2 * Tehuti Networks(R) Network Driver
3 * ethtool interface implementation
4 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
13 * RX HW/SW interaction overview
14 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15 * There are 2 types of RX communication channels betwean driver and NIC.
16 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
17 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
18 * info about buffer's location, size and ID. An ID field is used to identify a
19 * buffer when it's returned with data via RXD Fifo (see below)
20 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
21 * filled by HW and is readen by SW. Each descriptor holds status and ID.
22 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
23 * via dma moves it into host memory, builds new RXD descriptor with same ID,
24 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
26 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
27 * One holds 1.5K packets and another - 26K packets. Depending on incoming
28 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
29 * filled with data, HW builds new RXD descriptor for it and push it into single
32 * RX SW Data Structures
33 * ~~~~~~~~~~~~~~~~~~~~~
34 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
35 * For RX case, ownership lasts from allocating new empty skb for RXF until
36 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
37 * skb db. Implemented as array with bitmask.
38 * fifo - keeps info about fifo's size and location, relevant HW registers,
39 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
40 * Implemented as simple struct.
42 * RX SW Execution Flow
43 * ~~~~~~~~~~~~~~~~~~~~
44 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
45 * relevant registers. At the end of init phase, driver enables interrupts.
46 * NIC sees that there is no RXF buffers and raises
47 * RD_INTR interrupt, isr fills skbs and Rx begins.
48 * Driver has two receive operation modes:
49 * NAPI - interrupt-driven mixed with polling
50 * interrupt-driven only
52 * Interrupt-driven only flow is following. When buffer is ready, HW raises
53 * interrupt and isr is called. isr collects all available packets
54 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
56 * Rx buffer allocation note
57 * ~~~~~~~~~~~~~~~~~~~~~~~~~
58 * Driver cares to feed such amount of RxF descriptors that respective amount of
59 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
60 * overflow check in Bordeaux for RxD fifo free/used size.
61 * FIXME: this is NOT fully implemented, more work should be done
66 #include "tehuti_fw.h"
68 static struct pci_device_id __devinitdata bdx_pci_tbl
[] = {
69 {0x1FC9, 0x3009, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
70 {0x1FC9, 0x3010, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
71 {0x1FC9, 0x3014, PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
75 MODULE_DEVICE_TABLE(pci
, bdx_pci_tbl
);
77 /* Definitions needed by ISR or NAPI functions */
78 static void bdx_rx_alloc_skbs(struct bdx_priv
*priv
, struct rxf_fifo
*f
);
79 static void bdx_tx_cleanup(struct bdx_priv
*priv
);
80 static int bdx_rx_receive(struct bdx_priv
*priv
, struct rxd_fifo
*f
, int budget
);
82 /* Definitions needed by FW loading */
83 static void bdx_tx_push_desc_safe(struct bdx_priv
*priv
, void *data
, int size
);
85 /* Definitions needed by hw_start */
86 static int bdx_tx_init(struct bdx_priv
*priv
);
87 static int bdx_rx_init(struct bdx_priv
*priv
);
89 /* Definitions needed by bdx_close */
90 static void bdx_rx_free(struct bdx_priv
*priv
);
91 static void bdx_tx_free(struct bdx_priv
*priv
);
93 /* Definitions needed by bdx_probe */
94 static void bdx_ethtool_ops(struct net_device
*netdev
);
96 /*************************************************************************
98 *************************************************************************/
100 static void print_hw_id(struct pci_dev
*pdev
)
102 struct pci_nic
*nic
= pci_get_drvdata(pdev
);
103 u16 pci_link_status
= 0;
106 pci_read_config_word(pdev
, PCI_LINK_STATUS_REG
, &pci_link_status
);
107 pci_read_config_word(pdev
, PCI_DEV_CTRL_REG
, &pci_ctrl
);
109 printk(KERN_INFO
"tehuti: %s%s\n", BDX_NIC_NAME
,
110 nic
->port_num
== 1 ? "" : ", 2-Port");
112 "tehuti: srom 0x%x fpga %d build %u lane# %d"
113 " max_pl 0x%x mrrs 0x%x\n",
114 readl(nic
->regs
+ SROM_VER
), readl(nic
->regs
+ FPGA_VER
) & 0xFFF,
115 readl(nic
->regs
+ FPGA_SEED
),
116 GET_LINK_STATUS_LANES(pci_link_status
),
117 GET_DEV_CTRL_MAXPL(pci_ctrl
), GET_DEV_CTRL_MRRS(pci_ctrl
));
120 static void print_fw_id(struct pci_nic
*nic
)
122 printk(KERN_INFO
"tehuti: fw 0x%x\n", readl(nic
->regs
+ FW_VER
));
125 static void print_eth_id(struct net_device
*ndev
)
127 printk(KERN_INFO
"%s: %s, Port %c\n", ndev
->name
, BDX_NIC_NAME
,
128 (ndev
->if_port
== 0) ? 'A' : 'B');
132 /*************************************************************************
134 *************************************************************************/
136 #define bdx_enable_interrupts(priv) \
137 do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
138 #define bdx_disable_interrupts(priv) \
139 do { WRITE_REG(priv, regIMR, 0); } while (0)
142 * create TX/RX descriptor fifo for host-NIC communication.
143 * 1K extra space is allocated at the end of the fifo to simplify
144 * processing of descriptors that wraps around fifo's end
145 * @priv - NIC private structure
146 * @f - fifo to initialize
147 * @fsz_type - fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
148 * @reg_XXX - offsets of registers relative to base address
150 * Returns 0 on success, negative value on failure
154 bdx_fifo_init(struct bdx_priv
*priv
, struct fifo
*f
, int fsz_type
,
155 u16 reg_CFG0
, u16 reg_CFG1
, u16 reg_RPTR
, u16 reg_WPTR
)
157 u16 memsz
= FIFO_SIZE
* (1 << fsz_type
);
159 memset(f
, 0, sizeof(struct fifo
));
160 /* pci_alloc_consistent gives us 4k-aligned memory */
161 f
->va
= pci_alloc_consistent(priv
->pdev
,
162 memsz
+ FIFO_EXTRA_SPACE
, &f
->da
);
164 ERR("pci_alloc_consistent failed\n");
167 f
->reg_CFG0
= reg_CFG0
;
168 f
->reg_CFG1
= reg_CFG1
;
169 f
->reg_RPTR
= reg_RPTR
;
170 f
->reg_WPTR
= reg_WPTR
;
174 f
->size_mask
= memsz
- 1;
175 WRITE_REG(priv
, reg_CFG0
, (u32
) ((f
->da
& TX_RX_CFG0_BASE
) | fsz_type
));
176 WRITE_REG(priv
, reg_CFG1
, H32_64(f
->da
));
181 /* bdx_fifo_free - free all resources used by fifo
182 * @priv - NIC private structure
183 * @f - fifo to release
185 static void bdx_fifo_free(struct bdx_priv
*priv
, struct fifo
*f
)
189 pci_free_consistent(priv
->pdev
,
190 f
->memsz
+ FIFO_EXTRA_SPACE
, f
->va
, f
->da
);
197 * bdx_link_changed - notifies OS about hw link state.
198 * @bdx_priv - hw adapter structure
200 static void bdx_link_changed(struct bdx_priv
*priv
)
202 u32 link
= READ_REG(priv
, regMAC_LNK_STAT
) & MAC_LINK_STAT
;
205 if (netif_carrier_ok(priv
->ndev
)) {
206 netif_stop_queue(priv
->ndev
);
207 netif_carrier_off(priv
->ndev
);
208 ERR("%s: Link Down\n", priv
->ndev
->name
);
211 if (!netif_carrier_ok(priv
->ndev
)) {
212 netif_wake_queue(priv
->ndev
);
213 netif_carrier_on(priv
->ndev
);
214 ERR("%s: Link Up\n", priv
->ndev
->name
);
219 static void bdx_isr_extra(struct bdx_priv
*priv
, u32 isr
)
221 if (isr
& IR_RX_FREE_0
) {
222 bdx_rx_alloc_skbs(priv
, &priv
->rxf_fifo0
);
226 if (isr
& IR_LNKCHG0
)
227 bdx_link_changed(priv
);
229 if (isr
& IR_PCIE_LINK
)
230 ERR("%s: PCI-E Link Fault\n", priv
->ndev
->name
);
232 if (isr
& IR_PCIE_TOUT
)
233 ERR("%s: PCI-E Time Out\n", priv
->ndev
->name
);
237 /* bdx_isr - Interrupt Service Routine for Bordeaux NIC
238 * @irq - interrupt number
239 * @ndev - network device
240 * @regs - CPU registers
242 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
244 * It reads ISR register to know interrupt reasons, and proceed them one by one.
245 * Reasons of interest are:
246 * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
247 * RX_FREE - number of free Rx buffers in RXF fifo gets low
248 * TX_FREE - packet was transmited and RXF fifo holds its descriptor
251 static irqreturn_t
bdx_isr_napi(int irq
, void *dev
)
253 struct net_device
*ndev
= dev
;
254 struct bdx_priv
*priv
= ndev
->priv
;
258 isr
= (READ_REG(priv
, regISR
) & IR_RUN
);
259 if (unlikely(!isr
)) {
260 bdx_enable_interrupts(priv
);
261 return IRQ_NONE
; /* Not our interrupt */
265 bdx_isr_extra(priv
, isr
);
267 if (isr
& (IR_RX_DESC_0
| IR_TX_FREE_0
)) {
268 if (likely(netif_rx_schedule_prep(ndev
, &priv
->napi
))) {
269 __netif_rx_schedule(ndev
, &priv
->napi
);
272 /* NOTE: we get here if intr has slipped into window
273 * between these lines in bdx_poll:
274 * bdx_enable_interrupts(priv);
276 * currently intrs are disabled (since we read ISR),
277 * and we have failed to register next poll.
278 * so we read the regs to trigger chip
279 * and allow further interupts. */
280 READ_REG(priv
, regTXF_WPTR_0
);
281 READ_REG(priv
, regRXD_WPTR_0
);
285 bdx_enable_interrupts(priv
);
289 static int bdx_poll(struct napi_struct
*napi
, int budget
)
291 struct bdx_priv
*priv
= container_of(napi
, struct bdx_priv
, napi
);
292 struct net_device
*dev
= priv
->ndev
;
296 bdx_tx_cleanup(priv
);
297 work_done
= bdx_rx_receive(priv
, &priv
->rxd_fifo0
, budget
);
298 if ((work_done
< budget
) ||
299 (priv
->napi_stop
++ >= 30)) {
300 DBG("rx poll is done. backing to isr-driven\n");
302 /* from time to time we exit to let NAPI layer release
303 * device lock and allow waiting tasks (eg rmmod) to advance) */
306 netif_rx_complete(dev
, napi
);
307 bdx_enable_interrupts(priv
);
312 /* bdx_fw_load - loads firmware to NIC
313 * @priv - NIC private structure
314 * Firmware is loaded via TXD fifo, so it must be initialized first.
315 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
316 * can have few of them). So all drivers use semaphore register to choose one
317 * that will actually load FW to NIC.
320 static int bdx_fw_load(struct bdx_priv
*priv
)
325 master
= READ_REG(priv
, regINIT_SEMAPHORE
);
326 if (!READ_REG(priv
, regINIT_STATUS
) && master
) {
327 bdx_tx_push_desc_safe(priv
, s_firmLoad
, sizeof(s_firmLoad
));
330 for (i
= 0; i
< 200; i
++) {
331 if (READ_REG(priv
, regINIT_STATUS
))
336 WRITE_REG(priv
, regINIT_SEMAPHORE
, 1);
339 ERR("%s: firmware loading failed\n", priv
->ndev
->name
);
340 DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
341 READ_REG(priv
, regVPC
),
342 READ_REG(priv
, regVIC
), READ_REG(priv
, regINIT_STATUS
), i
);
345 DBG("%s: firmware loading success\n", priv
->ndev
->name
);
350 static void bdx_restore_mac(struct net_device
*ndev
, struct bdx_priv
*priv
)
355 DBG("mac0=%x mac1=%x mac2=%x\n",
356 READ_REG(priv
, regUNC_MAC0_A
),
357 READ_REG(priv
, regUNC_MAC1_A
), READ_REG(priv
, regUNC_MAC2_A
));
359 val
= (ndev
->dev_addr
[0] << 8) | (ndev
->dev_addr
[1]);
360 WRITE_REG(priv
, regUNC_MAC2_A
, val
);
361 val
= (ndev
->dev_addr
[2] << 8) | (ndev
->dev_addr
[3]);
362 WRITE_REG(priv
, regUNC_MAC1_A
, val
);
363 val
= (ndev
->dev_addr
[4] << 8) | (ndev
->dev_addr
[5]);
364 WRITE_REG(priv
, regUNC_MAC0_A
, val
);
366 DBG("mac0=%x mac1=%x mac2=%x\n",
367 READ_REG(priv
, regUNC_MAC0_A
),
368 READ_REG(priv
, regUNC_MAC1_A
), READ_REG(priv
, regUNC_MAC2_A
));
372 /* bdx_hw_start - inits registers and starts HW's Rx and Tx engines
373 * @priv - NIC private structure
375 static int bdx_hw_start(struct bdx_priv
*priv
)
378 struct net_device
*ndev
= priv
->ndev
;
381 bdx_link_changed(priv
);
383 /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
384 WRITE_REG(priv
, regFRM_LENGTH
, 0X3FE0);
385 WRITE_REG(priv
, regPAUSE_QUANT
, 0x96);
386 WRITE_REG(priv
, regRX_FIFO_SECTION
, 0x800010);
387 WRITE_REG(priv
, regTX_FIFO_SECTION
, 0xE00010);
388 WRITE_REG(priv
, regRX_FULLNESS
, 0);
389 WRITE_REG(priv
, regTX_FULLNESS
, 0);
390 WRITE_REG(priv
, regCTRLST
,
391 regCTRLST_BASE
| regCTRLST_RX_ENA
| regCTRLST_TX_ENA
);
393 WRITE_REG(priv
, regVGLB
, 0);
394 WRITE_REG(priv
, regMAX_FRAME_A
,
395 priv
->rxf_fifo0
.m
.pktsz
& MAX_FRAME_AB_VAL
);
397 DBG("RDINTCM=%08x\n", priv
->rdintcm
); /*NOTE: test script uses this */
398 WRITE_REG(priv
, regRDINTCM0
, priv
->rdintcm
);
399 WRITE_REG(priv
, regRDINTCM2
, 0); /*cpu_to_le32(rcm.val)); */
401 DBG("TDINTCM=%08x\n", priv
->tdintcm
); /*NOTE: test script uses this */
402 WRITE_REG(priv
, regTDINTCM0
, priv
->tdintcm
); /* old val = 0x300064 */
404 /* Enable timer interrupt once in 2 secs. */
405 /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
406 bdx_restore_mac(priv
->ndev
, priv
);
408 WRITE_REG(priv
, regGMAC_RXF_A
, GMAC_RX_FILTER_OSEN
|
409 GMAC_RX_FILTER_AM
| GMAC_RX_FILTER_AB
);
411 #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI)?0:IRQF_SHARED)
412 if ((rc
= request_irq(priv
->pdev
->irq
, &bdx_isr_napi
, BDX_IRQ_TYPE
,
415 bdx_enable_interrupts(priv
);
423 static void bdx_hw_stop(struct bdx_priv
*priv
)
426 bdx_disable_interrupts(priv
);
427 free_irq(priv
->pdev
->irq
, priv
->ndev
);
429 netif_carrier_off(priv
->ndev
);
430 netif_stop_queue(priv
->ndev
);
435 static int bdx_hw_reset_direct(void __iomem
*regs
)
440 /* reset sequences: read, write 1, read, write 0 */
441 val
= readl(regs
+ regCLKPLL
);
442 writel((val
| CLKPLL_SFTRST
) + 0x8, regs
+ regCLKPLL
);
444 val
= readl(regs
+ regCLKPLL
);
445 writel(val
& ~CLKPLL_SFTRST
, regs
+ regCLKPLL
);
447 /* check that the PLLs are locked and reset ended */
448 for (i
= 0; i
< 70; i
++, mdelay(10))
449 if ((readl(regs
+ regCLKPLL
) & CLKPLL_LKD
) == CLKPLL_LKD
) {
450 /* do any PCI-E read transaction */
451 readl(regs
+ regRXD_CFG0_0
);
454 ERR("tehuti: HW reset failed\n");
455 return 1; /* failure */
458 static int bdx_hw_reset(struct bdx_priv
*priv
)
463 if (priv
->port
== 0) {
464 /* reset sequences: read, write 1, read, write 0 */
465 val
= READ_REG(priv
, regCLKPLL
);
466 WRITE_REG(priv
, regCLKPLL
, (val
| CLKPLL_SFTRST
) + 0x8);
468 val
= READ_REG(priv
, regCLKPLL
);
469 WRITE_REG(priv
, regCLKPLL
, val
& ~CLKPLL_SFTRST
);
471 /* check that the PLLs are locked and reset ended */
472 for (i
= 0; i
< 70; i
++, mdelay(10))
473 if ((READ_REG(priv
, regCLKPLL
) & CLKPLL_LKD
) == CLKPLL_LKD
) {
474 /* do any PCI-E read transaction */
475 READ_REG(priv
, regRXD_CFG0_0
);
478 ERR("tehuti: HW reset failed\n");
479 return 1; /* failure */
482 static int bdx_sw_reset(struct bdx_priv
*priv
)
487 /* 1. load MAC (obsolete) */
488 /* 2. disable Rx (and Tx) */
489 WRITE_REG(priv
, regGMAC_RXF_A
, 0);
491 /* 3. disable port */
492 WRITE_REG(priv
, regDIS_PORT
, 1);
493 /* 4. disable queue */
494 WRITE_REG(priv
, regDIS_QU
, 1);
495 /* 5. wait until hw is disabled */
496 for (i
= 0; i
< 50; i
++) {
497 if (READ_REG(priv
, regRST_PORT
) & 1)
502 ERR("%s: SW reset timeout. continuing anyway\n",
505 /* 6. disable intrs */
506 WRITE_REG(priv
, regRDINTCM0
, 0);
507 WRITE_REG(priv
, regTDINTCM0
, 0);
508 WRITE_REG(priv
, regIMR
, 0);
509 READ_REG(priv
, regISR
);
512 WRITE_REG(priv
, regRST_QU
, 1);
514 WRITE_REG(priv
, regRST_PORT
, 1);
515 /* 9. zero all read and write pointers */
516 for (i
= regTXD_WPTR_0
; i
<= regTXF_RPTR_3
; i
+= 0x10)
517 DBG("%x = %x\n", i
, READ_REG(priv
, i
) & TXF_WPTR_WR_PTR
);
518 for (i
= regTXD_WPTR_0
; i
<= regTXF_RPTR_3
; i
+= 0x10)
519 WRITE_REG(priv
, i
, 0);
520 /* 10. unseet port disable */
521 WRITE_REG(priv
, regDIS_PORT
, 0);
522 /* 11. unset queue disable */
523 WRITE_REG(priv
, regDIS_QU
, 0);
524 /* 12. unset queue reset */
525 WRITE_REG(priv
, regRST_QU
, 0);
526 /* 13. unset port reset */
527 WRITE_REG(priv
, regRST_PORT
, 0);
529 /* skiped. will be done later */
530 /* 15. save MAC (obsolete) */
531 for (i
= regTXD_WPTR_0
; i
<= regTXF_RPTR_3
; i
+= 0x10)
532 DBG("%x = %x\n", i
, READ_REG(priv
, i
) & TXF_WPTR_WR_PTR
);
537 /* bdx_reset - performs right type of reset depending on hw type */
538 static int bdx_reset(struct bdx_priv
*priv
)
541 RET((priv
->pdev
->device
== 0x3009)
543 : bdx_sw_reset(priv
));
547 * bdx_close - Disables a network interface
548 * @netdev: network interface device structure
550 * Returns 0, this is not allowed to fail
552 * The close entry point is called when an interface is de-activated
553 * by the OS. The hardware is still under the drivers control, but
554 * needs to be disabled. A global MAC reset is issued to stop the
555 * hardware, and all transmit and receive resources are freed.
557 static int bdx_close(struct net_device
*ndev
)
559 struct bdx_priv
*priv
= NULL
;
564 napi_disable(&priv
->napi
);
574 * bdx_open - Called when a network interface is made active
575 * @netdev: network interface device structure
577 * Returns 0 on success, negative value on failure
579 * The open entry point is called when a network interface is made
580 * active by the system (IFF_UP). At this point all resources needed
581 * for transmit and receive operations are allocated, the interrupt
582 * handler is registered with the OS, the watchdog timer is started,
583 * and the stack is notified that the interface is ready.
585 static int bdx_open(struct net_device
*ndev
)
587 struct bdx_priv
*priv
;
593 if (netif_running(ndev
))
594 netif_stop_queue(priv
->ndev
);
596 if ((rc
= bdx_tx_init(priv
)))
599 if ((rc
= bdx_rx_init(priv
)))
602 if ((rc
= bdx_fw_load(priv
)))
605 bdx_rx_alloc_skbs(priv
, &priv
->rxf_fifo0
);
607 if ((rc
= bdx_hw_start(priv
)))
610 napi_enable(&priv
->napi
);
612 print_fw_id(priv
->nic
);
621 static void __init
bdx_firmware_endianess(void)
624 for (i
= 0; i
< ARRAY_SIZE(s_firmLoad
); i
++)
625 s_firmLoad
[i
] = CPU_CHIP_SWAP32(s_firmLoad
[i
]);
628 static int bdx_range_check(struct bdx_priv
*priv
, u32 offset
)
630 return (offset
> (u32
) (BDX_REGS_SIZE
/ priv
->nic
->port_num
)) ?
634 static int bdx_ioctl_priv(struct net_device
*ndev
, struct ifreq
*ifr
, int cmd
)
636 struct bdx_priv
*priv
= ndev
->priv
;
642 DBG("jiffies=%ld cmd=%d\n", jiffies
, cmd
);
643 if (cmd
!= SIOCDEVPRIVATE
) {
644 error
= copy_from_user(data
, ifr
->ifr_data
, sizeof(data
));
646 ERR("cant copy from user\n");
649 DBG("%d 0x%x 0x%x\n", data
[0], data
[1], data
[2]);
652 if (!capable(CAP_SYS_RAWIO
))
658 error
= bdx_range_check(priv
, data
[1]);
661 data
[2] = READ_REG(priv
, data
[1]);
662 DBG("read_reg(0x%x)=0x%x (dec %d)\n", data
[1], data
[2],
664 error
= copy_to_user(ifr
->ifr_data
, data
, sizeof(data
));
670 error
= bdx_range_check(priv
, data
[1]);
673 WRITE_REG(priv
, data
[1], data
[2]);
674 DBG("write_reg(0x%x, 0x%x)\n", data
[1], data
[2]);
683 static int bdx_ioctl(struct net_device
*ndev
, struct ifreq
*ifr
, int cmd
)
686 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
687 RET(bdx_ioctl_priv(ndev
, ifr
, cmd
));
693 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
694 * by passing VLAN filter table to hardware
695 * @ndev network device
697 * @op add or kill operation
699 static void __bdx_vlan_rx_vid(struct net_device
*ndev
, uint16_t vid
, int enable
)
701 struct bdx_priv
*priv
= ndev
->priv
;
705 DBG2("vid=%d value=%d\n", (int)vid
, enable
);
706 if (unlikely(vid
>= 4096)) {
707 ERR("tehuti: invalid VID: %u (> 4096)\n", vid
);
710 reg
= regVLAN_0
+ (vid
/ 32) * 4;
712 val
= READ_REG(priv
, reg
);
713 DBG2("reg=%x, val=%x, bit=%d\n", reg
, val
, bit
);
718 DBG2("new val %x\n", val
);
719 WRITE_REG(priv
, reg
, val
);
724 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
725 * @ndev network device
726 * @vid VLAN vid to add
728 static void bdx_vlan_rx_add_vid(struct net_device
*ndev
, uint16_t vid
)
730 __bdx_vlan_rx_vid(ndev
, vid
, 1);
734 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
735 * @ndev network device
736 * @vid VLAN vid to kill
738 static void bdx_vlan_rx_kill_vid(struct net_device
*ndev
, unsigned short vid
)
740 __bdx_vlan_rx_vid(ndev
, vid
, 0);
744 * bdx_vlan_rx_register - kernel hook for adding VLAN group
745 * @ndev network device
749 bdx_vlan_rx_register(struct net_device
*ndev
, struct vlan_group
*grp
)
751 struct bdx_priv
*priv
= ndev
->priv
;
754 DBG("device='%s', group='%p'\n", ndev
->name
, grp
);
760 * bdx_change_mtu - Change the Maximum Transfer Unit
761 * @netdev: network interface device structure
762 * @new_mtu: new value for maximum frame size
764 * Returns 0 on success, negative on failure
766 static int bdx_change_mtu(struct net_device
*ndev
, int new_mtu
)
770 if (new_mtu
== ndev
->mtu
)
773 /* enforce minimum frame size */
774 if (new_mtu
< ETH_ZLEN
) {
775 ERR("%s: %s mtu %d is less then minimal %d\n",
776 BDX_DRV_NAME
, ndev
->name
, new_mtu
, ETH_ZLEN
);
781 if (netif_running(ndev
)) {
788 static void bdx_setmulti(struct net_device
*ndev
)
790 struct bdx_priv
*priv
= ndev
->priv
;
793 GMAC_RX_FILTER_AM
| GMAC_RX_FILTER_AB
| GMAC_RX_FILTER_OSEN
;
797 /* IMF - imperfect (hash) rx multicat filter */
798 /* PMF - perfect rx multicat filter */
800 /* FIXME: RXE(OFF) */
801 if (ndev
->flags
& IFF_PROMISC
) {
802 rxf_val
|= GMAC_RX_FILTER_PRM
;
803 } else if (ndev
->flags
& IFF_ALLMULTI
) {
804 /* set IMF to accept all multicast frmaes */
805 for (i
= 0; i
< MAC_MCST_HASH_NUM
; i
++)
806 WRITE_REG(priv
, regRX_MCST_HASH0
+ i
* 4, ~0);
807 } else if (ndev
->mc_count
) {
809 struct dev_mc_list
*mclist
;
812 /* set IMF to deny all multicast frames */
813 for (i
= 0; i
< MAC_MCST_HASH_NUM
; i
++)
814 WRITE_REG(priv
, regRX_MCST_HASH0
+ i
* 4, 0);
815 /* set PMF to deny all multicast frames */
816 for (i
= 0; i
< MAC_MCST_NUM
; i
++) {
817 WRITE_REG(priv
, regRX_MAC_MCST0
+ i
* 8, 0);
818 WRITE_REG(priv
, regRX_MAC_MCST1
+ i
* 8, 0);
821 /* use PMF to accept first MAC_MCST_NUM (15) addresses */
822 /* TBD: sort addreses and write them in ascending order
823 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
824 * multicast frames throu IMF */
825 mclist
= ndev
->mc_list
;
827 /* accept the rest of addresses throu IMF */
828 for (; mclist
; mclist
= mclist
->next
) {
830 for (i
= 0; i
< ETH_ALEN
; i
++)
831 hash
^= mclist
->dmi_addr
[i
];
832 reg
= regRX_MCST_HASH0
+ ((hash
>> 5) << 2);
833 val
= READ_REG(priv
, reg
);
834 val
|= (1 << (hash
% 32));
835 WRITE_REG(priv
, reg
, val
);
839 DBG("only own mac %d\n", ndev
->mc_count
);
840 rxf_val
|= GMAC_RX_FILTER_AB
;
842 WRITE_REG(priv
, regGMAC_RXF_A
, rxf_val
);
848 static int bdx_set_mac(struct net_device
*ndev
, void *p
)
850 struct bdx_priv
*priv
= ndev
->priv
;
851 struct sockaddr
*addr
= p
;
855 if (netif_running(dev))
858 memcpy(ndev
->dev_addr
, addr
->sa_data
, ndev
->addr_len
);
859 bdx_restore_mac(ndev
, priv
);
863 static int bdx_read_mac(struct bdx_priv
*priv
)
865 u16 macAddress
[3], i
;
868 macAddress
[2] = READ_REG(priv
, regUNC_MAC0_A
);
869 macAddress
[2] = READ_REG(priv
, regUNC_MAC0_A
);
870 macAddress
[1] = READ_REG(priv
, regUNC_MAC1_A
);
871 macAddress
[1] = READ_REG(priv
, regUNC_MAC1_A
);
872 macAddress
[0] = READ_REG(priv
, regUNC_MAC2_A
);
873 macAddress
[0] = READ_REG(priv
, regUNC_MAC2_A
);
874 for (i
= 0; i
< 3; i
++) {
875 priv
->ndev
->dev_addr
[i
* 2 + 1] = macAddress
[i
];
876 priv
->ndev
->dev_addr
[i
* 2] = macAddress
[i
] >> 8;
881 static u64
bdx_read_l2stat(struct bdx_priv
*priv
, int reg
)
885 val
= READ_REG(priv
, reg
);
886 val
|= ((u64
) READ_REG(priv
, reg
+ 8)) << 32;
890 /*Do the statistics-update work*/
891 static void bdx_update_stats(struct bdx_priv
*priv
)
893 struct bdx_stats
*stats
= &priv
->hw_stats
;
894 u64
*stats_vector
= (u64
*) stats
;
898 /*Fill HW structure */
900 /*First 12 statistics - 0x7200 - 0x72B0 */
901 for (i
= 0; i
< 12; i
++) {
902 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
905 BDX_ASSERT(addr
!= 0x72C0);
906 /* 0x72C0-0x72E0 RSRV */
908 for (; i
< 16; i
++) {
909 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
912 BDX_ASSERT(addr
!= 0x7330);
913 /* 0x7330-0x7360 RSRV */
915 for (; i
< 19; i
++) {
916 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
919 BDX_ASSERT(addr
!= 0x73A0);
920 /* 0x73A0-0x73B0 RSRV */
922 for (; i
< 23; i
++) {
923 stats_vector
[i
] = bdx_read_l2stat(priv
, addr
);
926 BDX_ASSERT(addr
!= 0x7400);
927 BDX_ASSERT((sizeof(struct bdx_stats
) / sizeof(u64
)) != i
);
930 static struct net_device_stats
*bdx_get_stats(struct net_device
*ndev
)
932 struct bdx_priv
*priv
= ndev
->priv
;
933 struct net_device_stats
*net_stat
= &priv
->net_stats
;
937 static void print_rxdd(struct rxd_desc
*rxdd
, u32 rxd_val1
, u16 len
,
939 static void print_rxfd(struct rxf_desc
*rxfd
);
941 /*************************************************************************
943 *************************************************************************/
945 static void bdx_rxdb_destroy(struct rxdb
*db
)
951 static struct rxdb
*bdx_rxdb_create(int nelem
)
956 db
= vmalloc(sizeof(struct rxdb
)
957 + (nelem
* sizeof(int))
958 + (nelem
* sizeof(struct rx_map
)));
959 if (likely(db
!= NULL
)) {
960 db
->stack
= (int *)(db
+ 1);
961 db
->elems
= (void *)(db
->stack
+ nelem
);
964 for (i
= 0; i
< nelem
; i
++)
965 db
->stack
[i
] = nelem
- i
- 1; /* to make first allocs
972 static inline int bdx_rxdb_alloc_elem(struct rxdb
*db
)
974 BDX_ASSERT(db
->top
<= 0);
975 return db
->stack
[--(db
->top
)];
978 static inline void *bdx_rxdb_addr_elem(struct rxdb
*db
, int n
)
980 BDX_ASSERT((n
< 0) || (n
>= db
->nelem
));
981 return db
->elems
+ n
;
984 static inline int bdx_rxdb_available(struct rxdb
*db
)
989 static inline void bdx_rxdb_free_elem(struct rxdb
*db
, int n
)
991 BDX_ASSERT((n
>= db
->nelem
) || (n
< 0));
992 db
->stack
[(db
->top
)++] = n
;
995 /*************************************************************************
997 *************************************************************************/
999 /* bdx_rx_init - initialize RX all related HW and SW resources
1000 * @priv - NIC private structure
1002 * Returns 0 on success, negative value on failure
1004 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
1005 * skb for rx. It assumes that Rx is desabled in HW
1006 * funcs are grouped for better cache usage
1008 * RxD fifo is smaller then RxF fifo by design. Upon high load, RxD will be
1009 * filled and packets will be dropped by nic without getting into host or
1010 * cousing interrupt. Anyway, in that condition, host has no chance to proccess
1011 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
1014 /* TBD: ensure proper packet size */
1016 static int bdx_rx_init(struct bdx_priv
*priv
)
1020 if (bdx_fifo_init(priv
, &priv
->rxd_fifo0
.m
, priv
->rxd_size
,
1021 regRXD_CFG0_0
, regRXD_CFG1_0
,
1022 regRXD_RPTR_0
, regRXD_WPTR_0
))
1024 if (bdx_fifo_init(priv
, &priv
->rxf_fifo0
.m
, priv
->rxf_size
,
1025 regRXF_CFG0_0
, regRXF_CFG1_0
,
1026 regRXF_RPTR_0
, regRXF_WPTR_0
))
1030 bdx_rxdb_create(priv
->rxf_fifo0
.m
.memsz
/
1031 sizeof(struct rxf_desc
))))
1034 priv
->rxf_fifo0
.m
.pktsz
= priv
->ndev
->mtu
+ VLAN_ETH_HLEN
;
1038 ERR("%s: %s: Rx init failed\n", BDX_DRV_NAME
, priv
->ndev
->name
);
1042 /* bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1043 * @priv - NIC private structure
1046 static void bdx_rx_free_skbs(struct bdx_priv
*priv
, struct rxf_fifo
*f
)
1049 struct rxdb
*db
= priv
->rxdb
;
1053 DBG("total=%d free=%d busy=%d\n", db
->nelem
, bdx_rxdb_available(db
),
1054 db
->nelem
- bdx_rxdb_available(db
));
1055 while (bdx_rxdb_available(db
) > 0) {
1056 i
= bdx_rxdb_alloc_elem(db
);
1057 dm
= bdx_rxdb_addr_elem(db
, i
);
1060 for (i
= 0; i
< db
->nelem
; i
++) {
1061 dm
= bdx_rxdb_addr_elem(db
, i
);
1063 pci_unmap_single(priv
->pdev
,
1064 dm
->dma
, f
->m
.pktsz
,
1065 PCI_DMA_FROMDEVICE
);
1066 dev_kfree_skb(dm
->skb
);
1071 /* bdx_rx_free - release all Rx resources
1072 * @priv - NIC private structure
1073 * It assumes that Rx is desabled in HW
1075 static void bdx_rx_free(struct bdx_priv
*priv
)
1079 bdx_rx_free_skbs(priv
, &priv
->rxf_fifo0
);
1080 bdx_rxdb_destroy(priv
->rxdb
);
1083 bdx_fifo_free(priv
, &priv
->rxf_fifo0
.m
);
1084 bdx_fifo_free(priv
, &priv
->rxd_fifo0
.m
);
1089 /*************************************************************************
1091 *************************************************************************/
1093 /* bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1094 * @priv - nic's private structure
1095 * @f - RXF fifo that needs skbs
1096 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1097 * skb's virtual and physical addresses are stored in skb db.
1098 * To calculate free space, func uses cached values of RPTR and WPTR
1099 * When needed, it also updates RPTR and WPTR.
1102 /* TBD: do not update WPTR if no desc were written */
1104 static void bdx_rx_alloc_skbs(struct bdx_priv
*priv
, struct rxf_fifo
*f
)
1106 struct sk_buff
*skb
;
1107 struct rxf_desc
*rxfd
;
1109 int dno
, delta
, idx
;
1110 struct rxdb
*db
= priv
->rxdb
;
1113 dno
= bdx_rxdb_available(db
) - 1;
1115 if (!(skb
= dev_alloc_skb(f
->m
.pktsz
+ NET_IP_ALIGN
))) {
1116 ERR("NO MEM: dev_alloc_skb failed\n");
1119 skb
->dev
= priv
->ndev
;
1120 skb_reserve(skb
, NET_IP_ALIGN
);
1122 idx
= bdx_rxdb_alloc_elem(db
);
1123 dm
= bdx_rxdb_addr_elem(db
, idx
);
1124 dm
->dma
= pci_map_single(priv
->pdev
,
1125 skb
->data
, f
->m
.pktsz
,
1126 PCI_DMA_FROMDEVICE
);
1128 rxfd
= (struct rxf_desc
*)(f
->m
.va
+ f
->m
.wptr
);
1129 rxfd
->info
= CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1131 rxfd
->pa_lo
= CPU_CHIP_SWAP32(L32_64(dm
->dma
));
1132 rxfd
->pa_hi
= CPU_CHIP_SWAP32(H32_64(dm
->dma
));
1133 rxfd
->len
= CPU_CHIP_SWAP32(f
->m
.pktsz
);
1136 f
->m
.wptr
+= sizeof(struct rxf_desc
);
1137 delta
= f
->m
.wptr
- f
->m
.memsz
;
1138 if (unlikely(delta
>= 0)) {
1141 memcpy(f
->m
.va
, f
->m
.va
+ f
->m
.memsz
, delta
);
1142 DBG("wrapped descriptor\n");
1147 /*TBD: to do - delayed rxf wptr like in txd */
1148 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1153 NETIF_RX_MUX(struct bdx_priv
*priv
, u32 rxd_val1
, u16 rxd_vlan
,
1154 struct sk_buff
*skb
)
1157 DBG("rxdd->flags.bits.vtag=%d vlgrp=%p\n", GET_RXD_VTAG(rxd_val1
),
1159 if (priv
->vlgrp
&& GET_RXD_VTAG(rxd_val1
)) {
1160 DBG("%s: vlan rcv vlan '%x' vtag '%x', device name '%s'\n",
1162 GET_RXD_VLAN_ID(rxd_vlan
),
1163 GET_RXD_VTAG(rxd_val1
),
1164 vlan_group_get_device(priv
->vlgrp
,
1165 GET_RXD_VLAN_ID(rxd_vlan
))->name
);
1166 /* NAPI variant of receive functions */
1167 vlan_hwaccel_receive_skb(skb
, priv
->vlgrp
,
1168 GET_RXD_VLAN_TCI(rxd_vlan
));
1170 netif_receive_skb(skb
);
1174 static void bdx_recycle_skb(struct bdx_priv
*priv
, struct rxd_desc
*rxdd
)
1176 struct rxf_desc
*rxfd
;
1180 struct sk_buff
*skb
;
1184 DBG("priv=%p rxdd=%p\n", priv
, rxdd
);
1185 f
= &priv
->rxf_fifo0
;
1187 DBG("db=%p f=%p\n", db
, f
);
1188 dm
= bdx_rxdb_addr_elem(db
, rxdd
->va_lo
);
1191 rxfd
= (struct rxf_desc
*)(f
->m
.va
+ f
->m
.wptr
);
1192 rxfd
->info
= CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1193 rxfd
->va_lo
= rxdd
->va_lo
;
1194 rxfd
->pa_lo
= CPU_CHIP_SWAP32(L32_64(dm
->dma
));
1195 rxfd
->pa_hi
= CPU_CHIP_SWAP32(H32_64(dm
->dma
));
1196 rxfd
->len
= CPU_CHIP_SWAP32(f
->m
.pktsz
);
1199 f
->m
.wptr
+= sizeof(struct rxf_desc
);
1200 delta
= f
->m
.wptr
- f
->m
.memsz
;
1201 if (unlikely(delta
>= 0)) {
1204 memcpy(f
->m
.va
, f
->m
.va
+ f
->m
.memsz
, delta
);
1205 DBG("wrapped descriptor\n");
1211 /* bdx_rx_receive - recieves full packets from RXD fifo and pass them to OS
1212 * NOTE: a special treatment is given to non-continous descriptors
1213 * that start near the end, wraps around and continue at the beginning. a second
1214 * part is copied right after the first, and then descriptor is interpreted as
1215 * normal. fifo has an extra space to allow such operations
1216 * @priv - nic's private structure
1217 * @f - RXF fifo that needs skbs
1220 /* TBD: replace memcpy func call by explicite inline asm */
1222 static int bdx_rx_receive(struct bdx_priv
*priv
, struct rxd_fifo
*f
, int budget
)
1224 struct sk_buff
*skb
, *skb2
;
1225 struct rxd_desc
*rxdd
;
1227 struct rxf_fifo
*rxf_fifo
;
1230 int max_done
= BDX_MAX_RX_DONE
;
1231 struct rxdb
*db
= NULL
;
1232 /* Unmarshalled descriptor - copy of descriptor in host order */
1240 priv
->ndev
->last_rx
= jiffies
;
1241 f
->m
.wptr
= READ_REG(priv
, f
->m
.reg_WPTR
) & TXF_WPTR_WR_PTR
;
1243 size
= f
->m
.wptr
- f
->m
.rptr
;
1245 size
= f
->m
.memsz
+ size
; /* size is negative :-) */
1249 rxdd
= (struct rxd_desc
*)(f
->m
.va
+ f
->m
.rptr
);
1250 rxd_val1
= CPU_CHIP_SWAP32(rxdd
->rxd_val1
);
1252 len
= CPU_CHIP_SWAP16(rxdd
->len
);
1254 rxd_vlan
= CPU_CHIP_SWAP16(rxdd
->rxd_vlan
);
1256 print_rxdd(rxdd
, rxd_val1
, len
, rxd_vlan
);
1258 tmp_len
= GET_RXD_BC(rxd_val1
) << 3;
1259 BDX_ASSERT(tmp_len
<= 0);
1261 if (size
< 0) /* test for partially arrived descriptor */
1264 f
->m
.rptr
+= tmp_len
;
1266 tmp_len
= f
->m
.rptr
- f
->m
.memsz
;
1267 if (unlikely(tmp_len
>= 0)) {
1268 f
->m
.rptr
= tmp_len
;
1270 DBG("wrapped desc rptr=%d tmp_len=%d\n",
1271 f
->m
.rptr
, tmp_len
);
1272 memcpy(f
->m
.va
+ f
->m
.memsz
, f
->m
.va
, tmp_len
);
1276 if (unlikely(GET_RXD_ERR(rxd_val1
))) {
1277 DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1
));
1278 priv
->net_stats
.rx_errors
++;
1279 bdx_recycle_skb(priv
, rxdd
);
1283 rxf_fifo
= &priv
->rxf_fifo0
;
1285 dm
= bdx_rxdb_addr_elem(db
, rxdd
->va_lo
);
1288 if (len
< BDX_COPYBREAK
&&
1289 (skb2
= dev_alloc_skb(len
+ NET_IP_ALIGN
))) {
1290 skb_reserve(skb2
, NET_IP_ALIGN
);
1291 /*skb_put(skb2, len); */
1292 pci_dma_sync_single_for_cpu(priv
->pdev
,
1293 dm
->dma
, rxf_fifo
->m
.pktsz
,
1294 PCI_DMA_FROMDEVICE
);
1295 memcpy(skb2
->data
, skb
->data
, len
);
1296 bdx_recycle_skb(priv
, rxdd
);
1299 pci_unmap_single(priv
->pdev
,
1300 dm
->dma
, rxf_fifo
->m
.pktsz
,
1301 PCI_DMA_FROMDEVICE
);
1302 bdx_rxdb_free_elem(db
, rxdd
->va_lo
);
1305 priv
->net_stats
.rx_bytes
+= len
;
1308 skb
->dev
= priv
->ndev
;
1309 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1310 skb
->protocol
= eth_type_trans(skb
, priv
->ndev
);
1312 /* Non-IP packets aren't checksum-offloaded */
1313 if (GET_RXD_PKT_ID(rxd_val1
) == 0)
1314 skb
->ip_summed
= CHECKSUM_NONE
;
1316 NETIF_RX_MUX(priv
, rxd_val1
, rxd_vlan
, skb
);
1318 if (++done
>= max_done
)
1322 priv
->net_stats
.rx_packets
+= done
;
1324 /* FIXME: do smth to minimize pci accesses */
1325 WRITE_REG(priv
, f
->m
.reg_RPTR
, f
->m
.rptr
& TXF_WPTR_WR_PTR
);
1327 bdx_rx_alloc_skbs(priv
, &priv
->rxf_fifo0
);
1332 /*************************************************************************
1333 * Debug / Temprorary Code *
1334 *************************************************************************/
1335 static void print_rxdd(struct rxd_desc
*rxdd
, u32 rxd_val1
, u16 len
,
1338 DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d "
1339 "pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d "
1340 "va_lo %d va_hi %d\n",
1341 GET_RXD_BC(rxd_val1
), GET_RXD_RXFQ(rxd_val1
), GET_RXD_TO(rxd_val1
),
1342 GET_RXD_TYPE(rxd_val1
), GET_RXD_ERR(rxd_val1
),
1343 GET_RXD_RXP(rxd_val1
), GET_RXD_PKT_ID(rxd_val1
),
1344 GET_RXD_VTAG(rxd_val1
), len
, GET_RXD_VLAN_ID(rxd_vlan
),
1345 GET_RXD_CFI(rxd_vlan
), GET_RXD_PRIO(rxd_vlan
), rxdd
->va_lo
,
1349 static void print_rxfd(struct rxf_desc
*rxfd
)
1351 DBG("=== RxF desc CHIP ORDER/ENDIANESS =============\n"
1352 "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1353 rxfd
->info
, rxfd
->va_lo
, rxfd
->pa_lo
, rxfd
->pa_hi
, rxfd
->len
);
1357 * TX HW/SW interaction overview
1358 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1359 * There are 2 types of TX communication channels betwean driver and NIC.
1360 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1361 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1363 * Currently NIC supports TSO, checksuming and gather DMA
1364 * UFO and IP fragmentation is on the way
1366 * RX SW Data Structures
1367 * ~~~~~~~~~~~~~~~~~~~~~
1368 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1369 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1370 * acknowledges sent by TXF descriptors.
1371 * Implemented as cyclic buffer.
1372 * fifo - keeps info about fifo's size and location, relevant HW registers,
1373 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1374 * Implemented as simple struct.
1376 * TX SW Execution Flow
1377 * ~~~~~~~~~~~~~~~~~~~~
1378 * OS calls driver's hard_xmit method with packet to sent.
1379 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1380 * by updating TXD WPTR.
1381 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1382 * To prevent TXD fifo overflow without reading HW registers every time,
1383 * SW deploys "tx level" technique.
1384 * Upon strart up, tx level is initialized to TXD fifo length.
1385 * For every sent packet, SW gets its TXD descriptor sizei
1386 * (from precalculated array) and substructs it from tx level.
1387 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1388 * original TXD descriptor from txdb and adds it to tx level.
1389 * When Tx level drops under some predefined treshhold, the driver
1390 * stops the TX queue. When TX level rises above that level,
1391 * the tx queue is enabled again.
1393 * This technique avoids eccessive reading of RPTR and WPTR registers.
1394 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1397 /*************************************************************************
1399 *************************************************************************/
1400 static inline int bdx_tx_db_size(struct txdb
*db
)
1402 int taken
= db
->wptr
- db
->rptr
;
1404 taken
= db
->size
+ 1 + taken
; /* (size + 1) equals memsz */
1406 return db
->size
- taken
;
1409 /* __bdx_tx_ptr_next - helper function, increment read/write pointer + wrap
1411 * @ptr - read or write pointer
1413 static inline void __bdx_tx_db_ptr_next(struct txdb
*db
, struct tx_map
**pptr
)
1415 BDX_ASSERT(db
== NULL
|| pptr
== NULL
); /* sanity */
1417 BDX_ASSERT(*pptr
!= db
->rptr
&& /* expect either read */
1418 *pptr
!= db
->wptr
); /* or write pointer */
1420 BDX_ASSERT(*pptr
< db
->start
|| /* pointer has to be */
1421 *pptr
>= db
->end
); /* in range */
1424 if (unlikely(*pptr
== db
->end
))
1428 /* bdx_tx_db_inc_rptr - increment read pointer
1431 static inline void bdx_tx_db_inc_rptr(struct txdb
*db
)
1433 BDX_ASSERT(db
->rptr
== db
->wptr
); /* can't read from empty db */
1434 __bdx_tx_db_ptr_next(db
, &db
->rptr
);
1437 /* bdx_tx_db_inc_rptr - increment write pointer
1440 static inline void bdx_tx_db_inc_wptr(struct txdb
*db
)
1442 __bdx_tx_db_ptr_next(db
, &db
->wptr
);
1443 BDX_ASSERT(db
->rptr
== db
->wptr
); /* we can not get empty db as
1444 a result of write */
1447 /* bdx_tx_db_init - creates and initializes tx db
1449 * @sz_type - size of tx fifo
1450 * Returns 0 on success, error code otherwise
1452 static int bdx_tx_db_init(struct txdb
*d
, int sz_type
)
1454 int memsz
= FIFO_SIZE
* (1 << (sz_type
+ 1));
1456 d
->start
= vmalloc(memsz
);
1461 * In order to differentiate between db is empty and db is full
1462 * states at least one element should always be empty in order to
1463 * avoid rptr == wptr which means db is empty
1465 d
->size
= memsz
/ sizeof(struct tx_map
) - 1;
1466 d
->end
= d
->start
+ d
->size
+ 1; /* just after last element */
1468 /* all dbs are created equally empty */
1475 /* bdx_tx_db_close - closes tx db and frees all memory
1478 static void bdx_tx_db_close(struct txdb
*d
)
1480 BDX_ASSERT(d
== NULL
);
1488 /*************************************************************************
1490 *************************************************************************/
1492 /* sizes of tx desc (including padding if needed) as function
1493 * of skb's frag number */
1496 u16 qwords
; /* qword = 64 bit */
1497 } txd_sizes
[MAX_SKB_FRAGS
+ 1];
1499 /* txdb_map_skb - creates and stores dma mappings for skb's data blocks
1500 * @priv - NIC private structure
1501 * @skb - socket buffer to map
1503 * It makes dma mappings for skb's data blocks and writes them to PBL of
1504 * new tx descriptor. It also stores them in the tx db, so they could be
1505 * unmaped after data was sent. It is reponsibility of a caller to make
1506 * sure that there is enough space in the tx db. Last element holds pointer
1507 * to skb itself and marked with zero length
1510 bdx_tx_map_skb(struct bdx_priv
*priv
, struct sk_buff
*skb
,
1511 struct txd_desc
*txdd
)
1513 struct txdb
*db
= &priv
->txdb
;
1514 struct pbl
*pbl
= &txdd
->pbl
[0];
1515 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
1518 db
->wptr
->len
= skb
->len
- skb
->data_len
;
1519 db
->wptr
->addr
.dma
= pci_map_single(priv
->pdev
, skb
->data
,
1520 db
->wptr
->len
, PCI_DMA_TODEVICE
);
1521 pbl
->len
= CPU_CHIP_SWAP32(db
->wptr
->len
);
1522 pbl
->pa_lo
= CPU_CHIP_SWAP32(L32_64(db
->wptr
->addr
.dma
));
1523 pbl
->pa_hi
= CPU_CHIP_SWAP32(H32_64(db
->wptr
->addr
.dma
));
1524 DBG("=== pbl len: 0x%x ================\n", pbl
->len
);
1525 DBG("=== pbl pa_lo: 0x%x ================\n", pbl
->pa_lo
);
1526 DBG("=== pbl pa_hi: 0x%x ================\n", pbl
->pa_hi
);
1527 bdx_tx_db_inc_wptr(db
);
1529 for (i
= 0; i
< nr_frags
; i
++) {
1530 struct skb_frag_struct
*frag
;
1532 frag
= &skb_shinfo(skb
)->frags
[i
];
1533 db
->wptr
->len
= frag
->size
;
1534 db
->wptr
->addr
.dma
=
1535 pci_map_page(priv
->pdev
, frag
->page
, frag
->page_offset
,
1536 frag
->size
, PCI_DMA_TODEVICE
);
1539 pbl
->len
= CPU_CHIP_SWAP32(db
->wptr
->len
);
1540 pbl
->pa_lo
= CPU_CHIP_SWAP32(L32_64(db
->wptr
->addr
.dma
));
1541 pbl
->pa_hi
= CPU_CHIP_SWAP32(H32_64(db
->wptr
->addr
.dma
));
1542 bdx_tx_db_inc_wptr(db
);
1545 /* add skb clean up info. */
1546 db
->wptr
->len
= -txd_sizes
[nr_frags
].bytes
;
1547 db
->wptr
->addr
.skb
= skb
;
1548 bdx_tx_db_inc_wptr(db
);
1551 /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1552 * number of frags is used as index to fetch correct descriptors size,
1553 * instead of calculating it each time */
1554 static void __init
init_txd_sizes(void)
1558 /* 7 - is number of lwords in txd with one phys buffer
1559 * 3 - is number of lwords used for every additional phys buffer */
1560 for (i
= 0; i
< MAX_SKB_FRAGS
+ 1; i
++) {
1561 lwords
= 7 + (i
* 3);
1563 lwords
++; /* pad it with 1 lword */
1564 txd_sizes
[i
].qwords
= lwords
>> 1;
1565 txd_sizes
[i
].bytes
= lwords
<< 2;
1569 /* bdx_tx_init - initialize all Tx related stuff.
1570 * Namely, TXD and TXF fifos, database etc */
1571 static int bdx_tx_init(struct bdx_priv
*priv
)
1573 if (bdx_fifo_init(priv
, &priv
->txd_fifo0
.m
, priv
->txd_size
,
1575 regTXD_CFG1_0
, regTXD_RPTR_0
, regTXD_WPTR_0
))
1577 if (bdx_fifo_init(priv
, &priv
->txf_fifo0
.m
, priv
->txf_size
,
1579 regTXF_CFG1_0
, regTXF_RPTR_0
, regTXF_WPTR_0
))
1582 /* The TX db has to keep mappings for all packets sent (on TxD)
1583 * and not yet reclaimed (on TxF) */
1584 if (bdx_tx_db_init(&priv
->txdb
, max(priv
->txd_size
, priv
->txf_size
)))
1587 priv
->tx_level
= BDX_MAX_TX_LEVEL
;
1588 #ifdef BDX_DELAY_WPTR
1589 priv
->tx_update_mark
= priv
->tx_level
- 1024;
1594 ERR("tehuti: %s: Tx init failed\n", priv
->ndev
->name
);
1599 * bdx_tx_space - calculates avalable space in TX fifo
1600 * @priv - NIC private structure
1601 * Returns avaliable space in TX fifo in bytes
1603 static inline int bdx_tx_space(struct bdx_priv
*priv
)
1605 struct txd_fifo
*f
= &priv
->txd_fifo0
;
1608 f
->m
.rptr
= READ_REG(priv
, f
->m
.reg_RPTR
) & TXF_WPTR_WR_PTR
;
1609 fsize
= f
->m
.rptr
- f
->m
.wptr
;
1611 fsize
= f
->m
.memsz
+ fsize
;
1615 /* bdx_tx_transmit - send packet to NIC
1616 * @skb - packet to send
1617 * ndev - network device assigned to NIC
1619 * o NETDEV_TX_OK everything ok.
1620 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1621 * Usually a bug, means queue start/stop flow control is broken in
1622 * the driver. Note: the driver must NOT put the skb in its DMA ring.
1623 * o NETDEV_TX_LOCKED Locking failed, please retry quickly.
1625 static int bdx_tx_transmit(struct sk_buff
*skb
, struct net_device
*ndev
)
1627 struct bdx_priv
*priv
= ndev
->priv
;
1628 struct txd_fifo
*f
= &priv
->txd_fifo0
;
1629 int txd_checksum
= 7; /* full checksum */
1631 int txd_vlan_id
= 0;
1635 int nr_frags
= skb_shinfo(skb
)->nr_frags
;
1636 struct txd_desc
*txdd
;
1638 unsigned long flags
;
1641 local_irq_save(flags
);
1642 if (!spin_trylock(&priv
->tx_lock
)) {
1643 local_irq_restore(flags
);
1644 DBG("%s[%s]: TX locked, returning NETDEV_TX_LOCKED\n",
1645 BDX_DRV_NAME
, ndev
->name
);
1646 return NETDEV_TX_LOCKED
;
1649 /* build tx descriptor */
1650 BDX_ASSERT(f
->m
.wptr
>= f
->m
.memsz
); /* started with valid wptr */
1651 txdd
= (struct txd_desc
*)(f
->m
.va
+ f
->m
.wptr
);
1652 if (unlikely(skb
->ip_summed
!= CHECKSUM_PARTIAL
))
1655 if (skb_shinfo(skb
)->gso_size
) {
1656 txd_mss
= skb_shinfo(skb
)->gso_size
;
1658 DBG("skb %p skb len %d gso size = %d\n", skb
, skb
->len
,
1662 if (vlan_tx_tag_present(skb
)) {
1663 /*Cut VLAN ID to 12 bits */
1664 txd_vlan_id
= vlan_tx_tag_get(skb
) & BITS_MASK(12);
1668 txdd
->length
= CPU_CHIP_SWAP16(skb
->len
);
1669 txdd
->mss
= CPU_CHIP_SWAP16(txd_mss
);
1671 CPU_CHIP_SWAP32(TXD_W1_VAL
1672 (txd_sizes
[nr_frags
].qwords
, txd_checksum
, txd_vtag
,
1673 txd_lgsnd
, txd_vlan_id
));
1674 DBG("=== TxD desc =====================\n");
1675 DBG("=== w1: 0x%x ================\n", txdd
->txd_val1
);
1676 DBG("=== w2: mss 0x%x len 0x%x\n", txdd
->mss
, txdd
->length
);
1678 bdx_tx_map_skb(priv
, skb
, txdd
);
1680 /* increment TXD write pointer. In case of
1681 fifo wrapping copy reminder of the descriptor
1683 f
->m
.wptr
+= txd_sizes
[nr_frags
].bytes
;
1684 len
= f
->m
.wptr
- f
->m
.memsz
;
1685 if (unlikely(len
>= 0)) {
1688 BDX_ASSERT(len
> f
->m
.memsz
);
1689 memcpy(f
->m
.va
, f
->m
.va
+ f
->m
.memsz
, len
);
1692 BDX_ASSERT(f
->m
.wptr
>= f
->m
.memsz
); /* finished with valid wptr */
1694 priv
->tx_level
-= txd_sizes
[nr_frags
].bytes
;
1695 BDX_ASSERT(priv
->tx_level
<= 0 || priv
->tx_level
> BDX_MAX_TX_LEVEL
);
1696 #ifdef BDX_DELAY_WPTR
1697 if (priv
->tx_level
> priv
->tx_update_mark
) {
1698 /* Force memory writes to complete before letting h/w
1699 know there are new descriptors to fetch.
1700 (might be needed on platforms like IA64)
1702 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1704 if (priv
->tx_noupd
++ > BDX_NO_UPD_PACKETS
) {
1706 WRITE_REG(priv
, f
->m
.reg_WPTR
,
1707 f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1711 /* Force memory writes to complete before letting h/w
1712 know there are new descriptors to fetch.
1713 (might be needed on platforms like IA64)
1715 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1718 ndev
->trans_start
= jiffies
;
1720 priv
->net_stats
.tx_packets
++;
1721 priv
->net_stats
.tx_bytes
+= skb
->len
;
1723 if (priv
->tx_level
< BDX_MIN_TX_LEVEL
) {
1724 DBG("%s: %s: TX Q STOP level %d\n",
1725 BDX_DRV_NAME
, ndev
->name
, priv
->tx_level
);
1726 netif_stop_queue(ndev
);
1729 spin_unlock_irqrestore(&priv
->tx_lock
, flags
);
1730 return NETDEV_TX_OK
;
1733 /* bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1734 * @priv - bdx adapter
1735 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1736 * that those packets were sent
1738 static void bdx_tx_cleanup(struct bdx_priv
*priv
)
1740 struct txf_fifo
*f
= &priv
->txf_fifo0
;
1741 struct txdb
*db
= &priv
->txdb
;
1745 f
->m
.wptr
= READ_REG(priv
, f
->m
.reg_WPTR
) & TXF_WPTR_MASK
;
1746 BDX_ASSERT(f
->m
.rptr
>= f
->m
.memsz
); /* started with valid rptr */
1748 while (f
->m
.wptr
!= f
->m
.rptr
) {
1749 f
->m
.rptr
+= BDX_TXF_DESC_SZ
;
1750 f
->m
.rptr
&= f
->m
.size_mask
;
1752 /* unmap all the fragments */
1753 /* first has to come tx_maps containing dma */
1754 BDX_ASSERT(db
->rptr
->len
== 0);
1756 BDX_ASSERT(db
->rptr
->addr
.dma
== 0);
1757 pci_unmap_page(priv
->pdev
, db
->rptr
->addr
.dma
,
1758 db
->rptr
->len
, PCI_DMA_TODEVICE
);
1759 bdx_tx_db_inc_rptr(db
);
1760 } while (db
->rptr
->len
> 0);
1761 tx_level
-= db
->rptr
->len
; /* '-' koz len is negative */
1763 /* now should come skb pointer - free it */
1764 dev_kfree_skb_irq(db
->rptr
->addr
.skb
);
1765 bdx_tx_db_inc_rptr(db
);
1768 /* let h/w know which TXF descriptors were cleaned */
1769 BDX_ASSERT((f
->m
.wptr
& TXF_WPTR_WR_PTR
) >= f
->m
.memsz
);
1770 WRITE_REG(priv
, f
->m
.reg_RPTR
, f
->m
.rptr
& TXF_WPTR_WR_PTR
);
1772 /* We reclaimed resources, so in case the Q is stopped by xmit callback,
1773 * we resume the transmition and use tx_lock to synchronize with xmit.*/
1774 spin_lock(&priv
->tx_lock
);
1775 priv
->tx_level
+= tx_level
;
1776 BDX_ASSERT(priv
->tx_level
<= 0 || priv
->tx_level
> BDX_MAX_TX_LEVEL
);
1777 #ifdef BDX_DELAY_WPTR
1778 if (priv
->tx_noupd
) {
1780 WRITE_REG(priv
, priv
->txd_fifo0
.m
.reg_WPTR
,
1781 priv
->txd_fifo0
.m
.wptr
& TXF_WPTR_WR_PTR
);
1785 if (unlikely(netif_queue_stopped(priv
->ndev
)
1786 && netif_carrier_ok(priv
->ndev
)
1787 && (priv
->tx_level
>= BDX_MIN_TX_LEVEL
))) {
1788 DBG("%s: %s: TX Q WAKE level %d\n",
1789 BDX_DRV_NAME
, priv
->ndev
->name
, priv
->tx_level
);
1790 netif_wake_queue(priv
->ndev
);
1792 spin_unlock(&priv
->tx_lock
);
1795 /* bdx_tx_free_skbs - frees all skbs from TXD fifo.
1796 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1798 static void bdx_tx_free_skbs(struct bdx_priv
*priv
)
1800 struct txdb
*db
= &priv
->txdb
;
1803 while (db
->rptr
!= db
->wptr
) {
1804 if (likely(db
->rptr
->len
))
1805 pci_unmap_page(priv
->pdev
, db
->rptr
->addr
.dma
,
1806 db
->rptr
->len
, PCI_DMA_TODEVICE
);
1808 dev_kfree_skb(db
->rptr
->addr
.skb
);
1809 bdx_tx_db_inc_rptr(db
);
1814 /* bdx_tx_free - frees all Tx resources */
1815 static void bdx_tx_free(struct bdx_priv
*priv
)
1818 bdx_tx_free_skbs(priv
);
1819 bdx_fifo_free(priv
, &priv
->txd_fifo0
.m
);
1820 bdx_fifo_free(priv
, &priv
->txf_fifo0
.m
);
1821 bdx_tx_db_close(&priv
->txdb
);
1824 /* bdx_tx_push_desc - push descriptor to TxD fifo
1825 * @priv - NIC private structure
1826 * @data - desc's data
1827 * @size - desc's size
1829 * Pushes desc to TxD fifo and overlaps it if needed.
1830 * NOTE: this func does not check for available space. this is responsibility
1831 * of the caller. Neither does it check that data size is smaller then
1834 static void bdx_tx_push_desc(struct bdx_priv
*priv
, void *data
, int size
)
1836 struct txd_fifo
*f
= &priv
->txd_fifo0
;
1837 int i
= f
->m
.memsz
- f
->m
.wptr
;
1843 memcpy(f
->m
.va
+ f
->m
.wptr
, data
, size
);
1846 memcpy(f
->m
.va
+ f
->m
.wptr
, data
, i
);
1847 f
->m
.wptr
= size
- i
;
1848 memcpy(f
->m
.va
, data
+ i
, f
->m
.wptr
);
1850 WRITE_REG(priv
, f
->m
.reg_WPTR
, f
->m
.wptr
& TXF_WPTR_WR_PTR
);
1853 /* bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1854 * @priv - NIC private structure
1855 * @data - desc's data
1856 * @size - desc's size
1858 * NOTE: this func does check for available space and, if neccessary, waits for
1859 * NIC to read existing data before writing new one.
1861 static void bdx_tx_push_desc_safe(struct bdx_priv
*priv
, void *data
, int size
)
1867 /* we substruct 8 because when fifo is full rptr == wptr
1868 which also means that fifo is empty, we can understand
1869 the difference, but could hw do the same ??? :) */
1870 int avail
= bdx_tx_space(priv
) - 8;
1872 if (timer
++ > 300) { /* prevent endless loop */
1873 DBG("timeout while writing desc to TxD fifo\n");
1876 udelay(50); /* give hw a chance to clean fifo */
1879 avail
= MIN(avail
, size
);
1880 DBG("about to push %d bytes starting %p size %d\n", avail
,
1882 bdx_tx_push_desc(priv
, data
, avail
);
1890 * bdx_probe - Device Initialization Routine
1891 * @pdev: PCI device information struct
1892 * @ent: entry in bdx_pci_tbl
1894 * Returns 0 on success, negative on failure
1896 * bdx_probe initializes an adapter identified by a pci_dev structure.
1897 * The OS initialization, configuring of the adapter private structure,
1898 * and a hardware reset occur.
1900 * functions and their order used as explained in
1901 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1905 /* TBD: netif_msg should be checked and implemented. I disable it for now */
1906 static int __devinit
1907 bdx_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
1909 struct net_device
*ndev
;
1910 struct bdx_priv
*priv
;
1911 int err
, pci_using_dac
, port
;
1912 unsigned long pciaddr
;
1914 struct pci_nic
*nic
;
1918 nic
= vmalloc(sizeof(*nic
));
1922 /************** pci *****************/
1923 if ((err
= pci_enable_device(pdev
))) /* it trigers interrupt, dunno why. */
1924 goto err_pci
; /* it's not a problem though */
1926 if (!(err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) &&
1927 !(err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
))) {
1930 if ((err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) ||
1931 (err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
))) {
1932 printk(KERN_ERR
"tehuti: No usable DMA configuration"
1939 if ((err
= pci_request_regions(pdev
, BDX_DRV_NAME
)))
1942 pci_set_master(pdev
);
1944 pciaddr
= pci_resource_start(pdev
, 0);
1947 ERR("tehuti: no MMIO resource\n");
1950 if ((regionSize
= pci_resource_len(pdev
, 0)) < BDX_REGS_SIZE
) {
1952 ERR("tehuti: MMIO resource (%x) too small\n", regionSize
);
1956 nic
->regs
= ioremap(pciaddr
, regionSize
);
1959 ERR("tehuti: ioremap failed\n");
1963 if (pdev
->irq
< 2) {
1965 ERR("tehuti: invalid irq (%d)\n", pdev
->irq
);
1968 pci_set_drvdata(pdev
, nic
);
1970 if (pdev
->device
== 0x3014)
1977 bdx_hw_reset_direct(nic
->regs
);
1979 nic
->irq_type
= IRQ_INTX
;
1981 if ((readl(nic
->regs
+ FPGA_VER
) & 0xFFF) >= 378) {
1982 if ((err
= pci_enable_msi(pdev
)))
1983 ERR("Tehuti: Can't eneble msi. error is %d\n", err
);
1985 nic
->irq_type
= IRQ_MSI
;
1987 DBG("HW does not support MSI\n");
1990 /************** netdev **************/
1991 for (port
= 0; port
< nic
->port_num
; port
++) {
1992 if (!(ndev
= alloc_etherdev(sizeof(struct bdx_priv
)))) {
1994 printk(KERN_ERR
"tehuti: alloc_etherdev failed\n");
1998 ndev
->open
= bdx_open
;
1999 ndev
->stop
= bdx_close
;
2000 ndev
->hard_start_xmit
= bdx_tx_transmit
;
2001 ndev
->do_ioctl
= bdx_ioctl
;
2002 ndev
->set_multicast_list
= bdx_setmulti
;
2003 ndev
->get_stats
= bdx_get_stats
;
2004 ndev
->change_mtu
= bdx_change_mtu
;
2005 ndev
->set_mac_address
= bdx_set_mac
;
2006 ndev
->tx_queue_len
= BDX_NDEV_TXQ_LEN
;
2007 ndev
->vlan_rx_register
= bdx_vlan_rx_register
;
2008 ndev
->vlan_rx_add_vid
= bdx_vlan_rx_add_vid
;
2009 ndev
->vlan_rx_kill_vid
= bdx_vlan_rx_kill_vid
;
2011 bdx_ethtool_ops(ndev
); /* ethtool interface */
2013 /* these fields are used for info purposes only
2014 * so we can have them same for all ports of the board */
2015 ndev
->if_port
= port
;
2016 ndev
->base_addr
= pciaddr
;
2017 ndev
->mem_start
= pciaddr
;
2018 ndev
->mem_end
= pciaddr
+ regionSize
;
2019 ndev
->irq
= pdev
->irq
;
2020 ndev
->features
= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_TSO
2021 | NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
|
2022 NETIF_F_HW_VLAN_FILTER
2023 /*| NETIF_F_FRAGLIST */
2027 ndev
->features
|= NETIF_F_HIGHDMA
;
2029 /************** priv ****************/
2030 priv
= nic
->priv
[port
] = ndev
->priv
;
2032 memset(priv
, 0, sizeof(struct bdx_priv
));
2033 priv
->pBdxRegs
= nic
->regs
+ port
* 0x8000;
2038 priv
->msg_enable
= BDX_DEF_MSG_ENABLE
;
2040 netif_napi_add(ndev
, &priv
->napi
, bdx_poll
, 64);
2042 if ((readl(nic
->regs
+ FPGA_VER
) & 0xFFF) == 308) {
2043 DBG("HW statistics not supported\n");
2044 priv
->stats_flag
= 0;
2046 priv
->stats_flag
= 1;
2049 /* Initialize fifo sizes. */
2055 /* Initialize the initial coalescing registers. */
2056 priv
->rdintcm
= INT_REG_VAL(0x20, 1, 4, 12);
2057 priv
->tdintcm
= INT_REG_VAL(0x20, 1, 0, 12);
2059 /* ndev->xmit_lock spinlock is not used.
2060 * Private priv->tx_lock is used for synchronization
2061 * between transmit and TX irq cleanup. In addition
2062 * set multicast list callback has to use priv->tx_lock.
2065 ndev
->features
|= NETIF_F_LLTX
;
2067 spin_lock_init(&priv
->tx_lock
);
2069 /*bdx_hw_reset(priv); */
2070 if (bdx_read_mac(priv
)) {
2071 printk(KERN_ERR
"tehuti: load MAC address failed\n");
2074 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
2075 if ((err
= register_netdev(ndev
))) {
2076 printk(KERN_ERR
"tehuti: register_netdev failed\n");
2079 netif_carrier_off(ndev
);
2080 netif_stop_queue(ndev
);
2091 pci_release_regions(pdev
);
2093 pci_disable_device(pdev
);
2100 /****************** Ethtool interface *********************/
2101 /* get strings for tests */
2103 bdx_test_names
[][ETH_GSTRING_LEN
] = {
2107 /* get strings for statistics counters */
2109 bdx_stat_names
[][ETH_GSTRING_LEN
] = {
2110 "InUCast", /* 0x7200 */
2111 "InMCast", /* 0x7210 */
2112 "InBCast", /* 0x7220 */
2113 "InPkts", /* 0x7230 */
2114 "InErrors", /* 0x7240 */
2115 "InDropped", /* 0x7250 */
2116 "FrameTooLong", /* 0x7260 */
2117 "FrameSequenceErrors", /* 0x7270 */
2118 "InVLAN", /* 0x7280 */
2119 "InDroppedDFE", /* 0x7290 */
2120 "InDroppedIntFull", /* 0x72A0 */
2121 "InFrameAlignErrors", /* 0x72B0 */
2123 /* 0x72C0-0x72E0 RSRV */
2125 "OutUCast", /* 0x72F0 */
2126 "OutMCast", /* 0x7300 */
2127 "OutBCast", /* 0x7310 */
2128 "OutPkts", /* 0x7320 */
2130 /* 0x7330-0x7360 RSRV */
2132 "OutVLAN", /* 0x7370 */
2133 "InUCastOctects", /* 0x7380 */
2134 "OutUCastOctects", /* 0x7390 */
2136 /* 0x73A0-0x73B0 RSRV */
2138 "InBCastOctects", /* 0x73C0 */
2139 "OutBCastOctects", /* 0x73D0 */
2140 "InOctects", /* 0x73E0 */
2141 "OutOctects", /* 0x73F0 */
2145 * bdx_get_settings - get device-specific settings
2149 static int bdx_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
2153 struct bdx_priv
*priv
= netdev
->priv
;
2155 rdintcm
= priv
->rdintcm
;
2156 tdintcm
= priv
->tdintcm
;
2158 ecmd
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
2159 ecmd
->advertising
= (ADVERTISED_10000baseT_Full
| ADVERTISED_FIBRE
);
2160 ecmd
->speed
= SPEED_10000
;
2161 ecmd
->duplex
= DUPLEX_FULL
;
2162 ecmd
->port
= PORT_FIBRE
;
2163 ecmd
->transceiver
= XCVR_EXTERNAL
; /* what does it mean? */
2164 ecmd
->autoneg
= AUTONEG_DISABLE
;
2166 /* PCK_TH measures in multiples of FIFO bytes
2167 We translate to packets */
2169 ((GET_PCK_TH(tdintcm
) * PCK_TH_MULT
) / BDX_TXF_DESC_SZ
);
2171 ((GET_PCK_TH(rdintcm
) * PCK_TH_MULT
) / sizeof(struct rxf_desc
));
2177 * bdx_get_drvinfo - report driver information
2182 bdx_get_drvinfo(struct net_device
*netdev
, struct ethtool_drvinfo
*drvinfo
)
2184 struct bdx_priv
*priv
= netdev
->priv
;
2186 strlcat(drvinfo
->driver
, BDX_DRV_NAME
, sizeof(drvinfo
->driver
));
2187 strlcat(drvinfo
->version
, BDX_DRV_VERSION
, sizeof(drvinfo
->version
));
2188 strlcat(drvinfo
->fw_version
, "N/A", sizeof(drvinfo
->fw_version
));
2189 strlcat(drvinfo
->bus_info
, pci_name(priv
->pdev
),
2190 sizeof(drvinfo
->bus_info
));
2192 drvinfo
->n_stats
= ((priv
->stats_flag
) ? ARRAY_SIZE(bdx_stat_names
) : 0);
2193 drvinfo
->testinfo_len
= 0;
2194 drvinfo
->regdump_len
= 0;
2195 drvinfo
->eedump_len
= 0;
2199 * bdx_get_rx_csum - report whether receive checksums are turned on or off
2202 static u32
bdx_get_rx_csum(struct net_device
*netdev
)
2204 return 1; /* always on */
2208 * bdx_get_tx_csum - report whether transmit checksums are turned on or off
2211 static u32
bdx_get_tx_csum(struct net_device
*netdev
)
2213 return (netdev
->features
& NETIF_F_IP_CSUM
) != 0;
2217 * bdx_get_coalesce - get interrupt coalescing parameters
2222 bdx_get_coalesce(struct net_device
*netdev
, struct ethtool_coalesce
*ecoal
)
2226 struct bdx_priv
*priv
= netdev
->priv
;
2228 rdintcm
= priv
->rdintcm
;
2229 tdintcm
= priv
->tdintcm
;
2231 /* PCK_TH measures in multiples of FIFO bytes
2232 We translate to packets */
2233 ecoal
->rx_coalesce_usecs
= GET_INT_COAL(rdintcm
) * INT_COAL_MULT
;
2234 ecoal
->rx_max_coalesced_frames
=
2235 ((GET_PCK_TH(rdintcm
) * PCK_TH_MULT
) / sizeof(struct rxf_desc
));
2237 ecoal
->tx_coalesce_usecs
= GET_INT_COAL(tdintcm
) * INT_COAL_MULT
;
2238 ecoal
->tx_max_coalesced_frames
=
2239 ((GET_PCK_TH(tdintcm
) * PCK_TH_MULT
) / BDX_TXF_DESC_SZ
);
2241 /* adaptive parameters ignored */
2246 * bdx_set_coalesce - set interrupt coalescing parameters
2251 bdx_set_coalesce(struct net_device
*netdev
, struct ethtool_coalesce
*ecoal
)
2255 struct bdx_priv
*priv
= netdev
->priv
;
2261 /* Check for valid input */
2262 rx_coal
= ecoal
->rx_coalesce_usecs
/ INT_COAL_MULT
;
2263 tx_coal
= ecoal
->tx_coalesce_usecs
/ INT_COAL_MULT
;
2264 rx_max_coal
= ecoal
->rx_max_coalesced_frames
;
2265 tx_max_coal
= ecoal
->tx_max_coalesced_frames
;
2267 /* Translate from packets to multiples of FIFO bytes */
2269 (((rx_max_coal
* sizeof(struct rxf_desc
)) + PCK_TH_MULT
- 1)
2272 (((tx_max_coal
* BDX_TXF_DESC_SZ
) + PCK_TH_MULT
- 1)
2275 if ((rx_coal
> 0x7FFF) || (tx_coal
> 0x7FFF)
2276 || (rx_max_coal
> 0xF) || (tx_max_coal
> 0xF))
2279 rdintcm
= INT_REG_VAL(rx_coal
, GET_INT_COAL_RC(priv
->rdintcm
),
2280 GET_RXF_TH(priv
->rdintcm
), rx_max_coal
);
2281 tdintcm
= INT_REG_VAL(tx_coal
, GET_INT_COAL_RC(priv
->tdintcm
), 0,
2284 priv
->rdintcm
= rdintcm
;
2285 priv
->tdintcm
= tdintcm
;
2287 WRITE_REG(priv
, regRDINTCM0
, rdintcm
);
2288 WRITE_REG(priv
, regTDINTCM0
, tdintcm
);
2293 /* Convert RX fifo size to number of pending packets */
2294 static inline int bdx_rx_fifo_size_to_packets(int rx_size
)
2296 return ((FIFO_SIZE
* (1 << rx_size
)) / sizeof(struct rxf_desc
));
2299 /* Convert TX fifo size to number of pending packets */
2300 static inline int bdx_tx_fifo_size_to_packets(int tx_size
)
2302 return ((FIFO_SIZE
* (1 << tx_size
)) / BDX_TXF_DESC_SZ
);
2306 * bdx_get_ringparam - report ring sizes
2311 bdx_get_ringparam(struct net_device
*netdev
, struct ethtool_ringparam
*ring
)
2313 struct bdx_priv
*priv
= netdev
->priv
;
2315 /*max_pending - the maximum-sized FIFO we allow */
2316 ring
->rx_max_pending
= bdx_rx_fifo_size_to_packets(3);
2317 ring
->tx_max_pending
= bdx_tx_fifo_size_to_packets(3);
2318 ring
->rx_pending
= bdx_rx_fifo_size_to_packets(priv
->rxf_size
);
2319 ring
->tx_pending
= bdx_tx_fifo_size_to_packets(priv
->txd_size
);
2323 * bdx_set_ringparam - set ring sizes
2328 bdx_set_ringparam(struct net_device
*netdev
, struct ethtool_ringparam
*ring
)
2330 struct bdx_priv
*priv
= netdev
->priv
;
2334 for (; rx_size
< 4; rx_size
++) {
2335 if (bdx_rx_fifo_size_to_packets(rx_size
) >= ring
->rx_pending
)
2341 for (; tx_size
< 4; tx_size
++) {
2342 if (bdx_tx_fifo_size_to_packets(tx_size
) >= ring
->tx_pending
)
2348 /*Is there anything to do? */
2349 if ((rx_size
== priv
->rxf_size
)
2350 && (tx_size
== priv
->txd_size
))
2353 priv
->rxf_size
= rx_size
;
2355 priv
->rxd_size
= rx_size
- 1;
2357 priv
->rxd_size
= rx_size
;
2359 priv
->txf_size
= priv
->txd_size
= tx_size
;
2361 if (netif_running(netdev
)) {
2369 * bdx_get_strings - return a set of strings that describe the requested objects
2373 static void bdx_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2375 switch (stringset
) {
2377 memcpy(data
, *bdx_test_names
, sizeof(bdx_test_names
));
2380 memcpy(data
, *bdx_stat_names
, sizeof(bdx_stat_names
));
2386 * bdx_get_stats_count - return number of 64bit statistics counters
2389 static int bdx_get_stats_count(struct net_device
*netdev
)
2391 struct bdx_priv
*priv
= netdev
->priv
;
2392 BDX_ASSERT(ARRAY_SIZE(bdx_stat_names
)
2393 != sizeof(struct bdx_stats
) / sizeof(u64
));
2394 return ((priv
->stats_flag
) ? ARRAY_SIZE(bdx_stat_names
) : 0);
2398 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2403 static void bdx_get_ethtool_stats(struct net_device
*netdev
,
2404 struct ethtool_stats
*stats
, u64
*data
)
2406 struct bdx_priv
*priv
= netdev
->priv
;
2408 if (priv
->stats_flag
) {
2410 /* Update stats from HW */
2411 bdx_update_stats(priv
);
2413 /* Copy data to user buffer */
2414 memcpy(data
, &priv
->hw_stats
, sizeof(priv
->hw_stats
));
2419 * bdx_ethtool_ops - ethtool interface implementation
2422 static void bdx_ethtool_ops(struct net_device
*netdev
)
2424 static struct ethtool_ops bdx_ethtool_ops
= {
2425 .get_settings
= bdx_get_settings
,
2426 .get_drvinfo
= bdx_get_drvinfo
,
2427 .get_link
= ethtool_op_get_link
,
2428 .get_coalesce
= bdx_get_coalesce
,
2429 .set_coalesce
= bdx_set_coalesce
,
2430 .get_ringparam
= bdx_get_ringparam
,
2431 .set_ringparam
= bdx_set_ringparam
,
2432 .get_rx_csum
= bdx_get_rx_csum
,
2433 .get_tx_csum
= bdx_get_tx_csum
,
2434 .get_sg
= ethtool_op_get_sg
,
2435 .get_tso
= ethtool_op_get_tso
,
2436 .get_strings
= bdx_get_strings
,
2437 .get_stats_count
= bdx_get_stats_count
,
2438 .get_ethtool_stats
= bdx_get_ethtool_stats
,
2441 SET_ETHTOOL_OPS(netdev
, &bdx_ethtool_ops
);
2445 * bdx_remove - Device Removal Routine
2446 * @pdev: PCI device information struct
2448 * bdx_remove is called by the PCI subsystem to alert the driver
2449 * that it should release a PCI device. The could be caused by a
2450 * Hot-Plug event, or because the driver is going to be removed from
2453 static void __devexit
bdx_remove(struct pci_dev
*pdev
)
2455 struct pci_nic
*nic
= pci_get_drvdata(pdev
);
2456 struct net_device
*ndev
;
2459 for (port
= 0; port
< nic
->port_num
; port
++) {
2460 ndev
= nic
->priv
[port
]->ndev
;
2461 unregister_netdev(ndev
);
2465 /*bdx_hw_reset_direct(nic->regs); */
2467 if (nic
->irq_type
== IRQ_MSI
)
2468 pci_disable_msi(pdev
);
2472 pci_release_regions(pdev
);
2473 pci_disable_device(pdev
);
2474 pci_set_drvdata(pdev
, NULL
);
2480 static struct pci_driver bdx_pci_driver
= {
2481 .name
= BDX_DRV_NAME
,
2482 .id_table
= bdx_pci_tbl
,
2484 .remove
= __devexit_p(bdx_remove
),
2488 * print_driver_id - print parameters of the driver build
2490 static void __init
print_driver_id(void)
2492 printk(KERN_INFO
"%s: %s, %s\n", BDX_DRV_NAME
, BDX_DRV_DESC
,
2494 printk(KERN_INFO
"%s: Options: hw_csum %s\n", BDX_DRV_NAME
,
2498 static int __init
bdx_module_init(void)
2501 bdx_firmware_endianess();
2504 RET(pci_register_driver(&bdx_pci_driver
));
2507 module_init(bdx_module_init
);
2509 static void __exit
bdx_module_exit(void)
2512 pci_unregister_driver(&bdx_pci_driver
);
2516 module_exit(bdx_module_exit
);
2518 MODULE_LICENSE("GPL");
2519 MODULE_AUTHOR(DRIVER_AUTHOR
);
2520 MODULE_DESCRIPTION(BDX_DRV_DESC
);