[MTD] Refactor NAND hwcontrol to cmd_ctrl
[linux-2.6/mini2440.git] / drivers / mtd / nand / diskonchip.c
blobe4bb6b429f873d0044a53410ba52990846b637ae
1 /*
2 * drivers/mtd/nand/diskonchip.c
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
19 * $Id: diskonchip.c,v 1.55 2005/11/07 11:14:30 gleixner Exp $
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/rslib.h>
27 #include <linux/moduleparam.h>
28 #include <asm/io.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/nand.h>
32 #include <linux/mtd/doc2000.h>
33 #include <linux/mtd/compatmac.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/mtd/inftl.h>
37 /* Where to look for the devices? */
38 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
39 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
40 #endif
42 static unsigned long __initdata doc_locations[] = {
43 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
44 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
45 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
46 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
47 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
48 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
49 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
50 #else /* CONFIG_MTD_DOCPROBE_HIGH */
51 0xc8000, 0xca000, 0xcc000, 0xce000,
52 0xd0000, 0xd2000, 0xd4000, 0xd6000,
53 0xd8000, 0xda000, 0xdc000, 0xde000,
54 0xe0000, 0xe2000, 0xe4000, 0xe6000,
55 0xe8000, 0xea000, 0xec000, 0xee000,
56 #endif /* CONFIG_MTD_DOCPROBE_HIGH */
57 #elif defined(__PPC__)
58 0xe4000000,
59 #elif defined(CONFIG_MOMENCO_OCELOT)
60 0x2f000000,
61 0xff000000,
62 #elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
63 0xff000000,
64 #else
65 #warning Unknown architecture for DiskOnChip. No default probe locations defined
66 #endif
67 0xffffffff };
69 static struct mtd_info *doclist = NULL;
71 struct doc_priv {
72 void __iomem *virtadr;
73 unsigned long physadr;
74 u_char ChipID;
75 u_char CDSNControl;
76 int chips_per_floor; /* The number of chips detected on each floor */
77 int curfloor;
78 int curchip;
79 int mh0_page;
80 int mh1_page;
81 struct mtd_info *nextdoc;
84 /* This is the syndrome computed by the HW ecc generator upon reading an empty
85 page, one with all 0xff for data and stored ecc code. */
86 static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
88 /* This is the ecc value computed by the HW ecc generator upon writing an empty
89 page, one with all 0xff for data. */
90 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
92 #define INFTL_BBT_RESERVED_BLOCKS 4
94 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
95 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
96 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
98 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
99 unsigned int bitmask);
100 static void doc200x_select_chip(struct mtd_info *mtd, int chip);
102 static int debug = 0;
103 module_param(debug, int, 0);
105 static int try_dword = 1;
106 module_param(try_dword, int, 0);
108 static int no_ecc_failures = 0;
109 module_param(no_ecc_failures, int, 0);
111 static int no_autopart = 0;
112 module_param(no_autopart, int, 0);
114 static int show_firmware_partition = 0;
115 module_param(show_firmware_partition, int, 0);
117 #ifdef MTD_NAND_DISKONCHIP_BBTWRITE
118 static int inftl_bbt_write = 1;
119 #else
120 static int inftl_bbt_write = 0;
121 #endif
122 module_param(inftl_bbt_write, int, 0);
124 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
125 module_param(doc_config_location, ulong, 0);
126 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
128 /* Sector size for HW ECC */
129 #define SECTOR_SIZE 512
130 /* The sector bytes are packed into NB_DATA 10 bit words */
131 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
132 /* Number of roots */
133 #define NROOTS 4
134 /* First consective root */
135 #define FCR 510
136 /* Number of symbols */
137 #define NN 1023
139 /* the Reed Solomon control structure */
140 static struct rs_control *rs_decoder;
143 * The HW decoder in the DoC ASIC's provides us a error syndrome,
144 * which we must convert to a standard syndrom usable by the generic
145 * Reed-Solomon library code.
147 * Fabrice Bellard figured this out in the old docecc code. I added
148 * some comments, improved a minor bit and converted it to make use
149 * of the generic Reed-Solomon libary. tglx
151 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
153 int i, j, nerr, errpos[8];
154 uint8_t parity;
155 uint16_t ds[4], s[5], tmp, errval[8], syn[4];
157 /* Convert the ecc bytes into words */
158 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
159 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
160 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
161 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
162 parity = ecc[1];
164 /* Initialize the syndrom buffer */
165 for (i = 0; i < NROOTS; i++)
166 s[i] = ds[0];
168 * Evaluate
169 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
170 * where x = alpha^(FCR + i)
172 for (j = 1; j < NROOTS; j++) {
173 if (ds[j] == 0)
174 continue;
175 tmp = rs->index_of[ds[j]];
176 for (i = 0; i < NROOTS; i++)
177 s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
180 /* Calc s[i] = s[i] / alpha^(v + i) */
181 for (i = 0; i < NROOTS; i++) {
182 if (syn[i])
183 syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
185 /* Call the decoder library */
186 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
188 /* Incorrectable errors ? */
189 if (nerr < 0)
190 return nerr;
193 * Correct the errors. The bitpositions are a bit of magic,
194 * but they are given by the design of the de/encoder circuit
195 * in the DoC ASIC's.
197 for (i = 0; i < nerr; i++) {
198 int index, bitpos, pos = 1015 - errpos[i];
199 uint8_t val;
200 if (pos >= NB_DATA && pos < 1019)
201 continue;
202 if (pos < NB_DATA) {
203 /* extract bit position (MSB first) */
204 pos = 10 * (NB_DATA - 1 - pos) - 6;
205 /* now correct the following 10 bits. At most two bytes
206 can be modified since pos is even */
207 index = (pos >> 3) ^ 1;
208 bitpos = pos & 7;
209 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
210 val = (uint8_t) (errval[i] >> (2 + bitpos));
211 parity ^= val;
212 if (index < SECTOR_SIZE)
213 data[index] ^= val;
215 index = ((pos >> 3) + 1) ^ 1;
216 bitpos = (bitpos + 10) & 7;
217 if (bitpos == 0)
218 bitpos = 8;
219 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
220 val = (uint8_t) (errval[i] << (8 - bitpos));
221 parity ^= val;
222 if (index < SECTOR_SIZE)
223 data[index] ^= val;
227 /* If the parity is wrong, no rescue possible */
228 return parity ? -1 : nerr;
231 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
233 volatile char dummy;
234 int i;
236 for (i = 0; i < cycles; i++) {
237 if (DoC_is_Millennium(doc))
238 dummy = ReadDOC(doc->virtadr, NOP);
239 else if (DoC_is_MillenniumPlus(doc))
240 dummy = ReadDOC(doc->virtadr, Mplus_NOP);
241 else
242 dummy = ReadDOC(doc->virtadr, DOCStatus);
247 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
249 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
250 static int _DoC_WaitReady(struct doc_priv *doc)
252 void __iomem *docptr = doc->virtadr;
253 unsigned long timeo = jiffies + (HZ * 10);
255 if (debug)
256 printk("_DoC_WaitReady...\n");
257 /* Out-of-line routine to wait for chip response */
258 if (DoC_is_MillenniumPlus(doc)) {
259 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
260 if (time_after(jiffies, timeo)) {
261 printk("_DoC_WaitReady timed out.\n");
262 return -EIO;
264 udelay(1);
265 cond_resched();
267 } else {
268 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
269 if (time_after(jiffies, timeo)) {
270 printk("_DoC_WaitReady timed out.\n");
271 return -EIO;
273 udelay(1);
274 cond_resched();
278 return 0;
281 static inline int DoC_WaitReady(struct doc_priv *doc)
283 void __iomem *docptr = doc->virtadr;
284 int ret = 0;
286 if (DoC_is_MillenniumPlus(doc)) {
287 DoC_Delay(doc, 4);
289 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
290 /* Call the out-of-line routine to wait */
291 ret = _DoC_WaitReady(doc);
292 } else {
293 DoC_Delay(doc, 4);
295 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
296 /* Call the out-of-line routine to wait */
297 ret = _DoC_WaitReady(doc);
298 DoC_Delay(doc, 2);
301 if (debug)
302 printk("DoC_WaitReady OK\n");
303 return ret;
306 static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
308 struct nand_chip *this = mtd->priv;
309 struct doc_priv *doc = this->priv;
310 void __iomem *docptr = doc->virtadr;
312 if (debug)
313 printk("write_byte %02x\n", datum);
314 WriteDOC(datum, docptr, CDSNSlowIO);
315 WriteDOC(datum, docptr, 2k_CDSN_IO);
318 static u_char doc2000_read_byte(struct mtd_info *mtd)
320 struct nand_chip *this = mtd->priv;
321 struct doc_priv *doc = this->priv;
322 void __iomem *docptr = doc->virtadr;
323 u_char ret;
325 ReadDOC(docptr, CDSNSlowIO);
326 DoC_Delay(doc, 2);
327 ret = ReadDOC(docptr, 2k_CDSN_IO);
328 if (debug)
329 printk("read_byte returns %02x\n", ret);
330 return ret;
333 static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
335 struct nand_chip *this = mtd->priv;
336 struct doc_priv *doc = this->priv;
337 void __iomem *docptr = doc->virtadr;
338 int i;
339 if (debug)
340 printk("writebuf of %d bytes: ", len);
341 for (i = 0; i < len; i++) {
342 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
343 if (debug && i < 16)
344 printk("%02x ", buf[i]);
346 if (debug)
347 printk("\n");
350 static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
352 struct nand_chip *this = mtd->priv;
353 struct doc_priv *doc = this->priv;
354 void __iomem *docptr = doc->virtadr;
355 int i;
357 if (debug)
358 printk("readbuf of %d bytes: ", len);
360 for (i = 0; i < len; i++) {
361 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
365 static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
367 struct nand_chip *this = mtd->priv;
368 struct doc_priv *doc = this->priv;
369 void __iomem *docptr = doc->virtadr;
370 int i;
372 if (debug)
373 printk("readbuf_dword of %d bytes: ", len);
375 if (unlikely((((unsigned long)buf) | len) & 3)) {
376 for (i = 0; i < len; i++) {
377 *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
379 } else {
380 for (i = 0; i < len; i += 4) {
381 *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
386 static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
388 struct nand_chip *this = mtd->priv;
389 struct doc_priv *doc = this->priv;
390 void __iomem *docptr = doc->virtadr;
391 int i;
393 for (i = 0; i < len; i++)
394 if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
395 return -EFAULT;
396 return 0;
399 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
401 struct nand_chip *this = mtd->priv;
402 struct doc_priv *doc = this->priv;
403 uint16_t ret;
405 doc200x_select_chip(mtd, nr);
406 doc200x_hwcontrol(mtd, NAND_CMD_READID,
407 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
408 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
409 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
411 /* We cant' use dev_ready here, but at least we wait for the
412 * command to complete
414 udelay(50);
416 ret = this->read_byte(mtd) << 8;
417 ret |= this->read_byte(mtd);
419 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
420 /* First chip probe. See if we get same results by 32-bit access */
421 union {
422 uint32_t dword;
423 uint8_t byte[4];
424 } ident;
425 void __iomem *docptr = doc->virtadr;
427 doc200x_hwcontrol(mtd, NAND_CMD_READID,
428 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
429 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
430 doc200x_hwcontrol(mtd, NAND_CMD_NONE,
431 NAND_NCE | NAND_CTRL_CHANGE);
433 udelay(50);
435 ident.dword = readl(docptr + DoC_2k_CDSN_IO);
436 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
437 printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
438 this->read_buf = &doc2000_readbuf_dword;
442 return ret;
445 static void __init doc2000_count_chips(struct mtd_info *mtd)
447 struct nand_chip *this = mtd->priv;
448 struct doc_priv *doc = this->priv;
449 uint16_t mfrid;
450 int i;
452 /* Max 4 chips per floor on DiskOnChip 2000 */
453 doc->chips_per_floor = 4;
455 /* Find out what the first chip is */
456 mfrid = doc200x_ident_chip(mtd, 0);
458 /* Find how many chips in each floor. */
459 for (i = 1; i < 4; i++) {
460 if (doc200x_ident_chip(mtd, i) != mfrid)
461 break;
463 doc->chips_per_floor = i;
464 printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
467 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
469 struct doc_priv *doc = this->priv;
471 int status;
473 DoC_WaitReady(doc);
474 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
475 DoC_WaitReady(doc);
476 status = (int)this->read_byte(mtd);
478 return status;
481 static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
483 struct nand_chip *this = mtd->priv;
484 struct doc_priv *doc = this->priv;
485 void __iomem *docptr = doc->virtadr;
487 WriteDOC(datum, docptr, CDSNSlowIO);
488 WriteDOC(datum, docptr, Mil_CDSN_IO);
489 WriteDOC(datum, docptr, WritePipeTerm);
492 static u_char doc2001_read_byte(struct mtd_info *mtd)
494 struct nand_chip *this = mtd->priv;
495 struct doc_priv *doc = this->priv;
496 void __iomem *docptr = doc->virtadr;
498 //ReadDOC(docptr, CDSNSlowIO);
499 /* 11.4.5 -- delay twice to allow extended length cycle */
500 DoC_Delay(doc, 2);
501 ReadDOC(docptr, ReadPipeInit);
502 //return ReadDOC(docptr, Mil_CDSN_IO);
503 return ReadDOC(docptr, LastDataRead);
506 static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
508 struct nand_chip *this = mtd->priv;
509 struct doc_priv *doc = this->priv;
510 void __iomem *docptr = doc->virtadr;
511 int i;
513 for (i = 0; i < len; i++)
514 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
515 /* Terminate write pipeline */
516 WriteDOC(0x00, docptr, WritePipeTerm);
519 static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
521 struct nand_chip *this = mtd->priv;
522 struct doc_priv *doc = this->priv;
523 void __iomem *docptr = doc->virtadr;
524 int i;
526 /* Start read pipeline */
527 ReadDOC(docptr, ReadPipeInit);
529 for (i = 0; i < len - 1; i++)
530 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
532 /* Terminate read pipeline */
533 buf[i] = ReadDOC(docptr, LastDataRead);
536 static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
538 struct nand_chip *this = mtd->priv;
539 struct doc_priv *doc = this->priv;
540 void __iomem *docptr = doc->virtadr;
541 int i;
543 /* Start read pipeline */
544 ReadDOC(docptr, ReadPipeInit);
546 for (i = 0; i < len - 1; i++)
547 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
548 ReadDOC(docptr, LastDataRead);
549 return i;
551 if (buf[i] != ReadDOC(docptr, LastDataRead))
552 return i;
553 return 0;
556 static u_char doc2001plus_read_byte(struct mtd_info *mtd)
558 struct nand_chip *this = mtd->priv;
559 struct doc_priv *doc = this->priv;
560 void __iomem *docptr = doc->virtadr;
561 u_char ret;
563 ReadDOC(docptr, Mplus_ReadPipeInit);
564 ReadDOC(docptr, Mplus_ReadPipeInit);
565 ret = ReadDOC(docptr, Mplus_LastDataRead);
566 if (debug)
567 printk("read_byte returns %02x\n", ret);
568 return ret;
571 static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
573 struct nand_chip *this = mtd->priv;
574 struct doc_priv *doc = this->priv;
575 void __iomem *docptr = doc->virtadr;
576 int i;
578 if (debug)
579 printk("writebuf of %d bytes: ", len);
580 for (i = 0; i < len; i++) {
581 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
582 if (debug && i < 16)
583 printk("%02x ", buf[i]);
585 if (debug)
586 printk("\n");
589 static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
591 struct nand_chip *this = mtd->priv;
592 struct doc_priv *doc = this->priv;
593 void __iomem *docptr = doc->virtadr;
594 int i;
596 if (debug)
597 printk("readbuf of %d bytes: ", len);
599 /* Start read pipeline */
600 ReadDOC(docptr, Mplus_ReadPipeInit);
601 ReadDOC(docptr, Mplus_ReadPipeInit);
603 for (i = 0; i < len - 2; i++) {
604 buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
605 if (debug && i < 16)
606 printk("%02x ", buf[i]);
609 /* Terminate read pipeline */
610 buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
611 if (debug && i < 16)
612 printk("%02x ", buf[len - 2]);
613 buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
614 if (debug && i < 16)
615 printk("%02x ", buf[len - 1]);
616 if (debug)
617 printk("\n");
620 static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
622 struct nand_chip *this = mtd->priv;
623 struct doc_priv *doc = this->priv;
624 void __iomem *docptr = doc->virtadr;
625 int i;
627 if (debug)
628 printk("verifybuf of %d bytes: ", len);
630 /* Start read pipeline */
631 ReadDOC(docptr, Mplus_ReadPipeInit);
632 ReadDOC(docptr, Mplus_ReadPipeInit);
634 for (i = 0; i < len - 2; i++)
635 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
636 ReadDOC(docptr, Mplus_LastDataRead);
637 ReadDOC(docptr, Mplus_LastDataRead);
638 return i;
640 if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead))
641 return len - 2;
642 if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead))
643 return len - 1;
644 return 0;
647 static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
649 struct nand_chip *this = mtd->priv;
650 struct doc_priv *doc = this->priv;
651 void __iomem *docptr = doc->virtadr;
652 int floor = 0;
654 if (debug)
655 printk("select chip (%d)\n", chip);
657 if (chip == -1) {
658 /* Disable flash internally */
659 WriteDOC(0, docptr, Mplus_FlashSelect);
660 return;
663 floor = chip / doc->chips_per_floor;
664 chip -= (floor * doc->chips_per_floor);
666 /* Assert ChipEnable and deassert WriteProtect */
667 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
668 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
670 doc->curchip = chip;
671 doc->curfloor = floor;
674 static void doc200x_select_chip(struct mtd_info *mtd, int chip)
676 struct nand_chip *this = mtd->priv;
677 struct doc_priv *doc = this->priv;
678 void __iomem *docptr = doc->virtadr;
679 int floor = 0;
681 if (debug)
682 printk("select chip (%d)\n", chip);
684 if (chip == -1)
685 return;
687 floor = chip / doc->chips_per_floor;
688 chip -= (floor * doc->chips_per_floor);
690 /* 11.4.4 -- deassert CE before changing chip */
691 doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
693 WriteDOC(floor, docptr, FloorSelect);
694 WriteDOC(chip, docptr, CDSNDeviceSelect);
696 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
698 doc->curchip = chip;
699 doc->curfloor = floor;
702 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
704 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
705 unsigned int ctrl)
707 struct nand_chip *this = mtd->priv;
708 struct doc_priv *doc = this->priv;
709 void __iomem *docptr = doc->virtadr;
711 if (ctrl & NAND_CTRL_CHANGE) {
712 doc->CDSNControl &= ~CDSN_CTRL_MSK;
713 doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
714 if (debug)
715 printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
716 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
717 /* 11.4.3 -- 4 NOPs after CSDNControl write */
718 DoC_Delay(doc, 4);
720 if (cmd != NAND_CMD_NONE)
721 this->write_byte(mtd, cmd);
724 static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
726 struct nand_chip *this = mtd->priv;
727 struct doc_priv *doc = this->priv;
728 void __iomem *docptr = doc->virtadr;
731 * Must terminate write pipeline before sending any commands
732 * to the device.
734 if (command == NAND_CMD_PAGEPROG) {
735 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
736 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
740 * Write out the command to the device.
742 if (command == NAND_CMD_SEQIN) {
743 int readcmd;
745 if (column >= mtd->writesize) {
746 /* OOB area */
747 column -= mtd->writesize;
748 readcmd = NAND_CMD_READOOB;
749 } else if (column < 256) {
750 /* First 256 bytes --> READ0 */
751 readcmd = NAND_CMD_READ0;
752 } else {
753 column -= 256;
754 readcmd = NAND_CMD_READ1;
756 WriteDOC(readcmd, docptr, Mplus_FlashCmd);
758 WriteDOC(command, docptr, Mplus_FlashCmd);
759 WriteDOC(0, docptr, Mplus_WritePipeTerm);
760 WriteDOC(0, docptr, Mplus_WritePipeTerm);
762 if (column != -1 || page_addr != -1) {
763 /* Serially input address */
764 if (column != -1) {
765 /* Adjust columns for 16 bit buswidth */
766 if (this->options & NAND_BUSWIDTH_16)
767 column >>= 1;
768 WriteDOC(column, docptr, Mplus_FlashAddress);
770 if (page_addr != -1) {
771 WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
772 WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
773 /* One more address cycle for higher density devices */
774 if (this->chipsize & 0x0c000000) {
775 WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
776 printk("high density\n");
779 WriteDOC(0, docptr, Mplus_WritePipeTerm);
780 WriteDOC(0, docptr, Mplus_WritePipeTerm);
781 /* deassert ALE */
782 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
783 command == NAND_CMD_READOOB || command == NAND_CMD_READID)
784 WriteDOC(0, docptr, Mplus_FlashControl);
788 * program and erase have their own busy handlers
789 * status and sequential in needs no delay
791 switch (command) {
793 case NAND_CMD_PAGEPROG:
794 case NAND_CMD_ERASE1:
795 case NAND_CMD_ERASE2:
796 case NAND_CMD_SEQIN:
797 case NAND_CMD_STATUS:
798 return;
800 case NAND_CMD_RESET:
801 if (this->dev_ready)
802 break;
803 udelay(this->chip_delay);
804 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
805 WriteDOC(0, docptr, Mplus_WritePipeTerm);
806 WriteDOC(0, docptr, Mplus_WritePipeTerm);
807 while (!(this->read_byte(mtd) & 0x40)) ;
808 return;
810 /* This applies to read commands */
811 default:
813 * If we don't have access to the busy pin, we apply the given
814 * command delay
816 if (!this->dev_ready) {
817 udelay(this->chip_delay);
818 return;
822 /* Apply this short delay always to ensure that we do wait tWB in
823 * any case on any machine. */
824 ndelay(100);
825 /* wait until command is processed */
826 while (!this->dev_ready(mtd)) ;
829 static int doc200x_dev_ready(struct mtd_info *mtd)
831 struct nand_chip *this = mtd->priv;
832 struct doc_priv *doc = this->priv;
833 void __iomem *docptr = doc->virtadr;
835 if (DoC_is_MillenniumPlus(doc)) {
836 /* 11.4.2 -- must NOP four times before checking FR/B# */
837 DoC_Delay(doc, 4);
838 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
839 if (debug)
840 printk("not ready\n");
841 return 0;
843 if (debug)
844 printk("was ready\n");
845 return 1;
846 } else {
847 /* 11.4.2 -- must NOP four times before checking FR/B# */
848 DoC_Delay(doc, 4);
849 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
850 if (debug)
851 printk("not ready\n");
852 return 0;
854 /* 11.4.2 -- Must NOP twice if it's ready */
855 DoC_Delay(doc, 2);
856 if (debug)
857 printk("was ready\n");
858 return 1;
862 static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
864 /* This is our last resort if we couldn't find or create a BBT. Just
865 pretend all blocks are good. */
866 return 0;
869 static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
871 struct nand_chip *this = mtd->priv;
872 struct doc_priv *doc = this->priv;
873 void __iomem *docptr = doc->virtadr;
875 /* Prime the ECC engine */
876 switch (mode) {
877 case NAND_ECC_READ:
878 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
879 WriteDOC(DOC_ECC_EN, docptr, ECCConf);
880 break;
881 case NAND_ECC_WRITE:
882 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
883 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
884 break;
888 static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
890 struct nand_chip *this = mtd->priv;
891 struct doc_priv *doc = this->priv;
892 void __iomem *docptr = doc->virtadr;
894 /* Prime the ECC engine */
895 switch (mode) {
896 case NAND_ECC_READ:
897 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
898 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
899 break;
900 case NAND_ECC_WRITE:
901 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
902 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
903 break;
907 /* This code is only called on write */
908 static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
910 struct nand_chip *this = mtd->priv;
911 struct doc_priv *doc = this->priv;
912 void __iomem *docptr = doc->virtadr;
913 int i;
914 int emptymatch = 1;
916 /* flush the pipeline */
917 if (DoC_is_2000(doc)) {
918 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
919 WriteDOC(0, docptr, 2k_CDSN_IO);
920 WriteDOC(0, docptr, 2k_CDSN_IO);
921 WriteDOC(0, docptr, 2k_CDSN_IO);
922 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
923 } else if (DoC_is_MillenniumPlus(doc)) {
924 WriteDOC(0, docptr, Mplus_NOP);
925 WriteDOC(0, docptr, Mplus_NOP);
926 WriteDOC(0, docptr, Mplus_NOP);
927 } else {
928 WriteDOC(0, docptr, NOP);
929 WriteDOC(0, docptr, NOP);
930 WriteDOC(0, docptr, NOP);
933 for (i = 0; i < 6; i++) {
934 if (DoC_is_MillenniumPlus(doc))
935 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
936 else
937 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
938 if (ecc_code[i] != empty_write_ecc[i])
939 emptymatch = 0;
941 if (DoC_is_MillenniumPlus(doc))
942 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
943 else
944 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
945 #if 0
946 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
947 if (emptymatch) {
948 /* Note: this somewhat expensive test should not be triggered
949 often. It could be optimized away by examining the data in
950 the writebuf routine, and remembering the result. */
951 for (i = 0; i < 512; i++) {
952 if (dat[i] == 0xff)
953 continue;
954 emptymatch = 0;
955 break;
958 /* If emptymatch still =1, we do have an all-0xff data buffer.
959 Return all-0xff ecc value instead of the computed one, so
960 it'll look just like a freshly-erased page. */
961 if (emptymatch)
962 memset(ecc_code, 0xff, 6);
963 #endif
964 return 0;
967 static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
969 int i, ret = 0;
970 struct nand_chip *this = mtd->priv;
971 struct doc_priv *doc = this->priv;
972 void __iomem *docptr = doc->virtadr;
973 volatile u_char dummy;
974 int emptymatch = 1;
976 /* flush the pipeline */
977 if (DoC_is_2000(doc)) {
978 dummy = ReadDOC(docptr, 2k_ECCStatus);
979 dummy = ReadDOC(docptr, 2k_ECCStatus);
980 dummy = ReadDOC(docptr, 2k_ECCStatus);
981 } else if (DoC_is_MillenniumPlus(doc)) {
982 dummy = ReadDOC(docptr, Mplus_ECCConf);
983 dummy = ReadDOC(docptr, Mplus_ECCConf);
984 dummy = ReadDOC(docptr, Mplus_ECCConf);
985 } else {
986 dummy = ReadDOC(docptr, ECCConf);
987 dummy = ReadDOC(docptr, ECCConf);
988 dummy = ReadDOC(docptr, ECCConf);
991 /* Error occured ? */
992 if (dummy & 0x80) {
993 for (i = 0; i < 6; i++) {
994 if (DoC_is_MillenniumPlus(doc))
995 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
996 else
997 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
998 if (calc_ecc[i] != empty_read_syndrome[i])
999 emptymatch = 0;
1001 /* If emptymatch=1, the read syndrome is consistent with an
1002 all-0xff data and stored ecc block. Check the stored ecc. */
1003 if (emptymatch) {
1004 for (i = 0; i < 6; i++) {
1005 if (read_ecc[i] == 0xff)
1006 continue;
1007 emptymatch = 0;
1008 break;
1011 /* If emptymatch still =1, check the data block. */
1012 if (emptymatch) {
1013 /* Note: this somewhat expensive test should not be triggered
1014 often. It could be optimized away by examining the data in
1015 the readbuf routine, and remembering the result. */
1016 for (i = 0; i < 512; i++) {
1017 if (dat[i] == 0xff)
1018 continue;
1019 emptymatch = 0;
1020 break;
1023 /* If emptymatch still =1, this is almost certainly a freshly-
1024 erased block, in which case the ECC will not come out right.
1025 We'll suppress the error and tell the caller everything's
1026 OK. Because it is. */
1027 if (!emptymatch)
1028 ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
1029 if (ret > 0)
1030 printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
1032 if (DoC_is_MillenniumPlus(doc))
1033 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
1034 else
1035 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1036 if (no_ecc_failures && (ret == -1)) {
1037 printk(KERN_ERR "suppressing ECC failure\n");
1038 ret = 0;
1040 return ret;
1043 //u_char mydatabuf[528];
1045 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
1046 * attempt to retain compatibility. It used to read:
1047 * .oobfree = { {8, 8} }
1048 * Since that leaves two bytes unusable, it was changed. But the following
1049 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1050 * .oobfree = { {6, 10} }
1051 * jffs2 seems to handle the above gracefully, but the current scheme seems
1052 * safer. The only problem with it is that any code that parses oobfree must
1053 * be able to handle out-of-order segments.
1055 static struct nand_oobinfo doc200x_oobinfo = {
1056 .useecc = MTD_NANDECC_AUTOPLACE,
1057 .eccbytes = 6,
1058 .eccpos = {0, 1, 2, 3, 4, 5},
1059 .oobfree = {{8, 8}, {6, 2}}
1062 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1063 On sucessful return, buf will contain a copy of the media header for
1064 further processing. id is the string to scan for, and will presumably be
1065 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1066 header. The page #s of the found media headers are placed in mh0_page and
1067 mh1_page in the DOC private structure. */
1068 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1070 struct nand_chip *this = mtd->priv;
1071 struct doc_priv *doc = this->priv;
1072 unsigned offs;
1073 int ret;
1074 size_t retlen;
1076 for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1077 ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1078 if (retlen != mtd->writesize)
1079 continue;
1080 if (ret) {
1081 printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1083 if (memcmp(buf, id, 6))
1084 continue;
1085 printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1086 if (doc->mh0_page == -1) {
1087 doc->mh0_page = offs >> this->page_shift;
1088 if (!findmirror)
1089 return 1;
1090 continue;
1092 doc->mh1_page = offs >> this->page_shift;
1093 return 2;
1095 if (doc->mh0_page == -1) {
1096 printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1097 return 0;
1099 /* Only one mediaheader was found. We want buf to contain a
1100 mediaheader on return, so we'll have to re-read the one we found. */
1101 offs = doc->mh0_page << this->page_shift;
1102 ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1103 if (retlen != mtd->writesize) {
1104 /* Insanity. Give up. */
1105 printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1106 return 0;
1108 return 1;
1111 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1113 struct nand_chip *this = mtd->priv;
1114 struct doc_priv *doc = this->priv;
1115 int ret = 0;
1116 u_char *buf;
1117 struct NFTLMediaHeader *mh;
1118 const unsigned psize = 1 << this->page_shift;
1119 int numparts = 0;
1120 unsigned blocks, maxblocks;
1121 int offs, numheaders;
1123 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1124 if (!buf) {
1125 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1126 return 0;
1128 if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1129 goto out;
1130 mh = (struct NFTLMediaHeader *)buf;
1132 mh->NumEraseUnits = le16_to_cpu(mh->NumEraseUnits);
1133 mh->FirstPhysicalEUN = le16_to_cpu(mh->FirstPhysicalEUN);
1134 mh->FormattedSize = le32_to_cpu(mh->FormattedSize);
1136 printk(KERN_INFO " DataOrgID = %s\n"
1137 " NumEraseUnits = %d\n"
1138 " FirstPhysicalEUN = %d\n"
1139 " FormattedSize = %d\n"
1140 " UnitSizeFactor = %d\n",
1141 mh->DataOrgID, mh->NumEraseUnits,
1142 mh->FirstPhysicalEUN, mh->FormattedSize,
1143 mh->UnitSizeFactor);
1145 blocks = mtd->size >> this->phys_erase_shift;
1146 maxblocks = min(32768U, mtd->erasesize - psize);
1148 if (mh->UnitSizeFactor == 0x00) {
1149 /* Auto-determine UnitSizeFactor. The constraints are:
1150 - There can be at most 32768 virtual blocks.
1151 - There can be at most (virtual block size - page size)
1152 virtual blocks (because MediaHeader+BBT must fit in 1).
1154 mh->UnitSizeFactor = 0xff;
1155 while (blocks > maxblocks) {
1156 blocks >>= 1;
1157 maxblocks = min(32768U, (maxblocks << 1) + psize);
1158 mh->UnitSizeFactor--;
1160 printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1163 /* NOTE: The lines below modify internal variables of the NAND and MTD
1164 layers; variables with have already been configured by nand_scan.
1165 Unfortunately, we didn't know before this point what these values
1166 should be. Thus, this code is somewhat dependant on the exact
1167 implementation of the NAND layer. */
1168 if (mh->UnitSizeFactor != 0xff) {
1169 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1170 mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1171 printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1172 blocks = mtd->size >> this->bbt_erase_shift;
1173 maxblocks = min(32768U, mtd->erasesize - psize);
1176 if (blocks > maxblocks) {
1177 printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
1178 goto out;
1181 /* Skip past the media headers. */
1182 offs = max(doc->mh0_page, doc->mh1_page);
1183 offs <<= this->page_shift;
1184 offs += mtd->erasesize;
1186 if (show_firmware_partition == 1) {
1187 parts[0].name = " DiskOnChip Firmware / Media Header partition";
1188 parts[0].offset = 0;
1189 parts[0].size = offs;
1190 numparts = 1;
1193 parts[numparts].name = " DiskOnChip BDTL partition";
1194 parts[numparts].offset = offs;
1195 parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1197 offs += parts[numparts].size;
1198 numparts++;
1200 if (offs < mtd->size) {
1201 parts[numparts].name = " DiskOnChip Remainder partition";
1202 parts[numparts].offset = offs;
1203 parts[numparts].size = mtd->size - offs;
1204 numparts++;
1207 ret = numparts;
1208 out:
1209 kfree(buf);
1210 return ret;
1213 /* This is a stripped-down copy of the code in inftlmount.c */
1214 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1216 struct nand_chip *this = mtd->priv;
1217 struct doc_priv *doc = this->priv;
1218 int ret = 0;
1219 u_char *buf;
1220 struct INFTLMediaHeader *mh;
1221 struct INFTLPartition *ip;
1222 int numparts = 0;
1223 int blocks;
1224 int vshift, lastvunit = 0;
1225 int i;
1226 int end = mtd->size;
1228 if (inftl_bbt_write)
1229 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1231 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1232 if (!buf) {
1233 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1234 return 0;
1237 if (!find_media_headers(mtd, buf, "BNAND", 0))
1238 goto out;
1239 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1240 mh = (struct INFTLMediaHeader *)buf;
1242 mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
1243 mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
1244 mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
1245 mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
1246 mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
1247 mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
1249 printk(KERN_INFO " bootRecordID = %s\n"
1250 " NoOfBootImageBlocks = %d\n"
1251 " NoOfBinaryPartitions = %d\n"
1252 " NoOfBDTLPartitions = %d\n"
1253 " BlockMultiplerBits = %d\n"
1254 " FormatFlgs = %d\n"
1255 " OsakVersion = %d.%d.%d.%d\n"
1256 " PercentUsed = %d\n",
1257 mh->bootRecordID, mh->NoOfBootImageBlocks,
1258 mh->NoOfBinaryPartitions,
1259 mh->NoOfBDTLPartitions,
1260 mh->BlockMultiplierBits, mh->FormatFlags,
1261 ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1262 ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1263 ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1264 ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1265 mh->PercentUsed);
1267 vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1269 blocks = mtd->size >> vshift;
1270 if (blocks > 32768) {
1271 printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
1272 goto out;
1275 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1276 if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1277 printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1278 goto out;
1281 /* Scan the partitions */
1282 for (i = 0; (i < 4); i++) {
1283 ip = &(mh->Partitions[i]);
1284 ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
1285 ip->firstUnit = le32_to_cpu(ip->firstUnit);
1286 ip->lastUnit = le32_to_cpu(ip->lastUnit);
1287 ip->flags = le32_to_cpu(ip->flags);
1288 ip->spareUnits = le32_to_cpu(ip->spareUnits);
1289 ip->Reserved0 = le32_to_cpu(ip->Reserved0);
1291 printk(KERN_INFO " PARTITION[%d] ->\n"
1292 " virtualUnits = %d\n"
1293 " firstUnit = %d\n"
1294 " lastUnit = %d\n"
1295 " flags = 0x%x\n"
1296 " spareUnits = %d\n",
1297 i, ip->virtualUnits, ip->firstUnit,
1298 ip->lastUnit, ip->flags,
1299 ip->spareUnits);
1301 if ((show_firmware_partition == 1) &&
1302 (i == 0) && (ip->firstUnit > 0)) {
1303 parts[0].name = " DiskOnChip IPL / Media Header partition";
1304 parts[0].offset = 0;
1305 parts[0].size = mtd->erasesize * ip->firstUnit;
1306 numparts = 1;
1309 if (ip->flags & INFTL_BINARY)
1310 parts[numparts].name = " DiskOnChip BDK partition";
1311 else
1312 parts[numparts].name = " DiskOnChip BDTL partition";
1313 parts[numparts].offset = ip->firstUnit << vshift;
1314 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1315 numparts++;
1316 if (ip->lastUnit > lastvunit)
1317 lastvunit = ip->lastUnit;
1318 if (ip->flags & INFTL_LAST)
1319 break;
1321 lastvunit++;
1322 if ((lastvunit << vshift) < end) {
1323 parts[numparts].name = " DiskOnChip Remainder partition";
1324 parts[numparts].offset = lastvunit << vshift;
1325 parts[numparts].size = end - parts[numparts].offset;
1326 numparts++;
1328 ret = numparts;
1329 out:
1330 kfree(buf);
1331 return ret;
1334 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1336 int ret, numparts;
1337 struct nand_chip *this = mtd->priv;
1338 struct doc_priv *doc = this->priv;
1339 struct mtd_partition parts[2];
1341 memset((char *)parts, 0, sizeof(parts));
1342 /* On NFTL, we have to find the media headers before we can read the
1343 BBTs, since they're stored in the media header eraseblocks. */
1344 numparts = nftl_partscan(mtd, parts);
1345 if (!numparts)
1346 return -EIO;
1347 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1348 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1349 NAND_BBT_VERSION;
1350 this->bbt_td->veroffs = 7;
1351 this->bbt_td->pages[0] = doc->mh0_page + 1;
1352 if (doc->mh1_page != -1) {
1353 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1354 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1355 NAND_BBT_VERSION;
1356 this->bbt_md->veroffs = 7;
1357 this->bbt_md->pages[0] = doc->mh1_page + 1;
1358 } else {
1359 this->bbt_md = NULL;
1362 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1363 At least as nand_bbt.c is currently written. */
1364 if ((ret = nand_scan_bbt(mtd, NULL)))
1365 return ret;
1366 add_mtd_device(mtd);
1367 #ifdef CONFIG_MTD_PARTITIONS
1368 if (!no_autopart)
1369 add_mtd_partitions(mtd, parts, numparts);
1370 #endif
1371 return 0;
1374 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1376 int ret, numparts;
1377 struct nand_chip *this = mtd->priv;
1378 struct doc_priv *doc = this->priv;
1379 struct mtd_partition parts[5];
1381 if (this->numchips > doc->chips_per_floor) {
1382 printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1383 return -EIO;
1386 if (DoC_is_MillenniumPlus(doc)) {
1387 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1388 if (inftl_bbt_write)
1389 this->bbt_td->options |= NAND_BBT_WRITE;
1390 this->bbt_td->pages[0] = 2;
1391 this->bbt_md = NULL;
1392 } else {
1393 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1394 if (inftl_bbt_write)
1395 this->bbt_td->options |= NAND_BBT_WRITE;
1396 this->bbt_td->offs = 8;
1397 this->bbt_td->len = 8;
1398 this->bbt_td->veroffs = 7;
1399 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1400 this->bbt_td->reserved_block_code = 0x01;
1401 this->bbt_td->pattern = "MSYS_BBT";
1403 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1404 if (inftl_bbt_write)
1405 this->bbt_md->options |= NAND_BBT_WRITE;
1406 this->bbt_md->offs = 8;
1407 this->bbt_md->len = 8;
1408 this->bbt_md->veroffs = 7;
1409 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1410 this->bbt_md->reserved_block_code = 0x01;
1411 this->bbt_md->pattern = "TBB_SYSM";
1414 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1415 At least as nand_bbt.c is currently written. */
1416 if ((ret = nand_scan_bbt(mtd, NULL)))
1417 return ret;
1418 memset((char *)parts, 0, sizeof(parts));
1419 numparts = inftl_partscan(mtd, parts);
1420 /* At least for now, require the INFTL Media Header. We could probably
1421 do without it for non-INFTL use, since all it gives us is
1422 autopartitioning, but I want to give it more thought. */
1423 if (!numparts)
1424 return -EIO;
1425 add_mtd_device(mtd);
1426 #ifdef CONFIG_MTD_PARTITIONS
1427 if (!no_autopart)
1428 add_mtd_partitions(mtd, parts, numparts);
1429 #endif
1430 return 0;
1433 static inline int __init doc2000_init(struct mtd_info *mtd)
1435 struct nand_chip *this = mtd->priv;
1436 struct doc_priv *doc = this->priv;
1438 this->write_byte = doc2000_write_byte;
1439 this->read_byte = doc2000_read_byte;
1440 this->write_buf = doc2000_writebuf;
1441 this->read_buf = doc2000_readbuf;
1442 this->verify_buf = doc2000_verifybuf;
1443 this->scan_bbt = nftl_scan_bbt;
1445 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1446 doc2000_count_chips(mtd);
1447 mtd->name = "DiskOnChip 2000 (NFTL Model)";
1448 return (4 * doc->chips_per_floor);
1451 static inline int __init doc2001_init(struct mtd_info *mtd)
1453 struct nand_chip *this = mtd->priv;
1454 struct doc_priv *doc = this->priv;
1456 this->write_byte = doc2001_write_byte;
1457 this->read_byte = doc2001_read_byte;
1458 this->write_buf = doc2001_writebuf;
1459 this->read_buf = doc2001_readbuf;
1460 this->verify_buf = doc2001_verifybuf;
1462 ReadDOC(doc->virtadr, ChipID);
1463 ReadDOC(doc->virtadr, ChipID);
1464 ReadDOC(doc->virtadr, ChipID);
1465 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1466 /* It's not a Millennium; it's one of the newer
1467 DiskOnChip 2000 units with a similar ASIC.
1468 Treat it like a Millennium, except that it
1469 can have multiple chips. */
1470 doc2000_count_chips(mtd);
1471 mtd->name = "DiskOnChip 2000 (INFTL Model)";
1472 this->scan_bbt = inftl_scan_bbt;
1473 return (4 * doc->chips_per_floor);
1474 } else {
1475 /* Bog-standard Millennium */
1476 doc->chips_per_floor = 1;
1477 mtd->name = "DiskOnChip Millennium";
1478 this->scan_bbt = nftl_scan_bbt;
1479 return 1;
1483 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1485 struct nand_chip *this = mtd->priv;
1486 struct doc_priv *doc = this->priv;
1488 this->write_byte = NULL;
1489 this->read_byte = doc2001plus_read_byte;
1490 this->write_buf = doc2001plus_writebuf;
1491 this->read_buf = doc2001plus_readbuf;
1492 this->verify_buf = doc2001plus_verifybuf;
1493 this->scan_bbt = inftl_scan_bbt;
1494 this->cmd_ctrl = NULL;
1495 this->select_chip = doc2001plus_select_chip;
1496 this->cmdfunc = doc2001plus_command;
1497 this->ecc.hwctl = doc2001plus_enable_hwecc;
1499 doc->chips_per_floor = 1;
1500 mtd->name = "DiskOnChip Millennium Plus";
1502 return 1;
1505 static int __init doc_probe(unsigned long physadr)
1507 unsigned char ChipID;
1508 struct mtd_info *mtd;
1509 struct nand_chip *nand;
1510 struct doc_priv *doc;
1511 void __iomem *virtadr;
1512 unsigned char save_control;
1513 unsigned char tmp, tmpb, tmpc;
1514 int reg, len, numchips;
1515 int ret = 0;
1517 virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1518 if (!virtadr) {
1519 printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1520 return -EIO;
1523 /* It's not possible to cleanly detect the DiskOnChip - the
1524 * bootup procedure will put the device into reset mode, and
1525 * it's not possible to talk to it without actually writing
1526 * to the DOCControl register. So we store the current contents
1527 * of the DOCControl register's location, in case we later decide
1528 * that it's not a DiskOnChip, and want to put it back how we
1529 * found it.
1531 save_control = ReadDOC(virtadr, DOCControl);
1533 /* Reset the DiskOnChip ASIC */
1534 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1535 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1537 /* Enable the DiskOnChip ASIC */
1538 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1539 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1541 ChipID = ReadDOC(virtadr, ChipID);
1543 switch (ChipID) {
1544 case DOC_ChipID_Doc2k:
1545 reg = DoC_2k_ECCStatus;
1546 break;
1547 case DOC_ChipID_DocMil:
1548 reg = DoC_ECCConf;
1549 break;
1550 case DOC_ChipID_DocMilPlus16:
1551 case DOC_ChipID_DocMilPlus32:
1552 case 0:
1553 /* Possible Millennium Plus, need to do more checks */
1554 /* Possibly release from power down mode */
1555 for (tmp = 0; (tmp < 4); tmp++)
1556 ReadDOC(virtadr, Mplus_Power);
1558 /* Reset the Millennium Plus ASIC */
1559 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1560 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1561 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1563 mdelay(1);
1564 /* Enable the Millennium Plus ASIC */
1565 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1566 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1567 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1568 mdelay(1);
1570 ChipID = ReadDOC(virtadr, ChipID);
1572 switch (ChipID) {
1573 case DOC_ChipID_DocMilPlus16:
1574 reg = DoC_Mplus_Toggle;
1575 break;
1576 case DOC_ChipID_DocMilPlus32:
1577 printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1578 default:
1579 ret = -ENODEV;
1580 goto notfound;
1582 break;
1584 default:
1585 ret = -ENODEV;
1586 goto notfound;
1588 /* Check the TOGGLE bit in the ECC register */
1589 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1590 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1591 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1592 if ((tmp == tmpb) || (tmp != tmpc)) {
1593 printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1594 ret = -ENODEV;
1595 goto notfound;
1598 for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1599 unsigned char oldval;
1600 unsigned char newval;
1601 nand = mtd->priv;
1602 doc = nand->priv;
1603 /* Use the alias resolution register to determine if this is
1604 in fact the same DOC aliased to a new address. If writes
1605 to one chip's alias resolution register change the value on
1606 the other chip, they're the same chip. */
1607 if (ChipID == DOC_ChipID_DocMilPlus16) {
1608 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1609 newval = ReadDOC(virtadr, Mplus_AliasResolution);
1610 } else {
1611 oldval = ReadDOC(doc->virtadr, AliasResolution);
1612 newval = ReadDOC(virtadr, AliasResolution);
1614 if (oldval != newval)
1615 continue;
1616 if (ChipID == DOC_ChipID_DocMilPlus16) {
1617 WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1618 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1619 WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
1620 } else {
1621 WriteDOC(~newval, virtadr, AliasResolution);
1622 oldval = ReadDOC(doc->virtadr, AliasResolution);
1623 WriteDOC(newval, virtadr, AliasResolution); // restore it
1625 newval = ~newval;
1626 if (oldval == newval) {
1627 printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1628 goto notfound;
1632 printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1634 len = sizeof(struct mtd_info) +
1635 sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1636 mtd = kmalloc(len, GFP_KERNEL);
1637 if (!mtd) {
1638 printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1639 ret = -ENOMEM;
1640 goto fail;
1642 memset(mtd, 0, len);
1644 nand = (struct nand_chip *) (mtd + 1);
1645 doc = (struct doc_priv *) (nand + 1);
1646 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
1647 nand->bbt_md = nand->bbt_td + 1;
1649 mtd->priv = nand;
1650 mtd->owner = THIS_MODULE;
1652 nand->priv = doc;
1653 nand->select_chip = doc200x_select_chip;
1654 nand->cmd_ctrl = doc200x_hwcontrol;
1655 nand->dev_ready = doc200x_dev_ready;
1656 nand->waitfunc = doc200x_wait;
1657 nand->block_bad = doc200x_block_bad;
1658 nand->ecc.hwctl = doc200x_enable_hwecc;
1659 nand->ecc.calculate = doc200x_calculate_ecc;
1660 nand->ecc.correct = doc200x_correct_data;
1662 nand->autooob = &doc200x_oobinfo;
1663 nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1664 nand->ecc.size = 512;
1665 nand->ecc.bytes = 6;
1666 nand->options = NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME;
1668 doc->physadr = physadr;
1669 doc->virtadr = virtadr;
1670 doc->ChipID = ChipID;
1671 doc->curfloor = -1;
1672 doc->curchip = -1;
1673 doc->mh0_page = -1;
1674 doc->mh1_page = -1;
1675 doc->nextdoc = doclist;
1677 if (ChipID == DOC_ChipID_Doc2k)
1678 numchips = doc2000_init(mtd);
1679 else if (ChipID == DOC_ChipID_DocMilPlus16)
1680 numchips = doc2001plus_init(mtd);
1681 else
1682 numchips = doc2001_init(mtd);
1684 if ((ret = nand_scan(mtd, numchips))) {
1685 /* DBB note: i believe nand_release is necessary here, as
1686 buffers may have been allocated in nand_base. Check with
1687 Thomas. FIX ME! */
1688 /* nand_release will call del_mtd_device, but we haven't yet
1689 added it. This is handled without incident by
1690 del_mtd_device, as far as I can tell. */
1691 nand_release(mtd);
1692 kfree(mtd);
1693 goto fail;
1696 /* Success! */
1697 doclist = mtd;
1698 return 0;
1700 notfound:
1701 /* Put back the contents of the DOCControl register, in case it's not
1702 actually a DiskOnChip. */
1703 WriteDOC(save_control, virtadr, DOCControl);
1704 fail:
1705 iounmap(virtadr);
1706 return ret;
1709 static void release_nanddoc(void)
1711 struct mtd_info *mtd, *nextmtd;
1712 struct nand_chip *nand;
1713 struct doc_priv *doc;
1715 for (mtd = doclist; mtd; mtd = nextmtd) {
1716 nand = mtd->priv;
1717 doc = nand->priv;
1719 nextmtd = doc->nextdoc;
1720 nand_release(mtd);
1721 iounmap(doc->virtadr);
1722 kfree(mtd);
1726 static int __init init_nanddoc(void)
1728 int i, ret = 0;
1730 /* We could create the decoder on demand, if memory is a concern.
1731 * This way we have it handy, if an error happens
1733 * Symbolsize is 10 (bits)
1734 * Primitve polynomial is x^10+x^3+1
1735 * first consecutive root is 510
1736 * primitve element to generate roots = 1
1737 * generator polinomial degree = 4
1739 rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1740 if (!rs_decoder) {
1741 printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1742 return -ENOMEM;
1745 if (doc_config_location) {
1746 printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1747 ret = doc_probe(doc_config_location);
1748 if (ret < 0)
1749 goto outerr;
1750 } else {
1751 for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1752 doc_probe(doc_locations[i]);
1755 /* No banner message any more. Print a message if no DiskOnChip
1756 found, so the user knows we at least tried. */
1757 if (!doclist) {
1758 printk(KERN_INFO "No valid DiskOnChip devices found\n");
1759 ret = -ENODEV;
1760 goto outerr;
1762 return 0;
1763 outerr:
1764 free_rs(rs_decoder);
1765 return ret;
1768 static void __exit cleanup_nanddoc(void)
1770 /* Cleanup the nand/DoC resources */
1771 release_nanddoc();
1773 /* Free the reed solomon resources */
1774 if (rs_decoder) {
1775 free_rs(rs_decoder);
1779 module_init(init_nanddoc);
1780 module_exit(cleanup_nanddoc);
1782 MODULE_LICENSE("GPL");
1783 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1784 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");