x86, pat: add large-PAT check to split_large_page()
[linux-2.6/mini2440.git] / mm / page-writeback.c
blob74dc57c74349ff124dd31a3e04531ee503ecedca
1 /*
2 * mm/page-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
10 * 10Apr2002 Andrew Morton
11 * Initial version
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
39 * The maximum number of pages to writeout in a single bdflush/kupdate
40 * operation. We do this so we don't hold I_SYNC against an inode for
41 * enormous amounts of time, which would block a userspace task which has
42 * been forced to throttle against that inode. Also, the code reevaluates
43 * the dirty each time it has written this many pages.
45 #define MAX_WRITEBACK_PAGES 1024
48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49 * will look to see if it needs to force writeback or throttling.
51 static long ratelimit_pages = 32;
54 * When balance_dirty_pages decides that the caller needs to perform some
55 * non-background writeback, this is how many pages it will attempt to write.
56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57 * large amounts of I/O are submitted.
59 static inline long sync_writeback_pages(void)
61 return ratelimit_pages + ratelimit_pages / 2;
64 /* The following parameters are exported via /proc/sys/vm */
67 * Start background writeback (via pdflush) at this percentage
69 int dirty_background_ratio = 5;
72 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
73 * dirty_background_ratio * the amount of dirtyable memory
75 unsigned long dirty_background_bytes;
78 * free highmem will not be subtracted from the total free memory
79 * for calculating free ratios if vm_highmem_is_dirtyable is true
81 int vm_highmem_is_dirtyable;
84 * The generator of dirty data starts writeback at this percentage
86 int vm_dirty_ratio = 10;
89 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
90 * vm_dirty_ratio * the amount of dirtyable memory
92 unsigned long vm_dirty_bytes;
95 * The interval between `kupdate'-style writebacks, in jiffies
97 int dirty_writeback_interval = 5 * HZ;
100 * The longest number of jiffies for which data is allowed to remain dirty
102 int dirty_expire_interval = 30 * HZ;
105 * Flag that makes the machine dump writes/reads and block dirtyings.
107 int block_dump;
110 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
111 * a full sync is triggered after this time elapses without any disk activity.
113 int laptop_mode;
115 EXPORT_SYMBOL(laptop_mode);
117 /* End of sysctl-exported parameters */
120 static void background_writeout(unsigned long _min_pages);
123 * Scale the writeback cache size proportional to the relative writeout speeds.
125 * We do this by keeping a floating proportion between BDIs, based on page
126 * writeback completions [end_page_writeback()]. Those devices that write out
127 * pages fastest will get the larger share, while the slower will get a smaller
128 * share.
130 * We use page writeout completions because we are interested in getting rid of
131 * dirty pages. Having them written out is the primary goal.
133 * We introduce a concept of time, a period over which we measure these events,
134 * because demand can/will vary over time. The length of this period itself is
135 * measured in page writeback completions.
138 static struct prop_descriptor vm_completions;
139 static struct prop_descriptor vm_dirties;
142 * couple the period to the dirty_ratio:
144 * period/2 ~ roundup_pow_of_two(dirty limit)
146 static int calc_period_shift(void)
148 unsigned long dirty_total;
150 if (vm_dirty_bytes)
151 dirty_total = vm_dirty_bytes / PAGE_SIZE;
152 else
153 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
154 100;
155 return 2 + ilog2(dirty_total - 1);
159 * update the period when the dirty threshold changes.
161 static void update_completion_period(void)
163 int shift = calc_period_shift();
164 prop_change_shift(&vm_completions, shift);
165 prop_change_shift(&vm_dirties, shift);
168 int dirty_background_ratio_handler(struct ctl_table *table, int write,
169 struct file *filp, void __user *buffer, size_t *lenp,
170 loff_t *ppos)
172 int ret;
174 ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
175 if (ret == 0 && write)
176 dirty_background_bytes = 0;
177 return ret;
180 int dirty_background_bytes_handler(struct ctl_table *table, int write,
181 struct file *filp, void __user *buffer, size_t *lenp,
182 loff_t *ppos)
184 int ret;
186 ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
187 if (ret == 0 && write)
188 dirty_background_ratio = 0;
189 return ret;
192 int dirty_ratio_handler(struct ctl_table *table, int write,
193 struct file *filp, void __user *buffer, size_t *lenp,
194 loff_t *ppos)
196 int old_ratio = vm_dirty_ratio;
197 int ret;
199 ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
200 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
201 update_completion_period();
202 vm_dirty_bytes = 0;
204 return ret;
208 int dirty_bytes_handler(struct ctl_table *table, int write,
209 struct file *filp, void __user *buffer, size_t *lenp,
210 loff_t *ppos)
212 unsigned long old_bytes = vm_dirty_bytes;
213 int ret;
215 ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
216 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
217 update_completion_period();
218 vm_dirty_ratio = 0;
220 return ret;
224 * Increment the BDI's writeout completion count and the global writeout
225 * completion count. Called from test_clear_page_writeback().
227 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
229 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
230 bdi->max_prop_frac);
233 void bdi_writeout_inc(struct backing_dev_info *bdi)
235 unsigned long flags;
237 local_irq_save(flags);
238 __bdi_writeout_inc(bdi);
239 local_irq_restore(flags);
241 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
243 void task_dirty_inc(struct task_struct *tsk)
245 prop_inc_single(&vm_dirties, &tsk->dirties);
249 * Obtain an accurate fraction of the BDI's portion.
251 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
252 long *numerator, long *denominator)
254 if (bdi_cap_writeback_dirty(bdi)) {
255 prop_fraction_percpu(&vm_completions, &bdi->completions,
256 numerator, denominator);
257 } else {
258 *numerator = 0;
259 *denominator = 1;
264 * Clip the earned share of dirty pages to that which is actually available.
265 * This avoids exceeding the total dirty_limit when the floating averages
266 * fluctuate too quickly.
268 static void
269 clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
271 long avail_dirty;
273 avail_dirty = dirty -
274 (global_page_state(NR_FILE_DIRTY) +
275 global_page_state(NR_WRITEBACK) +
276 global_page_state(NR_UNSTABLE_NFS) +
277 global_page_state(NR_WRITEBACK_TEMP));
279 if (avail_dirty < 0)
280 avail_dirty = 0;
282 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
283 bdi_stat(bdi, BDI_WRITEBACK);
285 *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
288 static inline void task_dirties_fraction(struct task_struct *tsk,
289 long *numerator, long *denominator)
291 prop_fraction_single(&vm_dirties, &tsk->dirties,
292 numerator, denominator);
296 * scale the dirty limit
298 * task specific dirty limit:
300 * dirty -= (dirty/8) * p_{t}
302 static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
304 long numerator, denominator;
305 long dirty = *pdirty;
306 u64 inv = dirty >> 3;
308 task_dirties_fraction(tsk, &numerator, &denominator);
309 inv *= numerator;
310 do_div(inv, denominator);
312 dirty -= inv;
313 if (dirty < *pdirty/2)
314 dirty = *pdirty/2;
316 *pdirty = dirty;
322 static DEFINE_SPINLOCK(bdi_lock);
323 static unsigned int bdi_min_ratio;
325 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
327 int ret = 0;
328 unsigned long flags;
330 spin_lock_irqsave(&bdi_lock, flags);
331 if (min_ratio > bdi->max_ratio) {
332 ret = -EINVAL;
333 } else {
334 min_ratio -= bdi->min_ratio;
335 if (bdi_min_ratio + min_ratio < 100) {
336 bdi_min_ratio += min_ratio;
337 bdi->min_ratio += min_ratio;
338 } else {
339 ret = -EINVAL;
342 spin_unlock_irqrestore(&bdi_lock, flags);
344 return ret;
347 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
349 unsigned long flags;
350 int ret = 0;
352 if (max_ratio > 100)
353 return -EINVAL;
355 spin_lock_irqsave(&bdi_lock, flags);
356 if (bdi->min_ratio > max_ratio) {
357 ret = -EINVAL;
358 } else {
359 bdi->max_ratio = max_ratio;
360 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
362 spin_unlock_irqrestore(&bdi_lock, flags);
364 return ret;
366 EXPORT_SYMBOL(bdi_set_max_ratio);
369 * Work out the current dirty-memory clamping and background writeout
370 * thresholds.
372 * The main aim here is to lower them aggressively if there is a lot of mapped
373 * memory around. To avoid stressing page reclaim with lots of unreclaimable
374 * pages. It is better to clamp down on writers than to start swapping, and
375 * performing lots of scanning.
377 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
379 * We don't permit the clamping level to fall below 5% - that is getting rather
380 * excessive.
382 * We make sure that the background writeout level is below the adjusted
383 * clamping level.
386 static unsigned long highmem_dirtyable_memory(unsigned long total)
388 #ifdef CONFIG_HIGHMEM
389 int node;
390 unsigned long x = 0;
392 for_each_node_state(node, N_HIGH_MEMORY) {
393 struct zone *z =
394 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
396 x += zone_page_state(z, NR_FREE_PAGES) + zone_lru_pages(z);
399 * Make sure that the number of highmem pages is never larger
400 * than the number of the total dirtyable memory. This can only
401 * occur in very strange VM situations but we want to make sure
402 * that this does not occur.
404 return min(x, total);
405 #else
406 return 0;
407 #endif
411 * determine_dirtyable_memory - amount of memory that may be used
413 * Returns the numebr of pages that can currently be freed and used
414 * by the kernel for direct mappings.
416 unsigned long determine_dirtyable_memory(void)
418 unsigned long x;
420 x = global_page_state(NR_FREE_PAGES) + global_lru_pages();
422 if (!vm_highmem_is_dirtyable)
423 x -= highmem_dirtyable_memory(x);
425 return x + 1; /* Ensure that we never return 0 */
428 void
429 get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
430 unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
432 unsigned long background;
433 unsigned long dirty;
434 unsigned long available_memory = determine_dirtyable_memory();
435 struct task_struct *tsk;
437 if (vm_dirty_bytes)
438 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
439 else {
440 int dirty_ratio;
442 dirty_ratio = vm_dirty_ratio;
443 if (dirty_ratio < 5)
444 dirty_ratio = 5;
445 dirty = (dirty_ratio * available_memory) / 100;
448 if (dirty_background_bytes)
449 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
450 else
451 background = (dirty_background_ratio * available_memory) / 100;
453 if (background >= dirty)
454 background = dirty / 2;
455 tsk = current;
456 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
457 background += background / 4;
458 dirty += dirty / 4;
460 *pbackground = background;
461 *pdirty = dirty;
463 if (bdi) {
464 u64 bdi_dirty;
465 long numerator, denominator;
468 * Calculate this BDI's share of the dirty ratio.
470 bdi_writeout_fraction(bdi, &numerator, &denominator);
472 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
473 bdi_dirty *= numerator;
474 do_div(bdi_dirty, denominator);
475 bdi_dirty += (dirty * bdi->min_ratio) / 100;
476 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
477 bdi_dirty = dirty * bdi->max_ratio / 100;
479 *pbdi_dirty = bdi_dirty;
480 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
481 task_dirty_limit(current, pbdi_dirty);
486 * balance_dirty_pages() must be called by processes which are generating dirty
487 * data. It looks at the number of dirty pages in the machine and will force
488 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
489 * If we're over `background_thresh' then pdflush is woken to perform some
490 * writeout.
492 static void balance_dirty_pages(struct address_space *mapping)
494 long nr_reclaimable, bdi_nr_reclaimable;
495 long nr_writeback, bdi_nr_writeback;
496 unsigned long background_thresh;
497 unsigned long dirty_thresh;
498 unsigned long bdi_thresh;
499 unsigned long pages_written = 0;
500 unsigned long write_chunk = sync_writeback_pages();
502 struct backing_dev_info *bdi = mapping->backing_dev_info;
504 for (;;) {
505 struct writeback_control wbc = {
506 .bdi = bdi,
507 .sync_mode = WB_SYNC_NONE,
508 .older_than_this = NULL,
509 .nr_to_write = write_chunk,
510 .range_cyclic = 1,
513 get_dirty_limits(&background_thresh, &dirty_thresh,
514 &bdi_thresh, bdi);
516 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
517 global_page_state(NR_UNSTABLE_NFS);
518 nr_writeback = global_page_state(NR_WRITEBACK);
520 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
521 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
523 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
524 break;
527 * Throttle it only when the background writeback cannot
528 * catch-up. This avoids (excessively) small writeouts
529 * when the bdi limits are ramping up.
531 if (nr_reclaimable + nr_writeback <
532 (background_thresh + dirty_thresh) / 2)
533 break;
535 if (!bdi->dirty_exceeded)
536 bdi->dirty_exceeded = 1;
538 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
539 * Unstable writes are a feature of certain networked
540 * filesystems (i.e. NFS) in which data may have been
541 * written to the server's write cache, but has not yet
542 * been flushed to permanent storage.
544 if (bdi_nr_reclaimable) {
545 writeback_inodes(&wbc);
546 pages_written += write_chunk - wbc.nr_to_write;
547 get_dirty_limits(&background_thresh, &dirty_thresh,
548 &bdi_thresh, bdi);
552 * In order to avoid the stacked BDI deadlock we need
553 * to ensure we accurately count the 'dirty' pages when
554 * the threshold is low.
556 * Otherwise it would be possible to get thresh+n pages
557 * reported dirty, even though there are thresh-m pages
558 * actually dirty; with m+n sitting in the percpu
559 * deltas.
561 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
562 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
563 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
564 } else if (bdi_nr_reclaimable) {
565 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
566 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
569 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
570 break;
571 if (pages_written >= write_chunk)
572 break; /* We've done our duty */
574 congestion_wait(WRITE, HZ/10);
577 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
578 bdi->dirty_exceeded)
579 bdi->dirty_exceeded = 0;
581 if (writeback_in_progress(bdi))
582 return; /* pdflush is already working this queue */
585 * In laptop mode, we wait until hitting the higher threshold before
586 * starting background writeout, and then write out all the way down
587 * to the lower threshold. So slow writers cause minimal disk activity.
589 * In normal mode, we start background writeout at the lower
590 * background_thresh, to keep the amount of dirty memory low.
592 if ((laptop_mode && pages_written) ||
593 (!laptop_mode && (global_page_state(NR_FILE_DIRTY)
594 + global_page_state(NR_UNSTABLE_NFS)
595 > background_thresh)))
596 pdflush_operation(background_writeout, 0);
599 void set_page_dirty_balance(struct page *page, int page_mkwrite)
601 if (set_page_dirty(page) || page_mkwrite) {
602 struct address_space *mapping = page_mapping(page);
604 if (mapping)
605 balance_dirty_pages_ratelimited(mapping);
610 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
611 * @mapping: address_space which was dirtied
612 * @nr_pages_dirtied: number of pages which the caller has just dirtied
614 * Processes which are dirtying memory should call in here once for each page
615 * which was newly dirtied. The function will periodically check the system's
616 * dirty state and will initiate writeback if needed.
618 * On really big machines, get_writeback_state is expensive, so try to avoid
619 * calling it too often (ratelimiting). But once we're over the dirty memory
620 * limit we decrease the ratelimiting by a lot, to prevent individual processes
621 * from overshooting the limit by (ratelimit_pages) each.
623 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
624 unsigned long nr_pages_dirtied)
626 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
627 unsigned long ratelimit;
628 unsigned long *p;
630 ratelimit = ratelimit_pages;
631 if (mapping->backing_dev_info->dirty_exceeded)
632 ratelimit = 8;
635 * Check the rate limiting. Also, we do not want to throttle real-time
636 * tasks in balance_dirty_pages(). Period.
638 preempt_disable();
639 p = &__get_cpu_var(ratelimits);
640 *p += nr_pages_dirtied;
641 if (unlikely(*p >= ratelimit)) {
642 *p = 0;
643 preempt_enable();
644 balance_dirty_pages(mapping);
645 return;
647 preempt_enable();
649 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
651 void throttle_vm_writeout(gfp_t gfp_mask)
653 unsigned long background_thresh;
654 unsigned long dirty_thresh;
656 for ( ; ; ) {
657 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
660 * Boost the allowable dirty threshold a bit for page
661 * allocators so they don't get DoS'ed by heavy writers
663 dirty_thresh += dirty_thresh / 10; /* wheeee... */
665 if (global_page_state(NR_UNSTABLE_NFS) +
666 global_page_state(NR_WRITEBACK) <= dirty_thresh)
667 break;
668 congestion_wait(WRITE, HZ/10);
671 * The caller might hold locks which can prevent IO completion
672 * or progress in the filesystem. So we cannot just sit here
673 * waiting for IO to complete.
675 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
676 break;
681 * writeback at least _min_pages, and keep writing until the amount of dirty
682 * memory is less than the background threshold, or until we're all clean.
684 static void background_writeout(unsigned long _min_pages)
686 long min_pages = _min_pages;
687 struct writeback_control wbc = {
688 .bdi = NULL,
689 .sync_mode = WB_SYNC_NONE,
690 .older_than_this = NULL,
691 .nr_to_write = 0,
692 .nonblocking = 1,
693 .range_cyclic = 1,
696 for ( ; ; ) {
697 unsigned long background_thresh;
698 unsigned long dirty_thresh;
700 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
701 if (global_page_state(NR_FILE_DIRTY) +
702 global_page_state(NR_UNSTABLE_NFS) < background_thresh
703 && min_pages <= 0)
704 break;
705 wbc.more_io = 0;
706 wbc.encountered_congestion = 0;
707 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
708 wbc.pages_skipped = 0;
709 writeback_inodes(&wbc);
710 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
711 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
712 /* Wrote less than expected */
713 if (wbc.encountered_congestion || wbc.more_io)
714 congestion_wait(WRITE, HZ/10);
715 else
716 break;
722 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
723 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
724 * -1 if all pdflush threads were busy.
726 int wakeup_pdflush(long nr_pages)
728 if (nr_pages == 0)
729 nr_pages = global_page_state(NR_FILE_DIRTY) +
730 global_page_state(NR_UNSTABLE_NFS);
731 return pdflush_operation(background_writeout, nr_pages);
734 static void wb_timer_fn(unsigned long unused);
735 static void laptop_timer_fn(unsigned long unused);
737 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
738 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
741 * Periodic writeback of "old" data.
743 * Define "old": the first time one of an inode's pages is dirtied, we mark the
744 * dirtying-time in the inode's address_space. So this periodic writeback code
745 * just walks the superblock inode list, writing back any inodes which are
746 * older than a specific point in time.
748 * Try to run once per dirty_writeback_interval. But if a writeback event
749 * takes longer than a dirty_writeback_interval interval, then leave a
750 * one-second gap.
752 * older_than_this takes precedence over nr_to_write. So we'll only write back
753 * all dirty pages if they are all attached to "old" mappings.
755 static void wb_kupdate(unsigned long arg)
757 unsigned long oldest_jif;
758 unsigned long start_jif;
759 unsigned long next_jif;
760 long nr_to_write;
761 struct writeback_control wbc = {
762 .bdi = NULL,
763 .sync_mode = WB_SYNC_NONE,
764 .older_than_this = &oldest_jif,
765 .nr_to_write = 0,
766 .nonblocking = 1,
767 .for_kupdate = 1,
768 .range_cyclic = 1,
771 sync_supers();
773 oldest_jif = jiffies - dirty_expire_interval;
774 start_jif = jiffies;
775 next_jif = start_jif + dirty_writeback_interval;
776 nr_to_write = global_page_state(NR_FILE_DIRTY) +
777 global_page_state(NR_UNSTABLE_NFS) +
778 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
779 while (nr_to_write > 0) {
780 wbc.more_io = 0;
781 wbc.encountered_congestion = 0;
782 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
783 writeback_inodes(&wbc);
784 if (wbc.nr_to_write > 0) {
785 if (wbc.encountered_congestion || wbc.more_io)
786 congestion_wait(WRITE, HZ/10);
787 else
788 break; /* All the old data is written */
790 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
792 if (time_before(next_jif, jiffies + HZ))
793 next_jif = jiffies + HZ;
794 if (dirty_writeback_interval)
795 mod_timer(&wb_timer, next_jif);
799 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
801 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
802 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
804 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
805 if (dirty_writeback_interval)
806 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
807 else
808 del_timer(&wb_timer);
809 return 0;
812 static void wb_timer_fn(unsigned long unused)
814 if (pdflush_operation(wb_kupdate, 0) < 0)
815 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
818 static void laptop_flush(unsigned long unused)
820 sys_sync();
823 static void laptop_timer_fn(unsigned long unused)
825 pdflush_operation(laptop_flush, 0);
829 * We've spun up the disk and we're in laptop mode: schedule writeback
830 * of all dirty data a few seconds from now. If the flush is already scheduled
831 * then push it back - the user is still using the disk.
833 void laptop_io_completion(void)
835 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
839 * We're in laptop mode and we've just synced. The sync's writes will have
840 * caused another writeback to be scheduled by laptop_io_completion.
841 * Nothing needs to be written back anymore, so we unschedule the writeback.
843 void laptop_sync_completion(void)
845 del_timer(&laptop_mode_wb_timer);
849 * If ratelimit_pages is too high then we can get into dirty-data overload
850 * if a large number of processes all perform writes at the same time.
851 * If it is too low then SMP machines will call the (expensive)
852 * get_writeback_state too often.
854 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
855 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
856 * thresholds before writeback cuts in.
858 * But the limit should not be set too high. Because it also controls the
859 * amount of memory which the balance_dirty_pages() caller has to write back.
860 * If this is too large then the caller will block on the IO queue all the
861 * time. So limit it to four megabytes - the balance_dirty_pages() caller
862 * will write six megabyte chunks, max.
865 void writeback_set_ratelimit(void)
867 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
868 if (ratelimit_pages < 16)
869 ratelimit_pages = 16;
870 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
871 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
874 static int __cpuinit
875 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
877 writeback_set_ratelimit();
878 return NOTIFY_DONE;
881 static struct notifier_block __cpuinitdata ratelimit_nb = {
882 .notifier_call = ratelimit_handler,
883 .next = NULL,
887 * Called early on to tune the page writeback dirty limits.
889 * We used to scale dirty pages according to how total memory
890 * related to pages that could be allocated for buffers (by
891 * comparing nr_free_buffer_pages() to vm_total_pages.
893 * However, that was when we used "dirty_ratio" to scale with
894 * all memory, and we don't do that any more. "dirty_ratio"
895 * is now applied to total non-HIGHPAGE memory (by subtracting
896 * totalhigh_pages from vm_total_pages), and as such we can't
897 * get into the old insane situation any more where we had
898 * large amounts of dirty pages compared to a small amount of
899 * non-HIGHMEM memory.
901 * But we might still want to scale the dirty_ratio by how
902 * much memory the box has..
904 void __init page_writeback_init(void)
906 int shift;
908 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
909 writeback_set_ratelimit();
910 register_cpu_notifier(&ratelimit_nb);
912 shift = calc_period_shift();
913 prop_descriptor_init(&vm_completions, shift);
914 prop_descriptor_init(&vm_dirties, shift);
918 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
919 * @mapping: address space structure to write
920 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
921 * @writepage: function called for each page
922 * @data: data passed to writepage function
924 * If a page is already under I/O, write_cache_pages() skips it, even
925 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
926 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
927 * and msync() need to guarantee that all the data which was dirty at the time
928 * the call was made get new I/O started against them. If wbc->sync_mode is
929 * WB_SYNC_ALL then we were called for data integrity and we must wait for
930 * existing IO to complete.
932 int write_cache_pages(struct address_space *mapping,
933 struct writeback_control *wbc, writepage_t writepage,
934 void *data)
936 struct backing_dev_info *bdi = mapping->backing_dev_info;
937 int ret = 0;
938 int done = 0;
939 struct pagevec pvec;
940 int nr_pages;
941 pgoff_t uninitialized_var(writeback_index);
942 pgoff_t index;
943 pgoff_t end; /* Inclusive */
944 pgoff_t done_index;
945 int cycled;
946 int range_whole = 0;
947 long nr_to_write = wbc->nr_to_write;
949 if (wbc->nonblocking && bdi_write_congested(bdi)) {
950 wbc->encountered_congestion = 1;
951 return 0;
954 pagevec_init(&pvec, 0);
955 if (wbc->range_cyclic) {
956 writeback_index = mapping->writeback_index; /* prev offset */
957 index = writeback_index;
958 if (index == 0)
959 cycled = 1;
960 else
961 cycled = 0;
962 end = -1;
963 } else {
964 index = wbc->range_start >> PAGE_CACHE_SHIFT;
965 end = wbc->range_end >> PAGE_CACHE_SHIFT;
966 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
967 range_whole = 1;
968 cycled = 1; /* ignore range_cyclic tests */
970 retry:
971 done_index = index;
972 while (!done && (index <= end)) {
973 int i;
975 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
976 PAGECACHE_TAG_DIRTY,
977 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
978 if (nr_pages == 0)
979 break;
981 for (i = 0; i < nr_pages; i++) {
982 struct page *page = pvec.pages[i];
985 * At this point, the page may be truncated or
986 * invalidated (changing page->mapping to NULL), or
987 * even swizzled back from swapper_space to tmpfs file
988 * mapping. However, page->index will not change
989 * because we have a reference on the page.
991 if (page->index > end) {
993 * can't be range_cyclic (1st pass) because
994 * end == -1 in that case.
996 done = 1;
997 break;
1000 done_index = page->index + 1;
1002 lock_page(page);
1005 * Page truncated or invalidated. We can freely skip it
1006 * then, even for data integrity operations: the page
1007 * has disappeared concurrently, so there could be no
1008 * real expectation of this data interity operation
1009 * even if there is now a new, dirty page at the same
1010 * pagecache address.
1012 if (unlikely(page->mapping != mapping)) {
1013 continue_unlock:
1014 unlock_page(page);
1015 continue;
1018 if (!PageDirty(page)) {
1019 /* someone wrote it for us */
1020 goto continue_unlock;
1023 if (PageWriteback(page)) {
1024 if (wbc->sync_mode != WB_SYNC_NONE)
1025 wait_on_page_writeback(page);
1026 else
1027 goto continue_unlock;
1030 BUG_ON(PageWriteback(page));
1031 if (!clear_page_dirty_for_io(page))
1032 goto continue_unlock;
1034 ret = (*writepage)(page, wbc, data);
1035 if (unlikely(ret)) {
1036 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1037 unlock_page(page);
1038 ret = 0;
1039 } else {
1041 * done_index is set past this page,
1042 * so media errors will not choke
1043 * background writeout for the entire
1044 * file. This has consequences for
1045 * range_cyclic semantics (ie. it may
1046 * not be suitable for data integrity
1047 * writeout).
1049 done = 1;
1050 break;
1054 if (nr_to_write > 0) {
1055 nr_to_write--;
1056 if (nr_to_write == 0 &&
1057 wbc->sync_mode == WB_SYNC_NONE) {
1059 * We stop writing back only if we are
1060 * not doing integrity sync. In case of
1061 * integrity sync we have to keep going
1062 * because someone may be concurrently
1063 * dirtying pages, and we might have
1064 * synced a lot of newly appeared dirty
1065 * pages, but have not synced all of the
1066 * old dirty pages.
1068 done = 1;
1069 break;
1073 if (wbc->nonblocking && bdi_write_congested(bdi)) {
1074 wbc->encountered_congestion = 1;
1075 done = 1;
1076 break;
1079 pagevec_release(&pvec);
1080 cond_resched();
1082 if (!cycled && !done) {
1084 * range_cyclic:
1085 * We hit the last page and there is more work to be done: wrap
1086 * back to the start of the file
1088 cycled = 1;
1089 index = 0;
1090 end = writeback_index - 1;
1091 goto retry;
1093 if (!wbc->no_nrwrite_index_update) {
1094 if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
1095 mapping->writeback_index = done_index;
1096 wbc->nr_to_write = nr_to_write;
1099 return ret;
1101 EXPORT_SYMBOL(write_cache_pages);
1104 * Function used by generic_writepages to call the real writepage
1105 * function and set the mapping flags on error
1107 static int __writepage(struct page *page, struct writeback_control *wbc,
1108 void *data)
1110 struct address_space *mapping = data;
1111 int ret = mapping->a_ops->writepage(page, wbc);
1112 mapping_set_error(mapping, ret);
1113 return ret;
1117 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1118 * @mapping: address space structure to write
1119 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1121 * This is a library function, which implements the writepages()
1122 * address_space_operation.
1124 int generic_writepages(struct address_space *mapping,
1125 struct writeback_control *wbc)
1127 /* deal with chardevs and other special file */
1128 if (!mapping->a_ops->writepage)
1129 return 0;
1131 return write_cache_pages(mapping, wbc, __writepage, mapping);
1134 EXPORT_SYMBOL(generic_writepages);
1136 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1138 int ret;
1140 if (wbc->nr_to_write <= 0)
1141 return 0;
1142 wbc->for_writepages = 1;
1143 if (mapping->a_ops->writepages)
1144 ret = mapping->a_ops->writepages(mapping, wbc);
1145 else
1146 ret = generic_writepages(mapping, wbc);
1147 wbc->for_writepages = 0;
1148 return ret;
1152 * write_one_page - write out a single page and optionally wait on I/O
1153 * @page: the page to write
1154 * @wait: if true, wait on writeout
1156 * The page must be locked by the caller and will be unlocked upon return.
1158 * write_one_page() returns a negative error code if I/O failed.
1160 int write_one_page(struct page *page, int wait)
1162 struct address_space *mapping = page->mapping;
1163 int ret = 0;
1164 struct writeback_control wbc = {
1165 .sync_mode = WB_SYNC_ALL,
1166 .nr_to_write = 1,
1169 BUG_ON(!PageLocked(page));
1171 if (wait)
1172 wait_on_page_writeback(page);
1174 if (clear_page_dirty_for_io(page)) {
1175 page_cache_get(page);
1176 ret = mapping->a_ops->writepage(page, &wbc);
1177 if (ret == 0 && wait) {
1178 wait_on_page_writeback(page);
1179 if (PageError(page))
1180 ret = -EIO;
1182 page_cache_release(page);
1183 } else {
1184 unlock_page(page);
1186 return ret;
1188 EXPORT_SYMBOL(write_one_page);
1191 * For address_spaces which do not use buffers nor write back.
1193 int __set_page_dirty_no_writeback(struct page *page)
1195 if (!PageDirty(page))
1196 SetPageDirty(page);
1197 return 0;
1201 * For address_spaces which do not use buffers. Just tag the page as dirty in
1202 * its radix tree.
1204 * This is also used when a single buffer is being dirtied: we want to set the
1205 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1206 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1208 * Most callers have locked the page, which pins the address_space in memory.
1209 * But zap_pte_range() does not lock the page, however in that case the
1210 * mapping is pinned by the vma's ->vm_file reference.
1212 * We take care to handle the case where the page was truncated from the
1213 * mapping by re-checking page_mapping() inside tree_lock.
1215 int __set_page_dirty_nobuffers(struct page *page)
1217 if (!TestSetPageDirty(page)) {
1218 struct address_space *mapping = page_mapping(page);
1219 struct address_space *mapping2;
1221 if (!mapping)
1222 return 1;
1224 spin_lock_irq(&mapping->tree_lock);
1225 mapping2 = page_mapping(page);
1226 if (mapping2) { /* Race with truncate? */
1227 BUG_ON(mapping2 != mapping);
1228 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1229 if (mapping_cap_account_dirty(mapping)) {
1230 __inc_zone_page_state(page, NR_FILE_DIRTY);
1231 __inc_bdi_stat(mapping->backing_dev_info,
1232 BDI_RECLAIMABLE);
1233 task_dirty_inc(current);
1234 task_io_account_write(PAGE_CACHE_SIZE);
1236 radix_tree_tag_set(&mapping->page_tree,
1237 page_index(page), PAGECACHE_TAG_DIRTY);
1239 spin_unlock_irq(&mapping->tree_lock);
1240 if (mapping->host) {
1241 /* !PageAnon && !swapper_space */
1242 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1244 return 1;
1246 return 0;
1248 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1251 * When a writepage implementation decides that it doesn't want to write this
1252 * page for some reason, it should redirty the locked page via
1253 * redirty_page_for_writepage() and it should then unlock the page and return 0
1255 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1257 wbc->pages_skipped++;
1258 return __set_page_dirty_nobuffers(page);
1260 EXPORT_SYMBOL(redirty_page_for_writepage);
1263 * If the mapping doesn't provide a set_page_dirty a_op, then
1264 * just fall through and assume that it wants buffer_heads.
1266 int set_page_dirty(struct page *page)
1268 struct address_space *mapping = page_mapping(page);
1270 if (likely(mapping)) {
1271 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1272 #ifdef CONFIG_BLOCK
1273 if (!spd)
1274 spd = __set_page_dirty_buffers;
1275 #endif
1276 return (*spd)(page);
1278 if (!PageDirty(page)) {
1279 if (!TestSetPageDirty(page))
1280 return 1;
1282 return 0;
1284 EXPORT_SYMBOL(set_page_dirty);
1287 * set_page_dirty() is racy if the caller has no reference against
1288 * page->mapping->host, and if the page is unlocked. This is because another
1289 * CPU could truncate the page off the mapping and then free the mapping.
1291 * Usually, the page _is_ locked, or the caller is a user-space process which
1292 * holds a reference on the inode by having an open file.
1294 * In other cases, the page should be locked before running set_page_dirty().
1296 int set_page_dirty_lock(struct page *page)
1298 int ret;
1300 lock_page_nosync(page);
1301 ret = set_page_dirty(page);
1302 unlock_page(page);
1303 return ret;
1305 EXPORT_SYMBOL(set_page_dirty_lock);
1308 * Clear a page's dirty flag, while caring for dirty memory accounting.
1309 * Returns true if the page was previously dirty.
1311 * This is for preparing to put the page under writeout. We leave the page
1312 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1313 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1314 * implementation will run either set_page_writeback() or set_page_dirty(),
1315 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1316 * back into sync.
1318 * This incoherency between the page's dirty flag and radix-tree tag is
1319 * unfortunate, but it only exists while the page is locked.
1321 int clear_page_dirty_for_io(struct page *page)
1323 struct address_space *mapping = page_mapping(page);
1325 BUG_ON(!PageLocked(page));
1327 ClearPageReclaim(page);
1328 if (mapping && mapping_cap_account_dirty(mapping)) {
1330 * Yes, Virginia, this is indeed insane.
1332 * We use this sequence to make sure that
1333 * (a) we account for dirty stats properly
1334 * (b) we tell the low-level filesystem to
1335 * mark the whole page dirty if it was
1336 * dirty in a pagetable. Only to then
1337 * (c) clean the page again and return 1 to
1338 * cause the writeback.
1340 * This way we avoid all nasty races with the
1341 * dirty bit in multiple places and clearing
1342 * them concurrently from different threads.
1344 * Note! Normally the "set_page_dirty(page)"
1345 * has no effect on the actual dirty bit - since
1346 * that will already usually be set. But we
1347 * need the side effects, and it can help us
1348 * avoid races.
1350 * We basically use the page "master dirty bit"
1351 * as a serialization point for all the different
1352 * threads doing their things.
1354 if (page_mkclean(page))
1355 set_page_dirty(page);
1357 * We carefully synchronise fault handlers against
1358 * installing a dirty pte and marking the page dirty
1359 * at this point. We do this by having them hold the
1360 * page lock at some point after installing their
1361 * pte, but before marking the page dirty.
1362 * Pages are always locked coming in here, so we get
1363 * the desired exclusion. See mm/memory.c:do_wp_page()
1364 * for more comments.
1366 if (TestClearPageDirty(page)) {
1367 dec_zone_page_state(page, NR_FILE_DIRTY);
1368 dec_bdi_stat(mapping->backing_dev_info,
1369 BDI_RECLAIMABLE);
1370 return 1;
1372 return 0;
1374 return TestClearPageDirty(page);
1376 EXPORT_SYMBOL(clear_page_dirty_for_io);
1378 int test_clear_page_writeback(struct page *page)
1380 struct address_space *mapping = page_mapping(page);
1381 int ret;
1383 if (mapping) {
1384 struct backing_dev_info *bdi = mapping->backing_dev_info;
1385 unsigned long flags;
1387 spin_lock_irqsave(&mapping->tree_lock, flags);
1388 ret = TestClearPageWriteback(page);
1389 if (ret) {
1390 radix_tree_tag_clear(&mapping->page_tree,
1391 page_index(page),
1392 PAGECACHE_TAG_WRITEBACK);
1393 if (bdi_cap_account_writeback(bdi)) {
1394 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1395 __bdi_writeout_inc(bdi);
1398 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1399 } else {
1400 ret = TestClearPageWriteback(page);
1402 if (ret)
1403 dec_zone_page_state(page, NR_WRITEBACK);
1404 return ret;
1407 int test_set_page_writeback(struct page *page)
1409 struct address_space *mapping = page_mapping(page);
1410 int ret;
1412 if (mapping) {
1413 struct backing_dev_info *bdi = mapping->backing_dev_info;
1414 unsigned long flags;
1416 spin_lock_irqsave(&mapping->tree_lock, flags);
1417 ret = TestSetPageWriteback(page);
1418 if (!ret) {
1419 radix_tree_tag_set(&mapping->page_tree,
1420 page_index(page),
1421 PAGECACHE_TAG_WRITEBACK);
1422 if (bdi_cap_account_writeback(bdi))
1423 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1425 if (!PageDirty(page))
1426 radix_tree_tag_clear(&mapping->page_tree,
1427 page_index(page),
1428 PAGECACHE_TAG_DIRTY);
1429 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1430 } else {
1431 ret = TestSetPageWriteback(page);
1433 if (!ret)
1434 inc_zone_page_state(page, NR_WRITEBACK);
1435 return ret;
1438 EXPORT_SYMBOL(test_set_page_writeback);
1441 * Return true if any of the pages in the mapping are marked with the
1442 * passed tag.
1444 int mapping_tagged(struct address_space *mapping, int tag)
1446 int ret;
1447 rcu_read_lock();
1448 ret = radix_tree_tagged(&mapping->page_tree, tag);
1449 rcu_read_unlock();
1450 return ret;
1452 EXPORT_SYMBOL(mapping_tagged);