dma-mapping: x86: use asm-generic/dma-mapping-common.h
[linux-2.6/mini2440.git] / net / core / dev.c
blob576a61574a936fcab9a7608d2d83c677127aebb6
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
131 #include "net-sysfs.h"
133 /* Instead of increasing this, you should create a hash table. */
134 #define MAX_GRO_SKBS 8
136 /* This should be increased if a protocol with a bigger head is added. */
137 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140 * The list of packet types we will receive (as opposed to discard)
141 * and the routines to invoke.
143 * Why 16. Because with 16 the only overlap we get on a hash of the
144 * low nibble of the protocol value is RARP/SNAP/X.25.
146 * NOTE: That is no longer true with the addition of VLAN tags. Not
147 * sure which should go first, but I bet it won't make much
148 * difference if we are running VLANs. The good news is that
149 * this protocol won't be in the list unless compiled in, so
150 * the average user (w/out VLANs) will not be adversely affected.
151 * --BLG
153 * 0800 IP
154 * 8100 802.1Q VLAN
155 * 0001 802.3
156 * 0002 AX.25
157 * 0004 802.2
158 * 8035 RARP
159 * 0005 SNAP
160 * 0805 X.25
161 * 0806 ARP
162 * 8137 IPX
163 * 0009 Localtalk
164 * 86DD IPv6
167 #define PTYPE_HASH_SIZE (16)
168 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
170 static DEFINE_SPINLOCK(ptype_lock);
171 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
172 static struct list_head ptype_all __read_mostly; /* Taps */
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176 * semaphore.
178 * Pure readers hold dev_base_lock for reading.
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
193 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
197 #define NETDEV_HASHBITS 8
198 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
211 /* Device list insertion */
212 static int list_netdevice(struct net_device *dev)
214 struct net *net = dev_net(dev);
216 ASSERT_RTNL();
218 write_lock_bh(&dev_base_lock);
219 list_add_tail(&dev->dev_list, &net->dev_base_head);
220 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
221 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223 return 0;
226 /* Device list removal */
227 static void unlist_netdevice(struct net_device *dev)
229 ASSERT_RTNL();
231 /* Unlink dev from the device chain */
232 write_lock_bh(&dev_base_lock);
233 list_del(&dev->dev_list);
234 hlist_del(&dev->name_hlist);
235 hlist_del(&dev->index_hlist);
236 write_unlock_bh(&dev_base_lock);
240 * Our notifier list
243 static RAW_NOTIFIER_HEAD(netdev_chain);
246 * Device drivers call our routines to queue packets here. We empty the
247 * queue in the local softnet handler.
250 DEFINE_PER_CPU(struct softnet_data, softnet_data);
252 #ifdef CONFIG_LOCKDEP
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
271 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
272 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, ARPHRD_IEEE802154_PHY,
273 ARPHRD_VOID, ARPHRD_NONE};
275 static const char *netdev_lock_name[] =
276 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
277 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
278 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
279 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
280 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
281 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
282 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
283 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
284 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
285 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
286 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
287 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
288 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
289 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
290 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", "_xmit_IEEE802154_PHY",
291 "_xmit_VOID", "_xmit_NONE"};
293 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
294 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
296 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
298 int i;
300 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
301 if (netdev_lock_type[i] == dev_type)
302 return i;
303 /* the last key is used by default */
304 return ARRAY_SIZE(netdev_lock_type) - 1;
307 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
308 unsigned short dev_type)
310 int i;
312 i = netdev_lock_pos(dev_type);
313 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
314 netdev_lock_name[i]);
317 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
319 int i;
321 i = netdev_lock_pos(dev->type);
322 lockdep_set_class_and_name(&dev->addr_list_lock,
323 &netdev_addr_lock_key[i],
324 netdev_lock_name[i]);
326 #else
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 #endif
336 /*******************************************************************************
338 Protocol management and registration routines
340 *******************************************************************************/
343 * Add a protocol ID to the list. Now that the input handler is
344 * smarter we can dispense with all the messy stuff that used to be
345 * here.
347 * BEWARE!!! Protocol handlers, mangling input packets,
348 * MUST BE last in hash buckets and checking protocol handlers
349 * MUST start from promiscuous ptype_all chain in net_bh.
350 * It is true now, do not change it.
351 * Explanation follows: if protocol handler, mangling packet, will
352 * be the first on list, it is not able to sense, that packet
353 * is cloned and should be copied-on-write, so that it will
354 * change it and subsequent readers will get broken packet.
355 * --ANK (980803)
359 * dev_add_pack - add packet handler
360 * @pt: packet type declaration
362 * Add a protocol handler to the networking stack. The passed &packet_type
363 * is linked into kernel lists and may not be freed until it has been
364 * removed from the kernel lists.
366 * This call does not sleep therefore it can not
367 * guarantee all CPU's that are in middle of receiving packets
368 * will see the new packet type (until the next received packet).
371 void dev_add_pack(struct packet_type *pt)
373 int hash;
375 spin_lock_bh(&ptype_lock);
376 if (pt->type == htons(ETH_P_ALL))
377 list_add_rcu(&pt->list, &ptype_all);
378 else {
379 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
380 list_add_rcu(&pt->list, &ptype_base[hash]);
382 spin_unlock_bh(&ptype_lock);
386 * __dev_remove_pack - remove packet handler
387 * @pt: packet type declaration
389 * Remove a protocol handler that was previously added to the kernel
390 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
391 * from the kernel lists and can be freed or reused once this function
392 * returns.
394 * The packet type might still be in use by receivers
395 * and must not be freed until after all the CPU's have gone
396 * through a quiescent state.
398 void __dev_remove_pack(struct packet_type *pt)
400 struct list_head *head;
401 struct packet_type *pt1;
403 spin_lock_bh(&ptype_lock);
405 if (pt->type == htons(ETH_P_ALL))
406 head = &ptype_all;
407 else
408 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
410 list_for_each_entry(pt1, head, list) {
411 if (pt == pt1) {
412 list_del_rcu(&pt->list);
413 goto out;
417 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
418 out:
419 spin_unlock_bh(&ptype_lock);
422 * dev_remove_pack - remove packet handler
423 * @pt: packet type declaration
425 * Remove a protocol handler that was previously added to the kernel
426 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
427 * from the kernel lists and can be freed or reused once this function
428 * returns.
430 * This call sleeps to guarantee that no CPU is looking at the packet
431 * type after return.
433 void dev_remove_pack(struct packet_type *pt)
435 __dev_remove_pack(pt);
437 synchronize_net();
440 /******************************************************************************
442 Device Boot-time Settings Routines
444 *******************************************************************************/
446 /* Boot time configuration table */
447 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
450 * netdev_boot_setup_add - add new setup entry
451 * @name: name of the device
452 * @map: configured settings for the device
454 * Adds new setup entry to the dev_boot_setup list. The function
455 * returns 0 on error and 1 on success. This is a generic routine to
456 * all netdevices.
458 static int netdev_boot_setup_add(char *name, struct ifmap *map)
460 struct netdev_boot_setup *s;
461 int i;
463 s = dev_boot_setup;
464 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
465 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
466 memset(s[i].name, 0, sizeof(s[i].name));
467 strlcpy(s[i].name, name, IFNAMSIZ);
468 memcpy(&s[i].map, map, sizeof(s[i].map));
469 break;
473 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
477 * netdev_boot_setup_check - check boot time settings
478 * @dev: the netdevice
480 * Check boot time settings for the device.
481 * The found settings are set for the device to be used
482 * later in the device probing.
483 * Returns 0 if no settings found, 1 if they are.
485 int netdev_boot_setup_check(struct net_device *dev)
487 struct netdev_boot_setup *s = dev_boot_setup;
488 int i;
490 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
491 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
492 !strcmp(dev->name, s[i].name)) {
493 dev->irq = s[i].map.irq;
494 dev->base_addr = s[i].map.base_addr;
495 dev->mem_start = s[i].map.mem_start;
496 dev->mem_end = s[i].map.mem_end;
497 return 1;
500 return 0;
505 * netdev_boot_base - get address from boot time settings
506 * @prefix: prefix for network device
507 * @unit: id for network device
509 * Check boot time settings for the base address of device.
510 * The found settings are set for the device to be used
511 * later in the device probing.
512 * Returns 0 if no settings found.
514 unsigned long netdev_boot_base(const char *prefix, int unit)
516 const struct netdev_boot_setup *s = dev_boot_setup;
517 char name[IFNAMSIZ];
518 int i;
520 sprintf(name, "%s%d", prefix, unit);
523 * If device already registered then return base of 1
524 * to indicate not to probe for this interface
526 if (__dev_get_by_name(&init_net, name))
527 return 1;
529 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
530 if (!strcmp(name, s[i].name))
531 return s[i].map.base_addr;
532 return 0;
536 * Saves at boot time configured settings for any netdevice.
538 int __init netdev_boot_setup(char *str)
540 int ints[5];
541 struct ifmap map;
543 str = get_options(str, ARRAY_SIZE(ints), ints);
544 if (!str || !*str)
545 return 0;
547 /* Save settings */
548 memset(&map, 0, sizeof(map));
549 if (ints[0] > 0)
550 map.irq = ints[1];
551 if (ints[0] > 1)
552 map.base_addr = ints[2];
553 if (ints[0] > 2)
554 map.mem_start = ints[3];
555 if (ints[0] > 3)
556 map.mem_end = ints[4];
558 /* Add new entry to the list */
559 return netdev_boot_setup_add(str, &map);
562 __setup("netdev=", netdev_boot_setup);
564 /*******************************************************************************
566 Device Interface Subroutines
568 *******************************************************************************/
571 * __dev_get_by_name - find a device by its name
572 * @net: the applicable net namespace
573 * @name: name to find
575 * Find an interface by name. Must be called under RTNL semaphore
576 * or @dev_base_lock. If the name is found a pointer to the device
577 * is returned. If the name is not found then %NULL is returned. The
578 * reference counters are not incremented so the caller must be
579 * careful with locks.
582 struct net_device *__dev_get_by_name(struct net *net, const char *name)
584 struct hlist_node *p;
586 hlist_for_each(p, dev_name_hash(net, name)) {
587 struct net_device *dev
588 = hlist_entry(p, struct net_device, name_hlist);
589 if (!strncmp(dev->name, name, IFNAMSIZ))
590 return dev;
592 return NULL;
596 * dev_get_by_name - find a device by its name
597 * @net: the applicable net namespace
598 * @name: name to find
600 * Find an interface by name. This can be called from any
601 * context and does its own locking. The returned handle has
602 * the usage count incremented and the caller must use dev_put() to
603 * release it when it is no longer needed. %NULL is returned if no
604 * matching device is found.
607 struct net_device *dev_get_by_name(struct net *net, const char *name)
609 struct net_device *dev;
611 read_lock(&dev_base_lock);
612 dev = __dev_get_by_name(net, name);
613 if (dev)
614 dev_hold(dev);
615 read_unlock(&dev_base_lock);
616 return dev;
620 * __dev_get_by_index - find a device by its ifindex
621 * @net: the applicable net namespace
622 * @ifindex: index of device
624 * Search for an interface by index. Returns %NULL if the device
625 * is not found or a pointer to the device. The device has not
626 * had its reference counter increased so the caller must be careful
627 * about locking. The caller must hold either the RTNL semaphore
628 * or @dev_base_lock.
631 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
633 struct hlist_node *p;
635 hlist_for_each(p, dev_index_hash(net, ifindex)) {
636 struct net_device *dev
637 = hlist_entry(p, struct net_device, index_hlist);
638 if (dev->ifindex == ifindex)
639 return dev;
641 return NULL;
646 * dev_get_by_index - find a device by its ifindex
647 * @net: the applicable net namespace
648 * @ifindex: index of device
650 * Search for an interface by index. Returns NULL if the device
651 * is not found or a pointer to the device. The device returned has
652 * had a reference added and the pointer is safe until the user calls
653 * dev_put to indicate they have finished with it.
656 struct net_device *dev_get_by_index(struct net *net, int ifindex)
658 struct net_device *dev;
660 read_lock(&dev_base_lock);
661 dev = __dev_get_by_index(net, ifindex);
662 if (dev)
663 dev_hold(dev);
664 read_unlock(&dev_base_lock);
665 return dev;
669 * dev_getbyhwaddr - find a device by its hardware address
670 * @net: the applicable net namespace
671 * @type: media type of device
672 * @ha: hardware address
674 * Search for an interface by MAC address. Returns NULL if the device
675 * is not found or a pointer to the device. The caller must hold the
676 * rtnl semaphore. The returned device has not had its ref count increased
677 * and the caller must therefore be careful about locking
679 * BUGS:
680 * If the API was consistent this would be __dev_get_by_hwaddr
683 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
685 struct net_device *dev;
687 ASSERT_RTNL();
689 for_each_netdev(net, dev)
690 if (dev->type == type &&
691 !memcmp(dev->dev_addr, ha, dev->addr_len))
692 return dev;
694 return NULL;
697 EXPORT_SYMBOL(dev_getbyhwaddr);
699 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
701 struct net_device *dev;
703 ASSERT_RTNL();
704 for_each_netdev(net, dev)
705 if (dev->type == type)
706 return dev;
708 return NULL;
711 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
713 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
715 struct net_device *dev;
717 rtnl_lock();
718 dev = __dev_getfirstbyhwtype(net, type);
719 if (dev)
720 dev_hold(dev);
721 rtnl_unlock();
722 return dev;
725 EXPORT_SYMBOL(dev_getfirstbyhwtype);
728 * dev_get_by_flags - find any device with given flags
729 * @net: the applicable net namespace
730 * @if_flags: IFF_* values
731 * @mask: bitmask of bits in if_flags to check
733 * Search for any interface with the given flags. Returns NULL if a device
734 * is not found or a pointer to the device. The device returned has
735 * had a reference added and the pointer is safe until the user calls
736 * dev_put to indicate they have finished with it.
739 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
741 struct net_device *dev, *ret;
743 ret = NULL;
744 read_lock(&dev_base_lock);
745 for_each_netdev(net, dev) {
746 if (((dev->flags ^ if_flags) & mask) == 0) {
747 dev_hold(dev);
748 ret = dev;
749 break;
752 read_unlock(&dev_base_lock);
753 return ret;
757 * dev_valid_name - check if name is okay for network device
758 * @name: name string
760 * Network device names need to be valid file names to
761 * to allow sysfs to work. We also disallow any kind of
762 * whitespace.
764 int dev_valid_name(const char *name)
766 if (*name == '\0')
767 return 0;
768 if (strlen(name) >= IFNAMSIZ)
769 return 0;
770 if (!strcmp(name, ".") || !strcmp(name, ".."))
771 return 0;
773 while (*name) {
774 if (*name == '/' || isspace(*name))
775 return 0;
776 name++;
778 return 1;
782 * __dev_alloc_name - allocate a name for a device
783 * @net: network namespace to allocate the device name in
784 * @name: name format string
785 * @buf: scratch buffer and result name string
787 * Passed a format string - eg "lt%d" it will try and find a suitable
788 * id. It scans list of devices to build up a free map, then chooses
789 * the first empty slot. The caller must hold the dev_base or rtnl lock
790 * while allocating the name and adding the device in order to avoid
791 * duplicates.
792 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
793 * Returns the number of the unit assigned or a negative errno code.
796 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
798 int i = 0;
799 const char *p;
800 const int max_netdevices = 8*PAGE_SIZE;
801 unsigned long *inuse;
802 struct net_device *d;
804 p = strnchr(name, IFNAMSIZ-1, '%');
805 if (p) {
807 * Verify the string as this thing may have come from
808 * the user. There must be either one "%d" and no other "%"
809 * characters.
811 if (p[1] != 'd' || strchr(p + 2, '%'))
812 return -EINVAL;
814 /* Use one page as a bit array of possible slots */
815 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
816 if (!inuse)
817 return -ENOMEM;
819 for_each_netdev(net, d) {
820 if (!sscanf(d->name, name, &i))
821 continue;
822 if (i < 0 || i >= max_netdevices)
823 continue;
825 /* avoid cases where sscanf is not exact inverse of printf */
826 snprintf(buf, IFNAMSIZ, name, i);
827 if (!strncmp(buf, d->name, IFNAMSIZ))
828 set_bit(i, inuse);
831 i = find_first_zero_bit(inuse, max_netdevices);
832 free_page((unsigned long) inuse);
835 snprintf(buf, IFNAMSIZ, name, i);
836 if (!__dev_get_by_name(net, buf))
837 return i;
839 /* It is possible to run out of possible slots
840 * when the name is long and there isn't enough space left
841 * for the digits, or if all bits are used.
843 return -ENFILE;
847 * dev_alloc_name - allocate a name for a device
848 * @dev: device
849 * @name: name format string
851 * Passed a format string - eg "lt%d" it will try and find a suitable
852 * id. It scans list of devices to build up a free map, then chooses
853 * the first empty slot. The caller must hold the dev_base or rtnl lock
854 * while allocating the name and adding the device in order to avoid
855 * duplicates.
856 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
857 * Returns the number of the unit assigned or a negative errno code.
860 int dev_alloc_name(struct net_device *dev, const char *name)
862 char buf[IFNAMSIZ];
863 struct net *net;
864 int ret;
866 BUG_ON(!dev_net(dev));
867 net = dev_net(dev);
868 ret = __dev_alloc_name(net, name, buf);
869 if (ret >= 0)
870 strlcpy(dev->name, buf, IFNAMSIZ);
871 return ret;
876 * dev_change_name - change name of a device
877 * @dev: device
878 * @newname: name (or format string) must be at least IFNAMSIZ
880 * Change name of a device, can pass format strings "eth%d".
881 * for wildcarding.
883 int dev_change_name(struct net_device *dev, const char *newname)
885 char oldname[IFNAMSIZ];
886 int err = 0;
887 int ret;
888 struct net *net;
890 ASSERT_RTNL();
891 BUG_ON(!dev_net(dev));
893 net = dev_net(dev);
894 if (dev->flags & IFF_UP)
895 return -EBUSY;
897 if (!dev_valid_name(newname))
898 return -EINVAL;
900 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
901 return 0;
903 memcpy(oldname, dev->name, IFNAMSIZ);
905 if (strchr(newname, '%')) {
906 err = dev_alloc_name(dev, newname);
907 if (err < 0)
908 return err;
910 else if (__dev_get_by_name(net, newname))
911 return -EEXIST;
912 else
913 strlcpy(dev->name, newname, IFNAMSIZ);
915 rollback:
916 /* For now only devices in the initial network namespace
917 * are in sysfs.
919 if (net == &init_net) {
920 ret = device_rename(&dev->dev, dev->name);
921 if (ret) {
922 memcpy(dev->name, oldname, IFNAMSIZ);
923 return ret;
927 write_lock_bh(&dev_base_lock);
928 hlist_del(&dev->name_hlist);
929 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
930 write_unlock_bh(&dev_base_lock);
932 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
933 ret = notifier_to_errno(ret);
935 if (ret) {
936 if (err) {
937 printk(KERN_ERR
938 "%s: name change rollback failed: %d.\n",
939 dev->name, ret);
940 } else {
941 err = ret;
942 memcpy(dev->name, oldname, IFNAMSIZ);
943 goto rollback;
947 return err;
951 * dev_set_alias - change ifalias of a device
952 * @dev: device
953 * @alias: name up to IFALIASZ
954 * @len: limit of bytes to copy from info
956 * Set ifalias for a device,
958 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
960 ASSERT_RTNL();
962 if (len >= IFALIASZ)
963 return -EINVAL;
965 if (!len) {
966 if (dev->ifalias) {
967 kfree(dev->ifalias);
968 dev->ifalias = NULL;
970 return 0;
973 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
974 if (!dev->ifalias)
975 return -ENOMEM;
977 strlcpy(dev->ifalias, alias, len+1);
978 return len;
983 * netdev_features_change - device changes features
984 * @dev: device to cause notification
986 * Called to indicate a device has changed features.
988 void netdev_features_change(struct net_device *dev)
990 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
992 EXPORT_SYMBOL(netdev_features_change);
995 * netdev_state_change - device changes state
996 * @dev: device to cause notification
998 * Called to indicate a device has changed state. This function calls
999 * the notifier chains for netdev_chain and sends a NEWLINK message
1000 * to the routing socket.
1002 void netdev_state_change(struct net_device *dev)
1004 if (dev->flags & IFF_UP) {
1005 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1006 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1010 void netdev_bonding_change(struct net_device *dev)
1012 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1014 EXPORT_SYMBOL(netdev_bonding_change);
1017 * dev_load - load a network module
1018 * @net: the applicable net namespace
1019 * @name: name of interface
1021 * If a network interface is not present and the process has suitable
1022 * privileges this function loads the module. If module loading is not
1023 * available in this kernel then it becomes a nop.
1026 void dev_load(struct net *net, const char *name)
1028 struct net_device *dev;
1030 read_lock(&dev_base_lock);
1031 dev = __dev_get_by_name(net, name);
1032 read_unlock(&dev_base_lock);
1034 if (!dev && capable(CAP_SYS_MODULE))
1035 request_module("%s", name);
1039 * dev_open - prepare an interface for use.
1040 * @dev: device to open
1042 * Takes a device from down to up state. The device's private open
1043 * function is invoked and then the multicast lists are loaded. Finally
1044 * the device is moved into the up state and a %NETDEV_UP message is
1045 * sent to the netdev notifier chain.
1047 * Calling this function on an active interface is a nop. On a failure
1048 * a negative errno code is returned.
1050 int dev_open(struct net_device *dev)
1052 const struct net_device_ops *ops = dev->netdev_ops;
1053 int ret;
1055 ASSERT_RTNL();
1058 * Is it already up?
1061 if (dev->flags & IFF_UP)
1062 return 0;
1065 * Is it even present?
1067 if (!netif_device_present(dev))
1068 return -ENODEV;
1070 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1071 ret = notifier_to_errno(ret);
1072 if (ret)
1073 return ret;
1076 * Call device private open method
1078 set_bit(__LINK_STATE_START, &dev->state);
1080 if (ops->ndo_validate_addr)
1081 ret = ops->ndo_validate_addr(dev);
1083 if (!ret && ops->ndo_open)
1084 ret = ops->ndo_open(dev);
1087 * If it went open OK then:
1090 if (ret)
1091 clear_bit(__LINK_STATE_START, &dev->state);
1092 else {
1094 * Set the flags.
1096 dev->flags |= IFF_UP;
1099 * Enable NET_DMA
1101 net_dmaengine_get();
1104 * Initialize multicasting status
1106 dev_set_rx_mode(dev);
1109 * Wakeup transmit queue engine
1111 dev_activate(dev);
1114 * ... and announce new interface.
1116 call_netdevice_notifiers(NETDEV_UP, dev);
1119 return ret;
1123 * dev_close - shutdown an interface.
1124 * @dev: device to shutdown
1126 * This function moves an active device into down state. A
1127 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1128 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1129 * chain.
1131 int dev_close(struct net_device *dev)
1133 const struct net_device_ops *ops = dev->netdev_ops;
1134 ASSERT_RTNL();
1136 might_sleep();
1138 if (!(dev->flags & IFF_UP))
1139 return 0;
1142 * Tell people we are going down, so that they can
1143 * prepare to death, when device is still operating.
1145 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1147 clear_bit(__LINK_STATE_START, &dev->state);
1149 /* Synchronize to scheduled poll. We cannot touch poll list,
1150 * it can be even on different cpu. So just clear netif_running().
1152 * dev->stop() will invoke napi_disable() on all of it's
1153 * napi_struct instances on this device.
1155 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1157 dev_deactivate(dev);
1160 * Call the device specific close. This cannot fail.
1161 * Only if device is UP
1163 * We allow it to be called even after a DETACH hot-plug
1164 * event.
1166 if (ops->ndo_stop)
1167 ops->ndo_stop(dev);
1170 * Device is now down.
1173 dev->flags &= ~IFF_UP;
1176 * Tell people we are down
1178 call_netdevice_notifiers(NETDEV_DOWN, dev);
1181 * Shutdown NET_DMA
1183 net_dmaengine_put();
1185 return 0;
1190 * dev_disable_lro - disable Large Receive Offload on a device
1191 * @dev: device
1193 * Disable Large Receive Offload (LRO) on a net device. Must be
1194 * called under RTNL. This is needed if received packets may be
1195 * forwarded to another interface.
1197 void dev_disable_lro(struct net_device *dev)
1199 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1200 dev->ethtool_ops->set_flags) {
1201 u32 flags = dev->ethtool_ops->get_flags(dev);
1202 if (flags & ETH_FLAG_LRO) {
1203 flags &= ~ETH_FLAG_LRO;
1204 dev->ethtool_ops->set_flags(dev, flags);
1207 WARN_ON(dev->features & NETIF_F_LRO);
1209 EXPORT_SYMBOL(dev_disable_lro);
1212 static int dev_boot_phase = 1;
1215 * Device change register/unregister. These are not inline or static
1216 * as we export them to the world.
1220 * register_netdevice_notifier - register a network notifier block
1221 * @nb: notifier
1223 * Register a notifier to be called when network device events occur.
1224 * The notifier passed is linked into the kernel structures and must
1225 * not be reused until it has been unregistered. A negative errno code
1226 * is returned on a failure.
1228 * When registered all registration and up events are replayed
1229 * to the new notifier to allow device to have a race free
1230 * view of the network device list.
1233 int register_netdevice_notifier(struct notifier_block *nb)
1235 struct net_device *dev;
1236 struct net_device *last;
1237 struct net *net;
1238 int err;
1240 rtnl_lock();
1241 err = raw_notifier_chain_register(&netdev_chain, nb);
1242 if (err)
1243 goto unlock;
1244 if (dev_boot_phase)
1245 goto unlock;
1246 for_each_net(net) {
1247 for_each_netdev(net, dev) {
1248 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1249 err = notifier_to_errno(err);
1250 if (err)
1251 goto rollback;
1253 if (!(dev->flags & IFF_UP))
1254 continue;
1256 nb->notifier_call(nb, NETDEV_UP, dev);
1260 unlock:
1261 rtnl_unlock();
1262 return err;
1264 rollback:
1265 last = dev;
1266 for_each_net(net) {
1267 for_each_netdev(net, dev) {
1268 if (dev == last)
1269 break;
1271 if (dev->flags & IFF_UP) {
1272 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1273 nb->notifier_call(nb, NETDEV_DOWN, dev);
1275 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1279 raw_notifier_chain_unregister(&netdev_chain, nb);
1280 goto unlock;
1284 * unregister_netdevice_notifier - unregister a network notifier block
1285 * @nb: notifier
1287 * Unregister a notifier previously registered by
1288 * register_netdevice_notifier(). The notifier is unlinked into the
1289 * kernel structures and may then be reused. A negative errno code
1290 * is returned on a failure.
1293 int unregister_netdevice_notifier(struct notifier_block *nb)
1295 int err;
1297 rtnl_lock();
1298 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1299 rtnl_unlock();
1300 return err;
1304 * call_netdevice_notifiers - call all network notifier blocks
1305 * @val: value passed unmodified to notifier function
1306 * @dev: net_device pointer passed unmodified to notifier function
1308 * Call all network notifier blocks. Parameters and return value
1309 * are as for raw_notifier_call_chain().
1312 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1314 return raw_notifier_call_chain(&netdev_chain, val, dev);
1317 /* When > 0 there are consumers of rx skb time stamps */
1318 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1320 void net_enable_timestamp(void)
1322 atomic_inc(&netstamp_needed);
1325 void net_disable_timestamp(void)
1327 atomic_dec(&netstamp_needed);
1330 static inline void net_timestamp(struct sk_buff *skb)
1332 if (atomic_read(&netstamp_needed))
1333 __net_timestamp(skb);
1334 else
1335 skb->tstamp.tv64 = 0;
1339 * Support routine. Sends outgoing frames to any network
1340 * taps currently in use.
1343 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1345 struct packet_type *ptype;
1347 #ifdef CONFIG_NET_CLS_ACT
1348 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1349 net_timestamp(skb);
1350 #else
1351 net_timestamp(skb);
1352 #endif
1354 rcu_read_lock();
1355 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1356 /* Never send packets back to the socket
1357 * they originated from - MvS (miquels@drinkel.ow.org)
1359 if ((ptype->dev == dev || !ptype->dev) &&
1360 (ptype->af_packet_priv == NULL ||
1361 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1362 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1363 if (!skb2)
1364 break;
1366 /* skb->nh should be correctly
1367 set by sender, so that the second statement is
1368 just protection against buggy protocols.
1370 skb_reset_mac_header(skb2);
1372 if (skb_network_header(skb2) < skb2->data ||
1373 skb2->network_header > skb2->tail) {
1374 if (net_ratelimit())
1375 printk(KERN_CRIT "protocol %04x is "
1376 "buggy, dev %s\n",
1377 skb2->protocol, dev->name);
1378 skb_reset_network_header(skb2);
1381 skb2->transport_header = skb2->network_header;
1382 skb2->pkt_type = PACKET_OUTGOING;
1383 ptype->func(skb2, skb->dev, ptype, skb->dev);
1386 rcu_read_unlock();
1390 static inline void __netif_reschedule(struct Qdisc *q)
1392 struct softnet_data *sd;
1393 unsigned long flags;
1395 local_irq_save(flags);
1396 sd = &__get_cpu_var(softnet_data);
1397 q->next_sched = sd->output_queue;
1398 sd->output_queue = q;
1399 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1400 local_irq_restore(flags);
1403 void __netif_schedule(struct Qdisc *q)
1405 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1406 __netif_reschedule(q);
1408 EXPORT_SYMBOL(__netif_schedule);
1410 void dev_kfree_skb_irq(struct sk_buff *skb)
1412 if (atomic_dec_and_test(&skb->users)) {
1413 struct softnet_data *sd;
1414 unsigned long flags;
1416 local_irq_save(flags);
1417 sd = &__get_cpu_var(softnet_data);
1418 skb->next = sd->completion_queue;
1419 sd->completion_queue = skb;
1420 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1421 local_irq_restore(flags);
1424 EXPORT_SYMBOL(dev_kfree_skb_irq);
1426 void dev_kfree_skb_any(struct sk_buff *skb)
1428 if (in_irq() || irqs_disabled())
1429 dev_kfree_skb_irq(skb);
1430 else
1431 dev_kfree_skb(skb);
1433 EXPORT_SYMBOL(dev_kfree_skb_any);
1437 * netif_device_detach - mark device as removed
1438 * @dev: network device
1440 * Mark device as removed from system and therefore no longer available.
1442 void netif_device_detach(struct net_device *dev)
1444 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1445 netif_running(dev)) {
1446 netif_tx_stop_all_queues(dev);
1449 EXPORT_SYMBOL(netif_device_detach);
1452 * netif_device_attach - mark device as attached
1453 * @dev: network device
1455 * Mark device as attached from system and restart if needed.
1457 void netif_device_attach(struct net_device *dev)
1459 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1460 netif_running(dev)) {
1461 netif_tx_wake_all_queues(dev);
1462 __netdev_watchdog_up(dev);
1465 EXPORT_SYMBOL(netif_device_attach);
1467 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1469 return ((features & NETIF_F_GEN_CSUM) ||
1470 ((features & NETIF_F_IP_CSUM) &&
1471 protocol == htons(ETH_P_IP)) ||
1472 ((features & NETIF_F_IPV6_CSUM) &&
1473 protocol == htons(ETH_P_IPV6)) ||
1474 ((features & NETIF_F_FCOE_CRC) &&
1475 protocol == htons(ETH_P_FCOE)));
1478 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1480 if (can_checksum_protocol(dev->features, skb->protocol))
1481 return true;
1483 if (skb->protocol == htons(ETH_P_8021Q)) {
1484 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1485 if (can_checksum_protocol(dev->features & dev->vlan_features,
1486 veh->h_vlan_encapsulated_proto))
1487 return true;
1490 return false;
1494 * Invalidate hardware checksum when packet is to be mangled, and
1495 * complete checksum manually on outgoing path.
1497 int skb_checksum_help(struct sk_buff *skb)
1499 __wsum csum;
1500 int ret = 0, offset;
1502 if (skb->ip_summed == CHECKSUM_COMPLETE)
1503 goto out_set_summed;
1505 if (unlikely(skb_shinfo(skb)->gso_size)) {
1506 /* Let GSO fix up the checksum. */
1507 goto out_set_summed;
1510 offset = skb->csum_start - skb_headroom(skb);
1511 BUG_ON(offset >= skb_headlen(skb));
1512 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1514 offset += skb->csum_offset;
1515 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1517 if (skb_cloned(skb) &&
1518 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1519 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1520 if (ret)
1521 goto out;
1524 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1525 out_set_summed:
1526 skb->ip_summed = CHECKSUM_NONE;
1527 out:
1528 return ret;
1532 * skb_gso_segment - Perform segmentation on skb.
1533 * @skb: buffer to segment
1534 * @features: features for the output path (see dev->features)
1536 * This function segments the given skb and returns a list of segments.
1538 * It may return NULL if the skb requires no segmentation. This is
1539 * only possible when GSO is used for verifying header integrity.
1541 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1543 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1544 struct packet_type *ptype;
1545 __be16 type = skb->protocol;
1546 int err;
1548 skb_reset_mac_header(skb);
1549 skb->mac_len = skb->network_header - skb->mac_header;
1550 __skb_pull(skb, skb->mac_len);
1552 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1553 struct net_device *dev = skb->dev;
1554 struct ethtool_drvinfo info = {};
1556 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1557 dev->ethtool_ops->get_drvinfo(dev, &info);
1559 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1560 "ip_summed=%d",
1561 info.driver, dev ? dev->features : 0L,
1562 skb->sk ? skb->sk->sk_route_caps : 0L,
1563 skb->len, skb->data_len, skb->ip_summed);
1565 if (skb_header_cloned(skb) &&
1566 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1567 return ERR_PTR(err);
1570 rcu_read_lock();
1571 list_for_each_entry_rcu(ptype,
1572 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1573 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1574 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1575 err = ptype->gso_send_check(skb);
1576 segs = ERR_PTR(err);
1577 if (err || skb_gso_ok(skb, features))
1578 break;
1579 __skb_push(skb, (skb->data -
1580 skb_network_header(skb)));
1582 segs = ptype->gso_segment(skb, features);
1583 break;
1586 rcu_read_unlock();
1588 __skb_push(skb, skb->data - skb_mac_header(skb));
1590 return segs;
1593 EXPORT_SYMBOL(skb_gso_segment);
1595 /* Take action when hardware reception checksum errors are detected. */
1596 #ifdef CONFIG_BUG
1597 void netdev_rx_csum_fault(struct net_device *dev)
1599 if (net_ratelimit()) {
1600 printk(KERN_ERR "%s: hw csum failure.\n",
1601 dev ? dev->name : "<unknown>");
1602 dump_stack();
1605 EXPORT_SYMBOL(netdev_rx_csum_fault);
1606 #endif
1608 /* Actually, we should eliminate this check as soon as we know, that:
1609 * 1. IOMMU is present and allows to map all the memory.
1610 * 2. No high memory really exists on this machine.
1613 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1615 #ifdef CONFIG_HIGHMEM
1616 int i;
1618 if (dev->features & NETIF_F_HIGHDMA)
1619 return 0;
1621 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1622 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1623 return 1;
1625 #endif
1626 return 0;
1629 struct dev_gso_cb {
1630 void (*destructor)(struct sk_buff *skb);
1633 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1635 static void dev_gso_skb_destructor(struct sk_buff *skb)
1637 struct dev_gso_cb *cb;
1639 do {
1640 struct sk_buff *nskb = skb->next;
1642 skb->next = nskb->next;
1643 nskb->next = NULL;
1644 kfree_skb(nskb);
1645 } while (skb->next);
1647 cb = DEV_GSO_CB(skb);
1648 if (cb->destructor)
1649 cb->destructor(skb);
1653 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1654 * @skb: buffer to segment
1656 * This function segments the given skb and stores the list of segments
1657 * in skb->next.
1659 static int dev_gso_segment(struct sk_buff *skb)
1661 struct net_device *dev = skb->dev;
1662 struct sk_buff *segs;
1663 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1664 NETIF_F_SG : 0);
1666 segs = skb_gso_segment(skb, features);
1668 /* Verifying header integrity only. */
1669 if (!segs)
1670 return 0;
1672 if (IS_ERR(segs))
1673 return PTR_ERR(segs);
1675 skb->next = segs;
1676 DEV_GSO_CB(skb)->destructor = skb->destructor;
1677 skb->destructor = dev_gso_skb_destructor;
1679 return 0;
1682 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1683 struct netdev_queue *txq)
1685 const struct net_device_ops *ops = dev->netdev_ops;
1686 int rc;
1688 if (likely(!skb->next)) {
1689 if (!list_empty(&ptype_all))
1690 dev_queue_xmit_nit(skb, dev);
1692 if (netif_needs_gso(dev, skb)) {
1693 if (unlikely(dev_gso_segment(skb)))
1694 goto out_kfree_skb;
1695 if (skb->next)
1696 goto gso;
1700 * If device doesnt need skb->dst, release it right now while
1701 * its hot in this cpu cache
1703 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1704 skb_dst_drop(skb);
1706 rc = ops->ndo_start_xmit(skb, dev);
1707 if (rc == 0)
1708 txq_trans_update(txq);
1710 * TODO: if skb_orphan() was called by
1711 * dev->hard_start_xmit() (for example, the unmodified
1712 * igb driver does that; bnx2 doesn't), then
1713 * skb_tx_software_timestamp() will be unable to send
1714 * back the time stamp.
1716 * How can this be prevented? Always create another
1717 * reference to the socket before calling
1718 * dev->hard_start_xmit()? Prevent that skb_orphan()
1719 * does anything in dev->hard_start_xmit() by clearing
1720 * the skb destructor before the call and restoring it
1721 * afterwards, then doing the skb_orphan() ourselves?
1723 return rc;
1726 gso:
1727 do {
1728 struct sk_buff *nskb = skb->next;
1730 skb->next = nskb->next;
1731 nskb->next = NULL;
1732 rc = ops->ndo_start_xmit(nskb, dev);
1733 if (unlikely(rc)) {
1734 nskb->next = skb->next;
1735 skb->next = nskb;
1736 return rc;
1738 txq_trans_update(txq);
1739 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1740 return NETDEV_TX_BUSY;
1741 } while (skb->next);
1743 skb->destructor = DEV_GSO_CB(skb)->destructor;
1745 out_kfree_skb:
1746 kfree_skb(skb);
1747 return 0;
1750 static u32 skb_tx_hashrnd;
1752 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1754 u32 hash;
1756 if (skb_rx_queue_recorded(skb)) {
1757 hash = skb_get_rx_queue(skb);
1758 while (unlikely (hash >= dev->real_num_tx_queues))
1759 hash -= dev->real_num_tx_queues;
1760 return hash;
1763 if (skb->sk && skb->sk->sk_hash)
1764 hash = skb->sk->sk_hash;
1765 else
1766 hash = skb->protocol;
1768 hash = jhash_1word(hash, skb_tx_hashrnd);
1770 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1772 EXPORT_SYMBOL(skb_tx_hash);
1774 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1775 struct sk_buff *skb)
1777 const struct net_device_ops *ops = dev->netdev_ops;
1778 u16 queue_index = 0;
1780 if (ops->ndo_select_queue)
1781 queue_index = ops->ndo_select_queue(dev, skb);
1782 else if (dev->real_num_tx_queues > 1)
1783 queue_index = skb_tx_hash(dev, skb);
1785 skb_set_queue_mapping(skb, queue_index);
1786 return netdev_get_tx_queue(dev, queue_index);
1790 * dev_queue_xmit - transmit a buffer
1791 * @skb: buffer to transmit
1793 * Queue a buffer for transmission to a network device. The caller must
1794 * have set the device and priority and built the buffer before calling
1795 * this function. The function can be called from an interrupt.
1797 * A negative errno code is returned on a failure. A success does not
1798 * guarantee the frame will be transmitted as it may be dropped due
1799 * to congestion or traffic shaping.
1801 * -----------------------------------------------------------------------------------
1802 * I notice this method can also return errors from the queue disciplines,
1803 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1804 * be positive.
1806 * Regardless of the return value, the skb is consumed, so it is currently
1807 * difficult to retry a send to this method. (You can bump the ref count
1808 * before sending to hold a reference for retry if you are careful.)
1810 * When calling this method, interrupts MUST be enabled. This is because
1811 * the BH enable code must have IRQs enabled so that it will not deadlock.
1812 * --BLG
1814 int dev_queue_xmit(struct sk_buff *skb)
1816 struct net_device *dev = skb->dev;
1817 struct netdev_queue *txq;
1818 struct Qdisc *q;
1819 int rc = -ENOMEM;
1821 /* GSO will handle the following emulations directly. */
1822 if (netif_needs_gso(dev, skb))
1823 goto gso;
1825 if (skb_has_frags(skb) &&
1826 !(dev->features & NETIF_F_FRAGLIST) &&
1827 __skb_linearize(skb))
1828 goto out_kfree_skb;
1830 /* Fragmented skb is linearized if device does not support SG,
1831 * or if at least one of fragments is in highmem and device
1832 * does not support DMA from it.
1834 if (skb_shinfo(skb)->nr_frags &&
1835 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1836 __skb_linearize(skb))
1837 goto out_kfree_skb;
1839 /* If packet is not checksummed and device does not support
1840 * checksumming for this protocol, complete checksumming here.
1842 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1843 skb_set_transport_header(skb, skb->csum_start -
1844 skb_headroom(skb));
1845 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1846 goto out_kfree_skb;
1849 gso:
1850 /* Disable soft irqs for various locks below. Also
1851 * stops preemption for RCU.
1853 rcu_read_lock_bh();
1855 txq = dev_pick_tx(dev, skb);
1856 q = rcu_dereference(txq->qdisc);
1858 #ifdef CONFIG_NET_CLS_ACT
1859 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1860 #endif
1861 if (q->enqueue) {
1862 spinlock_t *root_lock = qdisc_lock(q);
1864 spin_lock(root_lock);
1866 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1867 kfree_skb(skb);
1868 rc = NET_XMIT_DROP;
1869 } else {
1870 rc = qdisc_enqueue_root(skb, q);
1871 qdisc_run(q);
1873 spin_unlock(root_lock);
1875 goto out;
1878 /* The device has no queue. Common case for software devices:
1879 loopback, all the sorts of tunnels...
1881 Really, it is unlikely that netif_tx_lock protection is necessary
1882 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1883 counters.)
1884 However, it is possible, that they rely on protection
1885 made by us here.
1887 Check this and shot the lock. It is not prone from deadlocks.
1888 Either shot noqueue qdisc, it is even simpler 8)
1890 if (dev->flags & IFF_UP) {
1891 int cpu = smp_processor_id(); /* ok because BHs are off */
1893 if (txq->xmit_lock_owner != cpu) {
1895 HARD_TX_LOCK(dev, txq, cpu);
1897 if (!netif_tx_queue_stopped(txq)) {
1898 rc = 0;
1899 if (!dev_hard_start_xmit(skb, dev, txq)) {
1900 HARD_TX_UNLOCK(dev, txq);
1901 goto out;
1904 HARD_TX_UNLOCK(dev, txq);
1905 if (net_ratelimit())
1906 printk(KERN_CRIT "Virtual device %s asks to "
1907 "queue packet!\n", dev->name);
1908 } else {
1909 /* Recursion is detected! It is possible,
1910 * unfortunately */
1911 if (net_ratelimit())
1912 printk(KERN_CRIT "Dead loop on virtual device "
1913 "%s, fix it urgently!\n", dev->name);
1917 rc = -ENETDOWN;
1918 rcu_read_unlock_bh();
1920 out_kfree_skb:
1921 kfree_skb(skb);
1922 return rc;
1923 out:
1924 rcu_read_unlock_bh();
1925 return rc;
1929 /*=======================================================================
1930 Receiver routines
1931 =======================================================================*/
1933 int netdev_max_backlog __read_mostly = 1000;
1934 int netdev_budget __read_mostly = 300;
1935 int weight_p __read_mostly = 64; /* old backlog weight */
1937 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1941 * netif_rx - post buffer to the network code
1942 * @skb: buffer to post
1944 * This function receives a packet from a device driver and queues it for
1945 * the upper (protocol) levels to process. It always succeeds. The buffer
1946 * may be dropped during processing for congestion control or by the
1947 * protocol layers.
1949 * return values:
1950 * NET_RX_SUCCESS (no congestion)
1951 * NET_RX_DROP (packet was dropped)
1955 int netif_rx(struct sk_buff *skb)
1957 struct softnet_data *queue;
1958 unsigned long flags;
1960 /* if netpoll wants it, pretend we never saw it */
1961 if (netpoll_rx(skb))
1962 return NET_RX_DROP;
1964 if (!skb->tstamp.tv64)
1965 net_timestamp(skb);
1968 * The code is rearranged so that the path is the most
1969 * short when CPU is congested, but is still operating.
1971 local_irq_save(flags);
1972 queue = &__get_cpu_var(softnet_data);
1974 __get_cpu_var(netdev_rx_stat).total++;
1975 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1976 if (queue->input_pkt_queue.qlen) {
1977 enqueue:
1978 __skb_queue_tail(&queue->input_pkt_queue, skb);
1979 local_irq_restore(flags);
1980 return NET_RX_SUCCESS;
1983 napi_schedule(&queue->backlog);
1984 goto enqueue;
1987 __get_cpu_var(netdev_rx_stat).dropped++;
1988 local_irq_restore(flags);
1990 kfree_skb(skb);
1991 return NET_RX_DROP;
1994 int netif_rx_ni(struct sk_buff *skb)
1996 int err;
1998 preempt_disable();
1999 err = netif_rx(skb);
2000 if (local_softirq_pending())
2001 do_softirq();
2002 preempt_enable();
2004 return err;
2007 EXPORT_SYMBOL(netif_rx_ni);
2009 static void net_tx_action(struct softirq_action *h)
2011 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2013 if (sd->completion_queue) {
2014 struct sk_buff *clist;
2016 local_irq_disable();
2017 clist = sd->completion_queue;
2018 sd->completion_queue = NULL;
2019 local_irq_enable();
2021 while (clist) {
2022 struct sk_buff *skb = clist;
2023 clist = clist->next;
2025 WARN_ON(atomic_read(&skb->users));
2026 __kfree_skb(skb);
2030 if (sd->output_queue) {
2031 struct Qdisc *head;
2033 local_irq_disable();
2034 head = sd->output_queue;
2035 sd->output_queue = NULL;
2036 local_irq_enable();
2038 while (head) {
2039 struct Qdisc *q = head;
2040 spinlock_t *root_lock;
2042 head = head->next_sched;
2044 root_lock = qdisc_lock(q);
2045 if (spin_trylock(root_lock)) {
2046 smp_mb__before_clear_bit();
2047 clear_bit(__QDISC_STATE_SCHED,
2048 &q->state);
2049 qdisc_run(q);
2050 spin_unlock(root_lock);
2051 } else {
2052 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2053 &q->state)) {
2054 __netif_reschedule(q);
2055 } else {
2056 smp_mb__before_clear_bit();
2057 clear_bit(__QDISC_STATE_SCHED,
2058 &q->state);
2065 static inline int deliver_skb(struct sk_buff *skb,
2066 struct packet_type *pt_prev,
2067 struct net_device *orig_dev)
2069 atomic_inc(&skb->users);
2070 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2073 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2075 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2076 /* This hook is defined here for ATM LANE */
2077 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2078 unsigned char *addr) __read_mostly;
2079 EXPORT_SYMBOL(br_fdb_test_addr_hook);
2080 #endif
2083 * If bridge module is loaded call bridging hook.
2084 * returns NULL if packet was consumed.
2086 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2087 struct sk_buff *skb) __read_mostly;
2088 EXPORT_SYMBOL(br_handle_frame_hook);
2090 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2091 struct packet_type **pt_prev, int *ret,
2092 struct net_device *orig_dev)
2094 struct net_bridge_port *port;
2096 if (skb->pkt_type == PACKET_LOOPBACK ||
2097 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2098 return skb;
2100 if (*pt_prev) {
2101 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2102 *pt_prev = NULL;
2105 return br_handle_frame_hook(port, skb);
2107 #else
2108 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2109 #endif
2111 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2112 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2113 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2115 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2116 struct packet_type **pt_prev,
2117 int *ret,
2118 struct net_device *orig_dev)
2120 if (skb->dev->macvlan_port == NULL)
2121 return skb;
2123 if (*pt_prev) {
2124 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2125 *pt_prev = NULL;
2127 return macvlan_handle_frame_hook(skb);
2129 #else
2130 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2131 #endif
2133 #ifdef CONFIG_NET_CLS_ACT
2134 /* TODO: Maybe we should just force sch_ingress to be compiled in
2135 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2136 * a compare and 2 stores extra right now if we dont have it on
2137 * but have CONFIG_NET_CLS_ACT
2138 * NOTE: This doesnt stop any functionality; if you dont have
2139 * the ingress scheduler, you just cant add policies on ingress.
2142 static int ing_filter(struct sk_buff *skb)
2144 struct net_device *dev = skb->dev;
2145 u32 ttl = G_TC_RTTL(skb->tc_verd);
2146 struct netdev_queue *rxq;
2147 int result = TC_ACT_OK;
2148 struct Qdisc *q;
2150 if (MAX_RED_LOOP < ttl++) {
2151 printk(KERN_WARNING
2152 "Redir loop detected Dropping packet (%d->%d)\n",
2153 skb->iif, dev->ifindex);
2154 return TC_ACT_SHOT;
2157 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2158 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2160 rxq = &dev->rx_queue;
2162 q = rxq->qdisc;
2163 if (q != &noop_qdisc) {
2164 spin_lock(qdisc_lock(q));
2165 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2166 result = qdisc_enqueue_root(skb, q);
2167 spin_unlock(qdisc_lock(q));
2170 return result;
2173 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2174 struct packet_type **pt_prev,
2175 int *ret, struct net_device *orig_dev)
2177 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2178 goto out;
2180 if (*pt_prev) {
2181 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2182 *pt_prev = NULL;
2183 } else {
2184 /* Huh? Why does turning on AF_PACKET affect this? */
2185 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2188 switch (ing_filter(skb)) {
2189 case TC_ACT_SHOT:
2190 case TC_ACT_STOLEN:
2191 kfree_skb(skb);
2192 return NULL;
2195 out:
2196 skb->tc_verd = 0;
2197 return skb;
2199 #endif
2202 * netif_nit_deliver - deliver received packets to network taps
2203 * @skb: buffer
2205 * This function is used to deliver incoming packets to network
2206 * taps. It should be used when the normal netif_receive_skb path
2207 * is bypassed, for example because of VLAN acceleration.
2209 void netif_nit_deliver(struct sk_buff *skb)
2211 struct packet_type *ptype;
2213 if (list_empty(&ptype_all))
2214 return;
2216 skb_reset_network_header(skb);
2217 skb_reset_transport_header(skb);
2218 skb->mac_len = skb->network_header - skb->mac_header;
2220 rcu_read_lock();
2221 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2222 if (!ptype->dev || ptype->dev == skb->dev)
2223 deliver_skb(skb, ptype, skb->dev);
2225 rcu_read_unlock();
2229 * netif_receive_skb - process receive buffer from network
2230 * @skb: buffer to process
2232 * netif_receive_skb() is the main receive data processing function.
2233 * It always succeeds. The buffer may be dropped during processing
2234 * for congestion control or by the protocol layers.
2236 * This function may only be called from softirq context and interrupts
2237 * should be enabled.
2239 * Return values (usually ignored):
2240 * NET_RX_SUCCESS: no congestion
2241 * NET_RX_DROP: packet was dropped
2243 int netif_receive_skb(struct sk_buff *skb)
2245 struct packet_type *ptype, *pt_prev;
2246 struct net_device *orig_dev;
2247 struct net_device *null_or_orig;
2248 int ret = NET_RX_DROP;
2249 __be16 type;
2251 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2252 return NET_RX_SUCCESS;
2254 /* if we've gotten here through NAPI, check netpoll */
2255 if (netpoll_receive_skb(skb))
2256 return NET_RX_DROP;
2258 if (!skb->tstamp.tv64)
2259 net_timestamp(skb);
2261 if (!skb->iif)
2262 skb->iif = skb->dev->ifindex;
2264 null_or_orig = NULL;
2265 orig_dev = skb->dev;
2266 if (orig_dev->master) {
2267 if (skb_bond_should_drop(skb))
2268 null_or_orig = orig_dev; /* deliver only exact match */
2269 else
2270 skb->dev = orig_dev->master;
2273 __get_cpu_var(netdev_rx_stat).total++;
2275 skb_reset_network_header(skb);
2276 skb_reset_transport_header(skb);
2277 skb->mac_len = skb->network_header - skb->mac_header;
2279 pt_prev = NULL;
2281 rcu_read_lock();
2283 #ifdef CONFIG_NET_CLS_ACT
2284 if (skb->tc_verd & TC_NCLS) {
2285 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2286 goto ncls;
2288 #endif
2290 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2291 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2292 ptype->dev == orig_dev) {
2293 if (pt_prev)
2294 ret = deliver_skb(skb, pt_prev, orig_dev);
2295 pt_prev = ptype;
2299 #ifdef CONFIG_NET_CLS_ACT
2300 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2301 if (!skb)
2302 goto out;
2303 ncls:
2304 #endif
2306 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2307 if (!skb)
2308 goto out;
2309 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2310 if (!skb)
2311 goto out;
2313 skb_orphan(skb);
2315 type = skb->protocol;
2316 list_for_each_entry_rcu(ptype,
2317 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2318 if (ptype->type == type &&
2319 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2320 ptype->dev == orig_dev)) {
2321 if (pt_prev)
2322 ret = deliver_skb(skb, pt_prev, orig_dev);
2323 pt_prev = ptype;
2327 if (pt_prev) {
2328 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2329 } else {
2330 kfree_skb(skb);
2331 /* Jamal, now you will not able to escape explaining
2332 * me how you were going to use this. :-)
2334 ret = NET_RX_DROP;
2337 out:
2338 rcu_read_unlock();
2339 return ret;
2342 /* Network device is going away, flush any packets still pending */
2343 static void flush_backlog(void *arg)
2345 struct net_device *dev = arg;
2346 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2347 struct sk_buff *skb, *tmp;
2349 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2350 if (skb->dev == dev) {
2351 __skb_unlink(skb, &queue->input_pkt_queue);
2352 kfree_skb(skb);
2356 static int napi_gro_complete(struct sk_buff *skb)
2358 struct packet_type *ptype;
2359 __be16 type = skb->protocol;
2360 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2361 int err = -ENOENT;
2363 if (NAPI_GRO_CB(skb)->count == 1) {
2364 skb_shinfo(skb)->gso_size = 0;
2365 goto out;
2368 rcu_read_lock();
2369 list_for_each_entry_rcu(ptype, head, list) {
2370 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2371 continue;
2373 err = ptype->gro_complete(skb);
2374 break;
2376 rcu_read_unlock();
2378 if (err) {
2379 WARN_ON(&ptype->list == head);
2380 kfree_skb(skb);
2381 return NET_RX_SUCCESS;
2384 out:
2385 return netif_receive_skb(skb);
2388 void napi_gro_flush(struct napi_struct *napi)
2390 struct sk_buff *skb, *next;
2392 for (skb = napi->gro_list; skb; skb = next) {
2393 next = skb->next;
2394 skb->next = NULL;
2395 napi_gro_complete(skb);
2398 napi->gro_count = 0;
2399 napi->gro_list = NULL;
2401 EXPORT_SYMBOL(napi_gro_flush);
2403 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2405 struct sk_buff **pp = NULL;
2406 struct packet_type *ptype;
2407 __be16 type = skb->protocol;
2408 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2409 int same_flow;
2410 int mac_len;
2411 int ret;
2413 if (!(skb->dev->features & NETIF_F_GRO))
2414 goto normal;
2416 if (skb_is_gso(skb) || skb_has_frags(skb))
2417 goto normal;
2419 rcu_read_lock();
2420 list_for_each_entry_rcu(ptype, head, list) {
2421 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2422 continue;
2424 skb_set_network_header(skb, skb_gro_offset(skb));
2425 mac_len = skb->network_header - skb->mac_header;
2426 skb->mac_len = mac_len;
2427 NAPI_GRO_CB(skb)->same_flow = 0;
2428 NAPI_GRO_CB(skb)->flush = 0;
2429 NAPI_GRO_CB(skb)->free = 0;
2431 pp = ptype->gro_receive(&napi->gro_list, skb);
2432 break;
2434 rcu_read_unlock();
2436 if (&ptype->list == head)
2437 goto normal;
2439 same_flow = NAPI_GRO_CB(skb)->same_flow;
2440 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2442 if (pp) {
2443 struct sk_buff *nskb = *pp;
2445 *pp = nskb->next;
2446 nskb->next = NULL;
2447 napi_gro_complete(nskb);
2448 napi->gro_count--;
2451 if (same_flow)
2452 goto ok;
2454 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2455 goto normal;
2457 napi->gro_count++;
2458 NAPI_GRO_CB(skb)->count = 1;
2459 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2460 skb->next = napi->gro_list;
2461 napi->gro_list = skb;
2462 ret = GRO_HELD;
2464 pull:
2465 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2466 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2468 BUG_ON(skb->end - skb->tail < grow);
2470 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2472 skb->tail += grow;
2473 skb->data_len -= grow;
2475 skb_shinfo(skb)->frags[0].page_offset += grow;
2476 skb_shinfo(skb)->frags[0].size -= grow;
2478 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2479 put_page(skb_shinfo(skb)->frags[0].page);
2480 memmove(skb_shinfo(skb)->frags,
2481 skb_shinfo(skb)->frags + 1,
2482 --skb_shinfo(skb)->nr_frags);
2487 return ret;
2489 normal:
2490 ret = GRO_NORMAL;
2491 goto pull;
2493 EXPORT_SYMBOL(dev_gro_receive);
2495 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2497 struct sk_buff *p;
2499 if (netpoll_rx_on(skb))
2500 return GRO_NORMAL;
2502 for (p = napi->gro_list; p; p = p->next) {
2503 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2504 && !compare_ether_header(skb_mac_header(p),
2505 skb_gro_mac_header(skb));
2506 NAPI_GRO_CB(p)->flush = 0;
2509 return dev_gro_receive(napi, skb);
2512 int napi_skb_finish(int ret, struct sk_buff *skb)
2514 int err = NET_RX_SUCCESS;
2516 switch (ret) {
2517 case GRO_NORMAL:
2518 return netif_receive_skb(skb);
2520 case GRO_DROP:
2521 err = NET_RX_DROP;
2522 /* fall through */
2524 case GRO_MERGED_FREE:
2525 kfree_skb(skb);
2526 break;
2529 return err;
2531 EXPORT_SYMBOL(napi_skb_finish);
2533 void skb_gro_reset_offset(struct sk_buff *skb)
2535 NAPI_GRO_CB(skb)->data_offset = 0;
2536 NAPI_GRO_CB(skb)->frag0 = NULL;
2537 NAPI_GRO_CB(skb)->frag0_len = 0;
2539 if (skb->mac_header == skb->tail &&
2540 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2541 NAPI_GRO_CB(skb)->frag0 =
2542 page_address(skb_shinfo(skb)->frags[0].page) +
2543 skb_shinfo(skb)->frags[0].page_offset;
2544 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2547 EXPORT_SYMBOL(skb_gro_reset_offset);
2549 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2551 skb_gro_reset_offset(skb);
2553 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2555 EXPORT_SYMBOL(napi_gro_receive);
2557 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2559 __skb_pull(skb, skb_headlen(skb));
2560 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2562 napi->skb = skb;
2564 EXPORT_SYMBOL(napi_reuse_skb);
2566 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2568 struct net_device *dev = napi->dev;
2569 struct sk_buff *skb = napi->skb;
2571 if (!skb) {
2572 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2573 if (!skb)
2574 goto out;
2576 skb_reserve(skb, NET_IP_ALIGN);
2578 napi->skb = skb;
2581 out:
2582 return skb;
2584 EXPORT_SYMBOL(napi_get_frags);
2586 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2588 int err = NET_RX_SUCCESS;
2590 switch (ret) {
2591 case GRO_NORMAL:
2592 case GRO_HELD:
2593 skb->protocol = eth_type_trans(skb, napi->dev);
2595 if (ret == GRO_NORMAL)
2596 return netif_receive_skb(skb);
2598 skb_gro_pull(skb, -ETH_HLEN);
2599 break;
2601 case GRO_DROP:
2602 err = NET_RX_DROP;
2603 /* fall through */
2605 case GRO_MERGED_FREE:
2606 napi_reuse_skb(napi, skb);
2607 break;
2610 return err;
2612 EXPORT_SYMBOL(napi_frags_finish);
2614 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2616 struct sk_buff *skb = napi->skb;
2617 struct ethhdr *eth;
2618 unsigned int hlen;
2619 unsigned int off;
2621 napi->skb = NULL;
2623 skb_reset_mac_header(skb);
2624 skb_gro_reset_offset(skb);
2626 off = skb_gro_offset(skb);
2627 hlen = off + sizeof(*eth);
2628 eth = skb_gro_header_fast(skb, off);
2629 if (skb_gro_header_hard(skb, hlen)) {
2630 eth = skb_gro_header_slow(skb, hlen, off);
2631 if (unlikely(!eth)) {
2632 napi_reuse_skb(napi, skb);
2633 skb = NULL;
2634 goto out;
2638 skb_gro_pull(skb, sizeof(*eth));
2641 * This works because the only protocols we care about don't require
2642 * special handling. We'll fix it up properly at the end.
2644 skb->protocol = eth->h_proto;
2646 out:
2647 return skb;
2649 EXPORT_SYMBOL(napi_frags_skb);
2651 int napi_gro_frags(struct napi_struct *napi)
2653 struct sk_buff *skb = napi_frags_skb(napi);
2655 if (!skb)
2656 return NET_RX_DROP;
2658 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2660 EXPORT_SYMBOL(napi_gro_frags);
2662 static int process_backlog(struct napi_struct *napi, int quota)
2664 int work = 0;
2665 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2666 unsigned long start_time = jiffies;
2668 napi->weight = weight_p;
2669 do {
2670 struct sk_buff *skb;
2672 local_irq_disable();
2673 skb = __skb_dequeue(&queue->input_pkt_queue);
2674 if (!skb) {
2675 __napi_complete(napi);
2676 local_irq_enable();
2677 break;
2679 local_irq_enable();
2681 netif_receive_skb(skb);
2682 } while (++work < quota && jiffies == start_time);
2684 return work;
2688 * __napi_schedule - schedule for receive
2689 * @n: entry to schedule
2691 * The entry's receive function will be scheduled to run
2693 void __napi_schedule(struct napi_struct *n)
2695 unsigned long flags;
2697 local_irq_save(flags);
2698 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2699 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2700 local_irq_restore(flags);
2702 EXPORT_SYMBOL(__napi_schedule);
2704 void __napi_complete(struct napi_struct *n)
2706 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2707 BUG_ON(n->gro_list);
2709 list_del(&n->poll_list);
2710 smp_mb__before_clear_bit();
2711 clear_bit(NAPI_STATE_SCHED, &n->state);
2713 EXPORT_SYMBOL(__napi_complete);
2715 void napi_complete(struct napi_struct *n)
2717 unsigned long flags;
2720 * don't let napi dequeue from the cpu poll list
2721 * just in case its running on a different cpu
2723 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2724 return;
2726 napi_gro_flush(n);
2727 local_irq_save(flags);
2728 __napi_complete(n);
2729 local_irq_restore(flags);
2731 EXPORT_SYMBOL(napi_complete);
2733 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2734 int (*poll)(struct napi_struct *, int), int weight)
2736 INIT_LIST_HEAD(&napi->poll_list);
2737 napi->gro_count = 0;
2738 napi->gro_list = NULL;
2739 napi->skb = NULL;
2740 napi->poll = poll;
2741 napi->weight = weight;
2742 list_add(&napi->dev_list, &dev->napi_list);
2743 napi->dev = dev;
2744 #ifdef CONFIG_NETPOLL
2745 spin_lock_init(&napi->poll_lock);
2746 napi->poll_owner = -1;
2747 #endif
2748 set_bit(NAPI_STATE_SCHED, &napi->state);
2750 EXPORT_SYMBOL(netif_napi_add);
2752 void netif_napi_del(struct napi_struct *napi)
2754 struct sk_buff *skb, *next;
2756 list_del_init(&napi->dev_list);
2757 napi_free_frags(napi);
2759 for (skb = napi->gro_list; skb; skb = next) {
2760 next = skb->next;
2761 skb->next = NULL;
2762 kfree_skb(skb);
2765 napi->gro_list = NULL;
2766 napi->gro_count = 0;
2768 EXPORT_SYMBOL(netif_napi_del);
2771 static void net_rx_action(struct softirq_action *h)
2773 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2774 unsigned long time_limit = jiffies + 2;
2775 int budget = netdev_budget;
2776 void *have;
2778 local_irq_disable();
2780 while (!list_empty(list)) {
2781 struct napi_struct *n;
2782 int work, weight;
2784 /* If softirq window is exhuasted then punt.
2785 * Allow this to run for 2 jiffies since which will allow
2786 * an average latency of 1.5/HZ.
2788 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2789 goto softnet_break;
2791 local_irq_enable();
2793 /* Even though interrupts have been re-enabled, this
2794 * access is safe because interrupts can only add new
2795 * entries to the tail of this list, and only ->poll()
2796 * calls can remove this head entry from the list.
2798 n = list_entry(list->next, struct napi_struct, poll_list);
2800 have = netpoll_poll_lock(n);
2802 weight = n->weight;
2804 /* This NAPI_STATE_SCHED test is for avoiding a race
2805 * with netpoll's poll_napi(). Only the entity which
2806 * obtains the lock and sees NAPI_STATE_SCHED set will
2807 * actually make the ->poll() call. Therefore we avoid
2808 * accidently calling ->poll() when NAPI is not scheduled.
2810 work = 0;
2811 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
2812 work = n->poll(n, weight);
2813 trace_napi_poll(n);
2816 WARN_ON_ONCE(work > weight);
2818 budget -= work;
2820 local_irq_disable();
2822 /* Drivers must not modify the NAPI state if they
2823 * consume the entire weight. In such cases this code
2824 * still "owns" the NAPI instance and therefore can
2825 * move the instance around on the list at-will.
2827 if (unlikely(work == weight)) {
2828 if (unlikely(napi_disable_pending(n)))
2829 __napi_complete(n);
2830 else
2831 list_move_tail(&n->poll_list, list);
2834 netpoll_poll_unlock(have);
2836 out:
2837 local_irq_enable();
2839 #ifdef CONFIG_NET_DMA
2841 * There may not be any more sk_buffs coming right now, so push
2842 * any pending DMA copies to hardware
2844 dma_issue_pending_all();
2845 #endif
2847 return;
2849 softnet_break:
2850 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2851 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2852 goto out;
2855 static gifconf_func_t * gifconf_list [NPROTO];
2858 * register_gifconf - register a SIOCGIF handler
2859 * @family: Address family
2860 * @gifconf: Function handler
2862 * Register protocol dependent address dumping routines. The handler
2863 * that is passed must not be freed or reused until it has been replaced
2864 * by another handler.
2866 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2868 if (family >= NPROTO)
2869 return -EINVAL;
2870 gifconf_list[family] = gifconf;
2871 return 0;
2876 * Map an interface index to its name (SIOCGIFNAME)
2880 * We need this ioctl for efficient implementation of the
2881 * if_indextoname() function required by the IPv6 API. Without
2882 * it, we would have to search all the interfaces to find a
2883 * match. --pb
2886 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2888 struct net_device *dev;
2889 struct ifreq ifr;
2892 * Fetch the caller's info block.
2895 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2896 return -EFAULT;
2898 read_lock(&dev_base_lock);
2899 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2900 if (!dev) {
2901 read_unlock(&dev_base_lock);
2902 return -ENODEV;
2905 strcpy(ifr.ifr_name, dev->name);
2906 read_unlock(&dev_base_lock);
2908 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2909 return -EFAULT;
2910 return 0;
2914 * Perform a SIOCGIFCONF call. This structure will change
2915 * size eventually, and there is nothing I can do about it.
2916 * Thus we will need a 'compatibility mode'.
2919 static int dev_ifconf(struct net *net, char __user *arg)
2921 struct ifconf ifc;
2922 struct net_device *dev;
2923 char __user *pos;
2924 int len;
2925 int total;
2926 int i;
2929 * Fetch the caller's info block.
2932 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2933 return -EFAULT;
2935 pos = ifc.ifc_buf;
2936 len = ifc.ifc_len;
2939 * Loop over the interfaces, and write an info block for each.
2942 total = 0;
2943 for_each_netdev(net, dev) {
2944 for (i = 0; i < NPROTO; i++) {
2945 if (gifconf_list[i]) {
2946 int done;
2947 if (!pos)
2948 done = gifconf_list[i](dev, NULL, 0);
2949 else
2950 done = gifconf_list[i](dev, pos + total,
2951 len - total);
2952 if (done < 0)
2953 return -EFAULT;
2954 total += done;
2960 * All done. Write the updated control block back to the caller.
2962 ifc.ifc_len = total;
2965 * Both BSD and Solaris return 0 here, so we do too.
2967 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2970 #ifdef CONFIG_PROC_FS
2972 * This is invoked by the /proc filesystem handler to display a device
2973 * in detail.
2975 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2976 __acquires(dev_base_lock)
2978 struct net *net = seq_file_net(seq);
2979 loff_t off;
2980 struct net_device *dev;
2982 read_lock(&dev_base_lock);
2983 if (!*pos)
2984 return SEQ_START_TOKEN;
2986 off = 1;
2987 for_each_netdev(net, dev)
2988 if (off++ == *pos)
2989 return dev;
2991 return NULL;
2994 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2996 struct net *net = seq_file_net(seq);
2997 ++*pos;
2998 return v == SEQ_START_TOKEN ?
2999 first_net_device(net) : next_net_device((struct net_device *)v);
3002 void dev_seq_stop(struct seq_file *seq, void *v)
3003 __releases(dev_base_lock)
3005 read_unlock(&dev_base_lock);
3008 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3010 const struct net_device_stats *stats = dev_get_stats(dev);
3012 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3013 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3014 dev->name, stats->rx_bytes, stats->rx_packets,
3015 stats->rx_errors,
3016 stats->rx_dropped + stats->rx_missed_errors,
3017 stats->rx_fifo_errors,
3018 stats->rx_length_errors + stats->rx_over_errors +
3019 stats->rx_crc_errors + stats->rx_frame_errors,
3020 stats->rx_compressed, stats->multicast,
3021 stats->tx_bytes, stats->tx_packets,
3022 stats->tx_errors, stats->tx_dropped,
3023 stats->tx_fifo_errors, stats->collisions,
3024 stats->tx_carrier_errors +
3025 stats->tx_aborted_errors +
3026 stats->tx_window_errors +
3027 stats->tx_heartbeat_errors,
3028 stats->tx_compressed);
3032 * Called from the PROCfs module. This now uses the new arbitrary sized
3033 * /proc/net interface to create /proc/net/dev
3035 static int dev_seq_show(struct seq_file *seq, void *v)
3037 if (v == SEQ_START_TOKEN)
3038 seq_puts(seq, "Inter-| Receive "
3039 " | Transmit\n"
3040 " face |bytes packets errs drop fifo frame "
3041 "compressed multicast|bytes packets errs "
3042 "drop fifo colls carrier compressed\n");
3043 else
3044 dev_seq_printf_stats(seq, v);
3045 return 0;
3048 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3050 struct netif_rx_stats *rc = NULL;
3052 while (*pos < nr_cpu_ids)
3053 if (cpu_online(*pos)) {
3054 rc = &per_cpu(netdev_rx_stat, *pos);
3055 break;
3056 } else
3057 ++*pos;
3058 return rc;
3061 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3063 return softnet_get_online(pos);
3066 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3068 ++*pos;
3069 return softnet_get_online(pos);
3072 static void softnet_seq_stop(struct seq_file *seq, void *v)
3076 static int softnet_seq_show(struct seq_file *seq, void *v)
3078 struct netif_rx_stats *s = v;
3080 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3081 s->total, s->dropped, s->time_squeeze, 0,
3082 0, 0, 0, 0, /* was fastroute */
3083 s->cpu_collision );
3084 return 0;
3087 static const struct seq_operations dev_seq_ops = {
3088 .start = dev_seq_start,
3089 .next = dev_seq_next,
3090 .stop = dev_seq_stop,
3091 .show = dev_seq_show,
3094 static int dev_seq_open(struct inode *inode, struct file *file)
3096 return seq_open_net(inode, file, &dev_seq_ops,
3097 sizeof(struct seq_net_private));
3100 static const struct file_operations dev_seq_fops = {
3101 .owner = THIS_MODULE,
3102 .open = dev_seq_open,
3103 .read = seq_read,
3104 .llseek = seq_lseek,
3105 .release = seq_release_net,
3108 static const struct seq_operations softnet_seq_ops = {
3109 .start = softnet_seq_start,
3110 .next = softnet_seq_next,
3111 .stop = softnet_seq_stop,
3112 .show = softnet_seq_show,
3115 static int softnet_seq_open(struct inode *inode, struct file *file)
3117 return seq_open(file, &softnet_seq_ops);
3120 static const struct file_operations softnet_seq_fops = {
3121 .owner = THIS_MODULE,
3122 .open = softnet_seq_open,
3123 .read = seq_read,
3124 .llseek = seq_lseek,
3125 .release = seq_release,
3128 static void *ptype_get_idx(loff_t pos)
3130 struct packet_type *pt = NULL;
3131 loff_t i = 0;
3132 int t;
3134 list_for_each_entry_rcu(pt, &ptype_all, list) {
3135 if (i == pos)
3136 return pt;
3137 ++i;
3140 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3141 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3142 if (i == pos)
3143 return pt;
3144 ++i;
3147 return NULL;
3150 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3151 __acquires(RCU)
3153 rcu_read_lock();
3154 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3157 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3159 struct packet_type *pt;
3160 struct list_head *nxt;
3161 int hash;
3163 ++*pos;
3164 if (v == SEQ_START_TOKEN)
3165 return ptype_get_idx(0);
3167 pt = v;
3168 nxt = pt->list.next;
3169 if (pt->type == htons(ETH_P_ALL)) {
3170 if (nxt != &ptype_all)
3171 goto found;
3172 hash = 0;
3173 nxt = ptype_base[0].next;
3174 } else
3175 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3177 while (nxt == &ptype_base[hash]) {
3178 if (++hash >= PTYPE_HASH_SIZE)
3179 return NULL;
3180 nxt = ptype_base[hash].next;
3182 found:
3183 return list_entry(nxt, struct packet_type, list);
3186 static void ptype_seq_stop(struct seq_file *seq, void *v)
3187 __releases(RCU)
3189 rcu_read_unlock();
3192 static int ptype_seq_show(struct seq_file *seq, void *v)
3194 struct packet_type *pt = v;
3196 if (v == SEQ_START_TOKEN)
3197 seq_puts(seq, "Type Device Function\n");
3198 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3199 if (pt->type == htons(ETH_P_ALL))
3200 seq_puts(seq, "ALL ");
3201 else
3202 seq_printf(seq, "%04x", ntohs(pt->type));
3204 seq_printf(seq, " %-8s %pF\n",
3205 pt->dev ? pt->dev->name : "", pt->func);
3208 return 0;
3211 static const struct seq_operations ptype_seq_ops = {
3212 .start = ptype_seq_start,
3213 .next = ptype_seq_next,
3214 .stop = ptype_seq_stop,
3215 .show = ptype_seq_show,
3218 static int ptype_seq_open(struct inode *inode, struct file *file)
3220 return seq_open_net(inode, file, &ptype_seq_ops,
3221 sizeof(struct seq_net_private));
3224 static const struct file_operations ptype_seq_fops = {
3225 .owner = THIS_MODULE,
3226 .open = ptype_seq_open,
3227 .read = seq_read,
3228 .llseek = seq_lseek,
3229 .release = seq_release_net,
3233 static int __net_init dev_proc_net_init(struct net *net)
3235 int rc = -ENOMEM;
3237 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3238 goto out;
3239 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3240 goto out_dev;
3241 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3242 goto out_softnet;
3244 if (wext_proc_init(net))
3245 goto out_ptype;
3246 rc = 0;
3247 out:
3248 return rc;
3249 out_ptype:
3250 proc_net_remove(net, "ptype");
3251 out_softnet:
3252 proc_net_remove(net, "softnet_stat");
3253 out_dev:
3254 proc_net_remove(net, "dev");
3255 goto out;
3258 static void __net_exit dev_proc_net_exit(struct net *net)
3260 wext_proc_exit(net);
3262 proc_net_remove(net, "ptype");
3263 proc_net_remove(net, "softnet_stat");
3264 proc_net_remove(net, "dev");
3267 static struct pernet_operations __net_initdata dev_proc_ops = {
3268 .init = dev_proc_net_init,
3269 .exit = dev_proc_net_exit,
3272 static int __init dev_proc_init(void)
3274 return register_pernet_subsys(&dev_proc_ops);
3276 #else
3277 #define dev_proc_init() 0
3278 #endif /* CONFIG_PROC_FS */
3282 * netdev_set_master - set up master/slave pair
3283 * @slave: slave device
3284 * @master: new master device
3286 * Changes the master device of the slave. Pass %NULL to break the
3287 * bonding. The caller must hold the RTNL semaphore. On a failure
3288 * a negative errno code is returned. On success the reference counts
3289 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3290 * function returns zero.
3292 int netdev_set_master(struct net_device *slave, struct net_device *master)
3294 struct net_device *old = slave->master;
3296 ASSERT_RTNL();
3298 if (master) {
3299 if (old)
3300 return -EBUSY;
3301 dev_hold(master);
3304 slave->master = master;
3306 synchronize_net();
3308 if (old)
3309 dev_put(old);
3311 if (master)
3312 slave->flags |= IFF_SLAVE;
3313 else
3314 slave->flags &= ~IFF_SLAVE;
3316 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3317 return 0;
3320 static void dev_change_rx_flags(struct net_device *dev, int flags)
3322 const struct net_device_ops *ops = dev->netdev_ops;
3324 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3325 ops->ndo_change_rx_flags(dev, flags);
3328 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3330 unsigned short old_flags = dev->flags;
3331 uid_t uid;
3332 gid_t gid;
3334 ASSERT_RTNL();
3336 dev->flags |= IFF_PROMISC;
3337 dev->promiscuity += inc;
3338 if (dev->promiscuity == 0) {
3340 * Avoid overflow.
3341 * If inc causes overflow, untouch promisc and return error.
3343 if (inc < 0)
3344 dev->flags &= ~IFF_PROMISC;
3345 else {
3346 dev->promiscuity -= inc;
3347 printk(KERN_WARNING "%s: promiscuity touches roof, "
3348 "set promiscuity failed, promiscuity feature "
3349 "of device might be broken.\n", dev->name);
3350 return -EOVERFLOW;
3353 if (dev->flags != old_flags) {
3354 printk(KERN_INFO "device %s %s promiscuous mode\n",
3355 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3356 "left");
3357 if (audit_enabled) {
3358 current_uid_gid(&uid, &gid);
3359 audit_log(current->audit_context, GFP_ATOMIC,
3360 AUDIT_ANOM_PROMISCUOUS,
3361 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3362 dev->name, (dev->flags & IFF_PROMISC),
3363 (old_flags & IFF_PROMISC),
3364 audit_get_loginuid(current),
3365 uid, gid,
3366 audit_get_sessionid(current));
3369 dev_change_rx_flags(dev, IFF_PROMISC);
3371 return 0;
3375 * dev_set_promiscuity - update promiscuity count on a device
3376 * @dev: device
3377 * @inc: modifier
3379 * Add or remove promiscuity from a device. While the count in the device
3380 * remains above zero the interface remains promiscuous. Once it hits zero
3381 * the device reverts back to normal filtering operation. A negative inc
3382 * value is used to drop promiscuity on the device.
3383 * Return 0 if successful or a negative errno code on error.
3385 int dev_set_promiscuity(struct net_device *dev, int inc)
3387 unsigned short old_flags = dev->flags;
3388 int err;
3390 err = __dev_set_promiscuity(dev, inc);
3391 if (err < 0)
3392 return err;
3393 if (dev->flags != old_flags)
3394 dev_set_rx_mode(dev);
3395 return err;
3399 * dev_set_allmulti - update allmulti count on a device
3400 * @dev: device
3401 * @inc: modifier
3403 * Add or remove reception of all multicast frames to a device. While the
3404 * count in the device remains above zero the interface remains listening
3405 * to all interfaces. Once it hits zero the device reverts back to normal
3406 * filtering operation. A negative @inc value is used to drop the counter
3407 * when releasing a resource needing all multicasts.
3408 * Return 0 if successful or a negative errno code on error.
3411 int dev_set_allmulti(struct net_device *dev, int inc)
3413 unsigned short old_flags = dev->flags;
3415 ASSERT_RTNL();
3417 dev->flags |= IFF_ALLMULTI;
3418 dev->allmulti += inc;
3419 if (dev->allmulti == 0) {
3421 * Avoid overflow.
3422 * If inc causes overflow, untouch allmulti and return error.
3424 if (inc < 0)
3425 dev->flags &= ~IFF_ALLMULTI;
3426 else {
3427 dev->allmulti -= inc;
3428 printk(KERN_WARNING "%s: allmulti touches roof, "
3429 "set allmulti failed, allmulti feature of "
3430 "device might be broken.\n", dev->name);
3431 return -EOVERFLOW;
3434 if (dev->flags ^ old_flags) {
3435 dev_change_rx_flags(dev, IFF_ALLMULTI);
3436 dev_set_rx_mode(dev);
3438 return 0;
3442 * Upload unicast and multicast address lists to device and
3443 * configure RX filtering. When the device doesn't support unicast
3444 * filtering it is put in promiscuous mode while unicast addresses
3445 * are present.
3447 void __dev_set_rx_mode(struct net_device *dev)
3449 const struct net_device_ops *ops = dev->netdev_ops;
3451 /* dev_open will call this function so the list will stay sane. */
3452 if (!(dev->flags&IFF_UP))
3453 return;
3455 if (!netif_device_present(dev))
3456 return;
3458 if (ops->ndo_set_rx_mode)
3459 ops->ndo_set_rx_mode(dev);
3460 else {
3461 /* Unicast addresses changes may only happen under the rtnl,
3462 * therefore calling __dev_set_promiscuity here is safe.
3464 if (dev->uc_count > 0 && !dev->uc_promisc) {
3465 __dev_set_promiscuity(dev, 1);
3466 dev->uc_promisc = 1;
3467 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3468 __dev_set_promiscuity(dev, -1);
3469 dev->uc_promisc = 0;
3472 if (ops->ndo_set_multicast_list)
3473 ops->ndo_set_multicast_list(dev);
3477 void dev_set_rx_mode(struct net_device *dev)
3479 netif_addr_lock_bh(dev);
3480 __dev_set_rx_mode(dev);
3481 netif_addr_unlock_bh(dev);
3484 /* hw addresses list handling functions */
3486 static int __hw_addr_add(struct list_head *list, int *delta,
3487 unsigned char *addr, int addr_len,
3488 unsigned char addr_type)
3490 struct netdev_hw_addr *ha;
3491 int alloc_size;
3493 if (addr_len > MAX_ADDR_LEN)
3494 return -EINVAL;
3496 list_for_each_entry(ha, list, list) {
3497 if (!memcmp(ha->addr, addr, addr_len) &&
3498 ha->type == addr_type) {
3499 ha->refcount++;
3500 return 0;
3505 alloc_size = sizeof(*ha);
3506 if (alloc_size < L1_CACHE_BYTES)
3507 alloc_size = L1_CACHE_BYTES;
3508 ha = kmalloc(alloc_size, GFP_ATOMIC);
3509 if (!ha)
3510 return -ENOMEM;
3511 memcpy(ha->addr, addr, addr_len);
3512 ha->type = addr_type;
3513 ha->refcount = 1;
3514 ha->synced = false;
3515 list_add_tail_rcu(&ha->list, list);
3516 if (delta)
3517 (*delta)++;
3518 return 0;
3521 static void ha_rcu_free(struct rcu_head *head)
3523 struct netdev_hw_addr *ha;
3525 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3526 kfree(ha);
3529 static int __hw_addr_del(struct list_head *list, int *delta,
3530 unsigned char *addr, int addr_len,
3531 unsigned char addr_type)
3533 struct netdev_hw_addr *ha;
3535 list_for_each_entry(ha, list, list) {
3536 if (!memcmp(ha->addr, addr, addr_len) &&
3537 (ha->type == addr_type || !addr_type)) {
3538 if (--ha->refcount)
3539 return 0;
3540 list_del_rcu(&ha->list);
3541 call_rcu(&ha->rcu_head, ha_rcu_free);
3542 if (delta)
3543 (*delta)--;
3544 return 0;
3547 return -ENOENT;
3550 static int __hw_addr_add_multiple(struct list_head *to_list, int *to_delta,
3551 struct list_head *from_list, int addr_len,
3552 unsigned char addr_type)
3554 int err;
3555 struct netdev_hw_addr *ha, *ha2;
3556 unsigned char type;
3558 list_for_each_entry(ha, from_list, list) {
3559 type = addr_type ? addr_type : ha->type;
3560 err = __hw_addr_add(to_list, to_delta, ha->addr,
3561 addr_len, type);
3562 if (err)
3563 goto unroll;
3565 return 0;
3567 unroll:
3568 list_for_each_entry(ha2, from_list, list) {
3569 if (ha2 == ha)
3570 break;
3571 type = addr_type ? addr_type : ha2->type;
3572 __hw_addr_del(to_list, to_delta, ha2->addr,
3573 addr_len, type);
3575 return err;
3578 static void __hw_addr_del_multiple(struct list_head *to_list, int *to_delta,
3579 struct list_head *from_list, int addr_len,
3580 unsigned char addr_type)
3582 struct netdev_hw_addr *ha;
3583 unsigned char type;
3585 list_for_each_entry(ha, from_list, list) {
3586 type = addr_type ? addr_type : ha->type;
3587 __hw_addr_del(to_list, to_delta, ha->addr,
3588 addr_len, addr_type);
3592 static int __hw_addr_sync(struct list_head *to_list, int *to_delta,
3593 struct list_head *from_list, int *from_delta,
3594 int addr_len)
3596 int err = 0;
3597 struct netdev_hw_addr *ha, *tmp;
3599 list_for_each_entry_safe(ha, tmp, from_list, list) {
3600 if (!ha->synced) {
3601 err = __hw_addr_add(to_list, to_delta, ha->addr,
3602 addr_len, ha->type);
3603 if (err)
3604 break;
3605 ha->synced = true;
3606 ha->refcount++;
3607 } else if (ha->refcount == 1) {
3608 __hw_addr_del(to_list, to_delta, ha->addr,
3609 addr_len, ha->type);
3610 __hw_addr_del(from_list, from_delta, ha->addr,
3611 addr_len, ha->type);
3614 return err;
3617 static void __hw_addr_unsync(struct list_head *to_list, int *to_delta,
3618 struct list_head *from_list, int *from_delta,
3619 int addr_len)
3621 struct netdev_hw_addr *ha, *tmp;
3623 list_for_each_entry_safe(ha, tmp, from_list, list) {
3624 if (ha->synced) {
3625 __hw_addr_del(to_list, to_delta, ha->addr,
3626 addr_len, ha->type);
3627 ha->synced = false;
3628 __hw_addr_del(from_list, from_delta, ha->addr,
3629 addr_len, ha->type);
3635 static void __hw_addr_flush(struct list_head *list)
3637 struct netdev_hw_addr *ha, *tmp;
3639 list_for_each_entry_safe(ha, tmp, list, list) {
3640 list_del_rcu(&ha->list);
3641 call_rcu(&ha->rcu_head, ha_rcu_free);
3645 /* Device addresses handling functions */
3647 static void dev_addr_flush(struct net_device *dev)
3649 /* rtnl_mutex must be held here */
3651 __hw_addr_flush(&dev->dev_addr_list);
3652 dev->dev_addr = NULL;
3655 static int dev_addr_init(struct net_device *dev)
3657 unsigned char addr[MAX_ADDR_LEN];
3658 struct netdev_hw_addr *ha;
3659 int err;
3661 /* rtnl_mutex must be held here */
3663 INIT_LIST_HEAD(&dev->dev_addr_list);
3664 memset(addr, 0, sizeof(addr));
3665 err = __hw_addr_add(&dev->dev_addr_list, NULL, addr, sizeof(addr),
3666 NETDEV_HW_ADDR_T_LAN);
3667 if (!err) {
3669 * Get the first (previously created) address from the list
3670 * and set dev_addr pointer to this location.
3672 ha = list_first_entry(&dev->dev_addr_list,
3673 struct netdev_hw_addr, list);
3674 dev->dev_addr = ha->addr;
3676 return err;
3680 * dev_addr_add - Add a device address
3681 * @dev: device
3682 * @addr: address to add
3683 * @addr_type: address type
3685 * Add a device address to the device or increase the reference count if
3686 * it already exists.
3688 * The caller must hold the rtnl_mutex.
3690 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3691 unsigned char addr_type)
3693 int err;
3695 ASSERT_RTNL();
3697 err = __hw_addr_add(&dev->dev_addr_list, NULL, addr, dev->addr_len,
3698 addr_type);
3699 if (!err)
3700 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3701 return err;
3703 EXPORT_SYMBOL(dev_addr_add);
3706 * dev_addr_del - Release a device address.
3707 * @dev: device
3708 * @addr: address to delete
3709 * @addr_type: address type
3711 * Release reference to a device address and remove it from the device
3712 * if the reference count drops to zero.
3714 * The caller must hold the rtnl_mutex.
3716 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3717 unsigned char addr_type)
3719 int err;
3720 struct netdev_hw_addr *ha;
3722 ASSERT_RTNL();
3725 * We can not remove the first address from the list because
3726 * dev->dev_addr points to that.
3728 ha = list_first_entry(&dev->dev_addr_list, struct netdev_hw_addr, list);
3729 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3730 return -ENOENT;
3732 err = __hw_addr_del(&dev->dev_addr_list, NULL, addr, dev->addr_len,
3733 addr_type);
3734 if (!err)
3735 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3736 return err;
3738 EXPORT_SYMBOL(dev_addr_del);
3741 * dev_addr_add_multiple - Add device addresses from another device
3742 * @to_dev: device to which addresses will be added
3743 * @from_dev: device from which addresses will be added
3744 * @addr_type: address type - 0 means type will be used from from_dev
3746 * Add device addresses of the one device to another.
3748 * The caller must hold the rtnl_mutex.
3750 int dev_addr_add_multiple(struct net_device *to_dev,
3751 struct net_device *from_dev,
3752 unsigned char addr_type)
3754 int err;
3756 ASSERT_RTNL();
3758 if (from_dev->addr_len != to_dev->addr_len)
3759 return -EINVAL;
3760 err = __hw_addr_add_multiple(&to_dev->dev_addr_list, NULL,
3761 &from_dev->dev_addr_list,
3762 to_dev->addr_len, addr_type);
3763 if (!err)
3764 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3765 return err;
3767 EXPORT_SYMBOL(dev_addr_add_multiple);
3770 * dev_addr_del_multiple - Delete device addresses by another device
3771 * @to_dev: device where the addresses will be deleted
3772 * @from_dev: device by which addresses the addresses will be deleted
3773 * @addr_type: address type - 0 means type will used from from_dev
3775 * Deletes addresses in to device by the list of addresses in from device.
3777 * The caller must hold the rtnl_mutex.
3779 int dev_addr_del_multiple(struct net_device *to_dev,
3780 struct net_device *from_dev,
3781 unsigned char addr_type)
3783 ASSERT_RTNL();
3785 if (from_dev->addr_len != to_dev->addr_len)
3786 return -EINVAL;
3787 __hw_addr_del_multiple(&to_dev->dev_addr_list, NULL,
3788 &from_dev->dev_addr_list,
3789 to_dev->addr_len, addr_type);
3790 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3791 return 0;
3793 EXPORT_SYMBOL(dev_addr_del_multiple);
3795 /* unicast and multicast addresses handling functions */
3797 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3798 void *addr, int alen, int glbl)
3800 struct dev_addr_list *da;
3802 for (; (da = *list) != NULL; list = &da->next) {
3803 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3804 alen == da->da_addrlen) {
3805 if (glbl) {
3806 int old_glbl = da->da_gusers;
3807 da->da_gusers = 0;
3808 if (old_glbl == 0)
3809 break;
3811 if (--da->da_users)
3812 return 0;
3814 *list = da->next;
3815 kfree(da);
3816 (*count)--;
3817 return 0;
3820 return -ENOENT;
3823 int __dev_addr_add(struct dev_addr_list **list, int *count,
3824 void *addr, int alen, int glbl)
3826 struct dev_addr_list *da;
3828 for (da = *list; da != NULL; da = da->next) {
3829 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3830 da->da_addrlen == alen) {
3831 if (glbl) {
3832 int old_glbl = da->da_gusers;
3833 da->da_gusers = 1;
3834 if (old_glbl)
3835 return 0;
3837 da->da_users++;
3838 return 0;
3842 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3843 if (da == NULL)
3844 return -ENOMEM;
3845 memcpy(da->da_addr, addr, alen);
3846 da->da_addrlen = alen;
3847 da->da_users = 1;
3848 da->da_gusers = glbl ? 1 : 0;
3849 da->next = *list;
3850 *list = da;
3851 (*count)++;
3852 return 0;
3856 * dev_unicast_delete - Release secondary unicast address.
3857 * @dev: device
3858 * @addr: address to delete
3860 * Release reference to a secondary unicast address and remove it
3861 * from the device if the reference count drops to zero.
3863 * The caller must hold the rtnl_mutex.
3865 int dev_unicast_delete(struct net_device *dev, void *addr)
3867 int err;
3869 ASSERT_RTNL();
3871 err = __hw_addr_del(&dev->uc_list, &dev->uc_count, addr,
3872 dev->addr_len, NETDEV_HW_ADDR_T_UNICAST);
3873 if (!err)
3874 __dev_set_rx_mode(dev);
3875 return err;
3877 EXPORT_SYMBOL(dev_unicast_delete);
3880 * dev_unicast_add - add a secondary unicast address
3881 * @dev: device
3882 * @addr: address to add
3884 * Add a secondary unicast address to the device or increase
3885 * the reference count if it already exists.
3887 * The caller must hold the rtnl_mutex.
3889 int dev_unicast_add(struct net_device *dev, void *addr)
3891 int err;
3893 ASSERT_RTNL();
3895 err = __hw_addr_add(&dev->uc_list, &dev->uc_count, addr,
3896 dev->addr_len, NETDEV_HW_ADDR_T_UNICAST);
3897 if (!err)
3898 __dev_set_rx_mode(dev);
3899 return err;
3901 EXPORT_SYMBOL(dev_unicast_add);
3903 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3904 struct dev_addr_list **from, int *from_count)
3906 struct dev_addr_list *da, *next;
3907 int err = 0;
3909 da = *from;
3910 while (da != NULL) {
3911 next = da->next;
3912 if (!da->da_synced) {
3913 err = __dev_addr_add(to, to_count,
3914 da->da_addr, da->da_addrlen, 0);
3915 if (err < 0)
3916 break;
3917 da->da_synced = 1;
3918 da->da_users++;
3919 } else if (da->da_users == 1) {
3920 __dev_addr_delete(to, to_count,
3921 da->da_addr, da->da_addrlen, 0);
3922 __dev_addr_delete(from, from_count,
3923 da->da_addr, da->da_addrlen, 0);
3925 da = next;
3927 return err;
3930 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3931 struct dev_addr_list **from, int *from_count)
3933 struct dev_addr_list *da, *next;
3935 da = *from;
3936 while (da != NULL) {
3937 next = da->next;
3938 if (da->da_synced) {
3939 __dev_addr_delete(to, to_count,
3940 da->da_addr, da->da_addrlen, 0);
3941 da->da_synced = 0;
3942 __dev_addr_delete(from, from_count,
3943 da->da_addr, da->da_addrlen, 0);
3945 da = next;
3950 * dev_unicast_sync - Synchronize device's unicast list to another device
3951 * @to: destination device
3952 * @from: source device
3954 * Add newly added addresses to the destination device and release
3955 * addresses that have no users left.
3957 * This function is intended to be called from the dev->set_rx_mode
3958 * function of layered software devices.
3960 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3962 int err = 0;
3964 ASSERT_RTNL();
3966 if (to->addr_len != from->addr_len)
3967 return -EINVAL;
3969 err = __hw_addr_sync(&to->uc_list, &to->uc_count,
3970 &from->uc_list, &from->uc_count, to->addr_len);
3971 if (!err)
3972 __dev_set_rx_mode(to);
3973 return err;
3975 EXPORT_SYMBOL(dev_unicast_sync);
3978 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3979 * @to: destination device
3980 * @from: source device
3982 * Remove all addresses that were added to the destination device by
3983 * dev_unicast_sync(). This function is intended to be called from the
3984 * dev->stop function of layered software devices.
3986 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3988 ASSERT_RTNL();
3990 if (to->addr_len != from->addr_len)
3991 return;
3993 __hw_addr_unsync(&to->uc_list, &to->uc_count,
3994 &from->uc_list, &from->uc_count, to->addr_len);
3995 __dev_set_rx_mode(to);
3997 EXPORT_SYMBOL(dev_unicast_unsync);
3999 static void dev_unicast_flush(struct net_device *dev)
4001 /* rtnl_mutex must be held here */
4003 __hw_addr_flush(&dev->uc_list);
4004 dev->uc_count = 0;
4007 static void dev_unicast_init(struct net_device *dev)
4009 /* rtnl_mutex must be held here */
4011 INIT_LIST_HEAD(&dev->uc_list);
4015 static void __dev_addr_discard(struct dev_addr_list **list)
4017 struct dev_addr_list *tmp;
4019 while (*list != NULL) {
4020 tmp = *list;
4021 *list = tmp->next;
4022 if (tmp->da_users > tmp->da_gusers)
4023 printk("__dev_addr_discard: address leakage! "
4024 "da_users=%d\n", tmp->da_users);
4025 kfree(tmp);
4029 static void dev_addr_discard(struct net_device *dev)
4031 netif_addr_lock_bh(dev);
4033 __dev_addr_discard(&dev->mc_list);
4034 dev->mc_count = 0;
4036 netif_addr_unlock_bh(dev);
4040 * dev_get_flags - get flags reported to userspace
4041 * @dev: device
4043 * Get the combination of flag bits exported through APIs to userspace.
4045 unsigned dev_get_flags(const struct net_device *dev)
4047 unsigned flags;
4049 flags = (dev->flags & ~(IFF_PROMISC |
4050 IFF_ALLMULTI |
4051 IFF_RUNNING |
4052 IFF_LOWER_UP |
4053 IFF_DORMANT)) |
4054 (dev->gflags & (IFF_PROMISC |
4055 IFF_ALLMULTI));
4057 if (netif_running(dev)) {
4058 if (netif_oper_up(dev))
4059 flags |= IFF_RUNNING;
4060 if (netif_carrier_ok(dev))
4061 flags |= IFF_LOWER_UP;
4062 if (netif_dormant(dev))
4063 flags |= IFF_DORMANT;
4066 return flags;
4070 * dev_change_flags - change device settings
4071 * @dev: device
4072 * @flags: device state flags
4074 * Change settings on device based state flags. The flags are
4075 * in the userspace exported format.
4077 int dev_change_flags(struct net_device *dev, unsigned flags)
4079 int ret, changes;
4080 int old_flags = dev->flags;
4082 ASSERT_RTNL();
4085 * Set the flags on our device.
4088 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4089 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4090 IFF_AUTOMEDIA)) |
4091 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4092 IFF_ALLMULTI));
4095 * Load in the correct multicast list now the flags have changed.
4098 if ((old_flags ^ flags) & IFF_MULTICAST)
4099 dev_change_rx_flags(dev, IFF_MULTICAST);
4101 dev_set_rx_mode(dev);
4104 * Have we downed the interface. We handle IFF_UP ourselves
4105 * according to user attempts to set it, rather than blindly
4106 * setting it.
4109 ret = 0;
4110 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4111 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4113 if (!ret)
4114 dev_set_rx_mode(dev);
4117 if (dev->flags & IFF_UP &&
4118 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4119 IFF_VOLATILE)))
4120 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4122 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4123 int inc = (flags & IFF_PROMISC) ? +1 : -1;
4124 dev->gflags ^= IFF_PROMISC;
4125 dev_set_promiscuity(dev, inc);
4128 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4129 is important. Some (broken) drivers set IFF_PROMISC, when
4130 IFF_ALLMULTI is requested not asking us and not reporting.
4132 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4133 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
4134 dev->gflags ^= IFF_ALLMULTI;
4135 dev_set_allmulti(dev, inc);
4138 /* Exclude state transition flags, already notified */
4139 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4140 if (changes)
4141 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4143 return ret;
4147 * dev_set_mtu - Change maximum transfer unit
4148 * @dev: device
4149 * @new_mtu: new transfer unit
4151 * Change the maximum transfer size of the network device.
4153 int dev_set_mtu(struct net_device *dev, int new_mtu)
4155 const struct net_device_ops *ops = dev->netdev_ops;
4156 int err;
4158 if (new_mtu == dev->mtu)
4159 return 0;
4161 /* MTU must be positive. */
4162 if (new_mtu < 0)
4163 return -EINVAL;
4165 if (!netif_device_present(dev))
4166 return -ENODEV;
4168 err = 0;
4169 if (ops->ndo_change_mtu)
4170 err = ops->ndo_change_mtu(dev, new_mtu);
4171 else
4172 dev->mtu = new_mtu;
4174 if (!err && dev->flags & IFF_UP)
4175 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4176 return err;
4180 * dev_set_mac_address - Change Media Access Control Address
4181 * @dev: device
4182 * @sa: new address
4184 * Change the hardware (MAC) address of the device
4186 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4188 const struct net_device_ops *ops = dev->netdev_ops;
4189 int err;
4191 if (!ops->ndo_set_mac_address)
4192 return -EOPNOTSUPP;
4193 if (sa->sa_family != dev->type)
4194 return -EINVAL;
4195 if (!netif_device_present(dev))
4196 return -ENODEV;
4197 err = ops->ndo_set_mac_address(dev, sa);
4198 if (!err)
4199 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4200 return err;
4204 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
4206 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4208 int err;
4209 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4211 if (!dev)
4212 return -ENODEV;
4214 switch (cmd) {
4215 case SIOCGIFFLAGS: /* Get interface flags */
4216 ifr->ifr_flags = (short) dev_get_flags(dev);
4217 return 0;
4219 case SIOCGIFMETRIC: /* Get the metric on the interface
4220 (currently unused) */
4221 ifr->ifr_metric = 0;
4222 return 0;
4224 case SIOCGIFMTU: /* Get the MTU of a device */
4225 ifr->ifr_mtu = dev->mtu;
4226 return 0;
4228 case SIOCGIFHWADDR:
4229 if (!dev->addr_len)
4230 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4231 else
4232 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4233 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4234 ifr->ifr_hwaddr.sa_family = dev->type;
4235 return 0;
4237 case SIOCGIFSLAVE:
4238 err = -EINVAL;
4239 break;
4241 case SIOCGIFMAP:
4242 ifr->ifr_map.mem_start = dev->mem_start;
4243 ifr->ifr_map.mem_end = dev->mem_end;
4244 ifr->ifr_map.base_addr = dev->base_addr;
4245 ifr->ifr_map.irq = dev->irq;
4246 ifr->ifr_map.dma = dev->dma;
4247 ifr->ifr_map.port = dev->if_port;
4248 return 0;
4250 case SIOCGIFINDEX:
4251 ifr->ifr_ifindex = dev->ifindex;
4252 return 0;
4254 case SIOCGIFTXQLEN:
4255 ifr->ifr_qlen = dev->tx_queue_len;
4256 return 0;
4258 default:
4259 /* dev_ioctl() should ensure this case
4260 * is never reached
4262 WARN_ON(1);
4263 err = -EINVAL;
4264 break;
4267 return err;
4271 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4273 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4275 int err;
4276 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4277 const struct net_device_ops *ops;
4279 if (!dev)
4280 return -ENODEV;
4282 ops = dev->netdev_ops;
4284 switch (cmd) {
4285 case SIOCSIFFLAGS: /* Set interface flags */
4286 return dev_change_flags(dev, ifr->ifr_flags);
4288 case SIOCSIFMETRIC: /* Set the metric on the interface
4289 (currently unused) */
4290 return -EOPNOTSUPP;
4292 case SIOCSIFMTU: /* Set the MTU of a device */
4293 return dev_set_mtu(dev, ifr->ifr_mtu);
4295 case SIOCSIFHWADDR:
4296 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4298 case SIOCSIFHWBROADCAST:
4299 if (ifr->ifr_hwaddr.sa_family != dev->type)
4300 return -EINVAL;
4301 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4302 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4303 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4304 return 0;
4306 case SIOCSIFMAP:
4307 if (ops->ndo_set_config) {
4308 if (!netif_device_present(dev))
4309 return -ENODEV;
4310 return ops->ndo_set_config(dev, &ifr->ifr_map);
4312 return -EOPNOTSUPP;
4314 case SIOCADDMULTI:
4315 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4316 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4317 return -EINVAL;
4318 if (!netif_device_present(dev))
4319 return -ENODEV;
4320 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4321 dev->addr_len, 1);
4323 case SIOCDELMULTI:
4324 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4325 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4326 return -EINVAL;
4327 if (!netif_device_present(dev))
4328 return -ENODEV;
4329 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4330 dev->addr_len, 1);
4332 case SIOCSIFTXQLEN:
4333 if (ifr->ifr_qlen < 0)
4334 return -EINVAL;
4335 dev->tx_queue_len = ifr->ifr_qlen;
4336 return 0;
4338 case SIOCSIFNAME:
4339 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4340 return dev_change_name(dev, ifr->ifr_newname);
4343 * Unknown or private ioctl
4346 default:
4347 if ((cmd >= SIOCDEVPRIVATE &&
4348 cmd <= SIOCDEVPRIVATE + 15) ||
4349 cmd == SIOCBONDENSLAVE ||
4350 cmd == SIOCBONDRELEASE ||
4351 cmd == SIOCBONDSETHWADDR ||
4352 cmd == SIOCBONDSLAVEINFOQUERY ||
4353 cmd == SIOCBONDINFOQUERY ||
4354 cmd == SIOCBONDCHANGEACTIVE ||
4355 cmd == SIOCGMIIPHY ||
4356 cmd == SIOCGMIIREG ||
4357 cmd == SIOCSMIIREG ||
4358 cmd == SIOCBRADDIF ||
4359 cmd == SIOCBRDELIF ||
4360 cmd == SIOCSHWTSTAMP ||
4361 cmd == SIOCWANDEV) {
4362 err = -EOPNOTSUPP;
4363 if (ops->ndo_do_ioctl) {
4364 if (netif_device_present(dev))
4365 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4366 else
4367 err = -ENODEV;
4369 } else
4370 err = -EINVAL;
4373 return err;
4377 * This function handles all "interface"-type I/O control requests. The actual
4378 * 'doing' part of this is dev_ifsioc above.
4382 * dev_ioctl - network device ioctl
4383 * @net: the applicable net namespace
4384 * @cmd: command to issue
4385 * @arg: pointer to a struct ifreq in user space
4387 * Issue ioctl functions to devices. This is normally called by the
4388 * user space syscall interfaces but can sometimes be useful for
4389 * other purposes. The return value is the return from the syscall if
4390 * positive or a negative errno code on error.
4393 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4395 struct ifreq ifr;
4396 int ret;
4397 char *colon;
4399 /* One special case: SIOCGIFCONF takes ifconf argument
4400 and requires shared lock, because it sleeps writing
4401 to user space.
4404 if (cmd == SIOCGIFCONF) {
4405 rtnl_lock();
4406 ret = dev_ifconf(net, (char __user *) arg);
4407 rtnl_unlock();
4408 return ret;
4410 if (cmd == SIOCGIFNAME)
4411 return dev_ifname(net, (struct ifreq __user *)arg);
4413 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4414 return -EFAULT;
4416 ifr.ifr_name[IFNAMSIZ-1] = 0;
4418 colon = strchr(ifr.ifr_name, ':');
4419 if (colon)
4420 *colon = 0;
4423 * See which interface the caller is talking about.
4426 switch (cmd) {
4428 * These ioctl calls:
4429 * - can be done by all.
4430 * - atomic and do not require locking.
4431 * - return a value
4433 case SIOCGIFFLAGS:
4434 case SIOCGIFMETRIC:
4435 case SIOCGIFMTU:
4436 case SIOCGIFHWADDR:
4437 case SIOCGIFSLAVE:
4438 case SIOCGIFMAP:
4439 case SIOCGIFINDEX:
4440 case SIOCGIFTXQLEN:
4441 dev_load(net, ifr.ifr_name);
4442 read_lock(&dev_base_lock);
4443 ret = dev_ifsioc_locked(net, &ifr, cmd);
4444 read_unlock(&dev_base_lock);
4445 if (!ret) {
4446 if (colon)
4447 *colon = ':';
4448 if (copy_to_user(arg, &ifr,
4449 sizeof(struct ifreq)))
4450 ret = -EFAULT;
4452 return ret;
4454 case SIOCETHTOOL:
4455 dev_load(net, ifr.ifr_name);
4456 rtnl_lock();
4457 ret = dev_ethtool(net, &ifr);
4458 rtnl_unlock();
4459 if (!ret) {
4460 if (colon)
4461 *colon = ':';
4462 if (copy_to_user(arg, &ifr,
4463 sizeof(struct ifreq)))
4464 ret = -EFAULT;
4466 return ret;
4469 * These ioctl calls:
4470 * - require superuser power.
4471 * - require strict serialization.
4472 * - return a value
4474 case SIOCGMIIPHY:
4475 case SIOCGMIIREG:
4476 case SIOCSIFNAME:
4477 if (!capable(CAP_NET_ADMIN))
4478 return -EPERM;
4479 dev_load(net, ifr.ifr_name);
4480 rtnl_lock();
4481 ret = dev_ifsioc(net, &ifr, cmd);
4482 rtnl_unlock();
4483 if (!ret) {
4484 if (colon)
4485 *colon = ':';
4486 if (copy_to_user(arg, &ifr,
4487 sizeof(struct ifreq)))
4488 ret = -EFAULT;
4490 return ret;
4493 * These ioctl calls:
4494 * - require superuser power.
4495 * - require strict serialization.
4496 * - do not return a value
4498 case SIOCSIFFLAGS:
4499 case SIOCSIFMETRIC:
4500 case SIOCSIFMTU:
4501 case SIOCSIFMAP:
4502 case SIOCSIFHWADDR:
4503 case SIOCSIFSLAVE:
4504 case SIOCADDMULTI:
4505 case SIOCDELMULTI:
4506 case SIOCSIFHWBROADCAST:
4507 case SIOCSIFTXQLEN:
4508 case SIOCSMIIREG:
4509 case SIOCBONDENSLAVE:
4510 case SIOCBONDRELEASE:
4511 case SIOCBONDSETHWADDR:
4512 case SIOCBONDCHANGEACTIVE:
4513 case SIOCBRADDIF:
4514 case SIOCBRDELIF:
4515 case SIOCSHWTSTAMP:
4516 if (!capable(CAP_NET_ADMIN))
4517 return -EPERM;
4518 /* fall through */
4519 case SIOCBONDSLAVEINFOQUERY:
4520 case SIOCBONDINFOQUERY:
4521 dev_load(net, ifr.ifr_name);
4522 rtnl_lock();
4523 ret = dev_ifsioc(net, &ifr, cmd);
4524 rtnl_unlock();
4525 return ret;
4527 case SIOCGIFMEM:
4528 /* Get the per device memory space. We can add this but
4529 * currently do not support it */
4530 case SIOCSIFMEM:
4531 /* Set the per device memory buffer space.
4532 * Not applicable in our case */
4533 case SIOCSIFLINK:
4534 return -EINVAL;
4537 * Unknown or private ioctl.
4539 default:
4540 if (cmd == SIOCWANDEV ||
4541 (cmd >= SIOCDEVPRIVATE &&
4542 cmd <= SIOCDEVPRIVATE + 15)) {
4543 dev_load(net, ifr.ifr_name);
4544 rtnl_lock();
4545 ret = dev_ifsioc(net, &ifr, cmd);
4546 rtnl_unlock();
4547 if (!ret && copy_to_user(arg, &ifr,
4548 sizeof(struct ifreq)))
4549 ret = -EFAULT;
4550 return ret;
4552 /* Take care of Wireless Extensions */
4553 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4554 return wext_handle_ioctl(net, &ifr, cmd, arg);
4555 return -EINVAL;
4561 * dev_new_index - allocate an ifindex
4562 * @net: the applicable net namespace
4564 * Returns a suitable unique value for a new device interface
4565 * number. The caller must hold the rtnl semaphore or the
4566 * dev_base_lock to be sure it remains unique.
4568 static int dev_new_index(struct net *net)
4570 static int ifindex;
4571 for (;;) {
4572 if (++ifindex <= 0)
4573 ifindex = 1;
4574 if (!__dev_get_by_index(net, ifindex))
4575 return ifindex;
4579 /* Delayed registration/unregisteration */
4580 static LIST_HEAD(net_todo_list);
4582 static void net_set_todo(struct net_device *dev)
4584 list_add_tail(&dev->todo_list, &net_todo_list);
4587 static void rollback_registered(struct net_device *dev)
4589 BUG_ON(dev_boot_phase);
4590 ASSERT_RTNL();
4592 /* Some devices call without registering for initialization unwind. */
4593 if (dev->reg_state == NETREG_UNINITIALIZED) {
4594 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4595 "was registered\n", dev->name, dev);
4597 WARN_ON(1);
4598 return;
4601 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4603 /* If device is running, close it first. */
4604 dev_close(dev);
4606 /* And unlink it from device chain. */
4607 unlist_netdevice(dev);
4609 dev->reg_state = NETREG_UNREGISTERING;
4611 synchronize_net();
4613 /* Shutdown queueing discipline. */
4614 dev_shutdown(dev);
4617 /* Notify protocols, that we are about to destroy
4618 this device. They should clean all the things.
4620 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4623 * Flush the unicast and multicast chains
4625 dev_unicast_flush(dev);
4626 dev_addr_discard(dev);
4628 if (dev->netdev_ops->ndo_uninit)
4629 dev->netdev_ops->ndo_uninit(dev);
4631 /* Notifier chain MUST detach us from master device. */
4632 WARN_ON(dev->master);
4634 /* Remove entries from kobject tree */
4635 netdev_unregister_kobject(dev);
4637 synchronize_net();
4639 dev_put(dev);
4642 static void __netdev_init_queue_locks_one(struct net_device *dev,
4643 struct netdev_queue *dev_queue,
4644 void *_unused)
4646 spin_lock_init(&dev_queue->_xmit_lock);
4647 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4648 dev_queue->xmit_lock_owner = -1;
4651 static void netdev_init_queue_locks(struct net_device *dev)
4653 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4654 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4657 unsigned long netdev_fix_features(unsigned long features, const char *name)
4659 /* Fix illegal SG+CSUM combinations. */
4660 if ((features & NETIF_F_SG) &&
4661 !(features & NETIF_F_ALL_CSUM)) {
4662 if (name)
4663 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4664 "checksum feature.\n", name);
4665 features &= ~NETIF_F_SG;
4668 /* TSO requires that SG is present as well. */
4669 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4670 if (name)
4671 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4672 "SG feature.\n", name);
4673 features &= ~NETIF_F_TSO;
4676 if (features & NETIF_F_UFO) {
4677 if (!(features & NETIF_F_GEN_CSUM)) {
4678 if (name)
4679 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4680 "since no NETIF_F_HW_CSUM feature.\n",
4681 name);
4682 features &= ~NETIF_F_UFO;
4685 if (!(features & NETIF_F_SG)) {
4686 if (name)
4687 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4688 "since no NETIF_F_SG feature.\n", name);
4689 features &= ~NETIF_F_UFO;
4693 return features;
4695 EXPORT_SYMBOL(netdev_fix_features);
4698 * register_netdevice - register a network device
4699 * @dev: device to register
4701 * Take a completed network device structure and add it to the kernel
4702 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4703 * chain. 0 is returned on success. A negative errno code is returned
4704 * on a failure to set up the device, or if the name is a duplicate.
4706 * Callers must hold the rtnl semaphore. You may want
4707 * register_netdev() instead of this.
4709 * BUGS:
4710 * The locking appears insufficient to guarantee two parallel registers
4711 * will not get the same name.
4714 int register_netdevice(struct net_device *dev)
4716 struct hlist_head *head;
4717 struct hlist_node *p;
4718 int ret;
4719 struct net *net = dev_net(dev);
4721 BUG_ON(dev_boot_phase);
4722 ASSERT_RTNL();
4724 might_sleep();
4726 /* When net_device's are persistent, this will be fatal. */
4727 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4728 BUG_ON(!net);
4730 spin_lock_init(&dev->addr_list_lock);
4731 netdev_set_addr_lockdep_class(dev);
4732 netdev_init_queue_locks(dev);
4734 dev->iflink = -1;
4736 /* Init, if this function is available */
4737 if (dev->netdev_ops->ndo_init) {
4738 ret = dev->netdev_ops->ndo_init(dev);
4739 if (ret) {
4740 if (ret > 0)
4741 ret = -EIO;
4742 goto out;
4746 if (!dev_valid_name(dev->name)) {
4747 ret = -EINVAL;
4748 goto err_uninit;
4751 dev->ifindex = dev_new_index(net);
4752 if (dev->iflink == -1)
4753 dev->iflink = dev->ifindex;
4755 /* Check for existence of name */
4756 head = dev_name_hash(net, dev->name);
4757 hlist_for_each(p, head) {
4758 struct net_device *d
4759 = hlist_entry(p, struct net_device, name_hlist);
4760 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4761 ret = -EEXIST;
4762 goto err_uninit;
4766 /* Fix illegal checksum combinations */
4767 if ((dev->features & NETIF_F_HW_CSUM) &&
4768 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4769 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4770 dev->name);
4771 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4774 if ((dev->features & NETIF_F_NO_CSUM) &&
4775 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4776 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4777 dev->name);
4778 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4781 dev->features = netdev_fix_features(dev->features, dev->name);
4783 /* Enable software GSO if SG is supported. */
4784 if (dev->features & NETIF_F_SG)
4785 dev->features |= NETIF_F_GSO;
4787 netdev_initialize_kobject(dev);
4788 ret = netdev_register_kobject(dev);
4789 if (ret)
4790 goto err_uninit;
4791 dev->reg_state = NETREG_REGISTERED;
4794 * Default initial state at registry is that the
4795 * device is present.
4798 set_bit(__LINK_STATE_PRESENT, &dev->state);
4800 dev_init_scheduler(dev);
4801 dev_hold(dev);
4802 list_netdevice(dev);
4804 /* Notify protocols, that a new device appeared. */
4805 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4806 ret = notifier_to_errno(ret);
4807 if (ret) {
4808 rollback_registered(dev);
4809 dev->reg_state = NETREG_UNREGISTERED;
4812 out:
4813 return ret;
4815 err_uninit:
4816 if (dev->netdev_ops->ndo_uninit)
4817 dev->netdev_ops->ndo_uninit(dev);
4818 goto out;
4822 * init_dummy_netdev - init a dummy network device for NAPI
4823 * @dev: device to init
4825 * This takes a network device structure and initialize the minimum
4826 * amount of fields so it can be used to schedule NAPI polls without
4827 * registering a full blown interface. This is to be used by drivers
4828 * that need to tie several hardware interfaces to a single NAPI
4829 * poll scheduler due to HW limitations.
4831 int init_dummy_netdev(struct net_device *dev)
4833 /* Clear everything. Note we don't initialize spinlocks
4834 * are they aren't supposed to be taken by any of the
4835 * NAPI code and this dummy netdev is supposed to be
4836 * only ever used for NAPI polls
4838 memset(dev, 0, sizeof(struct net_device));
4840 /* make sure we BUG if trying to hit standard
4841 * register/unregister code path
4843 dev->reg_state = NETREG_DUMMY;
4845 /* initialize the ref count */
4846 atomic_set(&dev->refcnt, 1);
4848 /* NAPI wants this */
4849 INIT_LIST_HEAD(&dev->napi_list);
4851 /* a dummy interface is started by default */
4852 set_bit(__LINK_STATE_PRESENT, &dev->state);
4853 set_bit(__LINK_STATE_START, &dev->state);
4855 return 0;
4857 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4861 * register_netdev - register a network device
4862 * @dev: device to register
4864 * Take a completed network device structure and add it to the kernel
4865 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4866 * chain. 0 is returned on success. A negative errno code is returned
4867 * on a failure to set up the device, or if the name is a duplicate.
4869 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4870 * and expands the device name if you passed a format string to
4871 * alloc_netdev.
4873 int register_netdev(struct net_device *dev)
4875 int err;
4877 rtnl_lock();
4880 * If the name is a format string the caller wants us to do a
4881 * name allocation.
4883 if (strchr(dev->name, '%')) {
4884 err = dev_alloc_name(dev, dev->name);
4885 if (err < 0)
4886 goto out;
4889 err = register_netdevice(dev);
4890 out:
4891 rtnl_unlock();
4892 return err;
4894 EXPORT_SYMBOL(register_netdev);
4897 * netdev_wait_allrefs - wait until all references are gone.
4899 * This is called when unregistering network devices.
4901 * Any protocol or device that holds a reference should register
4902 * for netdevice notification, and cleanup and put back the
4903 * reference if they receive an UNREGISTER event.
4904 * We can get stuck here if buggy protocols don't correctly
4905 * call dev_put.
4907 static void netdev_wait_allrefs(struct net_device *dev)
4909 unsigned long rebroadcast_time, warning_time;
4911 rebroadcast_time = warning_time = jiffies;
4912 while (atomic_read(&dev->refcnt) != 0) {
4913 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4914 rtnl_lock();
4916 /* Rebroadcast unregister notification */
4917 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4919 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4920 &dev->state)) {
4921 /* We must not have linkwatch events
4922 * pending on unregister. If this
4923 * happens, we simply run the queue
4924 * unscheduled, resulting in a noop
4925 * for this device.
4927 linkwatch_run_queue();
4930 __rtnl_unlock();
4932 rebroadcast_time = jiffies;
4935 msleep(250);
4937 if (time_after(jiffies, warning_time + 10 * HZ)) {
4938 printk(KERN_EMERG "unregister_netdevice: "
4939 "waiting for %s to become free. Usage "
4940 "count = %d\n",
4941 dev->name, atomic_read(&dev->refcnt));
4942 warning_time = jiffies;
4947 /* The sequence is:
4949 * rtnl_lock();
4950 * ...
4951 * register_netdevice(x1);
4952 * register_netdevice(x2);
4953 * ...
4954 * unregister_netdevice(y1);
4955 * unregister_netdevice(y2);
4956 * ...
4957 * rtnl_unlock();
4958 * free_netdev(y1);
4959 * free_netdev(y2);
4961 * We are invoked by rtnl_unlock().
4962 * This allows us to deal with problems:
4963 * 1) We can delete sysfs objects which invoke hotplug
4964 * without deadlocking with linkwatch via keventd.
4965 * 2) Since we run with the RTNL semaphore not held, we can sleep
4966 * safely in order to wait for the netdev refcnt to drop to zero.
4968 * We must not return until all unregister events added during
4969 * the interval the lock was held have been completed.
4971 void netdev_run_todo(void)
4973 struct list_head list;
4975 /* Snapshot list, allow later requests */
4976 list_replace_init(&net_todo_list, &list);
4978 __rtnl_unlock();
4980 while (!list_empty(&list)) {
4981 struct net_device *dev
4982 = list_entry(list.next, struct net_device, todo_list);
4983 list_del(&dev->todo_list);
4985 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4986 printk(KERN_ERR "network todo '%s' but state %d\n",
4987 dev->name, dev->reg_state);
4988 dump_stack();
4989 continue;
4992 dev->reg_state = NETREG_UNREGISTERED;
4994 on_each_cpu(flush_backlog, dev, 1);
4996 netdev_wait_allrefs(dev);
4998 /* paranoia */
4999 BUG_ON(atomic_read(&dev->refcnt));
5000 WARN_ON(dev->ip_ptr);
5001 WARN_ON(dev->ip6_ptr);
5002 WARN_ON(dev->dn_ptr);
5004 if (dev->destructor)
5005 dev->destructor(dev);
5007 /* Free network device */
5008 kobject_put(&dev->dev.kobj);
5013 * dev_get_stats - get network device statistics
5014 * @dev: device to get statistics from
5016 * Get network statistics from device. The device driver may provide
5017 * its own method by setting dev->netdev_ops->get_stats; otherwise
5018 * the internal statistics structure is used.
5020 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5022 const struct net_device_ops *ops = dev->netdev_ops;
5024 if (ops->ndo_get_stats)
5025 return ops->ndo_get_stats(dev);
5026 else {
5027 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5028 struct net_device_stats *stats = &dev->stats;
5029 unsigned int i;
5030 struct netdev_queue *txq;
5032 for (i = 0; i < dev->num_tx_queues; i++) {
5033 txq = netdev_get_tx_queue(dev, i);
5034 tx_bytes += txq->tx_bytes;
5035 tx_packets += txq->tx_packets;
5036 tx_dropped += txq->tx_dropped;
5038 if (tx_bytes || tx_packets || tx_dropped) {
5039 stats->tx_bytes = tx_bytes;
5040 stats->tx_packets = tx_packets;
5041 stats->tx_dropped = tx_dropped;
5043 return stats;
5046 EXPORT_SYMBOL(dev_get_stats);
5048 static void netdev_init_one_queue(struct net_device *dev,
5049 struct netdev_queue *queue,
5050 void *_unused)
5052 queue->dev = dev;
5055 static void netdev_init_queues(struct net_device *dev)
5057 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5058 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5059 spin_lock_init(&dev->tx_global_lock);
5063 * alloc_netdev_mq - allocate network device
5064 * @sizeof_priv: size of private data to allocate space for
5065 * @name: device name format string
5066 * @setup: callback to initialize device
5067 * @queue_count: the number of subqueues to allocate
5069 * Allocates a struct net_device with private data area for driver use
5070 * and performs basic initialization. Also allocates subquue structs
5071 * for each queue on the device at the end of the netdevice.
5073 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5074 void (*setup)(struct net_device *), unsigned int queue_count)
5076 struct netdev_queue *tx;
5077 struct net_device *dev;
5078 size_t alloc_size;
5079 struct net_device *p;
5081 BUG_ON(strlen(name) >= sizeof(dev->name));
5083 alloc_size = sizeof(struct net_device);
5084 if (sizeof_priv) {
5085 /* ensure 32-byte alignment of private area */
5086 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5087 alloc_size += sizeof_priv;
5089 /* ensure 32-byte alignment of whole construct */
5090 alloc_size += NETDEV_ALIGN - 1;
5092 p = kzalloc(alloc_size, GFP_KERNEL);
5093 if (!p) {
5094 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5095 return NULL;
5098 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5099 if (!tx) {
5100 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5101 "tx qdiscs.\n");
5102 goto free_p;
5105 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5106 dev->padded = (char *)dev - (char *)p;
5108 if (dev_addr_init(dev))
5109 goto free_tx;
5111 dev_unicast_init(dev);
5113 dev_net_set(dev, &init_net);
5115 dev->_tx = tx;
5116 dev->num_tx_queues = queue_count;
5117 dev->real_num_tx_queues = queue_count;
5119 dev->gso_max_size = GSO_MAX_SIZE;
5121 netdev_init_queues(dev);
5123 INIT_LIST_HEAD(&dev->napi_list);
5124 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5125 setup(dev);
5126 strcpy(dev->name, name);
5127 return dev;
5129 free_tx:
5130 kfree(tx);
5132 free_p:
5133 kfree(p);
5134 return NULL;
5136 EXPORT_SYMBOL(alloc_netdev_mq);
5139 * free_netdev - free network device
5140 * @dev: device
5142 * This function does the last stage of destroying an allocated device
5143 * interface. The reference to the device object is released.
5144 * If this is the last reference then it will be freed.
5146 void free_netdev(struct net_device *dev)
5148 struct napi_struct *p, *n;
5150 release_net(dev_net(dev));
5152 kfree(dev->_tx);
5154 /* Flush device addresses */
5155 dev_addr_flush(dev);
5157 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5158 netif_napi_del(p);
5160 /* Compatibility with error handling in drivers */
5161 if (dev->reg_state == NETREG_UNINITIALIZED) {
5162 kfree((char *)dev - dev->padded);
5163 return;
5166 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5167 dev->reg_state = NETREG_RELEASED;
5169 /* will free via device release */
5170 put_device(&dev->dev);
5174 * synchronize_net - Synchronize with packet receive processing
5176 * Wait for packets currently being received to be done.
5177 * Does not block later packets from starting.
5179 void synchronize_net(void)
5181 might_sleep();
5182 synchronize_rcu();
5186 * unregister_netdevice - remove device from the kernel
5187 * @dev: device
5189 * This function shuts down a device interface and removes it
5190 * from the kernel tables.
5192 * Callers must hold the rtnl semaphore. You may want
5193 * unregister_netdev() instead of this.
5196 void unregister_netdevice(struct net_device *dev)
5198 ASSERT_RTNL();
5200 rollback_registered(dev);
5201 /* Finish processing unregister after unlock */
5202 net_set_todo(dev);
5206 * unregister_netdev - remove device from the kernel
5207 * @dev: device
5209 * This function shuts down a device interface and removes it
5210 * from the kernel tables.
5212 * This is just a wrapper for unregister_netdevice that takes
5213 * the rtnl semaphore. In general you want to use this and not
5214 * unregister_netdevice.
5216 void unregister_netdev(struct net_device *dev)
5218 rtnl_lock();
5219 unregister_netdevice(dev);
5220 rtnl_unlock();
5223 EXPORT_SYMBOL(unregister_netdev);
5226 * dev_change_net_namespace - move device to different nethost namespace
5227 * @dev: device
5228 * @net: network namespace
5229 * @pat: If not NULL name pattern to try if the current device name
5230 * is already taken in the destination network namespace.
5232 * This function shuts down a device interface and moves it
5233 * to a new network namespace. On success 0 is returned, on
5234 * a failure a netagive errno code is returned.
5236 * Callers must hold the rtnl semaphore.
5239 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5241 char buf[IFNAMSIZ];
5242 const char *destname;
5243 int err;
5245 ASSERT_RTNL();
5247 /* Don't allow namespace local devices to be moved. */
5248 err = -EINVAL;
5249 if (dev->features & NETIF_F_NETNS_LOCAL)
5250 goto out;
5252 #ifdef CONFIG_SYSFS
5253 /* Don't allow real devices to be moved when sysfs
5254 * is enabled.
5256 err = -EINVAL;
5257 if (dev->dev.parent)
5258 goto out;
5259 #endif
5261 /* Ensure the device has been registrered */
5262 err = -EINVAL;
5263 if (dev->reg_state != NETREG_REGISTERED)
5264 goto out;
5266 /* Get out if there is nothing todo */
5267 err = 0;
5268 if (net_eq(dev_net(dev), net))
5269 goto out;
5271 /* Pick the destination device name, and ensure
5272 * we can use it in the destination network namespace.
5274 err = -EEXIST;
5275 destname = dev->name;
5276 if (__dev_get_by_name(net, destname)) {
5277 /* We get here if we can't use the current device name */
5278 if (!pat)
5279 goto out;
5280 if (!dev_valid_name(pat))
5281 goto out;
5282 if (strchr(pat, '%')) {
5283 if (__dev_alloc_name(net, pat, buf) < 0)
5284 goto out;
5285 destname = buf;
5286 } else
5287 destname = pat;
5288 if (__dev_get_by_name(net, destname))
5289 goto out;
5293 * And now a mini version of register_netdevice unregister_netdevice.
5296 /* If device is running close it first. */
5297 dev_close(dev);
5299 /* And unlink it from device chain */
5300 err = -ENODEV;
5301 unlist_netdevice(dev);
5303 synchronize_net();
5305 /* Shutdown queueing discipline. */
5306 dev_shutdown(dev);
5308 /* Notify protocols, that we are about to destroy
5309 this device. They should clean all the things.
5311 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5314 * Flush the unicast and multicast chains
5316 dev_unicast_flush(dev);
5317 dev_addr_discard(dev);
5319 netdev_unregister_kobject(dev);
5321 /* Actually switch the network namespace */
5322 dev_net_set(dev, net);
5324 /* Assign the new device name */
5325 if (destname != dev->name)
5326 strcpy(dev->name, destname);
5328 /* If there is an ifindex conflict assign a new one */
5329 if (__dev_get_by_index(net, dev->ifindex)) {
5330 int iflink = (dev->iflink == dev->ifindex);
5331 dev->ifindex = dev_new_index(net);
5332 if (iflink)
5333 dev->iflink = dev->ifindex;
5336 /* Fixup kobjects */
5337 err = netdev_register_kobject(dev);
5338 WARN_ON(err);
5340 /* Add the device back in the hashes */
5341 list_netdevice(dev);
5343 /* Notify protocols, that a new device appeared. */
5344 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5346 synchronize_net();
5347 err = 0;
5348 out:
5349 return err;
5352 static int dev_cpu_callback(struct notifier_block *nfb,
5353 unsigned long action,
5354 void *ocpu)
5356 struct sk_buff **list_skb;
5357 struct Qdisc **list_net;
5358 struct sk_buff *skb;
5359 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5360 struct softnet_data *sd, *oldsd;
5362 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5363 return NOTIFY_OK;
5365 local_irq_disable();
5366 cpu = smp_processor_id();
5367 sd = &per_cpu(softnet_data, cpu);
5368 oldsd = &per_cpu(softnet_data, oldcpu);
5370 /* Find end of our completion_queue. */
5371 list_skb = &sd->completion_queue;
5372 while (*list_skb)
5373 list_skb = &(*list_skb)->next;
5374 /* Append completion queue from offline CPU. */
5375 *list_skb = oldsd->completion_queue;
5376 oldsd->completion_queue = NULL;
5378 /* Find end of our output_queue. */
5379 list_net = &sd->output_queue;
5380 while (*list_net)
5381 list_net = &(*list_net)->next_sched;
5382 /* Append output queue from offline CPU. */
5383 *list_net = oldsd->output_queue;
5384 oldsd->output_queue = NULL;
5386 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5387 local_irq_enable();
5389 /* Process offline CPU's input_pkt_queue */
5390 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5391 netif_rx(skb);
5393 return NOTIFY_OK;
5398 * netdev_increment_features - increment feature set by one
5399 * @all: current feature set
5400 * @one: new feature set
5401 * @mask: mask feature set
5403 * Computes a new feature set after adding a device with feature set
5404 * @one to the master device with current feature set @all. Will not
5405 * enable anything that is off in @mask. Returns the new feature set.
5407 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5408 unsigned long mask)
5410 /* If device needs checksumming, downgrade to it. */
5411 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5412 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5413 else if (mask & NETIF_F_ALL_CSUM) {
5414 /* If one device supports v4/v6 checksumming, set for all. */
5415 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5416 !(all & NETIF_F_GEN_CSUM)) {
5417 all &= ~NETIF_F_ALL_CSUM;
5418 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5421 /* If one device supports hw checksumming, set for all. */
5422 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5423 all &= ~NETIF_F_ALL_CSUM;
5424 all |= NETIF_F_HW_CSUM;
5428 one |= NETIF_F_ALL_CSUM;
5430 one |= all & NETIF_F_ONE_FOR_ALL;
5431 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5432 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5434 return all;
5436 EXPORT_SYMBOL(netdev_increment_features);
5438 static struct hlist_head *netdev_create_hash(void)
5440 int i;
5441 struct hlist_head *hash;
5443 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5444 if (hash != NULL)
5445 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5446 INIT_HLIST_HEAD(&hash[i]);
5448 return hash;
5451 /* Initialize per network namespace state */
5452 static int __net_init netdev_init(struct net *net)
5454 INIT_LIST_HEAD(&net->dev_base_head);
5456 net->dev_name_head = netdev_create_hash();
5457 if (net->dev_name_head == NULL)
5458 goto err_name;
5460 net->dev_index_head = netdev_create_hash();
5461 if (net->dev_index_head == NULL)
5462 goto err_idx;
5464 return 0;
5466 err_idx:
5467 kfree(net->dev_name_head);
5468 err_name:
5469 return -ENOMEM;
5473 * netdev_drivername - network driver for the device
5474 * @dev: network device
5475 * @buffer: buffer for resulting name
5476 * @len: size of buffer
5478 * Determine network driver for device.
5480 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5482 const struct device_driver *driver;
5483 const struct device *parent;
5485 if (len <= 0 || !buffer)
5486 return buffer;
5487 buffer[0] = 0;
5489 parent = dev->dev.parent;
5491 if (!parent)
5492 return buffer;
5494 driver = parent->driver;
5495 if (driver && driver->name)
5496 strlcpy(buffer, driver->name, len);
5497 return buffer;
5500 static void __net_exit netdev_exit(struct net *net)
5502 kfree(net->dev_name_head);
5503 kfree(net->dev_index_head);
5506 static struct pernet_operations __net_initdata netdev_net_ops = {
5507 .init = netdev_init,
5508 .exit = netdev_exit,
5511 static void __net_exit default_device_exit(struct net *net)
5513 struct net_device *dev;
5515 * Push all migratable of the network devices back to the
5516 * initial network namespace
5518 rtnl_lock();
5519 restart:
5520 for_each_netdev(net, dev) {
5521 int err;
5522 char fb_name[IFNAMSIZ];
5524 /* Ignore unmoveable devices (i.e. loopback) */
5525 if (dev->features & NETIF_F_NETNS_LOCAL)
5526 continue;
5528 /* Delete virtual devices */
5529 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5530 dev->rtnl_link_ops->dellink(dev);
5531 goto restart;
5534 /* Push remaing network devices to init_net */
5535 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5536 err = dev_change_net_namespace(dev, &init_net, fb_name);
5537 if (err) {
5538 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5539 __func__, dev->name, err);
5540 BUG();
5542 goto restart;
5544 rtnl_unlock();
5547 static struct pernet_operations __net_initdata default_device_ops = {
5548 .exit = default_device_exit,
5552 * Initialize the DEV module. At boot time this walks the device list and
5553 * unhooks any devices that fail to initialise (normally hardware not
5554 * present) and leaves us with a valid list of present and active devices.
5559 * This is called single threaded during boot, so no need
5560 * to take the rtnl semaphore.
5562 static int __init net_dev_init(void)
5564 int i, rc = -ENOMEM;
5566 BUG_ON(!dev_boot_phase);
5568 if (dev_proc_init())
5569 goto out;
5571 if (netdev_kobject_init())
5572 goto out;
5574 INIT_LIST_HEAD(&ptype_all);
5575 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5576 INIT_LIST_HEAD(&ptype_base[i]);
5578 if (register_pernet_subsys(&netdev_net_ops))
5579 goto out;
5582 * Initialise the packet receive queues.
5585 for_each_possible_cpu(i) {
5586 struct softnet_data *queue;
5588 queue = &per_cpu(softnet_data, i);
5589 skb_queue_head_init(&queue->input_pkt_queue);
5590 queue->completion_queue = NULL;
5591 INIT_LIST_HEAD(&queue->poll_list);
5593 queue->backlog.poll = process_backlog;
5594 queue->backlog.weight = weight_p;
5595 queue->backlog.gro_list = NULL;
5596 queue->backlog.gro_count = 0;
5599 dev_boot_phase = 0;
5601 /* The loopback device is special if any other network devices
5602 * is present in a network namespace the loopback device must
5603 * be present. Since we now dynamically allocate and free the
5604 * loopback device ensure this invariant is maintained by
5605 * keeping the loopback device as the first device on the
5606 * list of network devices. Ensuring the loopback devices
5607 * is the first device that appears and the last network device
5608 * that disappears.
5610 if (register_pernet_device(&loopback_net_ops))
5611 goto out;
5613 if (register_pernet_device(&default_device_ops))
5614 goto out;
5616 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5617 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5619 hotcpu_notifier(dev_cpu_callback, 0);
5620 dst_init();
5621 dev_mcast_init();
5622 rc = 0;
5623 out:
5624 return rc;
5627 subsys_initcall(net_dev_init);
5629 static int __init initialize_hashrnd(void)
5631 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5632 return 0;
5635 late_initcall_sync(initialize_hashrnd);
5637 EXPORT_SYMBOL(__dev_get_by_index);
5638 EXPORT_SYMBOL(__dev_get_by_name);
5639 EXPORT_SYMBOL(__dev_remove_pack);
5640 EXPORT_SYMBOL(dev_valid_name);
5641 EXPORT_SYMBOL(dev_add_pack);
5642 EXPORT_SYMBOL(dev_alloc_name);
5643 EXPORT_SYMBOL(dev_close);
5644 EXPORT_SYMBOL(dev_get_by_flags);
5645 EXPORT_SYMBOL(dev_get_by_index);
5646 EXPORT_SYMBOL(dev_get_by_name);
5647 EXPORT_SYMBOL(dev_open);
5648 EXPORT_SYMBOL(dev_queue_xmit);
5649 EXPORT_SYMBOL(dev_remove_pack);
5650 EXPORT_SYMBOL(dev_set_allmulti);
5651 EXPORT_SYMBOL(dev_set_promiscuity);
5652 EXPORT_SYMBOL(dev_change_flags);
5653 EXPORT_SYMBOL(dev_set_mtu);
5654 EXPORT_SYMBOL(dev_set_mac_address);
5655 EXPORT_SYMBOL(free_netdev);
5656 EXPORT_SYMBOL(netdev_boot_setup_check);
5657 EXPORT_SYMBOL(netdev_set_master);
5658 EXPORT_SYMBOL(netdev_state_change);
5659 EXPORT_SYMBOL(netif_receive_skb);
5660 EXPORT_SYMBOL(netif_rx);
5661 EXPORT_SYMBOL(register_gifconf);
5662 EXPORT_SYMBOL(register_netdevice);
5663 EXPORT_SYMBOL(register_netdevice_notifier);
5664 EXPORT_SYMBOL(skb_checksum_help);
5665 EXPORT_SYMBOL(synchronize_net);
5666 EXPORT_SYMBOL(unregister_netdevice);
5667 EXPORT_SYMBOL(unregister_netdevice_notifier);
5668 EXPORT_SYMBOL(net_enable_timestamp);
5669 EXPORT_SYMBOL(net_disable_timestamp);
5670 EXPORT_SYMBOL(dev_get_flags);
5672 EXPORT_SYMBOL(dev_load);
5674 EXPORT_PER_CPU_SYMBOL(softnet_data);