2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/buffer_head.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <asm/div64.h>
26 #include "extent_map.h"
28 #include "transaction.h"
29 #include "print-tree.h"
31 #include "async-thread.h"
41 struct btrfs_bio_stripe stripes
[];
44 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
45 struct btrfs_root
*root
,
46 struct btrfs_device
*device
);
47 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
);
49 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
50 (sizeof(struct btrfs_bio_stripe) * (n)))
52 static DEFINE_MUTEX(uuid_mutex
);
53 static LIST_HEAD(fs_uuids
);
55 void btrfs_lock_volumes(void)
57 mutex_lock(&uuid_mutex
);
60 void btrfs_unlock_volumes(void)
62 mutex_unlock(&uuid_mutex
);
65 static void lock_chunks(struct btrfs_root
*root
)
67 mutex_lock(&root
->fs_info
->chunk_mutex
);
70 static void unlock_chunks(struct btrfs_root
*root
)
72 mutex_unlock(&root
->fs_info
->chunk_mutex
);
75 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
77 struct btrfs_device
*device
;
78 WARN_ON(fs_devices
->opened
);
79 while (!list_empty(&fs_devices
->devices
)) {
80 device
= list_entry(fs_devices
->devices
.next
,
81 struct btrfs_device
, dev_list
);
82 list_del(&device
->dev_list
);
89 int btrfs_cleanup_fs_uuids(void)
91 struct btrfs_fs_devices
*fs_devices
;
93 while (!list_empty(&fs_uuids
)) {
94 fs_devices
= list_entry(fs_uuids
.next
,
95 struct btrfs_fs_devices
, list
);
96 list_del(&fs_devices
->list
);
97 free_fs_devices(fs_devices
);
102 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
105 struct btrfs_device
*dev
;
107 list_for_each_entry(dev
, head
, dev_list
) {
108 if (dev
->devid
== devid
&&
109 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
116 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
118 struct btrfs_fs_devices
*fs_devices
;
120 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
121 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
128 * we try to collect pending bios for a device so we don't get a large
129 * number of procs sending bios down to the same device. This greatly
130 * improves the schedulers ability to collect and merge the bios.
132 * But, it also turns into a long list of bios to process and that is sure
133 * to eventually make the worker thread block. The solution here is to
134 * make some progress and then put this work struct back at the end of
135 * the list if the block device is congested. This way, multiple devices
136 * can make progress from a single worker thread.
138 static noinline
int run_scheduled_bios(struct btrfs_device
*device
)
141 struct backing_dev_info
*bdi
;
142 struct btrfs_fs_info
*fs_info
;
146 unsigned long num_run
= 0;
149 bdi
= device
->bdev
->bd_inode
->i_mapping
->backing_dev_info
;
150 fs_info
= device
->dev_root
->fs_info
;
151 limit
= btrfs_async_submit_limit(fs_info
);
152 limit
= limit
* 2 / 3;
155 spin_lock(&device
->io_lock
);
158 /* take all the bios off the list at once and process them
159 * later on (without the lock held). But, remember the
160 * tail and other pointers so the bios can be properly reinserted
161 * into the list if we hit congestion
163 pending
= device
->pending_bios
;
164 tail
= device
->pending_bio_tail
;
165 WARN_ON(pending
&& !tail
);
166 device
->pending_bios
= NULL
;
167 device
->pending_bio_tail
= NULL
;
170 * if pending was null this time around, no bios need processing
171 * at all and we can stop. Otherwise it'll loop back up again
172 * and do an additional check so no bios are missed.
174 * device->running_pending is used to synchronize with the
179 device
->running_pending
= 1;
182 device
->running_pending
= 0;
184 spin_unlock(&device
->io_lock
);
188 pending
= pending
->bi_next
;
190 atomic_dec(&fs_info
->nr_async_bios
);
192 if (atomic_read(&fs_info
->nr_async_bios
) < limit
&&
193 waitqueue_active(&fs_info
->async_submit_wait
))
194 wake_up(&fs_info
->async_submit_wait
);
196 BUG_ON(atomic_read(&cur
->bi_cnt
) == 0);
198 submit_bio(cur
->bi_rw
, cur
);
203 * we made progress, there is more work to do and the bdi
204 * is now congested. Back off and let other work structs
207 if (pending
&& bdi_write_congested(bdi
) && num_run
> 16 &&
208 fs_info
->fs_devices
->open_devices
> 1) {
209 struct bio
*old_head
;
211 spin_lock(&device
->io_lock
);
213 old_head
= device
->pending_bios
;
214 device
->pending_bios
= pending
;
215 if (device
->pending_bio_tail
)
216 tail
->bi_next
= old_head
;
218 device
->pending_bio_tail
= tail
;
220 device
->running_pending
= 1;
222 spin_unlock(&device
->io_lock
);
223 btrfs_requeue_work(&device
->work
);
230 spin_lock(&device
->io_lock
);
231 if (device
->pending_bios
)
233 spin_unlock(&device
->io_lock
);
238 static void pending_bios_fn(struct btrfs_work
*work
)
240 struct btrfs_device
*device
;
242 device
= container_of(work
, struct btrfs_device
, work
);
243 run_scheduled_bios(device
);
246 static noinline
int device_list_add(const char *path
,
247 struct btrfs_super_block
*disk_super
,
248 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
250 struct btrfs_device
*device
;
251 struct btrfs_fs_devices
*fs_devices
;
252 u64 found_transid
= btrfs_super_generation(disk_super
);
254 fs_devices
= find_fsid(disk_super
->fsid
);
256 fs_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
259 INIT_LIST_HEAD(&fs_devices
->devices
);
260 INIT_LIST_HEAD(&fs_devices
->alloc_list
);
261 list_add(&fs_devices
->list
, &fs_uuids
);
262 memcpy(fs_devices
->fsid
, disk_super
->fsid
, BTRFS_FSID_SIZE
);
263 fs_devices
->latest_devid
= devid
;
264 fs_devices
->latest_trans
= found_transid
;
267 device
= __find_device(&fs_devices
->devices
, devid
,
268 disk_super
->dev_item
.uuid
);
271 if (fs_devices
->opened
)
274 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
276 /* we can safely leave the fs_devices entry around */
279 device
->devid
= devid
;
280 device
->work
.func
= pending_bios_fn
;
281 memcpy(device
->uuid
, disk_super
->dev_item
.uuid
,
283 device
->barriers
= 1;
284 spin_lock_init(&device
->io_lock
);
285 device
->name
= kstrdup(path
, GFP_NOFS
);
290 INIT_LIST_HEAD(&device
->dev_alloc_list
);
291 list_add(&device
->dev_list
, &fs_devices
->devices
);
292 device
->fs_devices
= fs_devices
;
293 fs_devices
->num_devices
++;
296 if (found_transid
> fs_devices
->latest_trans
) {
297 fs_devices
->latest_devid
= devid
;
298 fs_devices
->latest_trans
= found_transid
;
300 *fs_devices_ret
= fs_devices
;
304 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
306 struct btrfs_fs_devices
*fs_devices
;
307 struct btrfs_device
*device
;
308 struct btrfs_device
*orig_dev
;
310 fs_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
312 return ERR_PTR(-ENOMEM
);
314 INIT_LIST_HEAD(&fs_devices
->devices
);
315 INIT_LIST_HEAD(&fs_devices
->alloc_list
);
316 INIT_LIST_HEAD(&fs_devices
->list
);
317 fs_devices
->latest_devid
= orig
->latest_devid
;
318 fs_devices
->latest_trans
= orig
->latest_trans
;
319 memcpy(fs_devices
->fsid
, orig
->fsid
, sizeof(fs_devices
->fsid
));
321 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
322 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
326 device
->name
= kstrdup(orig_dev
->name
, GFP_NOFS
);
330 device
->devid
= orig_dev
->devid
;
331 device
->work
.func
= pending_bios_fn
;
332 memcpy(device
->uuid
, orig_dev
->uuid
, sizeof(device
->uuid
));
333 device
->barriers
= 1;
334 spin_lock_init(&device
->io_lock
);
335 INIT_LIST_HEAD(&device
->dev_list
);
336 INIT_LIST_HEAD(&device
->dev_alloc_list
);
338 list_add(&device
->dev_list
, &fs_devices
->devices
);
339 device
->fs_devices
= fs_devices
;
340 fs_devices
->num_devices
++;
344 free_fs_devices(fs_devices
);
345 return ERR_PTR(-ENOMEM
);
348 int btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
)
350 struct btrfs_device
*device
, *next
;
352 mutex_lock(&uuid_mutex
);
354 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
355 if (device
->in_fs_metadata
)
359 close_bdev_exclusive(device
->bdev
, device
->mode
);
361 fs_devices
->open_devices
--;
363 if (device
->writeable
) {
364 list_del_init(&device
->dev_alloc_list
);
365 device
->writeable
= 0;
366 fs_devices
->rw_devices
--;
368 list_del_init(&device
->dev_list
);
369 fs_devices
->num_devices
--;
374 if (fs_devices
->seed
) {
375 fs_devices
= fs_devices
->seed
;
379 mutex_unlock(&uuid_mutex
);
383 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
385 struct btrfs_device
*device
;
387 if (--fs_devices
->opened
> 0)
390 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
392 close_bdev_exclusive(device
->bdev
, device
->mode
);
393 fs_devices
->open_devices
--;
395 if (device
->writeable
) {
396 list_del_init(&device
->dev_alloc_list
);
397 fs_devices
->rw_devices
--;
401 device
->writeable
= 0;
402 device
->in_fs_metadata
= 0;
404 WARN_ON(fs_devices
->open_devices
);
405 WARN_ON(fs_devices
->rw_devices
);
406 fs_devices
->opened
= 0;
407 fs_devices
->seeding
= 0;
412 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
414 struct btrfs_fs_devices
*seed_devices
= NULL
;
417 mutex_lock(&uuid_mutex
);
418 ret
= __btrfs_close_devices(fs_devices
);
419 if (!fs_devices
->opened
) {
420 seed_devices
= fs_devices
->seed
;
421 fs_devices
->seed
= NULL
;
423 mutex_unlock(&uuid_mutex
);
425 while (seed_devices
) {
426 fs_devices
= seed_devices
;
427 seed_devices
= fs_devices
->seed
;
428 __btrfs_close_devices(fs_devices
);
429 free_fs_devices(fs_devices
);
434 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
435 fmode_t flags
, void *holder
)
437 struct block_device
*bdev
;
438 struct list_head
*head
= &fs_devices
->devices
;
439 struct btrfs_device
*device
;
440 struct block_device
*latest_bdev
= NULL
;
441 struct buffer_head
*bh
;
442 struct btrfs_super_block
*disk_super
;
443 u64 latest_devid
= 0;
444 u64 latest_transid
= 0;
449 list_for_each_entry(device
, head
, dev_list
) {
455 bdev
= open_bdev_exclusive(device
->name
, flags
, holder
);
457 printk(KERN_INFO
"open %s failed\n", device
->name
);
460 set_blocksize(bdev
, 4096);
462 bh
= btrfs_read_dev_super(bdev
);
466 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
467 devid
= le64_to_cpu(disk_super
->dev_item
.devid
);
468 if (devid
!= device
->devid
)
471 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
475 device
->generation
= btrfs_super_generation(disk_super
);
476 if (!latest_transid
|| device
->generation
> latest_transid
) {
477 latest_devid
= devid
;
478 latest_transid
= device
->generation
;
482 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
483 device
->writeable
= 0;
485 device
->writeable
= !bdev_read_only(bdev
);
490 device
->in_fs_metadata
= 0;
491 device
->mode
= flags
;
493 fs_devices
->open_devices
++;
494 if (device
->writeable
) {
495 fs_devices
->rw_devices
++;
496 list_add(&device
->dev_alloc_list
,
497 &fs_devices
->alloc_list
);
504 close_bdev_exclusive(bdev
, FMODE_READ
);
508 if (fs_devices
->open_devices
== 0) {
512 fs_devices
->seeding
= seeding
;
513 fs_devices
->opened
= 1;
514 fs_devices
->latest_bdev
= latest_bdev
;
515 fs_devices
->latest_devid
= latest_devid
;
516 fs_devices
->latest_trans
= latest_transid
;
517 fs_devices
->total_rw_bytes
= 0;
522 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
523 fmode_t flags
, void *holder
)
527 mutex_lock(&uuid_mutex
);
528 if (fs_devices
->opened
) {
529 fs_devices
->opened
++;
532 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
534 mutex_unlock(&uuid_mutex
);
538 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
539 struct btrfs_fs_devices
**fs_devices_ret
)
541 struct btrfs_super_block
*disk_super
;
542 struct block_device
*bdev
;
543 struct buffer_head
*bh
;
548 mutex_lock(&uuid_mutex
);
550 bdev
= open_bdev_exclusive(path
, flags
, holder
);
557 ret
= set_blocksize(bdev
, 4096);
560 bh
= btrfs_read_dev_super(bdev
);
565 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
566 devid
= le64_to_cpu(disk_super
->dev_item
.devid
);
567 transid
= btrfs_super_generation(disk_super
);
568 if (disk_super
->label
[0])
569 printk(KERN_INFO
"device label %s ", disk_super
->label
);
571 /* FIXME, make a readl uuid parser */
572 printk(KERN_INFO
"device fsid %llx-%llx ",
573 *(unsigned long long *)disk_super
->fsid
,
574 *(unsigned long long *)(disk_super
->fsid
+ 8));
576 printk(KERN_CONT
"devid %llu transid %llu %s\n",
577 (unsigned long long)devid
, (unsigned long long)transid
, path
);
578 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
582 close_bdev_exclusive(bdev
, flags
);
584 mutex_unlock(&uuid_mutex
);
589 * this uses a pretty simple search, the expectation is that it is
590 * called very infrequently and that a given device has a small number
593 static noinline
int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
594 struct btrfs_device
*device
,
595 u64 num_bytes
, u64
*start
)
597 struct btrfs_key key
;
598 struct btrfs_root
*root
= device
->dev_root
;
599 struct btrfs_dev_extent
*dev_extent
= NULL
;
600 struct btrfs_path
*path
;
603 u64 search_start
= 0;
604 u64 search_end
= device
->total_bytes
;
608 struct extent_buffer
*l
;
610 path
= btrfs_alloc_path();
616 /* FIXME use last free of some kind */
618 /* we don't want to overwrite the superblock on the drive,
619 * so we make sure to start at an offset of at least 1MB
621 search_start
= max((u64
)1024 * 1024, search_start
);
623 if (root
->fs_info
->alloc_start
+ num_bytes
<= device
->total_bytes
)
624 search_start
= max(root
->fs_info
->alloc_start
, search_start
);
626 key
.objectid
= device
->devid
;
627 key
.offset
= search_start
;
628 key
.type
= BTRFS_DEV_EXTENT_KEY
;
629 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 0);
632 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
636 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
639 slot
= path
->slots
[0];
640 if (slot
>= btrfs_header_nritems(l
)) {
641 ret
= btrfs_next_leaf(root
, path
);
648 if (search_start
>= search_end
) {
652 *start
= search_start
;
656 *start
= last_byte
> search_start
?
657 last_byte
: search_start
;
658 if (search_end
<= *start
) {
664 btrfs_item_key_to_cpu(l
, &key
, slot
);
666 if (key
.objectid
< device
->devid
)
669 if (key
.objectid
> device
->devid
)
672 if (key
.offset
>= search_start
&& key
.offset
> last_byte
&&
674 if (last_byte
< search_start
)
675 last_byte
= search_start
;
676 hole_size
= key
.offset
- last_byte
;
677 if (key
.offset
> last_byte
&&
678 hole_size
>= num_bytes
) {
683 if (btrfs_key_type(&key
) != BTRFS_DEV_EXTENT_KEY
)
687 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
688 last_byte
= key
.offset
+ btrfs_dev_extent_length(l
, dev_extent
);
694 /* we have to make sure we didn't find an extent that has already
695 * been allocated by the map tree or the original allocation
697 BUG_ON(*start
< search_start
);
699 if (*start
+ num_bytes
> search_end
) {
703 /* check for pending inserts here */
707 btrfs_free_path(path
);
711 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
712 struct btrfs_device
*device
,
716 struct btrfs_path
*path
;
717 struct btrfs_root
*root
= device
->dev_root
;
718 struct btrfs_key key
;
719 struct btrfs_key found_key
;
720 struct extent_buffer
*leaf
= NULL
;
721 struct btrfs_dev_extent
*extent
= NULL
;
723 path
= btrfs_alloc_path();
727 key
.objectid
= device
->devid
;
729 key
.type
= BTRFS_DEV_EXTENT_KEY
;
731 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
733 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
734 BTRFS_DEV_EXTENT_KEY
);
736 leaf
= path
->nodes
[0];
737 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
738 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
739 struct btrfs_dev_extent
);
740 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
741 btrfs_dev_extent_length(leaf
, extent
) < start
);
743 } else if (ret
== 0) {
744 leaf
= path
->nodes
[0];
745 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
746 struct btrfs_dev_extent
);
750 if (device
->bytes_used
> 0)
751 device
->bytes_used
-= btrfs_dev_extent_length(leaf
, extent
);
752 ret
= btrfs_del_item(trans
, root
, path
);
755 btrfs_free_path(path
);
759 int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
760 struct btrfs_device
*device
,
761 u64 chunk_tree
, u64 chunk_objectid
,
762 u64 chunk_offset
, u64 start
, u64 num_bytes
)
765 struct btrfs_path
*path
;
766 struct btrfs_root
*root
= device
->dev_root
;
767 struct btrfs_dev_extent
*extent
;
768 struct extent_buffer
*leaf
;
769 struct btrfs_key key
;
771 WARN_ON(!device
->in_fs_metadata
);
772 path
= btrfs_alloc_path();
776 key
.objectid
= device
->devid
;
778 key
.type
= BTRFS_DEV_EXTENT_KEY
;
779 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
783 leaf
= path
->nodes
[0];
784 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
785 struct btrfs_dev_extent
);
786 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
787 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
788 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
790 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
791 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent
),
794 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
795 btrfs_mark_buffer_dirty(leaf
);
796 btrfs_free_path(path
);
800 static noinline
int find_next_chunk(struct btrfs_root
*root
,
801 u64 objectid
, u64
*offset
)
803 struct btrfs_path
*path
;
805 struct btrfs_key key
;
806 struct btrfs_chunk
*chunk
;
807 struct btrfs_key found_key
;
809 path
= btrfs_alloc_path();
812 key
.objectid
= objectid
;
813 key
.offset
= (u64
)-1;
814 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
816 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
822 ret
= btrfs_previous_item(root
, path
, 0, BTRFS_CHUNK_ITEM_KEY
);
826 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
828 if (found_key
.objectid
!= objectid
)
831 chunk
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
833 *offset
= found_key
.offset
+
834 btrfs_chunk_length(path
->nodes
[0], chunk
);
839 btrfs_free_path(path
);
843 static noinline
int find_next_devid(struct btrfs_root
*root
, u64
*objectid
)
846 struct btrfs_key key
;
847 struct btrfs_key found_key
;
848 struct btrfs_path
*path
;
850 root
= root
->fs_info
->chunk_root
;
852 path
= btrfs_alloc_path();
856 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
857 key
.type
= BTRFS_DEV_ITEM_KEY
;
858 key
.offset
= (u64
)-1;
860 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
866 ret
= btrfs_previous_item(root
, path
, BTRFS_DEV_ITEMS_OBJECTID
,
871 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
873 *objectid
= found_key
.offset
+ 1;
877 btrfs_free_path(path
);
882 * the device information is stored in the chunk root
883 * the btrfs_device struct should be fully filled in
885 int btrfs_add_device(struct btrfs_trans_handle
*trans
,
886 struct btrfs_root
*root
,
887 struct btrfs_device
*device
)
890 struct btrfs_path
*path
;
891 struct btrfs_dev_item
*dev_item
;
892 struct extent_buffer
*leaf
;
893 struct btrfs_key key
;
896 root
= root
->fs_info
->chunk_root
;
898 path
= btrfs_alloc_path();
902 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
903 key
.type
= BTRFS_DEV_ITEM_KEY
;
904 key
.offset
= device
->devid
;
906 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
911 leaf
= path
->nodes
[0];
912 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
914 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
915 btrfs_set_device_generation(leaf
, dev_item
, 0);
916 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
917 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
918 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
919 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
920 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->total_bytes
);
921 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
922 btrfs_set_device_group(leaf
, dev_item
, 0);
923 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
924 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
925 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
927 ptr
= (unsigned long)btrfs_device_uuid(dev_item
);
928 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
929 ptr
= (unsigned long)btrfs_device_fsid(dev_item
);
930 write_extent_buffer(leaf
, root
->fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
931 btrfs_mark_buffer_dirty(leaf
);
935 btrfs_free_path(path
);
939 static int btrfs_rm_dev_item(struct btrfs_root
*root
,
940 struct btrfs_device
*device
)
943 struct btrfs_path
*path
;
944 struct btrfs_key key
;
945 struct btrfs_trans_handle
*trans
;
947 root
= root
->fs_info
->chunk_root
;
949 path
= btrfs_alloc_path();
953 trans
= btrfs_start_transaction(root
, 1);
954 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
955 key
.type
= BTRFS_DEV_ITEM_KEY
;
956 key
.offset
= device
->devid
;
959 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
968 ret
= btrfs_del_item(trans
, root
, path
);
972 btrfs_free_path(path
);
974 btrfs_commit_transaction(trans
, root
);
978 int btrfs_rm_device(struct btrfs_root
*root
, char *device_path
)
980 struct btrfs_device
*device
;
981 struct btrfs_device
*next_device
;
982 struct block_device
*bdev
;
983 struct buffer_head
*bh
= NULL
;
984 struct btrfs_super_block
*disk_super
;
991 mutex_lock(&uuid_mutex
);
992 mutex_lock(&root
->fs_info
->volume_mutex
);
994 all_avail
= root
->fs_info
->avail_data_alloc_bits
|
995 root
->fs_info
->avail_system_alloc_bits
|
996 root
->fs_info
->avail_metadata_alloc_bits
;
998 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID10
) &&
999 root
->fs_info
->fs_devices
->rw_devices
<= 4) {
1000 printk(KERN_ERR
"btrfs: unable to go below four devices "
1006 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID1
) &&
1007 root
->fs_info
->fs_devices
->rw_devices
<= 2) {
1008 printk(KERN_ERR
"btrfs: unable to go below two "
1009 "devices on raid1\n");
1014 if (strcmp(device_path
, "missing") == 0) {
1015 struct list_head
*devices
;
1016 struct btrfs_device
*tmp
;
1019 devices
= &root
->fs_info
->fs_devices
->devices
;
1020 list_for_each_entry(tmp
, devices
, dev_list
) {
1021 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
1030 printk(KERN_ERR
"btrfs: no missing devices found to "
1035 bdev
= open_bdev_exclusive(device_path
, FMODE_READ
,
1036 root
->fs_info
->bdev_holder
);
1038 ret
= PTR_ERR(bdev
);
1042 set_blocksize(bdev
, 4096);
1043 bh
= btrfs_read_dev_super(bdev
);
1048 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1049 devid
= le64_to_cpu(disk_super
->dev_item
.devid
);
1050 dev_uuid
= disk_super
->dev_item
.uuid
;
1051 device
= btrfs_find_device(root
, devid
, dev_uuid
,
1059 if (device
->writeable
&& root
->fs_info
->fs_devices
->rw_devices
== 1) {
1060 printk(KERN_ERR
"btrfs: unable to remove the only writeable "
1066 if (device
->writeable
) {
1067 list_del_init(&device
->dev_alloc_list
);
1068 root
->fs_info
->fs_devices
->rw_devices
--;
1071 ret
= btrfs_shrink_device(device
, 0);
1075 ret
= btrfs_rm_dev_item(root
->fs_info
->chunk_root
, device
);
1079 device
->in_fs_metadata
= 0;
1080 list_del_init(&device
->dev_list
);
1081 device
->fs_devices
->num_devices
--;
1083 next_device
= list_entry(root
->fs_info
->fs_devices
->devices
.next
,
1084 struct btrfs_device
, dev_list
);
1085 if (device
->bdev
== root
->fs_info
->sb
->s_bdev
)
1086 root
->fs_info
->sb
->s_bdev
= next_device
->bdev
;
1087 if (device
->bdev
== root
->fs_info
->fs_devices
->latest_bdev
)
1088 root
->fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1091 close_bdev_exclusive(device
->bdev
, device
->mode
);
1092 device
->bdev
= NULL
;
1093 device
->fs_devices
->open_devices
--;
1096 num_devices
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
1097 btrfs_set_super_num_devices(&root
->fs_info
->super_copy
, num_devices
);
1099 if (device
->fs_devices
->open_devices
== 0) {
1100 struct btrfs_fs_devices
*fs_devices
;
1101 fs_devices
= root
->fs_info
->fs_devices
;
1102 while (fs_devices
) {
1103 if (fs_devices
->seed
== device
->fs_devices
)
1105 fs_devices
= fs_devices
->seed
;
1107 fs_devices
->seed
= device
->fs_devices
->seed
;
1108 device
->fs_devices
->seed
= NULL
;
1109 __btrfs_close_devices(device
->fs_devices
);
1110 free_fs_devices(device
->fs_devices
);
1114 * at this point, the device is zero sized. We want to
1115 * remove it from the devices list and zero out the old super
1117 if (device
->writeable
) {
1118 /* make sure this device isn't detected as part of
1121 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
1122 set_buffer_dirty(bh
);
1123 sync_dirty_buffer(bh
);
1126 kfree(device
->name
);
1134 close_bdev_exclusive(bdev
, FMODE_READ
);
1136 mutex_unlock(&root
->fs_info
->volume_mutex
);
1137 mutex_unlock(&uuid_mutex
);
1142 * does all the dirty work required for changing file system's UUID.
1144 static int btrfs_prepare_sprout(struct btrfs_trans_handle
*trans
,
1145 struct btrfs_root
*root
)
1147 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
1148 struct btrfs_fs_devices
*old_devices
;
1149 struct btrfs_fs_devices
*seed_devices
;
1150 struct btrfs_super_block
*disk_super
= &root
->fs_info
->super_copy
;
1151 struct btrfs_device
*device
;
1154 BUG_ON(!mutex_is_locked(&uuid_mutex
));
1155 if (!fs_devices
->seeding
)
1158 seed_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
1162 old_devices
= clone_fs_devices(fs_devices
);
1163 if (IS_ERR(old_devices
)) {
1164 kfree(seed_devices
);
1165 return PTR_ERR(old_devices
);
1168 list_add(&old_devices
->list
, &fs_uuids
);
1170 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
1171 seed_devices
->opened
= 1;
1172 INIT_LIST_HEAD(&seed_devices
->devices
);
1173 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
1174 list_splice_init(&fs_devices
->devices
, &seed_devices
->devices
);
1175 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
1176 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
) {
1177 device
->fs_devices
= seed_devices
;
1180 fs_devices
->seeding
= 0;
1181 fs_devices
->num_devices
= 0;
1182 fs_devices
->open_devices
= 0;
1183 fs_devices
->seed
= seed_devices
;
1185 generate_random_uuid(fs_devices
->fsid
);
1186 memcpy(root
->fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1187 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1188 super_flags
= btrfs_super_flags(disk_super
) &
1189 ~BTRFS_SUPER_FLAG_SEEDING
;
1190 btrfs_set_super_flags(disk_super
, super_flags
);
1196 * strore the expected generation for seed devices in device items.
1198 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
1199 struct btrfs_root
*root
)
1201 struct btrfs_path
*path
;
1202 struct extent_buffer
*leaf
;
1203 struct btrfs_dev_item
*dev_item
;
1204 struct btrfs_device
*device
;
1205 struct btrfs_key key
;
1206 u8 fs_uuid
[BTRFS_UUID_SIZE
];
1207 u8 dev_uuid
[BTRFS_UUID_SIZE
];
1211 path
= btrfs_alloc_path();
1215 root
= root
->fs_info
->chunk_root
;
1216 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1218 key
.type
= BTRFS_DEV_ITEM_KEY
;
1221 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1225 leaf
= path
->nodes
[0];
1227 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1228 ret
= btrfs_next_leaf(root
, path
);
1233 leaf
= path
->nodes
[0];
1234 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1235 btrfs_release_path(root
, path
);
1239 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1240 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
1241 key
.type
!= BTRFS_DEV_ITEM_KEY
)
1244 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1245 struct btrfs_dev_item
);
1246 devid
= btrfs_device_id(leaf
, dev_item
);
1247 read_extent_buffer(leaf
, dev_uuid
,
1248 (unsigned long)btrfs_device_uuid(dev_item
),
1250 read_extent_buffer(leaf
, fs_uuid
,
1251 (unsigned long)btrfs_device_fsid(dev_item
),
1253 device
= btrfs_find_device(root
, devid
, dev_uuid
, fs_uuid
);
1256 if (device
->fs_devices
->seeding
) {
1257 btrfs_set_device_generation(leaf
, dev_item
,
1258 device
->generation
);
1259 btrfs_mark_buffer_dirty(leaf
);
1267 btrfs_free_path(path
);
1271 int btrfs_init_new_device(struct btrfs_root
*root
, char *device_path
)
1273 struct btrfs_trans_handle
*trans
;
1274 struct btrfs_device
*device
;
1275 struct block_device
*bdev
;
1276 struct list_head
*devices
;
1277 struct super_block
*sb
= root
->fs_info
->sb
;
1279 int seeding_dev
= 0;
1282 if ((sb
->s_flags
& MS_RDONLY
) && !root
->fs_info
->fs_devices
->seeding
)
1285 bdev
= open_bdev_exclusive(device_path
, 0, root
->fs_info
->bdev_holder
);
1289 if (root
->fs_info
->fs_devices
->seeding
) {
1291 down_write(&sb
->s_umount
);
1292 mutex_lock(&uuid_mutex
);
1295 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
1296 mutex_lock(&root
->fs_info
->volume_mutex
);
1298 devices
= &root
->fs_info
->fs_devices
->devices
;
1299 list_for_each_entry(device
, devices
, dev_list
) {
1300 if (device
->bdev
== bdev
) {
1306 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
1308 /* we can safely leave the fs_devices entry around */
1313 device
->name
= kstrdup(device_path
, GFP_NOFS
);
1314 if (!device
->name
) {
1320 ret
= find_next_devid(root
, &device
->devid
);
1326 trans
= btrfs_start_transaction(root
, 1);
1329 device
->barriers
= 1;
1330 device
->writeable
= 1;
1331 device
->work
.func
= pending_bios_fn
;
1332 generate_random_uuid(device
->uuid
);
1333 spin_lock_init(&device
->io_lock
);
1334 device
->generation
= trans
->transid
;
1335 device
->io_width
= root
->sectorsize
;
1336 device
->io_align
= root
->sectorsize
;
1337 device
->sector_size
= root
->sectorsize
;
1338 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
1339 device
->dev_root
= root
->fs_info
->dev_root
;
1340 device
->bdev
= bdev
;
1341 device
->in_fs_metadata
= 1;
1343 set_blocksize(device
->bdev
, 4096);
1346 sb
->s_flags
&= ~MS_RDONLY
;
1347 ret
= btrfs_prepare_sprout(trans
, root
);
1351 device
->fs_devices
= root
->fs_info
->fs_devices
;
1352 list_add(&device
->dev_list
, &root
->fs_info
->fs_devices
->devices
);
1353 list_add(&device
->dev_alloc_list
,
1354 &root
->fs_info
->fs_devices
->alloc_list
);
1355 root
->fs_info
->fs_devices
->num_devices
++;
1356 root
->fs_info
->fs_devices
->open_devices
++;
1357 root
->fs_info
->fs_devices
->rw_devices
++;
1358 root
->fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
1360 total_bytes
= btrfs_super_total_bytes(&root
->fs_info
->super_copy
);
1361 btrfs_set_super_total_bytes(&root
->fs_info
->super_copy
,
1362 total_bytes
+ device
->total_bytes
);
1364 total_bytes
= btrfs_super_num_devices(&root
->fs_info
->super_copy
);
1365 btrfs_set_super_num_devices(&root
->fs_info
->super_copy
,
1369 ret
= init_first_rw_device(trans
, root
, device
);
1371 ret
= btrfs_finish_sprout(trans
, root
);
1374 ret
= btrfs_add_device(trans
, root
, device
);
1378 * we've got more storage, clear any full flags on the space
1381 btrfs_clear_space_info_full(root
->fs_info
);
1383 unlock_chunks(root
);
1384 btrfs_commit_transaction(trans
, root
);
1387 mutex_unlock(&uuid_mutex
);
1388 up_write(&sb
->s_umount
);
1390 ret
= btrfs_relocate_sys_chunks(root
);
1394 mutex_unlock(&root
->fs_info
->volume_mutex
);
1397 close_bdev_exclusive(bdev
, 0);
1399 mutex_unlock(&uuid_mutex
);
1400 up_write(&sb
->s_umount
);
1405 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
1406 struct btrfs_device
*device
)
1409 struct btrfs_path
*path
;
1410 struct btrfs_root
*root
;
1411 struct btrfs_dev_item
*dev_item
;
1412 struct extent_buffer
*leaf
;
1413 struct btrfs_key key
;
1415 root
= device
->dev_root
->fs_info
->chunk_root
;
1417 path
= btrfs_alloc_path();
1421 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1422 key
.type
= BTRFS_DEV_ITEM_KEY
;
1423 key
.offset
= device
->devid
;
1425 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1434 leaf
= path
->nodes
[0];
1435 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1437 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1438 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1439 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1440 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1441 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1442 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->total_bytes
);
1443 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
1444 btrfs_mark_buffer_dirty(leaf
);
1447 btrfs_free_path(path
);
1451 static int __btrfs_grow_device(struct btrfs_trans_handle
*trans
,
1452 struct btrfs_device
*device
, u64 new_size
)
1454 struct btrfs_super_block
*super_copy
=
1455 &device
->dev_root
->fs_info
->super_copy
;
1456 u64 old_total
= btrfs_super_total_bytes(super_copy
);
1457 u64 diff
= new_size
- device
->total_bytes
;
1459 if (!device
->writeable
)
1461 if (new_size
<= device
->total_bytes
)
1464 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
1465 device
->fs_devices
->total_rw_bytes
+= diff
;
1467 device
->total_bytes
= new_size
;
1468 btrfs_clear_space_info_full(device
->dev_root
->fs_info
);
1470 return btrfs_update_device(trans
, device
);
1473 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
1474 struct btrfs_device
*device
, u64 new_size
)
1477 lock_chunks(device
->dev_root
);
1478 ret
= __btrfs_grow_device(trans
, device
, new_size
);
1479 unlock_chunks(device
->dev_root
);
1483 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
1484 struct btrfs_root
*root
,
1485 u64 chunk_tree
, u64 chunk_objectid
,
1489 struct btrfs_path
*path
;
1490 struct btrfs_key key
;
1492 root
= root
->fs_info
->chunk_root
;
1493 path
= btrfs_alloc_path();
1497 key
.objectid
= chunk_objectid
;
1498 key
.offset
= chunk_offset
;
1499 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1501 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1504 ret
= btrfs_del_item(trans
, root
, path
);
1507 btrfs_free_path(path
);
1511 static int btrfs_del_sys_chunk(struct btrfs_root
*root
, u64 chunk_objectid
, u64
1514 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
1515 struct btrfs_disk_key
*disk_key
;
1516 struct btrfs_chunk
*chunk
;
1523 struct btrfs_key key
;
1525 array_size
= btrfs_super_sys_array_size(super_copy
);
1527 ptr
= super_copy
->sys_chunk_array
;
1530 while (cur
< array_size
) {
1531 disk_key
= (struct btrfs_disk_key
*)ptr
;
1532 btrfs_disk_key_to_cpu(&key
, disk_key
);
1534 len
= sizeof(*disk_key
);
1536 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
1537 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
1538 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
1539 len
+= btrfs_chunk_item_size(num_stripes
);
1544 if (key
.objectid
== chunk_objectid
&&
1545 key
.offset
== chunk_offset
) {
1546 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
1548 btrfs_set_super_sys_array_size(super_copy
, array_size
);
1557 static int btrfs_relocate_chunk(struct btrfs_root
*root
,
1558 u64 chunk_tree
, u64 chunk_objectid
,
1561 struct extent_map_tree
*em_tree
;
1562 struct btrfs_root
*extent_root
;
1563 struct btrfs_trans_handle
*trans
;
1564 struct extent_map
*em
;
1565 struct map_lookup
*map
;
1569 printk(KERN_INFO
"btrfs relocating chunk %llu\n",
1570 (unsigned long long)chunk_offset
);
1571 root
= root
->fs_info
->chunk_root
;
1572 extent_root
= root
->fs_info
->extent_root
;
1573 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
1575 /* step one, relocate all the extents inside this chunk */
1576 ret
= btrfs_relocate_block_group(extent_root
, chunk_offset
);
1579 trans
= btrfs_start_transaction(root
, 1);
1585 * step two, delete the device extents and the
1586 * chunk tree entries
1588 spin_lock(&em_tree
->lock
);
1589 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
1590 spin_unlock(&em_tree
->lock
);
1592 BUG_ON(em
->start
> chunk_offset
||
1593 em
->start
+ em
->len
< chunk_offset
);
1594 map
= (struct map_lookup
*)em
->bdev
;
1596 for (i
= 0; i
< map
->num_stripes
; i
++) {
1597 ret
= btrfs_free_dev_extent(trans
, map
->stripes
[i
].dev
,
1598 map
->stripes
[i
].physical
);
1601 if (map
->stripes
[i
].dev
) {
1602 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
1606 ret
= btrfs_free_chunk(trans
, root
, chunk_tree
, chunk_objectid
,
1611 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
1612 ret
= btrfs_del_sys_chunk(root
, chunk_objectid
, chunk_offset
);
1616 ret
= btrfs_remove_block_group(trans
, extent_root
, chunk_offset
);
1619 spin_lock(&em_tree
->lock
);
1620 remove_extent_mapping(em_tree
, em
);
1621 spin_unlock(&em_tree
->lock
);
1626 /* once for the tree */
1627 free_extent_map(em
);
1629 free_extent_map(em
);
1631 unlock_chunks(root
);
1632 btrfs_end_transaction(trans
, root
);
1636 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
)
1638 struct btrfs_root
*chunk_root
= root
->fs_info
->chunk_root
;
1639 struct btrfs_path
*path
;
1640 struct extent_buffer
*leaf
;
1641 struct btrfs_chunk
*chunk
;
1642 struct btrfs_key key
;
1643 struct btrfs_key found_key
;
1644 u64 chunk_tree
= chunk_root
->root_key
.objectid
;
1648 path
= btrfs_alloc_path();
1652 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
1653 key
.offset
= (u64
)-1;
1654 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1657 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
1662 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
1669 leaf
= path
->nodes
[0];
1670 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1672 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
1673 struct btrfs_chunk
);
1674 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
1675 btrfs_release_path(chunk_root
, path
);
1677 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
1678 ret
= btrfs_relocate_chunk(chunk_root
, chunk_tree
,
1684 if (found_key
.offset
== 0)
1686 key
.offset
= found_key
.offset
- 1;
1690 btrfs_free_path(path
);
1694 static u64
div_factor(u64 num
, int factor
)
1703 int btrfs_balance(struct btrfs_root
*dev_root
)
1706 struct list_head
*devices
= &dev_root
->fs_info
->fs_devices
->devices
;
1707 struct btrfs_device
*device
;
1710 struct btrfs_path
*path
;
1711 struct btrfs_key key
;
1712 struct btrfs_chunk
*chunk
;
1713 struct btrfs_root
*chunk_root
= dev_root
->fs_info
->chunk_root
;
1714 struct btrfs_trans_handle
*trans
;
1715 struct btrfs_key found_key
;
1717 if (dev_root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
1720 mutex_lock(&dev_root
->fs_info
->volume_mutex
);
1721 dev_root
= dev_root
->fs_info
->dev_root
;
1723 /* step one make some room on all the devices */
1724 list_for_each_entry(device
, devices
, dev_list
) {
1725 old_size
= device
->total_bytes
;
1726 size_to_free
= div_factor(old_size
, 1);
1727 size_to_free
= min(size_to_free
, (u64
)1 * 1024 * 1024);
1728 if (!device
->writeable
||
1729 device
->total_bytes
- device
->bytes_used
> size_to_free
)
1732 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
1735 trans
= btrfs_start_transaction(dev_root
, 1);
1738 ret
= btrfs_grow_device(trans
, device
, old_size
);
1741 btrfs_end_transaction(trans
, dev_root
);
1744 /* step two, relocate all the chunks */
1745 path
= btrfs_alloc_path();
1748 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
1749 key
.offset
= (u64
)-1;
1750 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1753 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
1758 * this shouldn't happen, it means the last relocate
1764 ret
= btrfs_previous_item(chunk_root
, path
, 0,
1765 BTRFS_CHUNK_ITEM_KEY
);
1769 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1771 if (found_key
.objectid
!= key
.objectid
)
1774 chunk
= btrfs_item_ptr(path
->nodes
[0],
1776 struct btrfs_chunk
);
1777 key
.offset
= found_key
.offset
;
1778 /* chunk zero is special */
1779 if (key
.offset
== 0)
1782 btrfs_release_path(chunk_root
, path
);
1783 ret
= btrfs_relocate_chunk(chunk_root
,
1784 chunk_root
->root_key
.objectid
,
1791 btrfs_free_path(path
);
1792 mutex_unlock(&dev_root
->fs_info
->volume_mutex
);
1797 * shrinking a device means finding all of the device extents past
1798 * the new size, and then following the back refs to the chunks.
1799 * The chunk relocation code actually frees the device extent
1801 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
1803 struct btrfs_trans_handle
*trans
;
1804 struct btrfs_root
*root
= device
->dev_root
;
1805 struct btrfs_dev_extent
*dev_extent
= NULL
;
1806 struct btrfs_path
*path
;
1813 struct extent_buffer
*l
;
1814 struct btrfs_key key
;
1815 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
1816 u64 old_total
= btrfs_super_total_bytes(super_copy
);
1817 u64 diff
= device
->total_bytes
- new_size
;
1819 if (new_size
>= device
->total_bytes
)
1822 path
= btrfs_alloc_path();
1826 trans
= btrfs_start_transaction(root
, 1);
1836 device
->total_bytes
= new_size
;
1837 if (device
->writeable
)
1838 device
->fs_devices
->total_rw_bytes
-= diff
;
1839 ret
= btrfs_update_device(trans
, device
);
1841 unlock_chunks(root
);
1842 btrfs_end_transaction(trans
, root
);
1845 WARN_ON(diff
> old_total
);
1846 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
1847 unlock_chunks(root
);
1848 btrfs_end_transaction(trans
, root
);
1850 key
.objectid
= device
->devid
;
1851 key
.offset
= (u64
)-1;
1852 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1855 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1859 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
1868 slot
= path
->slots
[0];
1869 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
1871 if (key
.objectid
!= device
->devid
)
1874 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1875 length
= btrfs_dev_extent_length(l
, dev_extent
);
1877 if (key
.offset
+ length
<= new_size
)
1880 chunk_tree
= btrfs_dev_extent_chunk_tree(l
, dev_extent
);
1881 chunk_objectid
= btrfs_dev_extent_chunk_objectid(l
, dev_extent
);
1882 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
1883 btrfs_release_path(root
, path
);
1885 ret
= btrfs_relocate_chunk(root
, chunk_tree
, chunk_objectid
,
1892 btrfs_free_path(path
);
1896 static int btrfs_add_system_chunk(struct btrfs_trans_handle
*trans
,
1897 struct btrfs_root
*root
,
1898 struct btrfs_key
*key
,
1899 struct btrfs_chunk
*chunk
, int item_size
)
1901 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
1902 struct btrfs_disk_key disk_key
;
1906 array_size
= btrfs_super_sys_array_size(super_copy
);
1907 if (array_size
+ item_size
> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
)
1910 ptr
= super_copy
->sys_chunk_array
+ array_size
;
1911 btrfs_cpu_key_to_disk(&disk_key
, key
);
1912 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
1913 ptr
+= sizeof(disk_key
);
1914 memcpy(ptr
, chunk
, item_size
);
1915 item_size
+= sizeof(disk_key
);
1916 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
1920 static noinline u64
chunk_bytes_by_type(u64 type
, u64 calc_size
,
1921 int num_stripes
, int sub_stripes
)
1923 if (type
& (BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_DUP
))
1925 else if (type
& BTRFS_BLOCK_GROUP_RAID10
)
1926 return calc_size
* (num_stripes
/ sub_stripes
);
1928 return calc_size
* num_stripes
;
1931 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
1932 struct btrfs_root
*extent_root
,
1933 struct map_lookup
**map_ret
,
1934 u64
*num_bytes
, u64
*stripe_size
,
1935 u64 start
, u64 type
)
1937 struct btrfs_fs_info
*info
= extent_root
->fs_info
;
1938 struct btrfs_device
*device
= NULL
;
1939 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
1940 struct list_head
*cur
;
1941 struct map_lookup
*map
= NULL
;
1942 struct extent_map_tree
*em_tree
;
1943 struct extent_map
*em
;
1944 struct list_head private_devs
;
1945 int min_stripe_size
= 1 * 1024 * 1024;
1946 u64 calc_size
= 1024 * 1024 * 1024;
1947 u64 max_chunk_size
= calc_size
;
1952 int num_stripes
= 1;
1953 int min_stripes
= 1;
1954 int sub_stripes
= 0;
1958 int stripe_len
= 64 * 1024;
1960 if ((type
& BTRFS_BLOCK_GROUP_RAID1
) &&
1961 (type
& BTRFS_BLOCK_GROUP_DUP
)) {
1963 type
&= ~BTRFS_BLOCK_GROUP_DUP
;
1965 if (list_empty(&fs_devices
->alloc_list
))
1968 if (type
& (BTRFS_BLOCK_GROUP_RAID0
)) {
1969 num_stripes
= fs_devices
->rw_devices
;
1972 if (type
& (BTRFS_BLOCK_GROUP_DUP
)) {
1976 if (type
& (BTRFS_BLOCK_GROUP_RAID1
)) {
1977 num_stripes
= min_t(u64
, 2, fs_devices
->rw_devices
);
1978 if (num_stripes
< 2)
1982 if (type
& (BTRFS_BLOCK_GROUP_RAID10
)) {
1983 num_stripes
= fs_devices
->rw_devices
;
1984 if (num_stripes
< 4)
1986 num_stripes
&= ~(u32
)1;
1991 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
1992 max_chunk_size
= 10 * calc_size
;
1993 min_stripe_size
= 64 * 1024 * 1024;
1994 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
1995 max_chunk_size
= 4 * calc_size
;
1996 min_stripe_size
= 32 * 1024 * 1024;
1997 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
1998 calc_size
= 8 * 1024 * 1024;
1999 max_chunk_size
= calc_size
* 2;
2000 min_stripe_size
= 1 * 1024 * 1024;
2003 /* we don't want a chunk larger than 10% of writeable space */
2004 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
2008 if (!map
|| map
->num_stripes
!= num_stripes
) {
2010 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
2013 map
->num_stripes
= num_stripes
;
2016 if (calc_size
* num_stripes
> max_chunk_size
) {
2017 calc_size
= max_chunk_size
;
2018 do_div(calc_size
, num_stripes
);
2019 do_div(calc_size
, stripe_len
);
2020 calc_size
*= stripe_len
;
2022 /* we don't want tiny stripes */
2023 calc_size
= max_t(u64
, min_stripe_size
, calc_size
);
2025 do_div(calc_size
, stripe_len
);
2026 calc_size
*= stripe_len
;
2028 cur
= fs_devices
->alloc_list
.next
;
2031 if (type
& BTRFS_BLOCK_GROUP_DUP
)
2032 min_free
= calc_size
* 2;
2034 min_free
= calc_size
;
2037 * we add 1MB because we never use the first 1MB of the device, unless
2038 * we've looped, then we are likely allocating the maximum amount of
2039 * space left already
2042 min_free
+= 1024 * 1024;
2044 INIT_LIST_HEAD(&private_devs
);
2045 while (index
< num_stripes
) {
2046 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
2047 BUG_ON(!device
->writeable
);
2048 if (device
->total_bytes
> device
->bytes_used
)
2049 avail
= device
->total_bytes
- device
->bytes_used
;
2054 if (device
->in_fs_metadata
&& avail
>= min_free
) {
2055 ret
= find_free_dev_extent(trans
, device
,
2056 min_free
, &dev_offset
);
2058 list_move_tail(&device
->dev_alloc_list
,
2060 map
->stripes
[index
].dev
= device
;
2061 map
->stripes
[index
].physical
= dev_offset
;
2063 if (type
& BTRFS_BLOCK_GROUP_DUP
) {
2064 map
->stripes
[index
].dev
= device
;
2065 map
->stripes
[index
].physical
=
2066 dev_offset
+ calc_size
;
2070 } else if (device
->in_fs_metadata
&& avail
> max_avail
)
2072 if (cur
== &fs_devices
->alloc_list
)
2075 list_splice(&private_devs
, &fs_devices
->alloc_list
);
2076 if (index
< num_stripes
) {
2077 if (index
>= min_stripes
) {
2078 num_stripes
= index
;
2079 if (type
& (BTRFS_BLOCK_GROUP_RAID10
)) {
2080 num_stripes
/= sub_stripes
;
2081 num_stripes
*= sub_stripes
;
2086 if (!looped
&& max_avail
> 0) {
2088 calc_size
= max_avail
;
2094 map
->sector_size
= extent_root
->sectorsize
;
2095 map
->stripe_len
= stripe_len
;
2096 map
->io_align
= stripe_len
;
2097 map
->io_width
= stripe_len
;
2099 map
->num_stripes
= num_stripes
;
2100 map
->sub_stripes
= sub_stripes
;
2103 *stripe_size
= calc_size
;
2104 *num_bytes
= chunk_bytes_by_type(type
, calc_size
,
2105 num_stripes
, sub_stripes
);
2107 em
= alloc_extent_map(GFP_NOFS
);
2112 em
->bdev
= (struct block_device
*)map
;
2114 em
->len
= *num_bytes
;
2115 em
->block_start
= 0;
2116 em
->block_len
= em
->len
;
2118 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
2119 spin_lock(&em_tree
->lock
);
2120 ret
= add_extent_mapping(em_tree
, em
);
2121 spin_unlock(&em_tree
->lock
);
2123 free_extent_map(em
);
2125 ret
= btrfs_make_block_group(trans
, extent_root
, 0, type
,
2126 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2131 while (index
< map
->num_stripes
) {
2132 device
= map
->stripes
[index
].dev
;
2133 dev_offset
= map
->stripes
[index
].physical
;
2135 ret
= btrfs_alloc_dev_extent(trans
, device
,
2136 info
->chunk_root
->root_key
.objectid
,
2137 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2138 start
, dev_offset
, calc_size
);
2146 static int __finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
2147 struct btrfs_root
*extent_root
,
2148 struct map_lookup
*map
, u64 chunk_offset
,
2149 u64 chunk_size
, u64 stripe_size
)
2152 struct btrfs_key key
;
2153 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
2154 struct btrfs_device
*device
;
2155 struct btrfs_chunk
*chunk
;
2156 struct btrfs_stripe
*stripe
;
2157 size_t item_size
= btrfs_chunk_item_size(map
->num_stripes
);
2161 chunk
= kzalloc(item_size
, GFP_NOFS
);
2166 while (index
< map
->num_stripes
) {
2167 device
= map
->stripes
[index
].dev
;
2168 device
->bytes_used
+= stripe_size
;
2169 ret
= btrfs_update_device(trans
, device
);
2175 stripe
= &chunk
->stripe
;
2176 while (index
< map
->num_stripes
) {
2177 device
= map
->stripes
[index
].dev
;
2178 dev_offset
= map
->stripes
[index
].physical
;
2180 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
2181 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
2182 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
2187 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
2188 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
2189 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
2190 btrfs_set_stack_chunk_type(chunk
, map
->type
);
2191 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
2192 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
2193 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
2194 btrfs_set_stack_chunk_sector_size(chunk
, extent_root
->sectorsize
);
2195 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
2197 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2198 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2199 key
.offset
= chunk_offset
;
2201 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
2204 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2205 ret
= btrfs_add_system_chunk(trans
, chunk_root
, &key
, chunk
,
2214 * Chunk allocation falls into two parts. The first part does works
2215 * that make the new allocated chunk useable, but not do any operation
2216 * that modifies the chunk tree. The second part does the works that
2217 * require modifying the chunk tree. This division is important for the
2218 * bootstrap process of adding storage to a seed btrfs.
2220 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
2221 struct btrfs_root
*extent_root
, u64 type
)
2226 struct map_lookup
*map
;
2227 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
2230 ret
= find_next_chunk(chunk_root
, BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2235 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &map
, &chunk_size
,
2236 &stripe_size
, chunk_offset
, type
);
2240 ret
= __finish_chunk_alloc(trans
, extent_root
, map
, chunk_offset
,
2241 chunk_size
, stripe_size
);
2246 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
2247 struct btrfs_root
*root
,
2248 struct btrfs_device
*device
)
2251 u64 sys_chunk_offset
;
2255 u64 sys_stripe_size
;
2257 struct map_lookup
*map
;
2258 struct map_lookup
*sys_map
;
2259 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2260 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
2263 ret
= find_next_chunk(fs_info
->chunk_root
,
2264 BTRFS_FIRST_CHUNK_TREE_OBJECTID
, &chunk_offset
);
2267 alloc_profile
= BTRFS_BLOCK_GROUP_METADATA
|
2268 (fs_info
->metadata_alloc_profile
&
2269 fs_info
->avail_metadata_alloc_bits
);
2270 alloc_profile
= btrfs_reduce_alloc_profile(root
, alloc_profile
);
2272 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &map
, &chunk_size
,
2273 &stripe_size
, chunk_offset
, alloc_profile
);
2276 sys_chunk_offset
= chunk_offset
+ chunk_size
;
2278 alloc_profile
= BTRFS_BLOCK_GROUP_SYSTEM
|
2279 (fs_info
->system_alloc_profile
&
2280 fs_info
->avail_system_alloc_bits
);
2281 alloc_profile
= btrfs_reduce_alloc_profile(root
, alloc_profile
);
2283 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &sys_map
,
2284 &sys_chunk_size
, &sys_stripe_size
,
2285 sys_chunk_offset
, alloc_profile
);
2288 ret
= btrfs_add_device(trans
, fs_info
->chunk_root
, device
);
2292 * Modifying chunk tree needs allocating new blocks from both
2293 * system block group and metadata block group. So we only can
2294 * do operations require modifying the chunk tree after both
2295 * block groups were created.
2297 ret
= __finish_chunk_alloc(trans
, extent_root
, map
, chunk_offset
,
2298 chunk_size
, stripe_size
);
2301 ret
= __finish_chunk_alloc(trans
, extent_root
, sys_map
,
2302 sys_chunk_offset
, sys_chunk_size
,
2308 int btrfs_chunk_readonly(struct btrfs_root
*root
, u64 chunk_offset
)
2310 struct extent_map
*em
;
2311 struct map_lookup
*map
;
2312 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
2316 spin_lock(&map_tree
->map_tree
.lock
);
2317 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
2318 spin_unlock(&map_tree
->map_tree
.lock
);
2322 map
= (struct map_lookup
*)em
->bdev
;
2323 for (i
= 0; i
< map
->num_stripes
; i
++) {
2324 if (!map
->stripes
[i
].dev
->writeable
) {
2329 free_extent_map(em
);
2333 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
2335 extent_map_tree_init(&tree
->map_tree
, GFP_NOFS
);
2338 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
2340 struct extent_map
*em
;
2343 spin_lock(&tree
->map_tree
.lock
);
2344 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
2346 remove_extent_mapping(&tree
->map_tree
, em
);
2347 spin_unlock(&tree
->map_tree
.lock
);
2352 free_extent_map(em
);
2353 /* once for the tree */
2354 free_extent_map(em
);
2358 int btrfs_num_copies(struct btrfs_mapping_tree
*map_tree
, u64 logical
, u64 len
)
2360 struct extent_map
*em
;
2361 struct map_lookup
*map
;
2362 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
2365 spin_lock(&em_tree
->lock
);
2366 em
= lookup_extent_mapping(em_tree
, logical
, len
);
2367 spin_unlock(&em_tree
->lock
);
2370 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
2371 map
= (struct map_lookup
*)em
->bdev
;
2372 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
2373 ret
= map
->num_stripes
;
2374 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
2375 ret
= map
->sub_stripes
;
2378 free_extent_map(em
);
2382 static int find_live_mirror(struct map_lookup
*map
, int first
, int num
,
2386 if (map
->stripes
[optimal
].dev
->bdev
)
2388 for (i
= first
; i
< first
+ num
; i
++) {
2389 if (map
->stripes
[i
].dev
->bdev
)
2392 /* we couldn't find one that doesn't fail. Just return something
2393 * and the io error handling code will clean up eventually
2398 static int __btrfs_map_block(struct btrfs_mapping_tree
*map_tree
, int rw
,
2399 u64 logical
, u64
*length
,
2400 struct btrfs_multi_bio
**multi_ret
,
2401 int mirror_num
, struct page
*unplug_page
)
2403 struct extent_map
*em
;
2404 struct map_lookup
*map
;
2405 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
2409 int stripes_allocated
= 8;
2410 int stripes_required
= 1;
2415 struct btrfs_multi_bio
*multi
= NULL
;
2417 if (multi_ret
&& !(rw
& (1 << BIO_RW
)))
2418 stripes_allocated
= 1;
2421 multi
= kzalloc(btrfs_multi_bio_size(stripes_allocated
),
2426 atomic_set(&multi
->error
, 0);
2429 spin_lock(&em_tree
->lock
);
2430 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
2431 spin_unlock(&em_tree
->lock
);
2433 if (!em
&& unplug_page
)
2437 printk(KERN_CRIT
"unable to find logical %llu len %llu\n",
2438 (unsigned long long)logical
,
2439 (unsigned long long)*length
);
2443 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
2444 map
= (struct map_lookup
*)em
->bdev
;
2445 offset
= logical
- em
->start
;
2447 if (mirror_num
> map
->num_stripes
)
2450 /* if our multi bio struct is too small, back off and try again */
2451 if (rw
& (1 << BIO_RW
)) {
2452 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
2453 BTRFS_BLOCK_GROUP_DUP
)) {
2454 stripes_required
= map
->num_stripes
;
2456 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2457 stripes_required
= map
->sub_stripes
;
2461 if (multi_ret
&& rw
== WRITE
&&
2462 stripes_allocated
< stripes_required
) {
2463 stripes_allocated
= map
->num_stripes
;
2464 free_extent_map(em
);
2470 * stripe_nr counts the total number of stripes we have to stride
2471 * to get to this block
2473 do_div(stripe_nr
, map
->stripe_len
);
2475 stripe_offset
= stripe_nr
* map
->stripe_len
;
2476 BUG_ON(offset
< stripe_offset
);
2478 /* stripe_offset is the offset of this block in its stripe*/
2479 stripe_offset
= offset
- stripe_offset
;
2481 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
|
2482 BTRFS_BLOCK_GROUP_RAID10
|
2483 BTRFS_BLOCK_GROUP_DUP
)) {
2484 /* we limit the length of each bio to what fits in a stripe */
2485 *length
= min_t(u64
, em
->len
- offset
,
2486 map
->stripe_len
- stripe_offset
);
2488 *length
= em
->len
- offset
;
2491 if (!multi_ret
&& !unplug_page
)
2496 if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
2497 if (unplug_page
|| (rw
& (1 << BIO_RW
)))
2498 num_stripes
= map
->num_stripes
;
2499 else if (mirror_num
)
2500 stripe_index
= mirror_num
- 1;
2502 stripe_index
= find_live_mirror(map
, 0,
2504 current
->pid
% map
->num_stripes
);
2507 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
2508 if (rw
& (1 << BIO_RW
))
2509 num_stripes
= map
->num_stripes
;
2510 else if (mirror_num
)
2511 stripe_index
= mirror_num
- 1;
2513 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2514 int factor
= map
->num_stripes
/ map
->sub_stripes
;
2516 stripe_index
= do_div(stripe_nr
, factor
);
2517 stripe_index
*= map
->sub_stripes
;
2519 if (unplug_page
|| (rw
& (1 << BIO_RW
)))
2520 num_stripes
= map
->sub_stripes
;
2521 else if (mirror_num
)
2522 stripe_index
+= mirror_num
- 1;
2524 stripe_index
= find_live_mirror(map
, stripe_index
,
2525 map
->sub_stripes
, stripe_index
+
2526 current
->pid
% map
->sub_stripes
);
2530 * after this do_div call, stripe_nr is the number of stripes
2531 * on this device we have to walk to find the data, and
2532 * stripe_index is the number of our device in the stripe array
2534 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
2536 BUG_ON(stripe_index
>= map
->num_stripes
);
2538 for (i
= 0; i
< num_stripes
; i
++) {
2540 struct btrfs_device
*device
;
2541 struct backing_dev_info
*bdi
;
2543 device
= map
->stripes
[stripe_index
].dev
;
2545 bdi
= blk_get_backing_dev_info(device
->bdev
);
2546 if (bdi
->unplug_io_fn
)
2547 bdi
->unplug_io_fn(bdi
, unplug_page
);
2550 multi
->stripes
[i
].physical
=
2551 map
->stripes
[stripe_index
].physical
+
2552 stripe_offset
+ stripe_nr
* map
->stripe_len
;
2553 multi
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
2559 multi
->num_stripes
= num_stripes
;
2560 multi
->max_errors
= max_errors
;
2563 free_extent_map(em
);
2567 int btrfs_map_block(struct btrfs_mapping_tree
*map_tree
, int rw
,
2568 u64 logical
, u64
*length
,
2569 struct btrfs_multi_bio
**multi_ret
, int mirror_num
)
2571 return __btrfs_map_block(map_tree
, rw
, logical
, length
, multi_ret
,
2575 int btrfs_rmap_block(struct btrfs_mapping_tree
*map_tree
,
2576 u64 chunk_start
, u64 physical
, u64 devid
,
2577 u64
**logical
, int *naddrs
, int *stripe_len
)
2579 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
2580 struct extent_map
*em
;
2581 struct map_lookup
*map
;
2588 spin_lock(&em_tree
->lock
);
2589 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
2590 spin_unlock(&em_tree
->lock
);
2592 BUG_ON(!em
|| em
->start
!= chunk_start
);
2593 map
= (struct map_lookup
*)em
->bdev
;
2596 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
2597 do_div(length
, map
->num_stripes
/ map
->sub_stripes
);
2598 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
2599 do_div(length
, map
->num_stripes
);
2601 buf
= kzalloc(sizeof(u64
) * map
->num_stripes
, GFP_NOFS
);
2604 for (i
= 0; i
< map
->num_stripes
; i
++) {
2605 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
2607 if (map
->stripes
[i
].physical
> physical
||
2608 map
->stripes
[i
].physical
+ length
<= physical
)
2611 stripe_nr
= physical
- map
->stripes
[i
].physical
;
2612 do_div(stripe_nr
, map
->stripe_len
);
2614 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2615 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
2616 do_div(stripe_nr
, map
->sub_stripes
);
2617 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
2618 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
2620 bytenr
= chunk_start
+ stripe_nr
* map
->stripe_len
;
2621 WARN_ON(nr
>= map
->num_stripes
);
2622 for (j
= 0; j
< nr
; j
++) {
2623 if (buf
[j
] == bytenr
)
2627 WARN_ON(nr
>= map
->num_stripes
);
2632 for (i
= 0; i
> nr
; i
++) {
2633 struct btrfs_multi_bio
*multi
;
2634 struct btrfs_bio_stripe
*stripe
;
2638 ret
= btrfs_map_block(map_tree
, WRITE
, buf
[i
],
2639 &length
, &multi
, 0);
2642 stripe
= multi
->stripes
;
2643 for (j
= 0; j
< multi
->num_stripes
; j
++) {
2644 if (stripe
->physical
>= physical
&&
2645 physical
< stripe
->physical
+ length
)
2648 BUG_ON(j
>= multi
->num_stripes
);
2654 *stripe_len
= map
->stripe_len
;
2656 free_extent_map(em
);
2660 int btrfs_unplug_page(struct btrfs_mapping_tree
*map_tree
,
2661 u64 logical
, struct page
*page
)
2663 u64 length
= PAGE_CACHE_SIZE
;
2664 return __btrfs_map_block(map_tree
, READ
, logical
, &length
,
2668 static void end_bio_multi_stripe(struct bio
*bio
, int err
)
2670 struct btrfs_multi_bio
*multi
= bio
->bi_private
;
2671 int is_orig_bio
= 0;
2674 atomic_inc(&multi
->error
);
2676 if (bio
== multi
->orig_bio
)
2679 if (atomic_dec_and_test(&multi
->stripes_pending
)) {
2682 bio
= multi
->orig_bio
;
2684 bio
->bi_private
= multi
->private;
2685 bio
->bi_end_io
= multi
->end_io
;
2686 /* only send an error to the higher layers if it is
2687 * beyond the tolerance of the multi-bio
2689 if (atomic_read(&multi
->error
) > multi
->max_errors
) {
2693 * this bio is actually up to date, we didn't
2694 * go over the max number of errors
2696 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2701 bio_endio(bio
, err
);
2702 } else if (!is_orig_bio
) {
2707 struct async_sched
{
2710 struct btrfs_fs_info
*info
;
2711 struct btrfs_work work
;
2715 * see run_scheduled_bios for a description of why bios are collected for
2718 * This will add one bio to the pending list for a device and make sure
2719 * the work struct is scheduled.
2721 static noinline
int schedule_bio(struct btrfs_root
*root
,
2722 struct btrfs_device
*device
,
2723 int rw
, struct bio
*bio
)
2725 int should_queue
= 1;
2727 /* don't bother with additional async steps for reads, right now */
2728 if (!(rw
& (1 << BIO_RW
))) {
2730 submit_bio(rw
, bio
);
2736 * nr_async_bios allows us to reliably return congestion to the
2737 * higher layers. Otherwise, the async bio makes it appear we have
2738 * made progress against dirty pages when we've really just put it
2739 * on a queue for later
2741 atomic_inc(&root
->fs_info
->nr_async_bios
);
2742 WARN_ON(bio
->bi_next
);
2743 bio
->bi_next
= NULL
;
2746 spin_lock(&device
->io_lock
);
2748 if (device
->pending_bio_tail
)
2749 device
->pending_bio_tail
->bi_next
= bio
;
2751 device
->pending_bio_tail
= bio
;
2752 if (!device
->pending_bios
)
2753 device
->pending_bios
= bio
;
2754 if (device
->running_pending
)
2757 spin_unlock(&device
->io_lock
);
2760 btrfs_queue_worker(&root
->fs_info
->submit_workers
,
2765 int btrfs_map_bio(struct btrfs_root
*root
, int rw
, struct bio
*bio
,
2766 int mirror_num
, int async_submit
)
2768 struct btrfs_mapping_tree
*map_tree
;
2769 struct btrfs_device
*dev
;
2770 struct bio
*first_bio
= bio
;
2771 u64 logical
= (u64
)bio
->bi_sector
<< 9;
2774 struct btrfs_multi_bio
*multi
= NULL
;
2779 length
= bio
->bi_size
;
2780 map_tree
= &root
->fs_info
->mapping_tree
;
2781 map_length
= length
;
2783 ret
= btrfs_map_block(map_tree
, rw
, logical
, &map_length
, &multi
,
2787 total_devs
= multi
->num_stripes
;
2788 if (map_length
< length
) {
2789 printk(KERN_CRIT
"mapping failed logical %llu bio len %llu "
2790 "len %llu\n", (unsigned long long)logical
,
2791 (unsigned long long)length
,
2792 (unsigned long long)map_length
);
2795 multi
->end_io
= first_bio
->bi_end_io
;
2796 multi
->private = first_bio
->bi_private
;
2797 multi
->orig_bio
= first_bio
;
2798 atomic_set(&multi
->stripes_pending
, multi
->num_stripes
);
2800 while (dev_nr
< total_devs
) {
2801 if (total_devs
> 1) {
2802 if (dev_nr
< total_devs
- 1) {
2803 bio
= bio_clone(first_bio
, GFP_NOFS
);
2808 bio
->bi_private
= multi
;
2809 bio
->bi_end_io
= end_bio_multi_stripe
;
2811 bio
->bi_sector
= multi
->stripes
[dev_nr
].physical
>> 9;
2812 dev
= multi
->stripes
[dev_nr
].dev
;
2813 BUG_ON(rw
== WRITE
&& !dev
->writeable
);
2814 if (dev
&& dev
->bdev
) {
2815 bio
->bi_bdev
= dev
->bdev
;
2817 schedule_bio(root
, dev
, rw
, bio
);
2819 submit_bio(rw
, bio
);
2821 bio
->bi_bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
2822 bio
->bi_sector
= logical
>> 9;
2823 bio_endio(bio
, -EIO
);
2827 if (total_devs
== 1)
2832 struct btrfs_device
*btrfs_find_device(struct btrfs_root
*root
, u64 devid
,
2835 struct btrfs_device
*device
;
2836 struct btrfs_fs_devices
*cur_devices
;
2838 cur_devices
= root
->fs_info
->fs_devices
;
2839 while (cur_devices
) {
2841 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
2842 device
= __find_device(&cur_devices
->devices
,
2847 cur_devices
= cur_devices
->seed
;
2852 static struct btrfs_device
*add_missing_dev(struct btrfs_root
*root
,
2853 u64 devid
, u8
*dev_uuid
)
2855 struct btrfs_device
*device
;
2856 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2858 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
2861 list_add(&device
->dev_list
,
2862 &fs_devices
->devices
);
2863 device
->barriers
= 1;
2864 device
->dev_root
= root
->fs_info
->dev_root
;
2865 device
->devid
= devid
;
2866 device
->work
.func
= pending_bios_fn
;
2867 device
->fs_devices
= fs_devices
;
2868 fs_devices
->num_devices
++;
2869 spin_lock_init(&device
->io_lock
);
2870 INIT_LIST_HEAD(&device
->dev_alloc_list
);
2871 memcpy(device
->uuid
, dev_uuid
, BTRFS_UUID_SIZE
);
2875 static int read_one_chunk(struct btrfs_root
*root
, struct btrfs_key
*key
,
2876 struct extent_buffer
*leaf
,
2877 struct btrfs_chunk
*chunk
)
2879 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
2880 struct map_lookup
*map
;
2881 struct extent_map
*em
;
2885 u8 uuid
[BTRFS_UUID_SIZE
];
2890 logical
= key
->offset
;
2891 length
= btrfs_chunk_length(leaf
, chunk
);
2893 spin_lock(&map_tree
->map_tree
.lock
);
2894 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
2895 spin_unlock(&map_tree
->map_tree
.lock
);
2897 /* already mapped? */
2898 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
2899 free_extent_map(em
);
2902 free_extent_map(em
);
2905 em
= alloc_extent_map(GFP_NOFS
);
2908 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
2909 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
2911 free_extent_map(em
);
2915 em
->bdev
= (struct block_device
*)map
;
2916 em
->start
= logical
;
2918 em
->block_start
= 0;
2919 em
->block_len
= em
->len
;
2921 map
->num_stripes
= num_stripes
;
2922 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
2923 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
2924 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
2925 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
2926 map
->type
= btrfs_chunk_type(leaf
, chunk
);
2927 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
2928 for (i
= 0; i
< num_stripes
; i
++) {
2929 map
->stripes
[i
].physical
=
2930 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
2931 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
2932 read_extent_buffer(leaf
, uuid
, (unsigned long)
2933 btrfs_stripe_dev_uuid_nr(chunk
, i
),
2935 map
->stripes
[i
].dev
= btrfs_find_device(root
, devid
, uuid
,
2937 if (!map
->stripes
[i
].dev
&& !btrfs_test_opt(root
, DEGRADED
)) {
2939 free_extent_map(em
);
2942 if (!map
->stripes
[i
].dev
) {
2943 map
->stripes
[i
].dev
=
2944 add_missing_dev(root
, devid
, uuid
);
2945 if (!map
->stripes
[i
].dev
) {
2947 free_extent_map(em
);
2951 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
2954 spin_lock(&map_tree
->map_tree
.lock
);
2955 ret
= add_extent_mapping(&map_tree
->map_tree
, em
);
2956 spin_unlock(&map_tree
->map_tree
.lock
);
2958 free_extent_map(em
);
2963 static int fill_device_from_item(struct extent_buffer
*leaf
,
2964 struct btrfs_dev_item
*dev_item
,
2965 struct btrfs_device
*device
)
2969 device
->devid
= btrfs_device_id(leaf
, dev_item
);
2970 device
->total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
2971 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
2972 device
->type
= btrfs_device_type(leaf
, dev_item
);
2973 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
2974 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
2975 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
2977 ptr
= (unsigned long)btrfs_device_uuid(dev_item
);
2978 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
2983 static int open_seed_devices(struct btrfs_root
*root
, u8
*fsid
)
2985 struct btrfs_fs_devices
*fs_devices
;
2988 mutex_lock(&uuid_mutex
);
2990 fs_devices
= root
->fs_info
->fs_devices
->seed
;
2991 while (fs_devices
) {
2992 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
2996 fs_devices
= fs_devices
->seed
;
2999 fs_devices
= find_fsid(fsid
);
3005 fs_devices
= clone_fs_devices(fs_devices
);
3006 if (IS_ERR(fs_devices
)) {
3007 ret
= PTR_ERR(fs_devices
);
3011 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
3012 root
->fs_info
->bdev_holder
);
3016 if (!fs_devices
->seeding
) {
3017 __btrfs_close_devices(fs_devices
);
3018 free_fs_devices(fs_devices
);
3023 fs_devices
->seed
= root
->fs_info
->fs_devices
->seed
;
3024 root
->fs_info
->fs_devices
->seed
= fs_devices
;
3026 mutex_unlock(&uuid_mutex
);
3030 static int read_one_dev(struct btrfs_root
*root
,
3031 struct extent_buffer
*leaf
,
3032 struct btrfs_dev_item
*dev_item
)
3034 struct btrfs_device
*device
;
3037 u8 fs_uuid
[BTRFS_UUID_SIZE
];
3038 u8 dev_uuid
[BTRFS_UUID_SIZE
];
3040 devid
= btrfs_device_id(leaf
, dev_item
);
3041 read_extent_buffer(leaf
, dev_uuid
,
3042 (unsigned long)btrfs_device_uuid(dev_item
),
3044 read_extent_buffer(leaf
, fs_uuid
,
3045 (unsigned long)btrfs_device_fsid(dev_item
),
3048 if (memcmp(fs_uuid
, root
->fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
3049 ret
= open_seed_devices(root
, fs_uuid
);
3050 if (ret
&& !btrfs_test_opt(root
, DEGRADED
))
3054 device
= btrfs_find_device(root
, devid
, dev_uuid
, fs_uuid
);
3055 if (!device
|| !device
->bdev
) {
3056 if (!btrfs_test_opt(root
, DEGRADED
))
3060 printk(KERN_WARNING
"warning devid %llu missing\n",
3061 (unsigned long long)devid
);
3062 device
= add_missing_dev(root
, devid
, dev_uuid
);
3068 if (device
->fs_devices
!= root
->fs_info
->fs_devices
) {
3069 BUG_ON(device
->writeable
);
3070 if (device
->generation
!=
3071 btrfs_device_generation(leaf
, dev_item
))
3075 fill_device_from_item(leaf
, dev_item
, device
);
3076 device
->dev_root
= root
->fs_info
->dev_root
;
3077 device
->in_fs_metadata
= 1;
3078 if (device
->writeable
)
3079 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
3084 int btrfs_read_super_device(struct btrfs_root
*root
, struct extent_buffer
*buf
)
3086 struct btrfs_dev_item
*dev_item
;
3088 dev_item
= (struct btrfs_dev_item
*)offsetof(struct btrfs_super_block
,
3090 return read_one_dev(root
, buf
, dev_item
);
3093 int btrfs_read_sys_array(struct btrfs_root
*root
)
3095 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
3096 struct extent_buffer
*sb
;
3097 struct btrfs_disk_key
*disk_key
;
3098 struct btrfs_chunk
*chunk
;
3100 unsigned long sb_ptr
;
3106 struct btrfs_key key
;
3108 sb
= btrfs_find_create_tree_block(root
, BTRFS_SUPER_INFO_OFFSET
,
3109 BTRFS_SUPER_INFO_SIZE
);
3112 btrfs_set_buffer_uptodate(sb
);
3113 btrfs_set_buffer_lockdep_class(sb
, 0);
3115 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
3116 array_size
= btrfs_super_sys_array_size(super_copy
);
3118 ptr
= super_copy
->sys_chunk_array
;
3119 sb_ptr
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
3122 while (cur
< array_size
) {
3123 disk_key
= (struct btrfs_disk_key
*)ptr
;
3124 btrfs_disk_key_to_cpu(&key
, disk_key
);
3126 len
= sizeof(*disk_key
); ptr
+= len
;
3130 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
3131 chunk
= (struct btrfs_chunk
*)sb_ptr
;
3132 ret
= read_one_chunk(root
, &key
, sb
, chunk
);
3135 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
3136 len
= btrfs_chunk_item_size(num_stripes
);
3145 free_extent_buffer(sb
);
3149 int btrfs_read_chunk_tree(struct btrfs_root
*root
)
3151 struct btrfs_path
*path
;
3152 struct extent_buffer
*leaf
;
3153 struct btrfs_key key
;
3154 struct btrfs_key found_key
;
3158 root
= root
->fs_info
->chunk_root
;
3160 path
= btrfs_alloc_path();
3164 /* first we search for all of the device items, and then we
3165 * read in all of the chunk items. This way we can create chunk
3166 * mappings that reference all of the devices that are afound
3168 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
3172 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3174 leaf
= path
->nodes
[0];
3175 slot
= path
->slots
[0];
3176 if (slot
>= btrfs_header_nritems(leaf
)) {
3177 ret
= btrfs_next_leaf(root
, path
);
3184 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3185 if (key
.objectid
== BTRFS_DEV_ITEMS_OBJECTID
) {
3186 if (found_key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
)
3188 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
3189 struct btrfs_dev_item
*dev_item
;
3190 dev_item
= btrfs_item_ptr(leaf
, slot
,
3191 struct btrfs_dev_item
);
3192 ret
= read_one_dev(root
, leaf
, dev_item
);
3196 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
3197 struct btrfs_chunk
*chunk
;
3198 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3199 ret
= read_one_chunk(root
, &found_key
, leaf
, chunk
);
3205 if (key
.objectid
== BTRFS_DEV_ITEMS_OBJECTID
) {
3207 btrfs_release_path(root
, path
);
3212 btrfs_free_path(path
);