4 * @remark Copyright 2002 OProfile authors
5 * @remark Read the file COPYING
7 * @author John Levon <levon@movementarian.org>
9 * Each CPU has a local buffer that stores PC value/event
10 * pairs. We also log context switches when we notice them.
11 * Eventually each CPU's buffer is processed into the global
12 * event buffer by sync_buffer().
14 * We use a local buffer for two reasons: an NMI or similar
15 * interrupt cannot synchronise, and high sampling rates
16 * would lead to catastrophic global synchronisation if
17 * a global buffer was used.
20 #include <linux/sched.h>
21 #include <linux/oprofile.h>
22 #include <linux/vmalloc.h>
23 #include <linux/errno.h>
25 #include "event_buffer.h"
26 #include "cpu_buffer.h"
27 #include "buffer_sync.h"
30 DEFINE_PER_CPU_SHARED_ALIGNED(struct oprofile_cpu_buffer
, cpu_buffer
);
32 static void wq_sync_buffer(struct work_struct
*work
);
34 #define DEFAULT_TIMER_EXPIRE (HZ / 10)
35 static int work_enabled
;
37 void free_cpu_buffers(void)
41 for_each_online_cpu(i
)
42 vfree(per_cpu(cpu_buffer
, i
).buffer
);
45 int alloc_cpu_buffers(void)
49 unsigned long buffer_size
= fs_cpu_buffer_size
;
51 for_each_online_cpu(i
) {
52 struct oprofile_cpu_buffer
*b
= &per_cpu(cpu_buffer
, i
);
54 b
->buffer
= vmalloc_node(sizeof(struct op_sample
) * buffer_size
,
60 b
->last_is_kernel
= -1;
62 b
->buffer_size
= buffer_size
;
65 b
->sample_received
= 0;
66 b
->sample_lost_overflow
= 0;
67 b
->backtrace_aborted
= 0;
68 b
->sample_invalid_eip
= 0;
70 INIT_DELAYED_WORK(&b
->work
, wq_sync_buffer
);
79 void start_cpu_work(void)
85 for_each_online_cpu(i
) {
86 struct oprofile_cpu_buffer
*b
= &per_cpu(cpu_buffer
, i
);
89 * Spread the work by 1 jiffy per cpu so they dont all
92 schedule_delayed_work_on(i
, &b
->work
, DEFAULT_TIMER_EXPIRE
+ i
);
96 void end_cpu_work(void)
102 for_each_online_cpu(i
) {
103 struct oprofile_cpu_buffer
*b
= &per_cpu(cpu_buffer
, i
);
105 cancel_delayed_work(&b
->work
);
108 flush_scheduled_work();
111 /* Resets the cpu buffer to a sane state. */
112 void cpu_buffer_reset(struct oprofile_cpu_buffer
* cpu_buf
)
114 /* reset these to invalid values; the next sample
115 * collected will populate the buffer with proper
116 * values to initialize the buffer
118 cpu_buf
->last_is_kernel
= -1;
119 cpu_buf
->last_task
= NULL
;
122 /* compute number of available slots in cpu_buffer queue */
123 static unsigned long nr_available_slots(struct oprofile_cpu_buffer
const * b
)
125 unsigned long head
= b
->head_pos
;
126 unsigned long tail
= b
->tail_pos
;
129 return (tail
- head
) - 1;
131 return tail
+ (b
->buffer_size
- head
) - 1;
134 static void increment_head(struct oprofile_cpu_buffer
* b
)
136 unsigned long new_head
= b
->head_pos
+ 1;
138 /* Ensure anything written to the slot before we
139 * increment is visible */
142 if (new_head
< b
->buffer_size
)
143 b
->head_pos
= new_head
;
149 add_sample(struct oprofile_cpu_buffer
* cpu_buf
,
150 unsigned long pc
, unsigned long event
)
152 struct op_sample
* entry
= &cpu_buf
->buffer
[cpu_buf
->head_pos
];
154 entry
->event
= event
;
155 increment_head(cpu_buf
);
159 add_code(struct oprofile_cpu_buffer
* buffer
, unsigned long value
)
161 add_sample(buffer
, ESCAPE_CODE
, value
);
164 /* This must be safe from any context. It's safe writing here
165 * because of the head/tail separation of the writer and reader
168 * is_kernel is needed because on some architectures you cannot
169 * tell if you are in kernel or user space simply by looking at
170 * pc. We tag this in the buffer by generating kernel enter/exit
171 * events whenever is_kernel changes
173 static int log_sample(struct oprofile_cpu_buffer
* cpu_buf
, unsigned long pc
,
174 int is_kernel
, unsigned long event
)
176 struct task_struct
* task
;
178 cpu_buf
->sample_received
++;
180 if (pc
== ESCAPE_CODE
) {
181 cpu_buf
->sample_invalid_eip
++;
185 if (nr_available_slots(cpu_buf
) < 3) {
186 cpu_buf
->sample_lost_overflow
++;
190 is_kernel
= !!is_kernel
;
194 /* notice a switch from user->kernel or vice versa */
195 if (cpu_buf
->last_is_kernel
!= is_kernel
) {
196 cpu_buf
->last_is_kernel
= is_kernel
;
197 add_code(cpu_buf
, is_kernel
);
200 /* notice a task switch */
201 if (cpu_buf
->last_task
!= task
) {
202 cpu_buf
->last_task
= task
;
203 add_code(cpu_buf
, (unsigned long)task
);
206 add_sample(cpu_buf
, pc
, event
);
210 static int oprofile_begin_trace(struct oprofile_cpu_buffer
* cpu_buf
)
212 if (nr_available_slots(cpu_buf
) < 4) {
213 cpu_buf
->sample_lost_overflow
++;
217 add_code(cpu_buf
, CPU_TRACE_BEGIN
);
218 cpu_buf
->tracing
= 1;
222 static void oprofile_end_trace(struct oprofile_cpu_buffer
* cpu_buf
)
224 cpu_buf
->tracing
= 0;
227 void oprofile_add_ext_sample(unsigned long pc
, struct pt_regs
* const regs
,
228 unsigned long event
, int is_kernel
)
230 struct oprofile_cpu_buffer
*cpu_buf
= &__get_cpu_var(cpu_buffer
);
232 if (!backtrace_depth
) {
233 log_sample(cpu_buf
, pc
, is_kernel
, event
);
237 if (!oprofile_begin_trace(cpu_buf
))
240 /* if log_sample() fail we can't backtrace since we lost the source
242 if (log_sample(cpu_buf
, pc
, is_kernel
, event
))
243 oprofile_ops
.backtrace(regs
, backtrace_depth
);
244 oprofile_end_trace(cpu_buf
);
247 void oprofile_add_sample(struct pt_regs
* const regs
, unsigned long event
)
249 int is_kernel
= !user_mode(regs
);
250 unsigned long pc
= profile_pc(regs
);
252 oprofile_add_ext_sample(pc
, regs
, event
, is_kernel
);
255 void oprofile_add_pc(unsigned long pc
, int is_kernel
, unsigned long event
)
257 struct oprofile_cpu_buffer
*cpu_buf
= &__get_cpu_var(cpu_buffer
);
258 log_sample(cpu_buf
, pc
, is_kernel
, event
);
261 void oprofile_add_trace(unsigned long pc
)
263 struct oprofile_cpu_buffer
*cpu_buf
= &__get_cpu_var(cpu_buffer
);
265 if (!cpu_buf
->tracing
)
268 if (nr_available_slots(cpu_buf
) < 1) {
269 cpu_buf
->tracing
= 0;
270 cpu_buf
->sample_lost_overflow
++;
274 /* broken frame can give an eip with the same value as an escape code,
275 * abort the trace if we get it */
276 if (pc
== ESCAPE_CODE
) {
277 cpu_buf
->tracing
= 0;
278 cpu_buf
->backtrace_aborted
++;
282 add_sample(cpu_buf
, pc
, 0);
286 * This serves to avoid cpu buffer overflow, and makes sure
287 * the task mortuary progresses
289 * By using schedule_delayed_work_on and then schedule_delayed_work
290 * we guarantee this will stay on the correct cpu
292 static void wq_sync_buffer(struct work_struct
*work
)
294 struct oprofile_cpu_buffer
* b
=
295 container_of(work
, struct oprofile_cpu_buffer
, work
.work
);
296 if (b
->cpu
!= smp_processor_id()) {
297 printk("WQ on CPU%d, prefer CPU%d\n",
298 smp_processor_id(), b
->cpu
);
302 /* don't re-add the work if we're shutting down */
304 schedule_delayed_work(&b
->work
, DEFAULT_TIMER_EXPIRE
);