scsi_io_context *sioc = req->end_io_data;
250 if (sioc->done)
251 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
253 kmem_cache_free(scsi_io_context_cache, sioc);
254 __blk_put_request(req->q, req);
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
259 struct request_queue *q = rq->q;
261 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262 if (rq_data_dir(rq) == WRITE)
263 bio->bi_rw |= (1 << BIO_RW);
264 blk_queue_bounce(q, &bio);
266 return blk_rq_append_bio(q, rq, bio);
269 static void scsi_bi_endio(struct bio *bio, int error)
271 bio_put(bio);
275 * scsi_req_map_sg - map a scatterlist into a request
276 * @rq: request to fill
277 * @sgl: scatterlist
278 * @nsegs: number of elements
279 * @bufflen: len of buffer
280 * @gfp: memory allocation flags
282 * scsi_req_map_sg maps a scatterlist into a request so that the
283 * request can be sent to the block layer. We do not trust the scatterlist
284 * sent to use, as some ULDs use that struct to only organize the pages.
286 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
287 int nsegs, unsigned bufflen, gfp_t gfp)
289 struct request_queue *q = rq->q;
290 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
291 unsigned int data_len = bufflen, len, bytes, off;
292 struct scatterlist *sg;
293 struct page *page;
294 struct bio *bio = NULL;
295 int i, err, nr_vecs = 0;
297 for_each_sg(sgl, sg, nsegs, i) {
298 page = sg_page(sg);
299 off = sg->offset;
300 len = sg->length;
301 data_len += len;
303 while (len > 0 && data_len > 0) {
305 * sg sends a scatterlist that is larger than
306 * the data_len it wants transferred for certain
307 * IO sizes
309 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
310 bytes = min(bytes, data_len);
312 if (!bio) {
313 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
314 nr_pages -= nr_vecs;
316 bio = bio_alloc(gfp, nr_vecs);
317 if (!bio) {
318 err = -ENOMEM;
319 goto free_bios;
321 bio->bi_end_io = scsi_bi_endio;
324 if (bio_add_pc_page(q, bio, page, bytes, off) !=
325 bytes) {
326 bio_put(bio);
327 err = -EINVAL;
328 goto free_bios;
331 if (bio->bi_vcnt >= nr_vecs) {
332 err = scsi_merge_bio(rq, bio);
333 if (err) {
334 bio_endio(bio, 0);
335 goto free_bios;
337 bio = NULL;
340 page++;
341 len -= bytes;
342 data_len -=bytes;
343 off = 0;
347 rq->buffer = rq->data = NULL;
348 rq->data_len = bufflen;
349 return 0;
351 free_bios:
352 while ((bio = rq->bio) != NULL) {
353 rq->bio = bio->bi_next;
355 * call endio instead of bio_put incase it was bounced
357 bio_endio(bio, 0);
360 return err;
364 * scsi_execute_async - insert request
365 * @sdev: scsi device
366 * @cmd: scsi command
367 * @cmd_len: length of scsi cdb
368 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
369 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
370 * @bufflen: len of buffer
371 * @use_sg: if buffer is a scatterlist this is the number of elements
372 * @timeout: request timeout in seconds
373 * @retries: number of times to retry request
374 * @privdata: data passed to done()
375 * @done: callback function when done
376 * @gfp: memory allocation flags
378 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
379 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
380 int use_sg, int timeout, int retries, void *privdata,
381 void (*done)(void *, char *, int, int), gfp_t gfp)
383 struct request *req;
384 struct scsi_io_context *sioc;
385 int err = 0;
386 int write = (data_direction == DMA_TO_DEVICE);
388 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
389 if (!sioc)
390 return DRIVER_ERROR << 24;
392 req = blk_get_request(sdev->request_queue, write, gfp);
393 if (!req)
394 goto free_sense;
395 req->cmd_type = REQ_TYPE_BLOCK_PC;
396 req->cmd_flags |= REQ_QUIET;
398 if (use_sg)
399 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
400 else if (bufflen)
401 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
403 if (err)
404 goto free_req;
406 req->cmd_len = cmd_len;
407 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
408 memcpy(req->cmd, cmd, req->cmd_len);
409 req->sense = sioc->sense;
410 req->sense_len = 0;
411 req->timeout = timeout;
412 req->retries = retries;
413 req->end_io_data = sioc;
415 sioc->data = privdata;
416 sioc->done = done;
418 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
419 return 0;
421 free_req:
422 blk_put_request(req);
423 free_sense:
424 kmem_cache_free(scsi_io_context_cache, sioc);
425 return DRIVER_ERROR << 24;
427 EXPORT_SYMBOL_GPL(scsi_execute_async);
430 * Function: scsi_init_cmd_errh()
432 * Purpose: Initialize cmd fields related to error handling.
434 * Arguments: cmd - command that is ready to be queued.
436 * Notes: This function has the job of initializing a number of
437 * fields related to error handling. Typically this will
438 * be called once for each command, as required.
440 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
442 cmd->serial_number = 0;
443 cmd->resid = 0;
444 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
445 if (cmd->cmd_len == 0)
446 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
449 void scsi_device_unbusy(struct scsi_device *sdev)
451 struct Scsi_Host *shost = sdev->host;
452 unsigned long flags;
454 spin_lock_irqsave(shost->host_lock, flags);
455 shost->host_busy--;
456 if (unlikely(scsi_host_in_recovery(shost) &&
457 (shost->host_failed || shost->host_eh_scheduled)))
458 scsi_eh_wakeup(shost);
459 spin_unlock(shost->host_lock);
460 spin_lock(sdev->request_queue->queue_lock);
461 sdev->device_busy--;
462 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
466 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
467 * and call blk_run_queue for all the scsi_devices on the target -
468 * including current_sdev first.
470 * Called with *no* scsi locks held.
472 static void scsi_single_lun_run(struct scsi_device *current_sdev)
474 struct Scsi_Host *shost = current_sdev->host;
475 struct scsi_device *sdev, *tmp;
476 struct scsi_target *starget = scsi_target(current_sdev);
477 unsigned long flags;
479 spin_lock_irqsave(shost->host_lock, flags);
480 starget->starget_sdev_user = NULL;
481 spin_unlock_irqrestore(shost->host_lock, flags);
484 * Call blk_run_queue for all LUNs on the target, starting with
485 * current_sdev. We race with others (to set starget_sdev_user),
486 * but in most cases, we will be first. Ideally, each LU on the
487 * target would get some limited time or requests on the target.
489 blk_run_queue(current_sdev->request_queue);
491 spin_lock_irqsave(shost->host_lock, flags);
492 if (starget->starget_sdev_user)
493 goto out;
494 list_for_each_entry_safe(sdev, tmp, &starget->devices,
495 same_target_siblings) {
496 if (sdev == current_sdev)
497 continue;
498 if (scsi_device_get(sdev))
499 continue;
501 spin_unlock_irqrestore(shost->host_lock, flags);
502 blk_run_queue(sdev->request_queue);
503 spin_lock_irqsave(shost->host_lock, flags);
505 scsi_device_put(sdev);
507 out:
508 spin_unlock_irqrestore(shost->host_lock, flags);
512 * Function: scsi_run_queue()
514 * Purpose: Select a proper request queue to serve next
516 * Arguments: q - last request's queue
518 * Returns: Nothing
520 * Notes: The previous command was completely finished, start
521 * a new one if possible.
523 static void scsi_run_queue(struct request_queue *q)
525 struct scsi_device *sdev = q->queuedata;
526 struct Scsi_Host *shost = sdev->host;
527 unsigned long flags;
529 if (scsi_target(sdev)->single_lun)
530 scsi_single_lun_run(sdev);
532 spin_lock_irqsave(shost->host_lock, flags);
533 while (!list_empty(&shost->starved_list) &&
534 !shost->host_blocked && !shost->host_self_blocked &&
535 !((shost->can_queue > 0) &&
536 (shost->host_busy >= shost->can_queue))) {
538 * As long as shost is accepting commands and we have
539 * starved queues, call blk_run_queue. scsi_request_fn
540 * drops the queue_lock and can add us back to the
541 * starved_list.
543 * host_lock protects the starved_list and starved_entry.
544 * scsi_request_fn must get the host_lock before checking
545 * or modifying starved_list or starved_entry.
547 sdev = list_entry(shost->starved_list.next,
548 struct scsi_device, starved_entry);
549 list_del_init(&sdev->starved_entry);
550 spin_unlock_irqrestore(shost->host_lock, flags);
553 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
554 !test_and_set_bit(QUEUE_FLAG_REENTER,
555 &sdev->request_queue->queue_flags)) {
556 blk_run_queue(sdev->request_queue);
557 clear_bit(QUEUE_FLAG_REENTER,
558 &sdev->request_queue->queue_flags);
559 } else
560 blk_run_queue(sdev->request_queue);
562 spin_lock_irqsave(shost->host_lock, flags);
563 if (unlikely(!list_empty(&sdev->starved_entry)))
565 * sdev lost a race, and was put back on the
566 * starved list. This is unlikely but without this
567 * in theory we could loop forever.
569 break;
571 spin_unlock_irqrestore(shost->host_lock, flags);
573 blk_run_queue(q);
577 * Function: scsi_requeue_command()
579 * Purpose: Handle post-processing of completed commands.
581 * Arguments: q - queue to operate on
582 * cmd - command that may need to be requeued.
584 * Returns: Nothing
586 * Notes: After command completion, there may be blocks left
587 * over which weren't finished by the previous command
588 * this can be for a number of reasons - the main one is
589 * I/O errors in the middle of the request, in which case
590 * we need to request the blocks that come after the bad
591 * sector.
592 * Notes: Upon return, cmd is a stale pointer.
594 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
596 struct request *req = cmd->request;
597 unsigned long flags;
599 scsi_unprep_request(req);
600 spin_lock_irqsave(q->queue_lock, flags);
601 blk_requeue_request(q, req);
602 spin_unlock_irqrestore(q->queue_lock, flags);
604 scsi_run_queue(q);
607 void scsi_next_command(struct scsi_cmnd *cmd)
609 struct scsi_device *sdev = cmd->device;
610 struct request_queue *q = sdev->request_queue;
612 /* need to hold a reference on the device before we let go of the cmd */
613 get_device(&sdev->sdev_gendev);
615 scsi_put_command(cmd);
616 scsi_run_queue(q);
618 /* ok to remove device now */
619 put_device(&sdev->sdev_gendev);
622 void scsi_run_host_queues(struct Scsi_Host *shost)
624 struct scsi_device *sdev;
626 shost_for_each_device(sdev, shost)
627 scsi_run_queue(sdev->request_queue);
631 * Function: scsi_end_request()
633 * Purpose: Post-processing of completed commands (usually invoked at end
634 * of upper level post-processing and scsi_io_completion).
636 * Arguments: cmd - command that is complete.
637 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
638 * bytes - number of bytes of completed I/O
639 * requeue - indicates whether we should requeue leftovers.
641 * Lock status: Assumed that lock is not held upon entry.
643 * Returns: cmd if requeue required, NULL otherwise.
645 * Notes: This is called for block device requests in order to
646 * mark some number of sectors as complete.
648 * We are guaranteeing that the request queue will be goosed
649 * at some point during this call.
650 * Notes: If cmd was requeued, upon return it will be a stale pointer.
652 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
653 int bytes, int requeue)
655 struct request_queue *q = cmd->device->request_queue;
656 struct request *req = cmd->request;
657 unsigned long flags;
660 * If there are blocks left over at the end, set up the command
661 * to queue the remainder of them.
663 if (end_that_request_chunk(req, uptodate, bytes)) {
664 int leftover = (req->hard_nr_sectors << 9);
666 if (blk_pc_request(req))
667 leftover = req->data_len;
669 /* kill remainder if no retrys */
670 if (!uptodate && blk_noretry_request(req))
671 end_that_request_chunk(req, 0, leftover);
672 else {
673 if (requeue) {
675 * Bleah. Leftovers again. Stick the
676 * leftovers in the front of the
677 * queue, and goose the queue again.
679 scsi_requeue_command(q, cmd);
680 cmd = NULL;
682 return cmd;
686 add_disk_randomness(req->rq_disk);
688 spin_lock_irqsave(q->queue_lock, flags);
689 if (blk_rq_tagged(req))
690 blk_queue_end_tag(q, req);
691 end_that_request_last(req, uptodate);
692 spin_unlock_irqrestore(q->queue_lock, flags);
695 * This will goose the queue request function at the end, so we don't
696 * need to worry about launching another command.
698 scsi_next_command(cmd);
699 return NULL;
703 * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
704 * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
706 #define SCSI_MAX_SG_CHAIN_SEGMENTS 2048
708 static inline unsigned int scsi_sgtable_index(unsigned short nents)
710 unsigned int index;
712 switch (nents) {
713 case 1 ... 8:
714 index = 0;
715 break;
716 case 9 ... 16:
717 index = 1;
718 break;
719 #if (SCSI_MAX_SG_SEGMENTS > 16)
720 case 17 ... 32:
721 index = 2;
722 break;
723 #if (SCSI_MAX_SG_SEGMENTS > 32)
724 case 33 ... 64:
725 index = 3;
726 break;
727 #if (SCSI_MAX_SG_SEGMENTS > 64)
728 case 65 ... 128:
729 index = 4;
730 break;
731 #endif
732 #endif
733 #endif
734 default:
735 printk(KERN_ERR "scsi: bad segment count=%d\n", nents);
736 BUG();
739 return index;
742 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
744 struct scsi_host_sg_pool *sgp;
746 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
747 mempool_free(sgl, sgp->pool);
750 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
752 struct scsi_host_sg_pool *sgp;
754 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
755 return mempool_alloc(sgp->pool, gfp_mask);
758 int scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
760 int ret;
762 BUG_ON(!cmd->use_sg);
764 ret = __sg_alloc_table(&cmd->sg_table, cmd->use_sg,
765 SCSI_MAX_SG_SEGMENTS, gfp_mask, scsi_sg_alloc);
766 if (unlikely(ret))
767 __sg_free_table(&cmd->sg_table, SCSI_MAX_SG_SEGMENTS,
768 scsi_sg_free);
770 cmd->request_buffer = cmd->sg_table.sgl;
771 return ret;
774 EXPORT_SYMBOL(scsi_alloc_sgtable);
776 void scsi_free_sgtable(struct scsi_cmnd *cmd)
778 __sg_free_table(&cmd->sg_table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
781 EXPORT_SYMBOL(scsi_free_sgtable);
784 * Function: scsi_release_buffers()
786 * Purpose: Completion processing for block device I/O requests.
788 * Arguments: cmd - command that we are bailing.
790 * Lock status: Assumed that no lock is held upon entry.
792 * Returns: Nothing
794 * Notes: In the event that an upper level driver rejects a
795 * command, we must release resources allocated during
796 * the __init_io() function. Primarily this would involve
797 * the scatter-gather table, and potentially any bounce
798 * buffers.
800 static void scsi_release_buffers(struct scsi_cmnd *cmd)
802 if (cmd->use_sg)
803 scsi_free_sgtable(cmd);
806 * Zero these out. They now point to freed memory, and it is
807 * dangerous to hang onto the pointers.
809 cmd->request_buffer = NULL;
810 cmd->request_bufflen = 0;
814 * Function: scsi_io_completion()
816 * Purpose: Completion processing for block device I/O requests.
818 * Arguments: cmd - command that is finished.
820 * Lock status: Assumed that no lock is held upon entry.
822 * Returns: Nothing
824 * Notes: This function is matched in terms of capabilities to
825 * the function that created the scatter-gather list.
826 * In other words, if there are no bounce buffers
827 * (the normal case for most drivers), we don't need
828 * the logic to deal with cleaning up afterwards.
830 * We must do one of several things here:
832 * a) Call scsi_end_request. This will finish off the
833 * specified number of sectors. If we are done, the
834 * command block will be released, and the queue
835 * function will be goosed. If we are not done, then
836 * scsi_end_request will directly goose the queue.
838 * b) We can just use scsi_requeue_command() here. This would
839 * be used if we just wanted to retry, for example.
841 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
843 int result = cmd->result;
844 int this_count = cmd->request_bufflen;
845 struct request_queue *q = cmd->device->request_queue;
846 struct request *req = cmd->request;
847 int clear_errors = 1;
848 struct scsi_sense_hdr sshdr;
849 int sense_valid = 0;
850 int sense_deferred = 0;
852 scsi_release_buffers(cmd);
854 if (result) {
855 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
856 if (sense_valid)
857 sense_deferred = scsi_sense_is_deferred(&sshdr);
860 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
861 req->errors = result;
862 if (result) {
863 clear_errors = 0;
864 if (sense_valid && req->sense) {
866 * SG_IO wants current and deferred errors
868 int len = 8 + cmd->sense_buffer[7];
870 if (len > SCSI_SENSE_BUFFERSIZE)
871 len = SCSI_SENSE_BUFFERSIZE;
872 memcpy(req->sense, cmd->sense_buffer, len);
873 req->sense_len = len;
876 req->data_len = cmd->resid;
880 * Next deal with any sectors which we were able to correctly
881 * handle.
883 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
884 "%d bytes done.\n",
885 req->nr_sectors, good_bytes));
886 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
888 if (clear_errors)
889 req->errors = 0;
891 /* A number of bytes were successfully read. If there
892 * are leftovers and there is some kind of error
893 * (result != 0), retry the rest.
895 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
896 return;
898 /* good_bytes = 0, or (inclusive) there were leftovers and
899 * result = 0, so scsi_end_request couldn't retry.
901 if (sense_valid && !sense_deferred) {
902 switch (sshdr.sense_key) {
903 case UNIT_ATTENTION:
904 if (cmd->device->removable) {
905 /* Detected disc change. Set a bit
906 * and quietly refuse further access.
908 cmd->device->changed = 1;
909 scsi_end_request(cmd, 0, this_count, 1);
910 return;
911 } else {
912 /* Must have been a power glitch, or a
913 * bus reset. Could not have been a
914 * media change, so we just retry the
915 * request and see what happens.
917 scsi_requeue_command(q, cmd);
918 return;
920 break;
921 case ILLEGAL_REQUEST:
922 /* If we had an ILLEGAL REQUEST returned, then
923 * we may have performed an unsupported
924 * command. The only thing this should be
925 * would be a ten byte read where only a six
926 * byte read was supported. Also, on a system
927 * where READ CAPACITY failed, we may have
928 * read past the end of the disk.
930 if ((cmd->device->use_10_for_rw &&
931 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
932 (cmd->cmnd[0] == READ_10 ||
933 cmd->cmnd[0] == WRITE_10)) {
934 cmd->device->use_10_for_rw = 0;
935 /* This will cause a retry with a
936 * 6-byte command.
938 scsi_requeue_command(q, cmd);
939 return;
940 } else {
941 scsi_end_request(cmd, 0, this_count, 1);
942 return;
944 break;
945 case NOT_READY:
946 /* If the device is in the process of becoming
947 * ready, or has a temporary blockage, retry.
949 if (sshdr.asc == 0x04) {
950 switch (sshdr.ascq) {
951 case 0x01: /* becoming ready */
952 case 0x04: /* format in progress */
953 case 0x05: /* rebuild in progress */
954 case 0x06: /* recalculation in progress */
955 case 0x07: /* operation in progress */
956 case 0x08: /* Long write in progress */
957 case 0x09: /* self test in progress */
958 scsi_requeue_command(q, cmd);
959 return;
960 default:
961 break;
964 if (!(req->cmd_flags & REQ_QUIET))
965 scsi_cmd_print_sense_hdr(cmd,
966 "Device not ready",
967 &sshdr);
969 scsi_end_request(cmd, 0, this_count, 1);
970 return;
971 case VOLUME_OVERFLOW:
972 if (!(req->cmd_flags & REQ_QUIET)) {
973 scmd_printk(KERN_INFO, cmd,
974 "Volume overflow, CDB: ");
975 __scsi_print_command(cmd->cmnd);
976 scsi_print_sense("", cmd);
978 /* See SSC3rXX or current. */
979 scsi_end_request(cmd, 0, this_count, 1);
980 return;
981 default:
982 break;
985 if (host_byte(result) == DID_RESET) {
986 /* Third party bus reset or reset for error recovery
987 * reasons. Just retry the request and see what
988 * happens.
990 scsi_requeue_command(q, cmd);
991 return;
993 if (result) {
994 if (!(req->cmd_flags & REQ_QUIET)) {
995 scsi_print_result(cmd);
996 if (driver_byte(result) & DRIVER_SENSE)
997 scsi_print_sense("", cmd);
1000 scsi_end_request(cmd, 0, this_count, !result);
1004 * Function: scsi_init_io()
1006 * Purpose: SCSI I/O initialize function.
1008 * Arguments: cmd - Command descriptor we wish to initialize
1010 * Returns: 0 on success
1011 * BLKPREP_DEFER if the failure is retryable
1013 static int scsi_init_io(struct scsi_cmnd *cmd)
1015 struct request *req = cmd->request;
1016 int count;
1019 * We used to not use scatter-gather for single segment request,
1020 * but now we do (it makes highmem I/O easier to support without
1021 * kmapping pages)
1023 cmd->use_sg = req->nr_phys_segments;
1026 * If sg table allocation fails, requeue request later.
1028 if (unlikely(scsi_alloc_sgtable(cmd, GFP_ATOMIC))) {
1029 scsi_unprep_request(req);
1030 return BLKPREP_DEFER;
1033 req->buffer = NULL;
1034 if (blk_pc_request(req))
1035 cmd->request_bufflen = req->data_len;
1036 else
1037 cmd->request_bufflen = req->nr_sectors << 9;
1040 * Next, walk the list, and fill in the addresses and sizes of
1041 * each segment.
1043 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1044 BUG_ON(count > cmd->use_sg);
1045 cmd->use_sg = count;
1046 return BLKPREP_OK;
1049 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1050 struct request *req)
1052 struct scsi_cmnd *cmd;
1054 if (!req->special) {
1055 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1056 if (unlikely(!cmd))
1057 return NULL;
1058 req->special = cmd;
1059 } else {
1060 cmd = req->special;
1063 /* pull a tag out of the request if we have one */
1064 cmd->tag = req->tag;
1065 cmd->request = req;
1067 return cmd;
1070 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1072 struct scsi_cmnd *cmd;
1073 int ret = scsi_prep_state_check(sdev, req);
1075 if (ret != BLKPREP_OK)
1076 return ret;
1078 cmd = scsi_get_cmd_from_req(sdev, req);
1079 if (unlikely(!cmd))
1080 return BLKPREP_DEFER;
1083 * BLOCK_PC requests may transfer data, in which case they must
1084 * a bio attached to them. Or they might contain a SCSI command
1085 * that does not transfer data, in which case they may optionally
1086 * submit a request without an attached bio.
1088 if (req->bio) {
1089 int ret;
1091 BUG_ON(!req->nr_phys_segments);
1093 ret = scsi_init_io(cmd);
1094 if (unlikely(ret))
1095 return ret;
1096 } else {
1097 BUG_ON(req->data_len);
1098 BUG_ON(req->data);
1100 cmd->request_bufflen = 0;
1101 cmd->request_buffer = NULL;
1102 cmd->use_sg = 0;
1103 req->buffer = NULL;
1106 BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1107 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1108 cmd->cmd_len = req->cmd_len;
1109 if (!req->data_len)
1110 cmd->sc_data_direction = DMA_NONE;
1111 else if (rq_data_dir(req) == WRITE)
1112 cmd->sc_data_direction = DMA_TO_DEVICE;
1113 else
1114 cmd->sc_data_direction = DMA_FROM_DEVICE;
1116 cmd->transfersize = req->data_len;
1117 cmd->allowed = req->retries;
1118 cmd->timeout_per_command = req->timeout;
1119 return BLKPREP_OK;
1121 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1124 * Setup a REQ_TYPE_FS command. These are simple read/write request
1125 * from filesystems that still need to be translated to SCSI CDBs from
1126 * the ULD.
1128 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1130 struct scsi_cmnd *cmd;
1131 int ret = scsi_prep_state_check(sdev, req);
1133 if (ret != BLKPREP_OK)
1134 return ret;
1136 * Filesystem requests must transfer data.
1138 BUG_ON(!req->nr_phys_segments);
1140 cmd = scsi_get_cmd_from_req(sdev, req);
1141 if (unlikely(!cmd))
1142 return BLKPREP_DEFER;
1144 return scsi_init_io(cmd);
1146 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1148 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1150 int ret = BLKPREP_OK;
1153 * If the device is not in running state we will reject some
1154 * or all commands.
1156 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1157 switch (sdev->sdev_state) {
1158 case SDEV_OFFLINE:
1160 * If the device is offline we refuse to process any
1161 * commands. The device must be brought online
1162 * before trying any recovery commands.
1164 sdev_printk(KERN_ERR, sdev,
1165 "rejecting I/O to offline device\n");
1166 ret = BLKPREP_KILL;
1167 break;
1168 case SDEV_DEL:
1170 * If the device is fully deleted, we refuse to
1171 * process any commands as well.
1173 sdev_printk(KERN_ERR, sdev,
1174 "rejecting I/O to dead device\n");
1175 ret = BLKPREP_KILL;
1176 break;
1177 case SDEV_QUIESCE:
1178 case SDEV_BLOCK:
1180 * If the devices is blocked we defer normal commands.
1182 if (!(req->cmd_flags & REQ_PREEMPT))
1183 ret = BLKPREP_DEFER;
1184 break;
1185 default:
1187 * For any other not fully online state we only allow
1188 * special commands. In particular any user initiated
1189 * command is not allowed.
1191 if (!(req->cmd_flags & REQ_PREEMPT))
1192 ret = BLKPREP_KILL;
1193 break;
1196 return ret;
1198 EXPORT_SYMBOL(scsi_prep_state_check);
1200 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1202 struct scsi_device *sdev = q->queuedata;
1204 switch (ret) {
1205 case BLKPREP_KILL:
1206 req->errors = DID_NO_CONNECT << 16;
1207 /* release the command and kill it */
1208 if (req->special) {
1209 struct scsi_cmnd *cmd = req->special;
1210 scsi_release_buffers(cmd);
1211 scsi_put_command(cmd);
1212 req->special = NULL;
1214 break;
1215 case BLKPREP_DEFER:
1217 * If we defer, the elv_next_request() returns NULL, but the
1218 * queue must be restarted, so we plug here if no returning
1219 * command will automatically do that.
1221 if (sdev->device_busy == 0)
1222 blk_plug_device(q);
1223 break;
1224 default:
1225 req->cmd_flags |= REQ_DONTPREP;
1228 return ret;
1230 EXPORT_SYMBOL(scsi_prep_return);
1232 int scsi_prep_fn(struct request_queue *q, struct request *req)
1234 struct scsi_device *sdev = q->queuedata;
1235 int ret = BLKPREP_KILL;
1237 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1238 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1239 return scsi_prep_return(q, req, ret);
1243 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1244 * return 0.
1246 * Called with the queue_lock held.
1248 static inline int scsi_dev_queue_ready(struct request_queue *q,
1249 struct scsi_device *sdev)
1251 if (sdev->device_busy >= sdev->queue_depth)
1252 return 0;
1253 if (sdev->device_busy == 0 && sdev->device_blocked) {
1255 * unblock after device_blocked iterates to zero
1257 if (--sdev->device_blocked == 0) {
1258 SCSI_LOG_MLQUEUE(3,
1259 sdev_printk(KERN_INFO, sdev,
1260 "unblocking device at zero depth\n"));
1261 } else {
1262 blk_plug_device(q);
1263 return 0;
1266 if (sdev->device_blocked)
1267 return 0;
1269 return 1;
1273 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1274 * return 0. We must end up running the queue again whenever 0 is
1275 * returned, else IO can hang.
1277 * Called with host_lock held.
1279 static inline int scsi_host_queue_ready(struct request_queue *q,
1280 struct Scsi_Host *shost,
1281 struct scsi_device *sdev)
1283 if (scsi_host_in_recovery(shost))
1284 return 0;
1285 if (shost->host_busy == 0 && shost->host_blocked) {
1287 * unblock after host_blocked iterates to zero
1289 if (--shost->host_blocked == 0) {
1290 SCSI_LOG_MLQUEUE(3,
1291 printk("scsi%d unblocking host at zero depth\n",
1292 shost->host_no));
1293 } else {
1294 blk_plug_device(q);
1295 return 0;
1298 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1299 shost->host_blocked || shost->host_self_blocked) {
1300 if (list_empty(&sdev->starved_entry))
1301 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1302 return 0;
1305 /* We're OK to process the command, so we can't be starved */
1306 if (!list_empty(&sdev->starved_entry))
1307 list_del_init(&sdev->starved_entry);
1309 return 1;
1313 * Kill a request for a dead device
1315 static void scsi_kill_request(struct request *req, struct request_queue *q)
1317 struct scsi_cmnd *cmd = req->special;
1318 struct scsi_device *sdev = cmd->device;
1319 struct Scsi_Host *shost = sdev->host;
1321 blkdev_dequeue_request(req);
1323 if (unlikely(cmd == NULL)) {
1324 printk(KERN_CRIT "impossible request in %s.\n",
1325 __FUNCTION__);
1326 BUG();
1329 scsi_init_cmd_errh(cmd);
1330 cmd->result = DID_NO_CONNECT << 16;
1331 atomic_inc(&cmd->device->iorequest_cnt);
1334 * SCSI request completion path will do scsi_device_unbusy(),
1335 * bump busy counts. To bump the counters, we need to dance
1336 * with the locks as normal issue path does.
1338 sdev->device_busy++;
1339 spin_unlock(sdev->request_queue->queue_lock);
1340 spin_lock(shost->host_lock);
1341 shost->host_busy++;
1342 spin_unlock(shost->host_lock);
1343 spin_lock(sdev->request_queue->queue_lock);
1345 __scsi_done(cmd);
1348 static void scsi_softirq_done(struct request *rq)
1350 struct scsi_cmnd *cmd = rq->completion_data;
1351 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1352 int disposition;
1354 INIT_LIST_HEAD(&cmd->eh_entry);
1356 disposition = scsi_decide_disposition(cmd);
1357 if (disposition != SUCCESS &&
1358 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1359 sdev_printk(KERN_ERR, cmd->device,
1360 "timing out command, waited %lus\n",
1361 wait_for/HZ);
1362 disposition = SUCCESS;
1365 scsi_log_completion(cmd, disposition);
1367 switch (disposition) {
1368 case SUCCESS:
1369 scsi_finish_command(cmd);
1370 break;
1371 case NEEDS_RETRY:
1372 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1373 break;
1374 case ADD_TO_MLQUEUE:
1375 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1376 break;
1377 default:
1378 if (!scsi_eh_scmd_add(cmd, 0))
1379 scsi_finish_command(cmd);
1384 * Function: scsi_request_fn()
1386 * Purpose: Main strategy routine for SCSI.
1388 * Arguments: q - Pointer to actual queue.
1390 * Returns: Nothing
1392 * Lock status: IO request lock assumed to be held when called.
1394 static void scsi_request_fn(struct request_queue *q)
1396 struct scsi_device *sdev = q->queuedata;
1397 struct Scsi_Host *shost;
1398 struct scsi_cmnd *cmd;
1399 struct request *req;
1401 if (!sdev) {
1402 printk("scsi: killing requests for dead queue\n");
1403 while ((req = elv_next_request(q)) != NULL)
1404 scsi_kill_request(req, q);
1405 return;
1408 if(!get_device(&sdev->sdev_gendev))
1409 /* We must be tearing the block queue down already */
1410 return;
1413 * To start with, we keep looping until the queue is empty, or until
1414 * the host is no longer able to accept any more requests.
1416 shost = sdev->host;
1417 while (!blk_queue_plugged(q)) {
1418 int rtn;
1420 * get next queueable request. We do this early to make sure
1421 * that the request is fully prepared even if we cannot
1422 * accept it.
1424 req = elv_next_request(q);
1425 if (!req || !scsi_dev_queue_ready(q, sdev))
1426 break;
1428 if (unlikely(!scsi_device_online(sdev))) {
1429 sdev_printk(KERN_ERR, sdev,
1430 "rejecting I/O to offline device\n");
1431 scsi_kill_request(req, q);
1432 continue;
1437 * Remove the request from the request list.
1439 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1440 blkdev_dequeue_request(req);
1441 sdev->device_busy++;
1443 spin_unlock(q->queue_lock);
1444 cmd = req->special;
1445 if (unlikely(cmd == NULL)) {
1446 printk(KERN_CRIT "impossible request in %s.\n"
1447 "please mail a stack trace to "
1448 "linux-scsi@vger.kernel.org\n",
1449 __FUNCTION__);
1450 blk_dump_rq_flags(req, "foo");
1451 BUG();
1453 spin_lock(shost->host_lock);
1455 if (!scsi_host_queue_ready(q, shost, sdev))
1456 goto not_ready;
1457 if (scsi_target(sdev)->single_lun) {
1458 if (scsi_target(sdev)->starget_sdev_user &&
1459 scsi_target(sdev)->starget_sdev_user != sdev)
1460 goto not_ready;
1461 scsi_target(sdev)->starget_sdev_user = sdev;
1463 shost->host_busy++;
1466 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1467 * take the lock again.
1469 spin_unlock_irq(shost->host_lock);
1472 * Finally, initialize any error handling parameters, and set up
1473 * the timers for timeouts.
1475 scsi_init_cmd_errh(cmd);
1478 * Dispatch the command to the low-level driver.
1480 rtn = scsi_dispatch_cmd(cmd);
1481 spin_lock_irq(q->queue_lock);
1482 if(rtn) {
1483 /* we're refusing the command; because of
1484 * the way locks get dropped, we need to
1485 * check here if plugging is required */
1486 if(sdev->device_busy == 0)
1487 blk_plug_device(q);
1489 break;
1493 goto out;
1495 not_ready:
1496 spin_unlock_irq(shost->host_lock);
1499 * lock q, handle tag, requeue req, and decrement device_busy. We
1500 * must return with queue_lock held.
1502 * Decrementing device_busy without checking it is OK, as all such
1503 * cases (host limits or settings) should run the queue at some
1504 * later time.
1506 spin_lock_irq(q->queue_lock);
1507 blk_requeue_request(q, req);
1508 sdev->device_busy--;
1509 if(sdev->device_busy == 0)
1510 blk_plug_device(q);
1511 out:
1512 /* must be careful here...if we trigger the ->remove() function
1513 * we cannot be holding the q lock */
1514 spin_unlock_irq(q->queue_lock);
1515 put_device(&sdev->sdev_gendev);
1516 spin_lock_irq(q->queue_lock);
1519 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1521 struct device *host_dev;
1522 u64 bounce_limit = 0xffffffff;
1524 if (shost->unchecked_isa_dma)
1525 return BLK_BOUNCE_ISA;
1527 * Platforms with virtual-DMA translation
1528 * hardware have no practical limit.
1530 if (!PCI_DMA_BUS_IS_PHYS)
1531 return BLK_BOUNCE_ANY;
1533 host_dev = scsi_get_device(shost);
1534 if (host_dev && host_dev->dma_mask)
1535 bounce_limit = *host_dev->dma_mask;
1537 return bounce_limit;
1539 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1541 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1542 request_fn_proc *request_fn)
1544 struct request_queue *q;
1546 q = blk_init_queue(request_fn, NULL);
1547 if (!q)
1548 return NULL;
1551 * this limit is imposed by hardware restrictions
1553 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1556 * In the future, sg chaining support will be mandatory and this
1557 * ifdef can then go away. Right now we don't have all archs
1558 * converted, so better keep it safe.
1560 #ifdef ARCH_HAS_SG_CHAIN
1561 if (shost->use_sg_chaining)
1562 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1563 else
1564 blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1565 #else
1566 blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1567 #endif
1569 blk_queue_max_sectors(q, shost->max_sectors);
1570 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1571 blk_queue_segment_boundary(q, shost->dma_boundary);
1573 if (!shost->use_clustering)
1574 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1577 * set a reasonable default alignment on word boundaries: the
1578 * host and device may alter it using
1579 * blk_queue_update_dma_alignment() later.
1581 blk_queue_dma_alignment(q, 0x03);
1583 return q;
1585 EXPORT_SYMBOL(__scsi_alloc_queue);
1587 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1589 struct request_queue *q;
1591 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1592 if (!q)
1593 return NULL;
1595 blk_queue_prep_rq(q, scsi_prep_fn);
1596 blk_queue_softirq_done(q, scsi_softirq_done);
1597 return q;
1600 void scsi_free_queue(struct request_queue *q)
1602 blk_cleanup_queue(q);
1606 * Function: scsi_block_requests()
1608 * Purpose: Utility function used by low-level drivers to prevent further
1609 * commands from being queued to the device.
1611 * Arguments: shost - Host in question
1613 * Returns: Nothing
1615 * Lock status: No locks are assumed held.
1617 * Notes: There is no timer nor any other means by which the requests
1618 * get unblocked other than the low-level driver calling
1619 * scsi_unblock_requests().
1621 void scsi_block_requests(struct Scsi_Host *shost)
1623 shost->host_self_blocked = 1;
1625 EXPORT_SYMBOL(scsi_block_requests);
1628 * Function: scsi_unblock_requests()
1630 * Purpose: Utility function used by low-level drivers to allow further
1631 * commands from being queued to the device.
1633 * Arguments: shost - Host in question
1635 * Returns: Nothing
1637 * Lock status: No locks are assumed held.
1639 * Notes: There is no timer nor any other means by which the requests
1640 * get unblocked other than the low-level driver calling
1641 * scsi_unblock_requests().
1643 * This is done as an API function so that changes to the
1644 * internals of the scsi mid-layer won't require wholesale
1645 * changes to drivers that use this feature.
1647 void scsi_unblock_requests(struct Scsi_Host *shost)
1649 shost->host_self_blocked = 0;
1650 scsi_run_host_queues(shost);
1652 EXPORT_SYMBOL(scsi_unblock_requests);
1654 int __init scsi_init_queue(void)
1656 int i;
1658 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1659 sizeof(struct scsi_io_context),
1660 0, 0, NULL);
1661 if (!scsi_io_context_cache) {
1662 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1663 return -ENOMEM;
1666 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1667 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1668 int size = sgp->size * sizeof(struct scatterlist);
1670 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1671 SLAB_HWCACHE_ALIGN, NULL);
1672 if (!sgp->slab) {
1673 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1674 sgp->name);
1677 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1678 sgp->slab);
1679 if (!sgp->pool) {
1680 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1681 sgp->name);
1685 return 0;
1688 void scsi_exit_queue(void)
1690 int i;
1692 kmem_cache_destroy(scsi_io_context_cache);
1694 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1695 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1696 mempool_destroy(sgp->pool);
1697 kmem_cache_destroy(sgp->slab);
1702 * scsi_mode_select - issue a mode select
1703 * @sdev: SCSI device to be queried
1704 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1705 * @sp: Save page bit (0 == don't save, 1 == save)
1706 * @modepage: mode page being requested
1707 * @buffer: request buffer (may not be smaller than eight bytes)
1708 * @len: length of request buffer.
1709 * @timeout: command timeout
1710 * @retries: number of retries before failing
1711 * @data: returns a structure abstracting the mode header data
1712 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1713 * must be SCSI_SENSE_BUFFERSIZE big.
1715 * Returns zero if successful; negative error number or scsi
1716 * status on error
1720 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1721 unsigned char *buffer, int len, int timeout, int retries,
1722 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1724 unsigned char cmd[10];
1725 unsigned char *real_buffer;
1726 int ret;
1728 memset(cmd, 0, sizeof(cmd));
1729 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1731 if (sdev->use_10_for_ms) {
1732 if (len > 65535)
1733 return -EINVAL;
1734 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1735 if (!real_buffer)
1736 return -ENOMEM;
1737 memcpy(real_buffer + 8, buffer, len);
1738 len += 8;
1739 real_buffer[0] = 0;
1740 real_buffer[1] = 0;
1741 real_buffer[2] = data->medium_type;
1742 real_buffer[3] = data->device_specific;
1743 real_buffer[4] = data->longlba ? 0x01 : 0;
1744 real_buffer[5] = 0;
1745 real_buffer[6] = data->block_descriptor_length >> 8;
1746 real_buffer[7] = data->block_descriptor_length;
1748 cmd[0] = MODE_SELECT_10;
1749 cmd[7] = len >> 8;
1750 cmd[8] = len;
1751 } else {
1752 if (len > 255 || data->block_descriptor_length > 255 ||
1753 data->longlba)
1754 return -EINVAL;
1756 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1757 if (!real_buffer)
1758 return -ENOMEM;
1759 memcpy(real_buffer + 4, buffer, len);
1760 len += 4;
1761 real_buffer[0] = 0;
1762 real_buffer[1] = data->medium_type;
1763 real_buffer[2] = data->device_specific;
1764 real_buffer[3] = data->block_descriptor_length;
1767 cmd[0] = MODE_SELECT;
1768 cmd[4] = len;
1771 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1772 sshdr, timeout, retries);
1773 kfree(real_buffer);
1774 return ret;
1776 EXPORT_SYMBOL_GPL(scsi_mode_select);
1779 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1780 * @sdev: SCSI device to be queried
1781 * @dbd: set if mode sense will allow block descriptors to be returned
1782 * @modepage: mode page being requested
1783 * @buffer: request buffer (may not be smaller than eight bytes)
1784 * @len: length of request buffer.
1785 * @timeout: command timeout
1786 * @retries: number of retries before failing
1787 * @data: returns a structure abstracting the mode header data
1788 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1789 * must be SCSI_SENSE_BUFFERSIZE big.
1791 * Returns zero if unsuccessful, or the header offset (either 4
1792 * or 8 depending on whether a six or ten byte command was
1793 * issued) if successful.
1796 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1797 unsigned char *buffer, int len, int timeout, int retries,
1798 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1800 unsigned char cmd[12];
1801 int use_10_for_ms;
1802 int header_length;
1803 int result;
1804 struct scsi_sense_hdr my_sshdr;
1806 memset(data, 0, sizeof(*data));
1807 memset(&cmd[0], 0, 12);
1808 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1809 cmd[2] = modepage;
1811 /* caller might not be interested in sense, but we need it */
1812 if (!sshdr)
1813 sshdr = &my_sshdr;
1815 retry:
1816 use_10_for_ms = sdev->use_10_for_ms;
1818 if (use_10_for_ms) {
1819 if (len < 8)
1820 len = 8;
1822 cmd[0] = MODE_SENSE_10;
1823 cmd[8] = len;
1824 header_length = 8;
1825 } else {
1826 if (len < 4)
1827 len = 4;
1829 cmd[0] = MODE_SENSE;
1830 cmd[4] = len;
1831 header_length = 4;
1834 memset(buffer, 0, len);
1836 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1837 sshdr, timeout, retries);
1839 /* This code looks awful: what it's doing is making sure an
1840 * ILLEGAL REQUEST sense return identifies the actual command
1841 * byte as the problem. MODE_SENSE commands can return
1842 * ILLEGAL REQUEST if the code page isn't supported */
1844 if (use_10_for_ms && !scsi_status_is_good(result) &&
1845 (driver_byte(result) & DRIVER_SENSE)) {
1846 if (scsi_sense_valid(sshdr)) {
1847 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1848 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1850 * Invalid command operation code
1852 sdev->use_10_for_ms = 0;
1853 goto retry;
1858 if(scsi_status_is_good(result)) {
1859 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1860 (modepage == 6 || modepage == 8))) {
1861 /* Initio breakage? */
1862 header_length = 0;
1863 data->length = 13;
1864 data->medium_type = 0;
1865 data->device_specific = 0;
1866 data->longlba = 0;
1867 data->block_descriptor_length = 0;
1868 } else if(use_10_for_ms) {
1869 data->length = buffer[0]*256 + buffer[1] + 2;
1870 data->medium_type = buffer[2];
1871 data->device_specific = buffer[3];
1872 data->longlba = buffer[4] & 0x01;
1873 data->block_descriptor_length = buffer[6]*256
1874 + buffer[7];
1875 } else {
1876 data->length = buffer[0] + 1;
1877 data->medium_type = buffer[1];
1878 data->device_specific = buffer[2];
1879 data->block_descriptor_length = buffer[3];
1881 data->header_length = header_length;
1884 return result;
1886 EXPORT_SYMBOL(scsi_mode_sense);
1889 * scsi_test_unit_ready - test if unit is ready
1890 * @sdev: scsi device to change the state of.
1891 * @timeout: command timeout
1892 * @retries: number of retries before failing
1893 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1894 * returning sense. Make sure that this is cleared before passing
1895 * in.
1897 * Returns zero if unsuccessful or an error if TUR failed. For
1898 * removable media, a return of NOT_READY or UNIT_ATTENTION is
1899 * translated to success, with the ->changed flag updated.
1902 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1903 struct scsi_sense_hdr *sshdr_external)
1905 char cmd[] = {
1906 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1908 struct scsi_sense_hdr *sshdr;
1909 int result;
1911 if (!sshdr_external)
1912 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1913 else
1914 sshdr = sshdr_external;
1916 /* try to eat the UNIT_ATTENTION if there are enough retries */
1917 do {
1918 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
1919 timeout, retries);
1920 } while ((driver_byte(result) & DRIVER_SENSE) &&
1921 sshdr && sshdr->sense_key == UNIT_ATTENTION &&
1922 --retries);
1924 if (!sshdr)
1925 /* could not allocate sense buffer, so can't process it */
1926 return result;
1928 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1930 if ((scsi_sense_valid(sshdr)) &&
1931 ((sshdr->sense_key == UNIT_ATTENTION) ||
1932 (sshdr->sense_key == NOT_READY))) {
1933 sdev->changed = 1;
1934 result = 0;
1937 if (!sshdr_external)
1938 kfree(sshdr);
1939 return result;
1941 EXPORT_SYMBOL(scsi_test_unit_ready);
1944 * scsi_device_set_state - Take the given device through the device state model.
1945 * @sdev: scsi device to change the state of.
1946 * @state: state to change to.
1948 * Returns zero if unsuccessful or an error if the requested
1949 * transition is illegal.
1952 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1954 enum scsi_device_state oldstate = sdev->sdev_state;
1956 if (state == oldstate)
1957 return 0;
1959 switch (state) {
1960 case SDEV_CREATED:
1961 /* There are no legal states that come back to
1962 * created. This is the manually initialised start
1963 * state */
1964 goto illegal;
1966 case SDEV_RUNNING:
1967 switch (oldstate) {
1968 case SDEV_CREATED:
1969 case SDEV_OFFLINE:
1970 case SDEV_QUIESCE:
1971 case SDEV_BLOCK:
1972 break;
1973 default:
1974 goto illegal;
1976 break;
1978 case SDEV_QUIESCE:
1979 switch (oldstate) {
1980 case SDEV_RUNNING:
1981 case SDEV_OFFLINE:
1982 break;
1983 default:
1984 goto illegal;
1986 break;
1988 case SDEV_OFFLINE:
1989 switch (oldstate) {
1990 case SDEV_CREATED:
1991 case SDEV_RUNNING:
1992 case SDEV_QUIESCE:
1993 case SDEV_BLOCK:
1994 break;
1995 default:
1996 goto illegal;
1998 break;
2000 case SDEV_BLOCK:
2001 switch (oldstate) {
2002 case SDEV_CREATED:
2003 case SDEV_RUNNING:
2004 break;
2005 default:
2006 goto illegal;
2008 break;
2010 case SDEV_CANCEL:
2011 switch (oldstate) {
2012 case SDEV_CREATED:
2013 case SDEV_RUNNING:
2014 case SDEV_QUIESCE:
2015 case SDEV_OFFLINE:
2016 case SDEV_BLOCK:
2017 break;
2018 default:
2019 goto illegal;
2021 break;
2023 case SDEV_DEL:
2024 switch (oldstate) {
2025 case SDEV_CREATED:
2026 case SDEV_RUNNING:
2027 case SDEV_OFFLINE:
2028 case SDEV_CANCEL:
2029 break;
2030 default:
2031 goto illegal;
2033 break;
2036 sdev->sdev_state = state;
2037 return 0;
2039 illegal:
2040 SCSI_LOG_ERROR_RECOVERY(1,
2041 sdev_printk(KERN_ERR, sdev,
2042 "Illegal state transition %s->%s\n",
2043 scsi_device_state_name(oldstate),
2044 scsi_device_state_name(state))
2046 return -EINVAL;
2048 EXPORT_SYMBOL(scsi_device_set_state);
2051 * sdev_evt_emit - emit a single SCSI device uevent
2052 * @sdev: associated SCSI device
2053 * @evt: event to emit
2055 * Send a single uevent (scsi_event) to the associated scsi_device.
2057 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2059 int idx = 0;
2060 char *envp[3];
2062 switch (evt->evt_type) {
2063 case SDEV_EVT_MEDIA_CHANGE:
2064 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2065 break;
2067 default:
2068 /* do nothing */
2069 break;
2072 envp[idx++] = NULL;
2074 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2078 * sdev_evt_thread - send a uevent for each scsi event
2079 * @work: work struct for scsi_device
2081 * Dispatch queued events to their associated scsi_device kobjects
2082 * as uevents.
2084 void scsi_evt_thread(struct work_struct *work)
2086 struct scsi_device *sdev;
2087 LIST_HEAD(event_list);
2089 sdev = container_of(work, struct scsi_device, event_work);
2091 while (1) {
2092 struct scsi_event *evt;
2093 struct list_head *this, *tmp;
2094 unsigned long flags;
2096 spin_lock_irqsave(&sdev->list_lock, flags);
2097 list_splice_init(&sdev->event_list, &event_list);
2098 spin_unlock_irqrestore(&sdev->list_lock, flags);
2100 if (list_empty(&event_list))
2101 break;
2103 list_for_each_safe(this, tmp, &event_list) {
2104 evt = list_entry(this, struct scsi_event, node);
2105 list_del(&evt->node);
2106 scsi_evt_emit(sdev, evt);
2107 kfree(evt);
2113 * sdev_evt_send - send asserted event to uevent thread
2114 * @sdev: scsi_device event occurred on
2115 * @evt: event to send
2117 * Assert scsi device event asynchronously.
2119 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2121 unsigned long flags;
2123 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2124 kfree(evt);
2125 return;
2128 spin_lock_irqsave(&sdev->list_lock, flags);
2129 list_add_tail(&evt->node, &sdev->event_list);
2130 schedule_work(&sdev->event_work);
2131 spin_unlock_irqrestore(&sdev->list_lock, flags);
2133 EXPORT_SYMBOL_GPL(sdev_evt_send);
2136 * sdev_evt_alloc - allocate a new scsi event
2137 * @evt_type: type of event to allocate
2138 * @gfpflags: GFP flags for allocation
2140 * Allocates and returns a new scsi_event.
2142 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2143 gfp_t gfpflags)
2145 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2146 if (!evt)
2147 return NULL;
2149 evt->evt_type = evt_type;
2150 INIT_LIST_HEAD(&evt->node);
2152 /* evt_type-specific initialization, if any */
2153 switch (evt_type) {
2154 case SDEV_EVT_MEDIA_CHANGE:
2155 default:
2156 /* do nothing */
2157 break;
2160 return evt;
2162 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2165 * sdev_evt_send_simple - send asserted event to uevent thread
2166 * @sdev: scsi_device event occurred on
2167 * @evt_type: type of event to send
2168 * @gfpflags: GFP flags for allocation
2170 * Assert scsi device event asynchronously, given an event type.
2172 void sdev_evt_send_simple(struct scsi_device *sdev,
2173 enum scsi_device_event evt_type, gfp_t gfpflags)
2175 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2176 if (!evt) {
2177 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2178 evt_type);
2179 return;
2182 sdev_evt_send(sdev, evt);
2184 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2187 * scsi_device_quiesce - Block user issued commands.
2188 * @sdev: scsi device to quiesce.
2190 * This works by trying to transition to the SDEV_QUIESCE state
2191 * (which must be a legal transition). When the device is in this
2192 * state, only special requests will be accepted, all others will
2193 * be deferred. Since special requests may also be requeued requests,
2194 * a successful return doesn't guarantee the device will be
2195 * totally quiescent.
2197 * Must be called with user context, may sleep.
2199 * Returns zero if unsuccessful or an error if not.
2202 scsi_device_quiesce(struct scsi_device *sdev)
2204 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2205 if (err)
2206 return err;
2208 scsi_run_queue(sdev->request_queue);
2209 while (sdev->device_busy) {
2210 msleep_interruptible(200);
2211 scsi_run_queue(sdev->request_queue);
2213 return 0;
2215 EXPORT_SYMBOL(scsi_device_quiesce);
2218 * scsi_device_resume - Restart user issued commands to a quiesced device.
2219 * @sdev: scsi device to resume.
2221 * Moves the device from quiesced back to running and restarts the
2222 * queues.
2224 * Must be called with user context, may sleep.
2226 void
2227 scsi_device_resume(struct scsi_device *sdev)
2229 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2230 return;
2231 scsi_run_queue(sdev->request_queue);
2233 EXPORT_SYMBOL(scsi_device_resume);
2235 static void
2236 device_quiesce_fn(struct scsi_device *sdev, void *data)
2238 scsi_device_quiesce(sdev);
2241 void
2242 scsi_target_quiesce(struct scsi_target *starget)
2244 starget_for_each_device(starget, NULL, device_quiesce_fn);
2246 EXPORT_SYMBOL(scsi_target_quiesce);
2248 static void
2249 device_resume_fn(struct scsi_device *sdev, void *data)
2251 scsi_device_resume(sdev);
2254 void
2255 scsi_target_resume(struct scsi_target *starget)
2257 starget_for_each_device(starget, NULL, device_resume_fn);
2259 EXPORT_SYMBOL(scsi_target_resume);
2262 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2263 * @sdev: device to block
2265 * Block request made by scsi lld's to temporarily stop all
2266 * scsi commands on the specified device. Called from interrupt
2267 * or normal process context.
2269 * Returns zero if successful or error if not
2271 * Notes:
2272 * This routine transitions the device to the SDEV_BLOCK state
2273 * (which must be a legal transition). When the device is in this
2274 * state, all commands are deferred until the scsi lld reenables
2275 * the device with scsi_device_unblock or device_block_tmo fires.
2276 * This routine assumes the host_lock is held on entry.
2279 scsi_internal_device_block(struct scsi_device *sdev)
2281 struct request_queue *q = sdev->request_queue;
2282 unsigned long flags;
2283 int err = 0;
2285 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2286 if (err)
2287 return err;
2290 * The device has transitioned to SDEV_BLOCK. Stop the
2291 * block layer from calling the midlayer with this device's
2292 * request queue.
2294 spin_lock_irqsave(q->queue_lock, flags);
2295 blk_stop_queue(q);
2296 spin_unlock_irqrestore(q->queue_lock, flags);
2298 return 0;
2300 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2303 * scsi_internal_device_unblock - resume a device after a block request
2304 * @sdev: device to resume
2306 * Called by scsi lld's or the midlayer to restart the device queue
2307 * for the previously suspended scsi device. Called from interrupt or
2308 * normal process context.
2310 * Returns zero if successful or error if not.
2312 * Notes:
2313 * This routine transitions the device to the SDEV_RUNNING state
2314 * (which must be a legal transition) allowing the midlayer to
2315 * goose the queue for this device. This routine assumes the
2316 * host_lock is held upon entry.
2319 scsi_internal_device_unblock(struct scsi_device *sdev)
2321 struct request_queue *q = sdev->request_queue;
2322 int err;
2323 unsigned long flags;
2326 * Try to transition the scsi device to SDEV_RUNNING
2327 * and goose the device queue if successful.
2329 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2330 if (err)
2331 return err;
2333 spin_lock_irqsave(q->queue_lock, flags);
2334 blk_start_queue(q);
2335 spin_unlock_irqrestore(q->queue_lock, flags);
2337 return 0;
2339 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2341 static void
2342 device_block(struct scsi_device *sdev, void *data)
2344 scsi_internal_device_block(sdev);
2347 static int
2348 target_block(struct device *dev, void *data)
2350 if (scsi_is_target_device(dev))
2351 starget_for_each_device(to_scsi_target(dev), NULL,
2352 device_block);
2353 return 0;
2356 void
2357 scsi_target_block(struct device *dev)
2359 if (scsi_is_target_device(dev))
2360 starget_for_each_device(to_scsi_target(dev), NULL,
2361 device_block);
2362 else
2363 device_for_each_child(dev, NULL, target_block);
2365 EXPORT_SYMBOL_GPL(scsi_target_block);
2367 static void
2368 device_unblock(struct scsi_device *sdev, void *data)
2370 scsi_internal_device_unblock(sdev);
2373 static int
2374 target_unblock(struct device *dev, void *data)
2376 if (scsi_is_target_device(dev))
2377 starget_for_each_device(to_scsi_target(dev), NULL,
2378 device_unblock);
2379 return 0;
2382 void
2383 scsi_target_unblock(struct device *dev)
2385 if (scsi_is_target_device(dev))
2386 starget_for_each_device(to_scsi_target(dev), NULL,
2387 device_unblock);
2388 else
2389 device_for_each_child(dev, NULL, target_unblock);
2391 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2394 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2395 * @sgl: scatter-gather list
2396 * @sg_count: number of segments in sg
2397 * @offset: offset in bytes into sg, on return offset into the mapped area
2398 * @len: bytes to map, on return number of bytes mapped
2400 * Returns virtual address of the start of the mapped page
2402 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2403 size_t *offset, size_t *len)
2405 int i;
2406 size_t sg_len = 0, len_complete = 0;
2407 struct scatterlist *sg;
2408 struct page *page;
2410 WARN_ON(!irqs_disabled());
2412 for_each_sg(sgl, sg, sg_count, i) {
2413 len_complete = sg_len; /* Complete sg-entries */
2414 sg_len += sg->length;
2415 if (sg_len > *offset)
2416 break;
2419 if (unlikely(i == sg_count)) {
2420 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2421 "elements %d\n",
2422 __FUNCTION__, sg_len, *offset, sg_count);
2423 WARN_ON(1);
2424 return NULL;
2427 /* Offset starting from the beginning of first page in this sg-entry */
2428 *offset = *offset - len_complete + sg->offset;
2430 /* Assumption: contiguous pages can be accessed as "page + i" */
2431 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2432 *offset &= ~PAGE_MASK;
2434 /* Bytes in this sg-entry from *offset to the end of the page */
2435 sg_len = PAGE_SIZE - *offset;
2436 if (*len > sg_len)
2437 *len = sg_len;
2439 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2441 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2444 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2445 * @virt: virtual address to be unmapped
2447 void scsi_kunmap_atomic_sg(void *virt)
2449 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2451 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);