4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
57 #include <asm/tlbflush.h>
58 #include <asm/pgtable.h>
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
63 #ifndef CONFIG_NEED_MULTIPLE_NODES
64 /* use the per-pgdat data instead for discontigmem - mbligh */
65 unsigned long max_mapnr
;
68 EXPORT_SYMBOL(max_mapnr
);
69 EXPORT_SYMBOL(mem_map
);
72 unsigned long num_physpages
;
74 * A number of key systems in x86 including ioremap() rely on the assumption
75 * that high_memory defines the upper bound on direct map memory, then end
76 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
77 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82 EXPORT_SYMBOL(num_physpages
);
83 EXPORT_SYMBOL(high_memory
);
85 int randomize_va_space __read_mostly
= 1;
87 static int __init
disable_randmaps(char *s
)
89 randomize_va_space
= 0;
92 __setup("norandmaps", disable_randmaps
);
96 * If a p?d_bad entry is found while walking page tables, report
97 * the error, before resetting entry to p?d_none. Usually (but
98 * very seldom) called out from the p?d_none_or_clear_bad macros.
101 void pgd_clear_bad(pgd_t
*pgd
)
107 void pud_clear_bad(pud_t
*pud
)
113 void pmd_clear_bad(pmd_t
*pmd
)
120 * Note: this doesn't free the actual pages themselves. That
121 * has been handled earlier when unmapping all the memory regions.
123 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
)
125 struct page
*page
= pmd_page(*pmd
);
127 pte_lock_deinit(page
);
128 pte_free_tlb(tlb
, page
);
129 dec_zone_page_state(page
, NR_PAGETABLE
);
133 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
134 unsigned long addr
, unsigned long end
,
135 unsigned long floor
, unsigned long ceiling
)
142 pmd
= pmd_offset(pud
, addr
);
144 next
= pmd_addr_end(addr
, end
);
145 if (pmd_none_or_clear_bad(pmd
))
147 free_pte_range(tlb
, pmd
);
148 } while (pmd
++, addr
= next
, addr
!= end
);
158 if (end
- 1 > ceiling
- 1)
161 pmd
= pmd_offset(pud
, start
);
163 pmd_free_tlb(tlb
, pmd
);
166 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
167 unsigned long addr
, unsigned long end
,
168 unsigned long floor
, unsigned long ceiling
)
175 pud
= pud_offset(pgd
, addr
);
177 next
= pud_addr_end(addr
, end
);
178 if (pud_none_or_clear_bad(pud
))
180 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
181 } while (pud
++, addr
= next
, addr
!= end
);
187 ceiling
&= PGDIR_MASK
;
191 if (end
- 1 > ceiling
- 1)
194 pud
= pud_offset(pgd
, start
);
196 pud_free_tlb(tlb
, pud
);
200 * This function frees user-level page tables of a process.
202 * Must be called with pagetable lock held.
204 void free_pgd_range(struct mmu_gather
**tlb
,
205 unsigned long addr
, unsigned long end
,
206 unsigned long floor
, unsigned long ceiling
)
213 * The next few lines have given us lots of grief...
215 * Why are we testing PMD* at this top level? Because often
216 * there will be no work to do at all, and we'd prefer not to
217 * go all the way down to the bottom just to discover that.
219 * Why all these "- 1"s? Because 0 represents both the bottom
220 * of the address space and the top of it (using -1 for the
221 * top wouldn't help much: the masks would do the wrong thing).
222 * The rule is that addr 0 and floor 0 refer to the bottom of
223 * the address space, but end 0 and ceiling 0 refer to the top
224 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225 * that end 0 case should be mythical).
227 * Wherever addr is brought up or ceiling brought down, we must
228 * be careful to reject "the opposite 0" before it confuses the
229 * subsequent tests. But what about where end is brought down
230 * by PMD_SIZE below? no, end can't go down to 0 there.
232 * Whereas we round start (addr) and ceiling down, by different
233 * masks at different levels, in order to test whether a table
234 * now has no other vmas using it, so can be freed, we don't
235 * bother to round floor or end up - the tests don't need that.
249 if (end
- 1 > ceiling
- 1)
255 pgd
= pgd_offset((*tlb
)->mm
, addr
);
257 next
= pgd_addr_end(addr
, end
);
258 if (pgd_none_or_clear_bad(pgd
))
260 free_pud_range(*tlb
, pgd
, addr
, next
, floor
, ceiling
);
261 } while (pgd
++, addr
= next
, addr
!= end
);
264 void free_pgtables(struct mmu_gather
**tlb
, struct vm_area_struct
*vma
,
265 unsigned long floor
, unsigned long ceiling
)
268 struct vm_area_struct
*next
= vma
->vm_next
;
269 unsigned long addr
= vma
->vm_start
;
272 * Hide vma from rmap and vmtruncate before freeing pgtables
274 anon_vma_unlink(vma
);
275 unlink_file_vma(vma
);
277 if (is_vm_hugetlb_page(vma
)) {
278 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
279 floor
, next
? next
->vm_start
: ceiling
);
282 * Optimization: gather nearby vmas into one call down
284 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
285 && !is_vm_hugetlb_page(next
)) {
288 anon_vma_unlink(vma
);
289 unlink_file_vma(vma
);
291 free_pgd_range(tlb
, addr
, vma
->vm_end
,
292 floor
, next
? next
->vm_start
: ceiling
);
298 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
300 struct page
*new = pte_alloc_one(mm
, address
);
305 spin_lock(&mm
->page_table_lock
);
306 if (pmd_present(*pmd
)) { /* Another has populated it */
307 pte_lock_deinit(new);
311 inc_zone_page_state(new, NR_PAGETABLE
);
312 pmd_populate(mm
, pmd
, new);
314 spin_unlock(&mm
->page_table_lock
);
318 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
320 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
324 spin_lock(&init_mm
.page_table_lock
);
325 if (pmd_present(*pmd
)) /* Another has populated it */
326 pte_free_kernel(new);
328 pmd_populate_kernel(&init_mm
, pmd
, new);
329 spin_unlock(&init_mm
.page_table_lock
);
333 static inline void add_mm_rss(struct mm_struct
*mm
, int file_rss
, int anon_rss
)
336 add_mm_counter(mm
, file_rss
, file_rss
);
338 add_mm_counter(mm
, anon_rss
, anon_rss
);
342 * This function is called to print an error when a bad pte
343 * is found. For example, we might have a PFN-mapped pte in
344 * a region that doesn't allow it.
346 * The calling function must still handle the error.
348 void print_bad_pte(struct vm_area_struct
*vma
, pte_t pte
, unsigned long vaddr
)
350 printk(KERN_ERR
"Bad pte = %08llx, process = %s, "
351 "vm_flags = %lx, vaddr = %lx\n",
352 (long long)pte_val(pte
),
353 (vma
->vm_mm
== current
->mm
? current
->comm
: "???"),
354 vma
->vm_flags
, vaddr
);
358 static inline int is_cow_mapping(unsigned int flags
)
360 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
364 * This function gets the "struct page" associated with a pte.
366 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
367 * will have each page table entry just pointing to a raw page frame
368 * number, and as far as the VM layer is concerned, those do not have
369 * pages associated with them - even if the PFN might point to memory
370 * that otherwise is perfectly fine and has a "struct page".
372 * The way we recognize those mappings is through the rules set up
373 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
374 * and the vm_pgoff will point to the first PFN mapped: thus every
375 * page that is a raw mapping will always honor the rule
377 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
379 * and if that isn't true, the page has been COW'ed (in which case it
380 * _does_ have a "struct page" associated with it even if it is in a
383 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
, pte_t pte
)
385 unsigned long pfn
= pte_pfn(pte
);
387 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
388 unsigned long off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
389 if (pfn
== vma
->vm_pgoff
+ off
)
391 if (!is_cow_mapping(vma
->vm_flags
))
395 #ifdef CONFIG_DEBUG_VM
397 * Add some anal sanity checks for now. Eventually,
398 * we should just do "return pfn_to_page(pfn)", but
399 * in the meantime we check that we get a valid pfn,
400 * and that the resulting page looks ok.
402 if (unlikely(!pfn_valid(pfn
))) {
403 print_bad_pte(vma
, pte
, addr
);
409 * NOTE! We still have PageReserved() pages in the page
412 * The PAGE_ZERO() pages and various VDSO mappings can
413 * cause them to exist.
415 return pfn_to_page(pfn
);
419 * copy one vm_area from one task to the other. Assumes the page tables
420 * already present in the new task to be cleared in the whole range
421 * covered by this vma.
425 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
426 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
427 unsigned long addr
, int *rss
)
429 unsigned long vm_flags
= vma
->vm_flags
;
430 pte_t pte
= *src_pte
;
433 /* pte contains position in swap or file, so copy. */
434 if (unlikely(!pte_present(pte
))) {
435 if (!pte_file(pte
)) {
436 swp_entry_t entry
= pte_to_swp_entry(pte
);
438 swap_duplicate(entry
);
439 /* make sure dst_mm is on swapoff's mmlist. */
440 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
441 spin_lock(&mmlist_lock
);
442 if (list_empty(&dst_mm
->mmlist
))
443 list_add(&dst_mm
->mmlist
,
445 spin_unlock(&mmlist_lock
);
447 if (is_write_migration_entry(entry
) &&
448 is_cow_mapping(vm_flags
)) {
450 * COW mappings require pages in both parent
451 * and child to be set to read.
453 make_migration_entry_read(&entry
);
454 pte
= swp_entry_to_pte(entry
);
455 set_pte_at(src_mm
, addr
, src_pte
, pte
);
462 * If it's a COW mapping, write protect it both
463 * in the parent and the child
465 if (is_cow_mapping(vm_flags
)) {
466 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
467 pte
= pte_wrprotect(pte
);
471 * If it's a shared mapping, mark it clean in
474 if (vm_flags
& VM_SHARED
)
475 pte
= pte_mkclean(pte
);
476 pte
= pte_mkold(pte
);
478 page
= vm_normal_page(vma
, addr
, pte
);
481 page_dup_rmap(page
, vma
, addr
);
482 rss
[!!PageAnon(page
)]++;
486 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
489 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
490 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
491 unsigned long addr
, unsigned long end
)
493 pte_t
*src_pte
, *dst_pte
;
494 spinlock_t
*src_ptl
, *dst_ptl
;
500 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
503 src_pte
= pte_offset_map_nested(src_pmd
, addr
);
504 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
505 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
506 arch_enter_lazy_mmu_mode();
510 * We are holding two locks at this point - either of them
511 * could generate latencies in another task on another CPU.
513 if (progress
>= 32) {
515 if (need_resched() ||
516 need_lockbreak(src_ptl
) ||
517 need_lockbreak(dst_ptl
))
520 if (pte_none(*src_pte
)) {
524 copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
, vma
, addr
, rss
);
526 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
528 arch_leave_lazy_mmu_mode();
529 spin_unlock(src_ptl
);
530 pte_unmap_nested(src_pte
- 1);
531 add_mm_rss(dst_mm
, rss
[0], rss
[1]);
532 pte_unmap_unlock(dst_pte
- 1, dst_ptl
);
539 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
540 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
541 unsigned long addr
, unsigned long end
)
543 pmd_t
*src_pmd
, *dst_pmd
;
546 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
549 src_pmd
= pmd_offset(src_pud
, addr
);
551 next
= pmd_addr_end(addr
, end
);
552 if (pmd_none_or_clear_bad(src_pmd
))
554 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
557 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
561 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
562 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
563 unsigned long addr
, unsigned long end
)
565 pud_t
*src_pud
, *dst_pud
;
568 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
571 src_pud
= pud_offset(src_pgd
, addr
);
573 next
= pud_addr_end(addr
, end
);
574 if (pud_none_or_clear_bad(src_pud
))
576 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
579 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
583 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
584 struct vm_area_struct
*vma
)
586 pgd_t
*src_pgd
, *dst_pgd
;
588 unsigned long addr
= vma
->vm_start
;
589 unsigned long end
= vma
->vm_end
;
592 * Don't copy ptes where a page fault will fill them correctly.
593 * Fork becomes much lighter when there are big shared or private
594 * readonly mappings. The tradeoff is that copy_page_range is more
595 * efficient than faulting.
597 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
602 if (is_vm_hugetlb_page(vma
))
603 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
605 dst_pgd
= pgd_offset(dst_mm
, addr
);
606 src_pgd
= pgd_offset(src_mm
, addr
);
608 next
= pgd_addr_end(addr
, end
);
609 if (pgd_none_or_clear_bad(src_pgd
))
611 if (copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
614 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
618 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
619 struct vm_area_struct
*vma
, pmd_t
*pmd
,
620 unsigned long addr
, unsigned long end
,
621 long *zap_work
, struct zap_details
*details
)
623 struct mm_struct
*mm
= tlb
->mm
;
629 pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
630 arch_enter_lazy_mmu_mode();
633 if (pte_none(ptent
)) {
638 (*zap_work
) -= PAGE_SIZE
;
640 if (pte_present(ptent
)) {
643 page
= vm_normal_page(vma
, addr
, ptent
);
644 if (unlikely(details
) && page
) {
646 * unmap_shared_mapping_pages() wants to
647 * invalidate cache without truncating:
648 * unmap shared but keep private pages.
650 if (details
->check_mapping
&&
651 details
->check_mapping
!= page
->mapping
)
654 * Each page->index must be checked when
655 * invalidating or truncating nonlinear.
657 if (details
->nonlinear_vma
&&
658 (page
->index
< details
->first_index
||
659 page
->index
> details
->last_index
))
662 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
664 tlb_remove_tlb_entry(tlb
, pte
, addr
);
667 if (unlikely(details
) && details
->nonlinear_vma
668 && linear_page_index(details
->nonlinear_vma
,
669 addr
) != page
->index
)
670 set_pte_at(mm
, addr
, pte
,
671 pgoff_to_pte(page
->index
));
675 if (pte_dirty(ptent
))
676 set_page_dirty(page
);
677 if (pte_young(ptent
))
678 SetPageReferenced(page
);
681 page_remove_rmap(page
, vma
);
682 tlb_remove_page(tlb
, page
);
686 * If details->check_mapping, we leave swap entries;
687 * if details->nonlinear_vma, we leave file entries.
689 if (unlikely(details
))
691 if (!pte_file(ptent
))
692 free_swap_and_cache(pte_to_swp_entry(ptent
));
693 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
694 } while (pte
++, addr
+= PAGE_SIZE
, (addr
!= end
&& *zap_work
> 0));
696 add_mm_rss(mm
, file_rss
, anon_rss
);
697 arch_leave_lazy_mmu_mode();
698 pte_unmap_unlock(pte
- 1, ptl
);
703 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
704 struct vm_area_struct
*vma
, pud_t
*pud
,
705 unsigned long addr
, unsigned long end
,
706 long *zap_work
, struct zap_details
*details
)
711 pmd
= pmd_offset(pud
, addr
);
713 next
= pmd_addr_end(addr
, end
);
714 if (pmd_none_or_clear_bad(pmd
)) {
718 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
,
720 } while (pmd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
725 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
726 struct vm_area_struct
*vma
, pgd_t
*pgd
,
727 unsigned long addr
, unsigned long end
,
728 long *zap_work
, struct zap_details
*details
)
733 pud
= pud_offset(pgd
, addr
);
735 next
= pud_addr_end(addr
, end
);
736 if (pud_none_or_clear_bad(pud
)) {
740 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
,
742 } while (pud
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
747 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
748 struct vm_area_struct
*vma
,
749 unsigned long addr
, unsigned long end
,
750 long *zap_work
, struct zap_details
*details
)
755 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
759 tlb_start_vma(tlb
, vma
);
760 pgd
= pgd_offset(vma
->vm_mm
, addr
);
762 next
= pgd_addr_end(addr
, end
);
763 if (pgd_none_or_clear_bad(pgd
)) {
767 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
,
769 } while (pgd
++, addr
= next
, (addr
!= end
&& *zap_work
> 0));
770 tlb_end_vma(tlb
, vma
);
775 #ifdef CONFIG_PREEMPT
776 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
778 /* No preempt: go for improved straight-line efficiency */
779 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
783 * unmap_vmas - unmap a range of memory covered by a list of vma's
784 * @tlbp: address of the caller's struct mmu_gather
785 * @vma: the starting vma
786 * @start_addr: virtual address at which to start unmapping
787 * @end_addr: virtual address at which to end unmapping
788 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
789 * @details: details of nonlinear truncation or shared cache invalidation
791 * Returns the end address of the unmapping (restart addr if interrupted).
793 * Unmap all pages in the vma list.
795 * We aim to not hold locks for too long (for scheduling latency reasons).
796 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
797 * return the ending mmu_gather to the caller.
799 * Only addresses between `start' and `end' will be unmapped.
801 * The VMA list must be sorted in ascending virtual address order.
803 * unmap_vmas() assumes that the caller will flush the whole unmapped address
804 * range after unmap_vmas() returns. So the only responsibility here is to
805 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
806 * drops the lock and schedules.
808 unsigned long unmap_vmas(struct mmu_gather
**tlbp
,
809 struct vm_area_struct
*vma
, unsigned long start_addr
,
810 unsigned long end_addr
, unsigned long *nr_accounted
,
811 struct zap_details
*details
)
813 long zap_work
= ZAP_BLOCK_SIZE
;
814 unsigned long tlb_start
= 0; /* For tlb_finish_mmu */
815 int tlb_start_valid
= 0;
816 unsigned long start
= start_addr
;
817 spinlock_t
*i_mmap_lock
= details
? details
->i_mmap_lock
: NULL
;
818 int fullmm
= (*tlbp
)->fullmm
;
820 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
823 start
= max(vma
->vm_start
, start_addr
);
824 if (start
>= vma
->vm_end
)
826 end
= min(vma
->vm_end
, end_addr
);
827 if (end
<= vma
->vm_start
)
830 if (vma
->vm_flags
& VM_ACCOUNT
)
831 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
833 while (start
!= end
) {
834 if (!tlb_start_valid
) {
839 if (unlikely(is_vm_hugetlb_page(vma
))) {
840 unmap_hugepage_range(vma
, start
, end
);
841 zap_work
-= (end
- start
) /
842 (HPAGE_SIZE
/ PAGE_SIZE
);
845 start
= unmap_page_range(*tlbp
, vma
,
846 start
, end
, &zap_work
, details
);
849 BUG_ON(start
!= end
);
853 tlb_finish_mmu(*tlbp
, tlb_start
, start
);
855 if (need_resched() ||
856 (i_mmap_lock
&& need_lockbreak(i_mmap_lock
))) {
864 *tlbp
= tlb_gather_mmu(vma
->vm_mm
, fullmm
);
866 zap_work
= ZAP_BLOCK_SIZE
;
870 return start
; /* which is now the end (or restart) address */
874 * zap_page_range - remove user pages in a given range
875 * @vma: vm_area_struct holding the applicable pages
876 * @address: starting address of pages to zap
877 * @size: number of bytes to zap
878 * @details: details of nonlinear truncation or shared cache invalidation
880 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
881 unsigned long size
, struct zap_details
*details
)
883 struct mm_struct
*mm
= vma
->vm_mm
;
884 struct mmu_gather
*tlb
;
885 unsigned long end
= address
+ size
;
886 unsigned long nr_accounted
= 0;
889 tlb
= tlb_gather_mmu(mm
, 0);
890 update_hiwater_rss(mm
);
891 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
893 tlb_finish_mmu(tlb
, address
, end
);
898 * Do a quick page-table lookup for a single page.
900 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
909 struct mm_struct
*mm
= vma
->vm_mm
;
911 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
913 BUG_ON(flags
& FOLL_GET
);
918 pgd
= pgd_offset(mm
, address
);
919 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
922 pud
= pud_offset(pgd
, address
);
923 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
926 pmd
= pmd_offset(pud
, address
);
927 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
930 if (pmd_huge(*pmd
)) {
931 BUG_ON(flags
& FOLL_GET
);
932 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
936 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
941 if (!pte_present(pte
))
943 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
945 page
= vm_normal_page(vma
, address
, pte
);
949 if (flags
& FOLL_GET
)
951 if (flags
& FOLL_TOUCH
) {
952 if ((flags
& FOLL_WRITE
) &&
953 !pte_dirty(pte
) && !PageDirty(page
))
954 set_page_dirty(page
);
955 mark_page_accessed(page
);
958 pte_unmap_unlock(ptep
, ptl
);
964 * When core dumping an enormous anonymous area that nobody
965 * has touched so far, we don't want to allocate page tables.
967 if (flags
& FOLL_ANON
) {
969 if (flags
& FOLL_GET
)
971 BUG_ON(flags
& FOLL_WRITE
);
976 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
977 unsigned long start
, int len
, int write
, int force
,
978 struct page
**pages
, struct vm_area_struct
**vmas
)
981 unsigned int vm_flags
;
984 * Require read or write permissions.
985 * If 'force' is set, we only require the "MAY" flags.
987 vm_flags
= write
? (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
988 vm_flags
&= force
? (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
992 struct vm_area_struct
*vma
;
993 unsigned int foll_flags
;
995 vma
= find_extend_vma(mm
, start
);
996 if (!vma
&& in_gate_area(tsk
, start
)) {
997 unsigned long pg
= start
& PAGE_MASK
;
998 struct vm_area_struct
*gate_vma
= get_gate_vma(tsk
);
1003 if (write
) /* user gate pages are read-only */
1004 return i
? : -EFAULT
;
1006 pgd
= pgd_offset_k(pg
);
1008 pgd
= pgd_offset_gate(mm
, pg
);
1009 BUG_ON(pgd_none(*pgd
));
1010 pud
= pud_offset(pgd
, pg
);
1011 BUG_ON(pud_none(*pud
));
1012 pmd
= pmd_offset(pud
, pg
);
1014 return i
? : -EFAULT
;
1015 pte
= pte_offset_map(pmd
, pg
);
1016 if (pte_none(*pte
)) {
1018 return i
? : -EFAULT
;
1021 struct page
*page
= vm_normal_page(gate_vma
, start
, *pte
);
1035 if (!vma
|| (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
1036 || !(vm_flags
& vma
->vm_flags
))
1037 return i
? : -EFAULT
;
1039 if (is_vm_hugetlb_page(vma
)) {
1040 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1041 &start
, &len
, i
, write
);
1045 foll_flags
= FOLL_TOUCH
;
1047 foll_flags
|= FOLL_GET
;
1048 if (!write
&& !(vma
->vm_flags
& VM_LOCKED
) &&
1049 (!vma
->vm_ops
|| (!vma
->vm_ops
->nopage
&&
1050 !vma
->vm_ops
->fault
)))
1051 foll_flags
|= FOLL_ANON
;
1057 * If tsk is ooming, cut off its access to large memory
1058 * allocations. It has a pending SIGKILL, but it can't
1059 * be processed until returning to user space.
1061 if (unlikely(test_tsk_thread_flag(tsk
, TIF_MEMDIE
)))
1065 foll_flags
|= FOLL_WRITE
;
1068 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1070 ret
= handle_mm_fault(mm
, vma
, start
,
1071 foll_flags
& FOLL_WRITE
);
1072 if (ret
& VM_FAULT_ERROR
) {
1073 if (ret
& VM_FAULT_OOM
)
1074 return i
? i
: -ENOMEM
;
1075 else if (ret
& VM_FAULT_SIGBUS
)
1076 return i
? i
: -EFAULT
;
1079 if (ret
& VM_FAULT_MAJOR
)
1085 * The VM_FAULT_WRITE bit tells us that
1086 * do_wp_page has broken COW when necessary,
1087 * even if maybe_mkwrite decided not to set
1088 * pte_write. We can thus safely do subsequent
1089 * page lookups as if they were reads.
1091 if (ret
& VM_FAULT_WRITE
)
1092 foll_flags
&= ~FOLL_WRITE
;
1099 flush_anon_page(vma
, page
, start
);
1100 flush_dcache_page(page
);
1107 } while (len
&& start
< vma
->vm_end
);
1111 EXPORT_SYMBOL(get_user_pages
);
1113 pte_t
* fastcall
get_locked_pte(struct mm_struct
*mm
, unsigned long addr
, spinlock_t
**ptl
)
1115 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1116 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1118 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1120 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1126 * This is the old fallback for page remapping.
1128 * For historical reasons, it only allows reserved pages. Only
1129 * old drivers should use this, and they needed to mark their
1130 * pages reserved for the old functions anyway.
1132 static int insert_page(struct mm_struct
*mm
, unsigned long addr
, struct page
*page
, pgprot_t prot
)
1142 flush_dcache_page(page
);
1143 pte
= get_locked_pte(mm
, addr
, &ptl
);
1147 if (!pte_none(*pte
))
1150 /* Ok, finally just insert the thing.. */
1152 inc_mm_counter(mm
, file_rss
);
1153 page_add_file_rmap(page
);
1154 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1158 pte_unmap_unlock(pte
, ptl
);
1164 * vm_insert_page - insert single page into user vma
1165 * @vma: user vma to map to
1166 * @addr: target user address of this page
1167 * @page: source kernel page
1169 * This allows drivers to insert individual pages they've allocated
1172 * The page has to be a nice clean _individual_ kernel allocation.
1173 * If you allocate a compound page, you need to have marked it as
1174 * such (__GFP_COMP), or manually just split the page up yourself
1175 * (see split_page()).
1177 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1178 * took an arbitrary page protection parameter. This doesn't allow
1179 * that. Your vma protection will have to be set up correctly, which
1180 * means that if you want a shared writable mapping, you'd better
1181 * ask for a shared writable mapping!
1183 * The page does not need to be reserved.
1185 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
, struct page
*page
)
1187 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1189 if (!page_count(page
))
1191 vma
->vm_flags
|= VM_INSERTPAGE
;
1192 return insert_page(vma
->vm_mm
, addr
, page
, vma
->vm_page_prot
);
1194 EXPORT_SYMBOL(vm_insert_page
);
1197 * vm_insert_pfn - insert single pfn into user vma
1198 * @vma: user vma to map to
1199 * @addr: target user address of this page
1200 * @pfn: source kernel pfn
1202 * Similar to vm_inert_page, this allows drivers to insert individual pages
1203 * they've allocated into a user vma. Same comments apply.
1205 * This function should only be called from a vm_ops->fault handler, and
1206 * in that case the handler should return NULL.
1208 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1211 struct mm_struct
*mm
= vma
->vm_mm
;
1216 BUG_ON(!(vma
->vm_flags
& VM_PFNMAP
));
1217 BUG_ON(is_cow_mapping(vma
->vm_flags
));
1220 pte
= get_locked_pte(mm
, addr
, &ptl
);
1224 if (!pte_none(*pte
))
1227 /* Ok, finally just insert the thing.. */
1228 entry
= pfn_pte(pfn
, vma
->vm_page_prot
);
1229 set_pte_at(mm
, addr
, pte
, entry
);
1230 update_mmu_cache(vma
, addr
, entry
);
1234 pte_unmap_unlock(pte
, ptl
);
1239 EXPORT_SYMBOL(vm_insert_pfn
);
1242 * maps a range of physical memory into the requested pages. the old
1243 * mappings are removed. any references to nonexistent pages results
1244 * in null mappings (currently treated as "copy-on-access")
1246 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1247 unsigned long addr
, unsigned long end
,
1248 unsigned long pfn
, pgprot_t prot
)
1253 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1256 arch_enter_lazy_mmu_mode();
1258 BUG_ON(!pte_none(*pte
));
1259 set_pte_at(mm
, addr
, pte
, pfn_pte(pfn
, prot
));
1261 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1262 arch_leave_lazy_mmu_mode();
1263 pte_unmap_unlock(pte
- 1, ptl
);
1267 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1268 unsigned long addr
, unsigned long end
,
1269 unsigned long pfn
, pgprot_t prot
)
1274 pfn
-= addr
>> PAGE_SHIFT
;
1275 pmd
= pmd_alloc(mm
, pud
, addr
);
1279 next
= pmd_addr_end(addr
, end
);
1280 if (remap_pte_range(mm
, pmd
, addr
, next
,
1281 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1283 } while (pmd
++, addr
= next
, addr
!= end
);
1287 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1288 unsigned long addr
, unsigned long end
,
1289 unsigned long pfn
, pgprot_t prot
)
1294 pfn
-= addr
>> PAGE_SHIFT
;
1295 pud
= pud_alloc(mm
, pgd
, addr
);
1299 next
= pud_addr_end(addr
, end
);
1300 if (remap_pmd_range(mm
, pud
, addr
, next
,
1301 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1303 } while (pud
++, addr
= next
, addr
!= end
);
1308 * remap_pfn_range - remap kernel memory to userspace
1309 * @vma: user vma to map to
1310 * @addr: target user address to start at
1311 * @pfn: physical address of kernel memory
1312 * @size: size of map area
1313 * @prot: page protection flags for this mapping
1315 * Note: this is only safe if the mm semaphore is held when called.
1317 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1318 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1322 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1323 struct mm_struct
*mm
= vma
->vm_mm
;
1327 * Physically remapped pages are special. Tell the
1328 * rest of the world about it:
1329 * VM_IO tells people not to look at these pages
1330 * (accesses can have side effects).
1331 * VM_RESERVED is specified all over the place, because
1332 * in 2.4 it kept swapout's vma scan off this vma; but
1333 * in 2.6 the LRU scan won't even find its pages, so this
1334 * flag means no more than count its pages in reserved_vm,
1335 * and omit it from core dump, even when VM_IO turned off.
1336 * VM_PFNMAP tells the core MM that the base pages are just
1337 * raw PFN mappings, and do not have a "struct page" associated
1340 * There's a horrible special case to handle copy-on-write
1341 * behaviour that some programs depend on. We mark the "original"
1342 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1344 if (is_cow_mapping(vma
->vm_flags
)) {
1345 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1347 vma
->vm_pgoff
= pfn
;
1350 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1352 BUG_ON(addr
>= end
);
1353 pfn
-= addr
>> PAGE_SHIFT
;
1354 pgd
= pgd_offset(mm
, addr
);
1355 flush_cache_range(vma
, addr
, end
);
1357 next
= pgd_addr_end(addr
, end
);
1358 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1359 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1362 } while (pgd
++, addr
= next
, addr
!= end
);
1365 EXPORT_SYMBOL(remap_pfn_range
);
1367 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1368 unsigned long addr
, unsigned long end
,
1369 pte_fn_t fn
, void *data
)
1373 struct page
*pmd_page
;
1374 spinlock_t
*uninitialized_var(ptl
);
1376 pte
= (mm
== &init_mm
) ?
1377 pte_alloc_kernel(pmd
, addr
) :
1378 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1382 BUG_ON(pmd_huge(*pmd
));
1384 pmd_page
= pmd_page(*pmd
);
1387 err
= fn(pte
, pmd_page
, addr
, data
);
1390 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1393 pte_unmap_unlock(pte
-1, ptl
);
1397 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1398 unsigned long addr
, unsigned long end
,
1399 pte_fn_t fn
, void *data
)
1405 pmd
= pmd_alloc(mm
, pud
, addr
);
1409 next
= pmd_addr_end(addr
, end
);
1410 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1413 } while (pmd
++, addr
= next
, addr
!= end
);
1417 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1418 unsigned long addr
, unsigned long end
,
1419 pte_fn_t fn
, void *data
)
1425 pud
= pud_alloc(mm
, pgd
, addr
);
1429 next
= pud_addr_end(addr
, end
);
1430 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1433 } while (pud
++, addr
= next
, addr
!= end
);
1438 * Scan a region of virtual memory, filling in page tables as necessary
1439 * and calling a provided function on each leaf page table.
1441 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1442 unsigned long size
, pte_fn_t fn
, void *data
)
1446 unsigned long end
= addr
+ size
;
1449 BUG_ON(addr
>= end
);
1450 pgd
= pgd_offset(mm
, addr
);
1452 next
= pgd_addr_end(addr
, end
);
1453 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1456 } while (pgd
++, addr
= next
, addr
!= end
);
1459 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1462 * handle_pte_fault chooses page fault handler according to an entry
1463 * which was read non-atomically. Before making any commitment, on
1464 * those architectures or configurations (e.g. i386 with PAE) which
1465 * might give a mix of unmatched parts, do_swap_page and do_file_page
1466 * must check under lock before unmapping the pte and proceeding
1467 * (but do_wp_page is only called after already making such a check;
1468 * and do_anonymous_page and do_no_page can safely check later on).
1470 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1471 pte_t
*page_table
, pte_t orig_pte
)
1474 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1475 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1476 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1478 same
= pte_same(*page_table
, orig_pte
);
1482 pte_unmap(page_table
);
1487 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1488 * servicing faults for write access. In the normal case, do always want
1489 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1490 * that do not have writing enabled, when used by access_process_vm.
1492 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
1494 if (likely(vma
->vm_flags
& VM_WRITE
))
1495 pte
= pte_mkwrite(pte
);
1499 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1502 * If the source page was a PFN mapping, we don't have
1503 * a "struct page" for it. We do a best-effort copy by
1504 * just copying from the original user address. If that
1505 * fails, we just zero-fill it. Live with it.
1507 if (unlikely(!src
)) {
1508 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
1509 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1512 * This really shouldn't fail, because the page is there
1513 * in the page tables. But it might just be unreadable,
1514 * in which case we just give up and fill the result with
1517 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
1518 memset(kaddr
, 0, PAGE_SIZE
);
1519 kunmap_atomic(kaddr
, KM_USER0
);
1520 flush_dcache_page(dst
);
1524 copy_user_highpage(dst
, src
, va
, vma
);
1528 * This routine handles present pages, when users try to write
1529 * to a shared page. It is done by copying the page to a new address
1530 * and decrementing the shared-page counter for the old page.
1532 * Note that this routine assumes that the protection checks have been
1533 * done by the caller (the low-level page fault routine in most cases).
1534 * Thus we can safely just mark it writable once we've done any necessary
1537 * We also mark the page dirty at this point even though the page will
1538 * change only once the write actually happens. This avoids a few races,
1539 * and potentially makes it more efficient.
1541 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1542 * but allow concurrent faults), with pte both mapped and locked.
1543 * We return with mmap_sem still held, but pte unmapped and unlocked.
1545 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1546 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
1547 spinlock_t
*ptl
, pte_t orig_pte
)
1549 struct page
*old_page
, *new_page
;
1551 int reuse
= 0, ret
= 0;
1552 int page_mkwrite
= 0;
1553 struct page
*dirty_page
= NULL
;
1555 old_page
= vm_normal_page(vma
, address
, orig_pte
);
1560 * Take out anonymous pages first, anonymous shared vmas are
1561 * not dirty accountable.
1563 if (PageAnon(old_page
)) {
1564 if (!TestSetPageLocked(old_page
)) {
1565 reuse
= can_share_swap_page(old_page
);
1566 unlock_page(old_page
);
1568 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
1569 (VM_WRITE
|VM_SHARED
))) {
1571 * Only catch write-faults on shared writable pages,
1572 * read-only shared pages can get COWed by
1573 * get_user_pages(.write=1, .force=1).
1575 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
1577 * Notify the address space that the page is about to
1578 * become writable so that it can prohibit this or wait
1579 * for the page to get into an appropriate state.
1581 * We do this without the lock held, so that it can
1582 * sleep if it needs to.
1584 page_cache_get(old_page
);
1585 pte_unmap_unlock(page_table
, ptl
);
1587 if (vma
->vm_ops
->page_mkwrite(vma
, old_page
) < 0)
1588 goto unwritable_page
;
1591 * Since we dropped the lock we need to revalidate
1592 * the PTE as someone else may have changed it. If
1593 * they did, we just return, as we can count on the
1594 * MMU to tell us if they didn't also make it writable.
1596 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
1598 page_cache_release(old_page
);
1599 if (!pte_same(*page_table
, orig_pte
))
1604 dirty_page
= old_page
;
1605 get_page(dirty_page
);
1610 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
1611 entry
= pte_mkyoung(orig_pte
);
1612 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1613 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
1614 update_mmu_cache(vma
, address
, entry
);
1615 ret
|= VM_FAULT_WRITE
;
1620 * Ok, we need to copy. Oh, well..
1622 page_cache_get(old_page
);
1624 pte_unmap_unlock(page_table
, ptl
);
1626 if (unlikely(anon_vma_prepare(vma
)))
1628 VM_BUG_ON(old_page
== ZERO_PAGE(0));
1629 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
1632 cow_user_page(new_page
, old_page
, address
, vma
);
1635 * Re-check the pte - we dropped the lock
1637 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1638 if (likely(pte_same(*page_table
, orig_pte
))) {
1640 page_remove_rmap(old_page
, vma
);
1641 if (!PageAnon(old_page
)) {
1642 dec_mm_counter(mm
, file_rss
);
1643 inc_mm_counter(mm
, anon_rss
);
1646 inc_mm_counter(mm
, anon_rss
);
1647 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
1648 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
1649 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1651 * Clear the pte entry and flush it first, before updating the
1652 * pte with the new entry. This will avoid a race condition
1653 * seen in the presence of one thread doing SMC and another
1656 ptep_clear_flush(vma
, address
, page_table
);
1657 set_pte_at(mm
, address
, page_table
, entry
);
1658 update_mmu_cache(vma
, address
, entry
);
1659 lru_cache_add_active(new_page
);
1660 page_add_new_anon_rmap(new_page
, vma
, address
);
1662 /* Free the old page.. */
1663 new_page
= old_page
;
1664 ret
|= VM_FAULT_WRITE
;
1667 page_cache_release(new_page
);
1669 page_cache_release(old_page
);
1671 pte_unmap_unlock(page_table
, ptl
);
1674 file_update_time(vma
->vm_file
);
1677 * Yes, Virginia, this is actually required to prevent a race
1678 * with clear_page_dirty_for_io() from clearing the page dirty
1679 * bit after it clear all dirty ptes, but before a racing
1680 * do_wp_page installs a dirty pte.
1682 * do_no_page is protected similarly.
1684 wait_on_page_locked(dirty_page
);
1685 set_page_dirty_balance(dirty_page
, page_mkwrite
);
1686 put_page(dirty_page
);
1691 page_cache_release(old_page
);
1692 return VM_FAULT_OOM
;
1695 page_cache_release(old_page
);
1696 return VM_FAULT_SIGBUS
;
1700 * Helper functions for unmap_mapping_range().
1702 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1704 * We have to restart searching the prio_tree whenever we drop the lock,
1705 * since the iterator is only valid while the lock is held, and anyway
1706 * a later vma might be split and reinserted earlier while lock dropped.
1708 * The list of nonlinear vmas could be handled more efficiently, using
1709 * a placeholder, but handle it in the same way until a need is shown.
1710 * It is important to search the prio_tree before nonlinear list: a vma
1711 * may become nonlinear and be shifted from prio_tree to nonlinear list
1712 * while the lock is dropped; but never shifted from list to prio_tree.
1714 * In order to make forward progress despite restarting the search,
1715 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1716 * quickly skip it next time around. Since the prio_tree search only
1717 * shows us those vmas affected by unmapping the range in question, we
1718 * can't efficiently keep all vmas in step with mapping->truncate_count:
1719 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1720 * mapping->truncate_count and vma->vm_truncate_count are protected by
1723 * In order to make forward progress despite repeatedly restarting some
1724 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1725 * and restart from that address when we reach that vma again. It might
1726 * have been split or merged, shrunk or extended, but never shifted: so
1727 * restart_addr remains valid so long as it remains in the vma's range.
1728 * unmap_mapping_range forces truncate_count to leap over page-aligned
1729 * values so we can save vma's restart_addr in its truncate_count field.
1731 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1733 static void reset_vma_truncate_counts(struct address_space
*mapping
)
1735 struct vm_area_struct
*vma
;
1736 struct prio_tree_iter iter
;
1738 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, 0, ULONG_MAX
)
1739 vma
->vm_truncate_count
= 0;
1740 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1741 vma
->vm_truncate_count
= 0;
1744 static int unmap_mapping_range_vma(struct vm_area_struct
*vma
,
1745 unsigned long start_addr
, unsigned long end_addr
,
1746 struct zap_details
*details
)
1748 unsigned long restart_addr
;
1752 * files that support invalidating or truncating portions of the
1753 * file from under mmaped areas must have their ->fault function
1754 * return a locked page (and set VM_FAULT_LOCKED in the return).
1755 * This provides synchronisation against concurrent unmapping here.
1759 restart_addr
= vma
->vm_truncate_count
;
1760 if (is_restart_addr(restart_addr
) && start_addr
< restart_addr
) {
1761 start_addr
= restart_addr
;
1762 if (start_addr
>= end_addr
) {
1763 /* Top of vma has been split off since last time */
1764 vma
->vm_truncate_count
= details
->truncate_count
;
1769 restart_addr
= zap_page_range(vma
, start_addr
,
1770 end_addr
- start_addr
, details
);
1771 need_break
= need_resched() ||
1772 need_lockbreak(details
->i_mmap_lock
);
1774 if (restart_addr
>= end_addr
) {
1775 /* We have now completed this vma: mark it so */
1776 vma
->vm_truncate_count
= details
->truncate_count
;
1780 /* Note restart_addr in vma's truncate_count field */
1781 vma
->vm_truncate_count
= restart_addr
;
1786 spin_unlock(details
->i_mmap_lock
);
1788 spin_lock(details
->i_mmap_lock
);
1792 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
1793 struct zap_details
*details
)
1795 struct vm_area_struct
*vma
;
1796 struct prio_tree_iter iter
;
1797 pgoff_t vba
, vea
, zba
, zea
;
1800 vma_prio_tree_foreach(vma
, &iter
, root
,
1801 details
->first_index
, details
->last_index
) {
1802 /* Skip quickly over those we have already dealt with */
1803 if (vma
->vm_truncate_count
== details
->truncate_count
)
1806 vba
= vma
->vm_pgoff
;
1807 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
1808 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1809 zba
= details
->first_index
;
1812 zea
= details
->last_index
;
1816 if (unmap_mapping_range_vma(vma
,
1817 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
1818 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
1824 static inline void unmap_mapping_range_list(struct list_head
*head
,
1825 struct zap_details
*details
)
1827 struct vm_area_struct
*vma
;
1830 * In nonlinear VMAs there is no correspondence between virtual address
1831 * offset and file offset. So we must perform an exhaustive search
1832 * across *all* the pages in each nonlinear VMA, not just the pages
1833 * whose virtual address lies outside the file truncation point.
1836 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
1837 /* Skip quickly over those we have already dealt with */
1838 if (vma
->vm_truncate_count
== details
->truncate_count
)
1840 details
->nonlinear_vma
= vma
;
1841 if (unmap_mapping_range_vma(vma
, vma
->vm_start
,
1842 vma
->vm_end
, details
) < 0)
1848 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1849 * @mapping: the address space containing mmaps to be unmapped.
1850 * @holebegin: byte in first page to unmap, relative to the start of
1851 * the underlying file. This will be rounded down to a PAGE_SIZE
1852 * boundary. Note that this is different from vmtruncate(), which
1853 * must keep the partial page. In contrast, we must get rid of
1855 * @holelen: size of prospective hole in bytes. This will be rounded
1856 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1858 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1859 * but 0 when invalidating pagecache, don't throw away private data.
1861 void unmap_mapping_range(struct address_space
*mapping
,
1862 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
1864 struct zap_details details
;
1865 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
1866 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1868 /* Check for overflow. */
1869 if (sizeof(holelen
) > sizeof(hlen
)) {
1871 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1872 if (holeend
& ~(long long)ULONG_MAX
)
1873 hlen
= ULONG_MAX
- hba
+ 1;
1876 details
.check_mapping
= even_cows
? NULL
: mapping
;
1877 details
.nonlinear_vma
= NULL
;
1878 details
.first_index
= hba
;
1879 details
.last_index
= hba
+ hlen
- 1;
1880 if (details
.last_index
< details
.first_index
)
1881 details
.last_index
= ULONG_MAX
;
1882 details
.i_mmap_lock
= &mapping
->i_mmap_lock
;
1884 spin_lock(&mapping
->i_mmap_lock
);
1886 /* Protect against endless unmapping loops */
1887 mapping
->truncate_count
++;
1888 if (unlikely(is_restart_addr(mapping
->truncate_count
))) {
1889 if (mapping
->truncate_count
== 0)
1890 reset_vma_truncate_counts(mapping
);
1891 mapping
->truncate_count
++;
1893 details
.truncate_count
= mapping
->truncate_count
;
1895 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
1896 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
1897 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
1898 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
1899 spin_unlock(&mapping
->i_mmap_lock
);
1901 EXPORT_SYMBOL(unmap_mapping_range
);
1904 * vmtruncate - unmap mappings "freed" by truncate() syscall
1905 * @inode: inode of the file used
1906 * @offset: file offset to start truncating
1908 * NOTE! We have to be ready to update the memory sharing
1909 * between the file and the memory map for a potential last
1910 * incomplete page. Ugly, but necessary.
1912 int vmtruncate(struct inode
* inode
, loff_t offset
)
1914 struct address_space
*mapping
= inode
->i_mapping
;
1915 unsigned long limit
;
1917 if (inode
->i_size
< offset
)
1920 * truncation of in-use swapfiles is disallowed - it would cause
1921 * subsequent swapout to scribble on the now-freed blocks.
1923 if (IS_SWAPFILE(inode
))
1925 i_size_write(inode
, offset
);
1928 * unmap_mapping_range is called twice, first simply for efficiency
1929 * so that truncate_inode_pages does fewer single-page unmaps. However
1930 * after this first call, and before truncate_inode_pages finishes,
1931 * it is possible for private pages to be COWed, which remain after
1932 * truncate_inode_pages finishes, hence the second unmap_mapping_range
1933 * call must be made for correctness.
1935 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
1936 truncate_inode_pages(mapping
, offset
);
1937 unmap_mapping_range(mapping
, offset
+ PAGE_SIZE
- 1, 0, 1);
1941 limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
1942 if (limit
!= RLIM_INFINITY
&& offset
> limit
)
1944 if (offset
> inode
->i_sb
->s_maxbytes
)
1946 i_size_write(inode
, offset
);
1949 if (inode
->i_op
&& inode
->i_op
->truncate
)
1950 inode
->i_op
->truncate(inode
);
1953 send_sig(SIGXFSZ
, current
, 0);
1959 EXPORT_SYMBOL(vmtruncate
);
1961 int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
)
1963 struct address_space
*mapping
= inode
->i_mapping
;
1966 * If the underlying filesystem is not going to provide
1967 * a way to truncate a range of blocks (punch a hole) -
1968 * we should return failure right now.
1970 if (!inode
->i_op
|| !inode
->i_op
->truncate_range
)
1973 mutex_lock(&inode
->i_mutex
);
1974 down_write(&inode
->i_alloc_sem
);
1975 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
1976 truncate_inode_pages_range(mapping
, offset
, end
);
1977 unmap_mapping_range(mapping
, offset
, (end
- offset
), 1);
1978 inode
->i_op
->truncate_range(inode
, offset
, end
);
1979 up_write(&inode
->i_alloc_sem
);
1980 mutex_unlock(&inode
->i_mutex
);
1986 * swapin_readahead - swap in pages in hope we need them soon
1987 * @entry: swap entry of this memory
1988 * @addr: address to start
1989 * @vma: user vma this addresses belong to
1991 * Primitive swap readahead code. We simply read an aligned block of
1992 * (1 << page_cluster) entries in the swap area. This method is chosen
1993 * because it doesn't cost us any seek time. We also make sure to queue
1994 * the 'original' request together with the readahead ones...
1996 * This has been extended to use the NUMA policies from the mm triggering
1999 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
2001 void swapin_readahead(swp_entry_t entry
, unsigned long addr
,struct vm_area_struct
*vma
)
2004 struct vm_area_struct
*next_vma
= vma
? vma
->vm_next
: NULL
;
2007 struct page
*new_page
;
2008 unsigned long offset
;
2011 * Get the number of handles we should do readahead io to.
2013 num
= valid_swaphandles(entry
, &offset
);
2014 for (i
= 0; i
< num
; offset
++, i
++) {
2015 /* Ok, do the async read-ahead now */
2016 new_page
= read_swap_cache_async(swp_entry(swp_type(entry
),
2017 offset
), vma
, addr
);
2020 page_cache_release(new_page
);
2023 * Find the next applicable VMA for the NUMA policy.
2029 if (addr
>= vma
->vm_end
) {
2031 next_vma
= vma
? vma
->vm_next
: NULL
;
2033 if (vma
&& addr
< vma
->vm_start
)
2036 if (next_vma
&& addr
>= next_vma
->vm_start
) {
2038 next_vma
= vma
->vm_next
;
2043 lru_add_drain(); /* Push any new pages onto the LRU now */
2047 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2048 * but allow concurrent faults), and pte mapped but not yet locked.
2049 * We return with mmap_sem still held, but pte unmapped and unlocked.
2051 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2052 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2053 int write_access
, pte_t orig_pte
)
2061 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2064 entry
= pte_to_swp_entry(orig_pte
);
2065 if (is_migration_entry(entry
)) {
2066 migration_entry_wait(mm
, pmd
, address
);
2069 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2070 page
= lookup_swap_cache(entry
);
2072 grab_swap_token(); /* Contend for token _before_ read-in */
2073 swapin_readahead(entry
, address
, vma
);
2074 page
= read_swap_cache_async(entry
, vma
, address
);
2077 * Back out if somebody else faulted in this pte
2078 * while we released the pte lock.
2080 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2081 if (likely(pte_same(*page_table
, orig_pte
)))
2083 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2087 /* Had to read the page from swap area: Major fault */
2088 ret
= VM_FAULT_MAJOR
;
2089 count_vm_event(PGMAJFAULT
);
2092 mark_page_accessed(page
);
2094 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2097 * Back out if somebody else already faulted in this pte.
2099 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2100 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2103 if (unlikely(!PageUptodate(page
))) {
2104 ret
= VM_FAULT_SIGBUS
;
2108 /* The page isn't present yet, go ahead with the fault. */
2110 inc_mm_counter(mm
, anon_rss
);
2111 pte
= mk_pte(page
, vma
->vm_page_prot
);
2112 if (write_access
&& can_share_swap_page(page
)) {
2113 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2117 flush_icache_page(vma
, page
);
2118 set_pte_at(mm
, address
, page_table
, pte
);
2119 page_add_anon_rmap(page
, vma
, address
);
2123 remove_exclusive_swap_page(page
);
2127 /* XXX: We could OR the do_wp_page code with this one? */
2128 if (do_wp_page(mm
, vma
, address
,
2129 page_table
, pmd
, ptl
, pte
) & VM_FAULT_OOM
)
2134 /* No need to invalidate - it was non-present before */
2135 update_mmu_cache(vma
, address
, pte
);
2137 pte_unmap_unlock(page_table
, ptl
);
2141 pte_unmap_unlock(page_table
, ptl
);
2143 page_cache_release(page
);
2148 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2149 * but allow concurrent faults), and pte mapped but not yet locked.
2150 * We return with mmap_sem still held, but pte unmapped and unlocked.
2152 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2153 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2160 /* Allocate our own private page. */
2161 pte_unmap(page_table
);
2163 if (unlikely(anon_vma_prepare(vma
)))
2165 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2169 entry
= mk_pte(page
, vma
->vm_page_prot
);
2170 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2172 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2173 if (!pte_none(*page_table
))
2175 inc_mm_counter(mm
, anon_rss
);
2176 lru_cache_add_active(page
);
2177 page_add_new_anon_rmap(page
, vma
, address
);
2178 set_pte_at(mm
, address
, page_table
, entry
);
2180 /* No need to invalidate - it was non-present before */
2181 update_mmu_cache(vma
, address
, entry
);
2183 pte_unmap_unlock(page_table
, ptl
);
2186 page_cache_release(page
);
2189 return VM_FAULT_OOM
;
2193 * __do_fault() tries to create a new page mapping. It aggressively
2194 * tries to share with existing pages, but makes a separate copy if
2195 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2196 * the next page fault.
2198 * As this is called only for pages that do not currently exist, we
2199 * do not need to flush old virtual caches or the TLB.
2201 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2202 * but allow concurrent faults), and pte neither mapped nor locked.
2203 * We return with mmap_sem still held, but pte unmapped and unlocked.
2205 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2206 unsigned long address
, pmd_t
*pmd
,
2207 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
2214 struct page
*dirty_page
= NULL
;
2215 struct vm_fault vmf
;
2217 int page_mkwrite
= 0;
2219 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2224 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
2226 if (likely(vma
->vm_ops
->fault
)) {
2227 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
2228 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2231 /* Legacy ->nopage path */
2233 vmf
.page
= vma
->vm_ops
->nopage(vma
, address
& PAGE_MASK
, &ret
);
2234 /* no page was available -- either SIGBUS or OOM */
2235 if (unlikely(vmf
.page
== NOPAGE_SIGBUS
))
2236 return VM_FAULT_SIGBUS
;
2237 else if (unlikely(vmf
.page
== NOPAGE_OOM
))
2238 return VM_FAULT_OOM
;
2242 * For consistency in subsequent calls, make the faulted page always
2245 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2246 lock_page(vmf
.page
);
2248 VM_BUG_ON(!PageLocked(vmf
.page
));
2251 * Should we do an early C-O-W break?
2254 if (flags
& FAULT_FLAG_WRITE
) {
2255 if (!(vma
->vm_flags
& VM_SHARED
)) {
2257 if (unlikely(anon_vma_prepare(vma
))) {
2261 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
,
2267 copy_user_highpage(page
, vmf
.page
, address
, vma
);
2270 * If the page will be shareable, see if the backing
2271 * address space wants to know that the page is about
2272 * to become writable
2274 if (vma
->vm_ops
->page_mkwrite
) {
2276 if (vma
->vm_ops
->page_mkwrite(vma
, page
) < 0) {
2277 ret
= VM_FAULT_SIGBUS
;
2278 anon
= 1; /* no anon but release vmf.page */
2283 * XXX: this is not quite right (racy vs
2284 * invalidate) to unlock and relock the page
2285 * like this, however a better fix requires
2286 * reworking page_mkwrite locking API, which
2287 * is better done later.
2289 if (!page
->mapping
) {
2291 anon
= 1; /* no anon but release vmf.page */
2300 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2303 * This silly early PAGE_DIRTY setting removes a race
2304 * due to the bad i386 page protection. But it's valid
2305 * for other architectures too.
2307 * Note that if write_access is true, we either now have
2308 * an exclusive copy of the page, or this is a shared mapping,
2309 * so we can make it writable and dirty to avoid having to
2310 * handle that later.
2312 /* Only go through if we didn't race with anybody else... */
2313 if (likely(pte_same(*page_table
, orig_pte
))) {
2314 flush_icache_page(vma
, page
);
2315 entry
= mk_pte(page
, vma
->vm_page_prot
);
2316 if (flags
& FAULT_FLAG_WRITE
)
2317 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2318 set_pte_at(mm
, address
, page_table
, entry
);
2320 inc_mm_counter(mm
, anon_rss
);
2321 lru_cache_add_active(page
);
2322 page_add_new_anon_rmap(page
, vma
, address
);
2324 inc_mm_counter(mm
, file_rss
);
2325 page_add_file_rmap(page
);
2326 if (flags
& FAULT_FLAG_WRITE
) {
2328 get_page(dirty_page
);
2332 /* no need to invalidate: a not-present page won't be cached */
2333 update_mmu_cache(vma
, address
, entry
);
2336 page_cache_release(page
);
2338 anon
= 1; /* no anon but release faulted_page */
2341 pte_unmap_unlock(page_table
, ptl
);
2344 unlock_page(vmf
.page
);
2347 page_cache_release(vmf
.page
);
2348 else if (dirty_page
) {
2350 file_update_time(vma
->vm_file
);
2352 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2353 put_page(dirty_page
);
2359 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2360 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2361 int write_access
, pte_t orig_pte
)
2363 pgoff_t pgoff
= (((address
& PAGE_MASK
)
2364 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2365 unsigned int flags
= (write_access
? FAULT_FLAG_WRITE
: 0);
2367 pte_unmap(page_table
);
2368 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2373 * do_no_pfn() tries to create a new page mapping for a page without
2374 * a struct_page backing it
2376 * As this is called only for pages that do not currently exist, we
2377 * do not need to flush old virtual caches or the TLB.
2379 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2380 * but allow concurrent faults), and pte mapped but not yet locked.
2381 * We return with mmap_sem still held, but pte unmapped and unlocked.
2383 * It is expected that the ->nopfn handler always returns the same pfn
2384 * for a given virtual mapping.
2386 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2388 static noinline
int do_no_pfn(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2389 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2396 pte_unmap(page_table
);
2397 BUG_ON(!(vma
->vm_flags
& VM_PFNMAP
));
2398 BUG_ON(is_cow_mapping(vma
->vm_flags
));
2400 pfn
= vma
->vm_ops
->nopfn(vma
, address
& PAGE_MASK
);
2401 if (unlikely(pfn
== NOPFN_OOM
))
2402 return VM_FAULT_OOM
;
2403 else if (unlikely(pfn
== NOPFN_SIGBUS
))
2404 return VM_FAULT_SIGBUS
;
2405 else if (unlikely(pfn
== NOPFN_REFAULT
))
2408 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2410 /* Only go through if we didn't race with anybody else... */
2411 if (pte_none(*page_table
)) {
2412 entry
= pfn_pte(pfn
, vma
->vm_page_prot
);
2414 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2415 set_pte_at(mm
, address
, page_table
, entry
);
2417 pte_unmap_unlock(page_table
, ptl
);
2422 * Fault of a previously existing named mapping. Repopulate the pte
2423 * from the encoded file_pte if possible. This enables swappable
2426 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2427 * but allow concurrent faults), and pte mapped but not yet locked.
2428 * We return with mmap_sem still held, but pte unmapped and unlocked.
2430 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2431 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2432 int write_access
, pte_t orig_pte
)
2434 unsigned int flags
= FAULT_FLAG_NONLINEAR
|
2435 (write_access
? FAULT_FLAG_WRITE
: 0);
2438 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2441 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
) ||
2442 !(vma
->vm_flags
& VM_CAN_NONLINEAR
))) {
2444 * Page table corrupted: show pte and kill process.
2446 print_bad_pte(vma
, orig_pte
, address
);
2447 return VM_FAULT_OOM
;
2450 pgoff
= pte_to_pgoff(orig_pte
);
2451 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
2455 * These routines also need to handle stuff like marking pages dirty
2456 * and/or accessed for architectures that don't do it in hardware (most
2457 * RISC architectures). The early dirtying is also good on the i386.
2459 * There is also a hook called "update_mmu_cache()" that architectures
2460 * with external mmu caches can use to update those (ie the Sparc or
2461 * PowerPC hashed page tables that act as extended TLBs).
2463 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2464 * but allow concurrent faults), and pte mapped but not yet locked.
2465 * We return with mmap_sem still held, but pte unmapped and unlocked.
2467 static inline int handle_pte_fault(struct mm_struct
*mm
,
2468 struct vm_area_struct
*vma
, unsigned long address
,
2469 pte_t
*pte
, pmd_t
*pmd
, int write_access
)
2475 if (!pte_present(entry
)) {
2476 if (pte_none(entry
)) {
2478 if (vma
->vm_ops
->fault
|| vma
->vm_ops
->nopage
)
2479 return do_linear_fault(mm
, vma
, address
,
2480 pte
, pmd
, write_access
, entry
);
2481 if (unlikely(vma
->vm_ops
->nopfn
))
2482 return do_no_pfn(mm
, vma
, address
, pte
,
2485 return do_anonymous_page(mm
, vma
, address
,
2486 pte
, pmd
, write_access
);
2488 if (pte_file(entry
))
2489 return do_nonlinear_fault(mm
, vma
, address
,
2490 pte
, pmd
, write_access
, entry
);
2491 return do_swap_page(mm
, vma
, address
,
2492 pte
, pmd
, write_access
, entry
);
2495 ptl
= pte_lockptr(mm
, pmd
);
2497 if (unlikely(!pte_same(*pte
, entry
)))
2500 if (!pte_write(entry
))
2501 return do_wp_page(mm
, vma
, address
,
2502 pte
, pmd
, ptl
, entry
);
2503 entry
= pte_mkdirty(entry
);
2505 entry
= pte_mkyoung(entry
);
2506 if (ptep_set_access_flags(vma
, address
, pte
, entry
, write_access
)) {
2507 update_mmu_cache(vma
, address
, entry
);
2510 * This is needed only for protection faults but the arch code
2511 * is not yet telling us if this is a protection fault or not.
2512 * This still avoids useless tlb flushes for .text page faults
2516 flush_tlb_page(vma
, address
);
2519 pte_unmap_unlock(pte
, ptl
);
2524 * By the time we get here, we already hold the mm semaphore
2526 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2527 unsigned long address
, int write_access
)
2534 __set_current_state(TASK_RUNNING
);
2536 count_vm_event(PGFAULT
);
2538 if (unlikely(is_vm_hugetlb_page(vma
)))
2539 return hugetlb_fault(mm
, vma
, address
, write_access
);
2541 pgd
= pgd_offset(mm
, address
);
2542 pud
= pud_alloc(mm
, pgd
, address
);
2544 return VM_FAULT_OOM
;
2545 pmd
= pmd_alloc(mm
, pud
, address
);
2547 return VM_FAULT_OOM
;
2548 pte
= pte_alloc_map(mm
, pmd
, address
);
2550 return VM_FAULT_OOM
;
2552 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, write_access
);
2555 #ifndef __PAGETABLE_PUD_FOLDED
2557 * Allocate page upper directory.
2558 * We've already handled the fast-path in-line.
2560 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
2562 pud_t
*new = pud_alloc_one(mm
, address
);
2566 spin_lock(&mm
->page_table_lock
);
2567 if (pgd_present(*pgd
)) /* Another has populated it */
2570 pgd_populate(mm
, pgd
, new);
2571 spin_unlock(&mm
->page_table_lock
);
2574 #endif /* __PAGETABLE_PUD_FOLDED */
2576 #ifndef __PAGETABLE_PMD_FOLDED
2578 * Allocate page middle directory.
2579 * We've already handled the fast-path in-line.
2581 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
2583 pmd_t
*new = pmd_alloc_one(mm
, address
);
2587 spin_lock(&mm
->page_table_lock
);
2588 #ifndef __ARCH_HAS_4LEVEL_HACK
2589 if (pud_present(*pud
)) /* Another has populated it */
2592 pud_populate(mm
, pud
, new);
2594 if (pgd_present(*pud
)) /* Another has populated it */
2597 pgd_populate(mm
, pud
, new);
2598 #endif /* __ARCH_HAS_4LEVEL_HACK */
2599 spin_unlock(&mm
->page_table_lock
);
2602 #endif /* __PAGETABLE_PMD_FOLDED */
2604 int make_pages_present(unsigned long addr
, unsigned long end
)
2606 int ret
, len
, write
;
2607 struct vm_area_struct
* vma
;
2609 vma
= find_vma(current
->mm
, addr
);
2612 write
= (vma
->vm_flags
& VM_WRITE
) != 0;
2613 BUG_ON(addr
>= end
);
2614 BUG_ON(end
> vma
->vm_end
);
2615 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
2616 ret
= get_user_pages(current
, current
->mm
, addr
,
2617 len
, write
, 0, NULL
, NULL
);
2620 return ret
== len
? 0 : -1;
2624 * Map a vmalloc()-space virtual address to the physical page.
2626 struct page
* vmalloc_to_page(void * vmalloc_addr
)
2628 unsigned long addr
= (unsigned long) vmalloc_addr
;
2629 struct page
*page
= NULL
;
2630 pgd_t
*pgd
= pgd_offset_k(addr
);
2635 if (!pgd_none(*pgd
)) {
2636 pud
= pud_offset(pgd
, addr
);
2637 if (!pud_none(*pud
)) {
2638 pmd
= pmd_offset(pud
, addr
);
2639 if (!pmd_none(*pmd
)) {
2640 ptep
= pte_offset_map(pmd
, addr
);
2642 if (pte_present(pte
))
2643 page
= pte_page(pte
);
2651 EXPORT_SYMBOL(vmalloc_to_page
);
2654 * Map a vmalloc()-space virtual address to the physical page frame number.
2656 unsigned long vmalloc_to_pfn(void * vmalloc_addr
)
2658 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
2661 EXPORT_SYMBOL(vmalloc_to_pfn
);
2663 #if !defined(__HAVE_ARCH_GATE_AREA)
2665 #if defined(AT_SYSINFO_EHDR)
2666 static struct vm_area_struct gate_vma
;
2668 static int __init
gate_vma_init(void)
2670 gate_vma
.vm_mm
= NULL
;
2671 gate_vma
.vm_start
= FIXADDR_USER_START
;
2672 gate_vma
.vm_end
= FIXADDR_USER_END
;
2673 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
2674 gate_vma
.vm_page_prot
= __P101
;
2676 * Make sure the vDSO gets into every core dump.
2677 * Dumping its contents makes post-mortem fully interpretable later
2678 * without matching up the same kernel and hardware config to see
2679 * what PC values meant.
2681 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
2684 __initcall(gate_vma_init
);
2687 struct vm_area_struct
*get_gate_vma(struct task_struct
*tsk
)
2689 #ifdef AT_SYSINFO_EHDR
2696 int in_gate_area_no_task(unsigned long addr
)
2698 #ifdef AT_SYSINFO_EHDR
2699 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
2705 #endif /* __HAVE_ARCH_GATE_AREA */
2708 * Access another process' address space.
2709 * Source/target buffer must be kernel space,
2710 * Do not walk the page table directly, use get_user_pages
2712 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
2714 struct mm_struct
*mm
;
2715 struct vm_area_struct
*vma
;
2717 void *old_buf
= buf
;
2719 mm
= get_task_mm(tsk
);
2723 down_read(&mm
->mmap_sem
);
2724 /* ignore errors, just check how much was successfully transferred */
2726 int bytes
, ret
, offset
;
2729 ret
= get_user_pages(tsk
, mm
, addr
, 1,
2730 write
, 1, &page
, &vma
);
2735 offset
= addr
& (PAGE_SIZE
-1);
2736 if (bytes
> PAGE_SIZE
-offset
)
2737 bytes
= PAGE_SIZE
-offset
;
2741 copy_to_user_page(vma
, page
, addr
,
2742 maddr
+ offset
, buf
, bytes
);
2743 set_page_dirty_lock(page
);
2745 copy_from_user_page(vma
, page
, addr
,
2746 buf
, maddr
+ offset
, bytes
);
2749 page_cache_release(page
);
2754 up_read(&mm
->mmap_sem
);
2757 return buf
- old_buf
;