2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <trace/kmemtrace.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
78 * freed then the slab will show up again on the partial lists.
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
86 * Overloading of page flags that are otherwise used for LRU management.
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
100 * freelist that allows lockless access to
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
106 * the fast path and disables lockless freelists.
109 #ifdef CONFIG_SLUB_DEBUG
116 * Issues still to be resolved:
118 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120 * - Variable sizing of the per node arrays
123 /* Enable to test recovery from slab corruption on boot */
124 #undef SLUB_RESILIENCY_TEST
127 * Mininum number of partial slabs. These will be left on the partial
128 * lists even if they are empty. kmem_cache_shrink may reclaim them.
130 #define MIN_PARTIAL 5
133 * Maximum number of desirable partial slabs.
134 * The existence of more partial slabs makes kmem_cache_shrink
135 * sort the partial list by the number of objects in the.
137 #define MAX_PARTIAL 10
139 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
140 SLAB_POISON | SLAB_STORE_USER)
143 * Set of flags that will prevent slab merging
145 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
146 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
148 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
151 #ifndef ARCH_KMALLOC_MINALIGN
152 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
155 #ifndef ARCH_SLAB_MINALIGN
156 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
160 #define OO_MASK ((1 << OO_SHIFT) - 1)
161 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
163 /* Internal SLUB flags */
164 #define __OBJECT_POISON 0x80000000 /* Poison object */
165 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
167 static int kmem_size
= sizeof(struct kmem_cache
);
170 static struct notifier_block slab_notifier
;
174 DOWN
, /* No slab functionality available */
175 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
176 UP
, /* Everything works but does not show up in sysfs */
180 /* A list of all slab caches on the system */
181 static DECLARE_RWSEM(slub_lock
);
182 static LIST_HEAD(slab_caches
);
185 * Tracking user of a slab.
188 unsigned long addr
; /* Called from address */
189 int cpu
; /* Was running on cpu */
190 int pid
; /* Pid context */
191 unsigned long when
; /* When did the operation occur */
194 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
196 #ifdef CONFIG_SLUB_DEBUG
197 static int sysfs_slab_add(struct kmem_cache
*);
198 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
199 static void sysfs_slab_remove(struct kmem_cache
*);
202 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
203 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
205 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
212 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
214 #ifdef CONFIG_SLUB_STATS
219 /********************************************************************
220 * Core slab cache functions
221 *******************************************************************/
223 int slab_is_available(void)
225 return slab_state
>= UP
;
228 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
231 return s
->node
[node
];
233 return &s
->local_node
;
237 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
240 return s
->cpu_slab
[cpu
];
246 /* Verify that a pointer has an address that is valid within a slab page */
247 static inline int check_valid_pointer(struct kmem_cache
*s
,
248 struct page
*page
, const void *object
)
255 base
= page_address(page
);
256 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
257 (object
- base
) % s
->size
) {
265 * Slow version of get and set free pointer.
267 * This version requires touching the cache lines of kmem_cache which
268 * we avoid to do in the fast alloc free paths. There we obtain the offset
269 * from the page struct.
271 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
273 return *(void **)(object
+ s
->offset
);
276 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
278 *(void **)(object
+ s
->offset
) = fp
;
281 /* Loop over all objects in a slab */
282 #define for_each_object(__p, __s, __addr, __objects) \
283 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
287 #define for_each_free_object(__p, __s, __free) \
288 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
293 return (p
- addr
) / s
->size
;
296 static inline struct kmem_cache_order_objects
oo_make(int order
,
299 struct kmem_cache_order_objects x
= {
300 (order
<< OO_SHIFT
) + (PAGE_SIZE
<< order
) / size
306 static inline int oo_order(struct kmem_cache_order_objects x
)
308 return x
.x
>> OO_SHIFT
;
311 static inline int oo_objects(struct kmem_cache_order_objects x
)
313 return x
.x
& OO_MASK
;
316 #ifdef CONFIG_SLUB_DEBUG
320 #ifdef CONFIG_SLUB_DEBUG_ON
321 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
323 static int slub_debug
;
326 static char *slub_debug_slabs
;
331 static void print_section(char *text
, u8
*addr
, unsigned int length
)
339 for (i
= 0; i
< length
; i
++) {
341 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
344 printk(KERN_CONT
" %02x", addr
[i
]);
346 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
348 printk(KERN_CONT
" %s\n", ascii
);
355 printk(KERN_CONT
" ");
359 printk(KERN_CONT
" %s\n", ascii
);
363 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
364 enum track_item alloc
)
369 p
= object
+ s
->offset
+ sizeof(void *);
371 p
= object
+ s
->inuse
;
376 static void set_track(struct kmem_cache
*s
, void *object
,
377 enum track_item alloc
, unsigned long addr
)
379 struct track
*p
= get_track(s
, object
, alloc
);
383 p
->cpu
= smp_processor_id();
384 p
->pid
= current
->pid
;
387 memset(p
, 0, sizeof(struct track
));
390 static void init_tracking(struct kmem_cache
*s
, void *object
)
392 if (!(s
->flags
& SLAB_STORE_USER
))
395 set_track(s
, object
, TRACK_FREE
, 0UL);
396 set_track(s
, object
, TRACK_ALLOC
, 0UL);
399 static void print_track(const char *s
, struct track
*t
)
404 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
405 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
408 static void print_tracking(struct kmem_cache
*s
, void *object
)
410 if (!(s
->flags
& SLAB_STORE_USER
))
413 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
414 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
417 static void print_page_info(struct page
*page
)
419 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
420 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
424 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
430 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
432 printk(KERN_ERR
"========================================"
433 "=====================================\n");
434 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
435 printk(KERN_ERR
"----------------------------------------"
436 "-------------------------------------\n\n");
439 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
445 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
447 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
450 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
452 unsigned int off
; /* Offset of last byte */
453 u8
*addr
= page_address(page
);
455 print_tracking(s
, p
);
457 print_page_info(page
);
459 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
460 p
, p
- addr
, get_freepointer(s
, p
));
463 print_section("Bytes b4", p
- 16, 16);
465 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
467 if (s
->flags
& SLAB_RED_ZONE
)
468 print_section("Redzone", p
+ s
->objsize
,
469 s
->inuse
- s
->objsize
);
472 off
= s
->offset
+ sizeof(void *);
476 if (s
->flags
& SLAB_STORE_USER
)
477 off
+= 2 * sizeof(struct track
);
480 /* Beginning of the filler is the free pointer */
481 print_section("Padding", p
+ off
, s
->size
- off
);
486 static void object_err(struct kmem_cache
*s
, struct page
*page
,
487 u8
*object
, char *reason
)
489 slab_bug(s
, "%s", reason
);
490 print_trailer(s
, page
, object
);
493 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
499 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
501 slab_bug(s
, "%s", buf
);
502 print_page_info(page
);
506 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
510 if (s
->flags
& __OBJECT_POISON
) {
511 memset(p
, POISON_FREE
, s
->objsize
- 1);
512 p
[s
->objsize
- 1] = POISON_END
;
515 if (s
->flags
& SLAB_RED_ZONE
)
516 memset(p
+ s
->objsize
,
517 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
518 s
->inuse
- s
->objsize
);
521 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
524 if (*start
!= (u8
)value
)
532 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
533 void *from
, void *to
)
535 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
536 memset(from
, data
, to
- from
);
539 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
540 u8
*object
, char *what
,
541 u8
*start
, unsigned int value
, unsigned int bytes
)
546 fault
= check_bytes(start
, value
, bytes
);
551 while (end
> fault
&& end
[-1] == value
)
554 slab_bug(s
, "%s overwritten", what
);
555 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
556 fault
, end
- 1, fault
[0], value
);
557 print_trailer(s
, page
, object
);
559 restore_bytes(s
, what
, value
, fault
, end
);
567 * Bytes of the object to be managed.
568 * If the freepointer may overlay the object then the free
569 * pointer is the first word of the object.
571 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
574 * object + s->objsize
575 * Padding to reach word boundary. This is also used for Redzoning.
576 * Padding is extended by another word if Redzoning is enabled and
579 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
580 * 0xcc (RED_ACTIVE) for objects in use.
583 * Meta data starts here.
585 * A. Free pointer (if we cannot overwrite object on free)
586 * B. Tracking data for SLAB_STORE_USER
587 * C. Padding to reach required alignment boundary or at mininum
588 * one word if debugging is on to be able to detect writes
589 * before the word boundary.
591 * Padding is done using 0x5a (POISON_INUSE)
594 * Nothing is used beyond s->size.
596 * If slabcaches are merged then the objsize and inuse boundaries are mostly
597 * ignored. And therefore no slab options that rely on these boundaries
598 * may be used with merged slabcaches.
601 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
603 unsigned long off
= s
->inuse
; /* The end of info */
606 /* Freepointer is placed after the object. */
607 off
+= sizeof(void *);
609 if (s
->flags
& SLAB_STORE_USER
)
610 /* We also have user information there */
611 off
+= 2 * sizeof(struct track
);
616 return check_bytes_and_report(s
, page
, p
, "Object padding",
617 p
+ off
, POISON_INUSE
, s
->size
- off
);
620 /* Check the pad bytes at the end of a slab page */
621 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
629 if (!(s
->flags
& SLAB_POISON
))
632 start
= page_address(page
);
633 length
= (PAGE_SIZE
<< compound_order(page
));
634 end
= start
+ length
;
635 remainder
= length
% s
->size
;
639 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
642 while (end
> fault
&& end
[-1] == POISON_INUSE
)
645 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
646 print_section("Padding", end
- remainder
, remainder
);
648 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
652 static int check_object(struct kmem_cache
*s
, struct page
*page
,
653 void *object
, int active
)
656 u8
*endobject
= object
+ s
->objsize
;
658 if (s
->flags
& SLAB_RED_ZONE
) {
660 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
662 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
663 endobject
, red
, s
->inuse
- s
->objsize
))
666 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
667 check_bytes_and_report(s
, page
, p
, "Alignment padding",
668 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
672 if (s
->flags
& SLAB_POISON
) {
673 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
674 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
675 POISON_FREE
, s
->objsize
- 1) ||
676 !check_bytes_and_report(s
, page
, p
, "Poison",
677 p
+ s
->objsize
- 1, POISON_END
, 1)))
680 * check_pad_bytes cleans up on its own.
682 check_pad_bytes(s
, page
, p
);
685 if (!s
->offset
&& active
)
687 * Object and freepointer overlap. Cannot check
688 * freepointer while object is allocated.
692 /* Check free pointer validity */
693 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
694 object_err(s
, page
, p
, "Freepointer corrupt");
696 * No choice but to zap it and thus lose the remainder
697 * of the free objects in this slab. May cause
698 * another error because the object count is now wrong.
700 set_freepointer(s
, p
, NULL
);
706 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
710 VM_BUG_ON(!irqs_disabled());
712 if (!PageSlab(page
)) {
713 slab_err(s
, page
, "Not a valid slab page");
717 maxobj
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
718 if (page
->objects
> maxobj
) {
719 slab_err(s
, page
, "objects %u > max %u",
720 s
->name
, page
->objects
, maxobj
);
723 if (page
->inuse
> page
->objects
) {
724 slab_err(s
, page
, "inuse %u > max %u",
725 s
->name
, page
->inuse
, page
->objects
);
728 /* Slab_pad_check fixes things up after itself */
729 slab_pad_check(s
, page
);
734 * Determine if a certain object on a page is on the freelist. Must hold the
735 * slab lock to guarantee that the chains are in a consistent state.
737 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
740 void *fp
= page
->freelist
;
742 unsigned long max_objects
;
744 while (fp
&& nr
<= page
->objects
) {
747 if (!check_valid_pointer(s
, page
, fp
)) {
749 object_err(s
, page
, object
,
750 "Freechain corrupt");
751 set_freepointer(s
, object
, NULL
);
754 slab_err(s
, page
, "Freepointer corrupt");
755 page
->freelist
= NULL
;
756 page
->inuse
= page
->objects
;
757 slab_fix(s
, "Freelist cleared");
763 fp
= get_freepointer(s
, object
);
767 max_objects
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
768 if (max_objects
> MAX_OBJS_PER_PAGE
)
769 max_objects
= MAX_OBJS_PER_PAGE
;
771 if (page
->objects
!= max_objects
) {
772 slab_err(s
, page
, "Wrong number of objects. Found %d but "
773 "should be %d", page
->objects
, max_objects
);
774 page
->objects
= max_objects
;
775 slab_fix(s
, "Number of objects adjusted.");
777 if (page
->inuse
!= page
->objects
- nr
) {
778 slab_err(s
, page
, "Wrong object count. Counter is %d but "
779 "counted were %d", page
->inuse
, page
->objects
- nr
);
780 page
->inuse
= page
->objects
- nr
;
781 slab_fix(s
, "Object count adjusted.");
783 return search
== NULL
;
786 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
789 if (s
->flags
& SLAB_TRACE
) {
790 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
792 alloc
? "alloc" : "free",
797 print_section("Object", (void *)object
, s
->objsize
);
804 * Tracking of fully allocated slabs for debugging purposes.
806 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
808 spin_lock(&n
->list_lock
);
809 list_add(&page
->lru
, &n
->full
);
810 spin_unlock(&n
->list_lock
);
813 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
815 struct kmem_cache_node
*n
;
817 if (!(s
->flags
& SLAB_STORE_USER
))
820 n
= get_node(s
, page_to_nid(page
));
822 spin_lock(&n
->list_lock
);
823 list_del(&page
->lru
);
824 spin_unlock(&n
->list_lock
);
827 /* Tracking of the number of slabs for debugging purposes */
828 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
830 struct kmem_cache_node
*n
= get_node(s
, node
);
832 return atomic_long_read(&n
->nr_slabs
);
835 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
837 struct kmem_cache_node
*n
= get_node(s
, node
);
840 * May be called early in order to allocate a slab for the
841 * kmem_cache_node structure. Solve the chicken-egg
842 * dilemma by deferring the increment of the count during
843 * bootstrap (see early_kmem_cache_node_alloc).
845 if (!NUMA_BUILD
|| n
) {
846 atomic_long_inc(&n
->nr_slabs
);
847 atomic_long_add(objects
, &n
->total_objects
);
850 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
852 struct kmem_cache_node
*n
= get_node(s
, node
);
854 atomic_long_dec(&n
->nr_slabs
);
855 atomic_long_sub(objects
, &n
->total_objects
);
858 /* Object debug checks for alloc/free paths */
859 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
862 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
865 init_object(s
, object
, 0);
866 init_tracking(s
, object
);
869 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
870 void *object
, unsigned long addr
)
872 if (!check_slab(s
, page
))
875 if (!on_freelist(s
, page
, object
)) {
876 object_err(s
, page
, object
, "Object already allocated");
880 if (!check_valid_pointer(s
, page
, object
)) {
881 object_err(s
, page
, object
, "Freelist Pointer check fails");
885 if (!check_object(s
, page
, object
, 0))
888 /* Success perform special debug activities for allocs */
889 if (s
->flags
& SLAB_STORE_USER
)
890 set_track(s
, object
, TRACK_ALLOC
, addr
);
891 trace(s
, page
, object
, 1);
892 init_object(s
, object
, 1);
896 if (PageSlab(page
)) {
898 * If this is a slab page then lets do the best we can
899 * to avoid issues in the future. Marking all objects
900 * as used avoids touching the remaining objects.
902 slab_fix(s
, "Marking all objects used");
903 page
->inuse
= page
->objects
;
904 page
->freelist
= NULL
;
909 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
910 void *object
, unsigned long addr
)
912 if (!check_slab(s
, page
))
915 if (!check_valid_pointer(s
, page
, object
)) {
916 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
920 if (on_freelist(s
, page
, object
)) {
921 object_err(s
, page
, object
, "Object already free");
925 if (!check_object(s
, page
, object
, 1))
928 if (unlikely(s
!= page
->slab
)) {
929 if (!PageSlab(page
)) {
930 slab_err(s
, page
, "Attempt to free object(0x%p) "
931 "outside of slab", object
);
932 } else if (!page
->slab
) {
934 "SLUB <none>: no slab for object 0x%p.\n",
938 object_err(s
, page
, object
,
939 "page slab pointer corrupt.");
943 /* Special debug activities for freeing objects */
944 if (!PageSlubFrozen(page
) && !page
->freelist
)
945 remove_full(s
, page
);
946 if (s
->flags
& SLAB_STORE_USER
)
947 set_track(s
, object
, TRACK_FREE
, addr
);
948 trace(s
, page
, object
, 0);
949 init_object(s
, object
, 0);
953 slab_fix(s
, "Object at 0x%p not freed", object
);
957 static int __init
setup_slub_debug(char *str
)
959 slub_debug
= DEBUG_DEFAULT_FLAGS
;
960 if (*str
++ != '=' || !*str
)
962 * No options specified. Switch on full debugging.
968 * No options but restriction on slabs. This means full
969 * debugging for slabs matching a pattern.
976 * Switch off all debugging measures.
981 * Determine which debug features should be switched on
983 for (; *str
&& *str
!= ','; str
++) {
984 switch (tolower(*str
)) {
986 slub_debug
|= SLAB_DEBUG_FREE
;
989 slub_debug
|= SLAB_RED_ZONE
;
992 slub_debug
|= SLAB_POISON
;
995 slub_debug
|= SLAB_STORE_USER
;
998 slub_debug
|= SLAB_TRACE
;
1001 printk(KERN_ERR
"slub_debug option '%c' "
1002 "unknown. skipped\n", *str
);
1008 slub_debug_slabs
= str
+ 1;
1013 __setup("slub_debug", setup_slub_debug
);
1015 static unsigned long kmem_cache_flags(unsigned long objsize
,
1016 unsigned long flags
, const char *name
,
1017 void (*ctor
)(void *))
1020 * Enable debugging if selected on the kernel commandline.
1022 if (slub_debug
&& (!slub_debug_slabs
||
1023 strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)) == 0))
1024 flags
|= slub_debug
;
1029 static inline void setup_object_debug(struct kmem_cache
*s
,
1030 struct page
*page
, void *object
) {}
1032 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1033 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1035 static inline int free_debug_processing(struct kmem_cache
*s
,
1036 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1038 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1040 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1041 void *object
, int active
) { return 1; }
1042 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1043 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1044 unsigned long flags
, const char *name
,
1045 void (*ctor
)(void *))
1049 #define slub_debug 0
1051 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1053 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1055 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1060 * Slab allocation and freeing
1062 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1063 struct kmem_cache_order_objects oo
)
1065 int order
= oo_order(oo
);
1068 return alloc_pages(flags
, order
);
1070 return alloc_pages_node(node
, flags
, order
);
1073 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1076 struct kmem_cache_order_objects oo
= s
->oo
;
1078 flags
|= s
->allocflags
;
1080 page
= alloc_slab_page(flags
| __GFP_NOWARN
| __GFP_NORETRY
, node
,
1082 if (unlikely(!page
)) {
1085 * Allocation may have failed due to fragmentation.
1086 * Try a lower order alloc if possible
1088 page
= alloc_slab_page(flags
, node
, oo
);
1092 stat(get_cpu_slab(s
, raw_smp_processor_id()), ORDER_FALLBACK
);
1094 page
->objects
= oo_objects(oo
);
1095 mod_zone_page_state(page_zone(page
),
1096 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1097 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1103 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1106 setup_object_debug(s
, page
, object
);
1107 if (unlikely(s
->ctor
))
1111 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1118 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1120 page
= allocate_slab(s
,
1121 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1125 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1127 page
->flags
|= 1 << PG_slab
;
1128 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1129 SLAB_STORE_USER
| SLAB_TRACE
))
1130 __SetPageSlubDebug(page
);
1132 start
= page_address(page
);
1134 if (unlikely(s
->flags
& SLAB_POISON
))
1135 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1138 for_each_object(p
, s
, start
, page
->objects
) {
1139 setup_object(s
, page
, last
);
1140 set_freepointer(s
, last
, p
);
1143 setup_object(s
, page
, last
);
1144 set_freepointer(s
, last
, NULL
);
1146 page
->freelist
= start
;
1152 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1154 int order
= compound_order(page
);
1155 int pages
= 1 << order
;
1157 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
))) {
1160 slab_pad_check(s
, page
);
1161 for_each_object(p
, s
, page_address(page
),
1163 check_object(s
, page
, p
, 0);
1164 __ClearPageSlubDebug(page
);
1167 mod_zone_page_state(page_zone(page
),
1168 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1169 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1172 __ClearPageSlab(page
);
1173 reset_page_mapcount(page
);
1174 if (current
->reclaim_state
)
1175 current
->reclaim_state
->reclaimed_slab
+= pages
;
1176 __free_pages(page
, order
);
1179 static void rcu_free_slab(struct rcu_head
*h
)
1183 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1184 __free_slab(page
->slab
, page
);
1187 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1189 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1191 * RCU free overloads the RCU head over the LRU
1193 struct rcu_head
*head
= (void *)&page
->lru
;
1195 call_rcu(head
, rcu_free_slab
);
1197 __free_slab(s
, page
);
1200 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1202 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1207 * Per slab locking using the pagelock
1209 static __always_inline
void slab_lock(struct page
*page
)
1211 bit_spin_lock(PG_locked
, &page
->flags
);
1214 static __always_inline
void slab_unlock(struct page
*page
)
1216 __bit_spin_unlock(PG_locked
, &page
->flags
);
1219 static __always_inline
int slab_trylock(struct page
*page
)
1223 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1228 * Management of partially allocated slabs
1230 static void add_partial(struct kmem_cache_node
*n
,
1231 struct page
*page
, int tail
)
1233 spin_lock(&n
->list_lock
);
1236 list_add_tail(&page
->lru
, &n
->partial
);
1238 list_add(&page
->lru
, &n
->partial
);
1239 spin_unlock(&n
->list_lock
);
1242 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1244 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1246 spin_lock(&n
->list_lock
);
1247 list_del(&page
->lru
);
1249 spin_unlock(&n
->list_lock
);
1253 * Lock slab and remove from the partial list.
1255 * Must hold list_lock.
1257 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1260 if (slab_trylock(page
)) {
1261 list_del(&page
->lru
);
1263 __SetPageSlubFrozen(page
);
1270 * Try to allocate a partial slab from a specific node.
1272 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1277 * Racy check. If we mistakenly see no partial slabs then we
1278 * just allocate an empty slab. If we mistakenly try to get a
1279 * partial slab and there is none available then get_partials()
1282 if (!n
|| !n
->nr_partial
)
1285 spin_lock(&n
->list_lock
);
1286 list_for_each_entry(page
, &n
->partial
, lru
)
1287 if (lock_and_freeze_slab(n
, page
))
1291 spin_unlock(&n
->list_lock
);
1296 * Get a page from somewhere. Search in increasing NUMA distances.
1298 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1301 struct zonelist
*zonelist
;
1304 enum zone_type high_zoneidx
= gfp_zone(flags
);
1308 * The defrag ratio allows a configuration of the tradeoffs between
1309 * inter node defragmentation and node local allocations. A lower
1310 * defrag_ratio increases the tendency to do local allocations
1311 * instead of attempting to obtain partial slabs from other nodes.
1313 * If the defrag_ratio is set to 0 then kmalloc() always
1314 * returns node local objects. If the ratio is higher then kmalloc()
1315 * may return off node objects because partial slabs are obtained
1316 * from other nodes and filled up.
1318 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1319 * defrag_ratio = 1000) then every (well almost) allocation will
1320 * first attempt to defrag slab caches on other nodes. This means
1321 * scanning over all nodes to look for partial slabs which may be
1322 * expensive if we do it every time we are trying to find a slab
1323 * with available objects.
1325 if (!s
->remote_node_defrag_ratio
||
1326 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1329 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1330 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1331 struct kmem_cache_node
*n
;
1333 n
= get_node(s
, zone_to_nid(zone
));
1335 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1336 n
->nr_partial
> s
->min_partial
) {
1337 page
= get_partial_node(n
);
1347 * Get a partial page, lock it and return it.
1349 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1352 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1354 page
= get_partial_node(get_node(s
, searchnode
));
1355 if (page
|| (flags
& __GFP_THISNODE
))
1358 return get_any_partial(s
, flags
);
1362 * Move a page back to the lists.
1364 * Must be called with the slab lock held.
1366 * On exit the slab lock will have been dropped.
1368 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1370 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1371 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1373 __ClearPageSlubFrozen(page
);
1376 if (page
->freelist
) {
1377 add_partial(n
, page
, tail
);
1378 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1380 stat(c
, DEACTIVATE_FULL
);
1381 if (SLABDEBUG
&& PageSlubDebug(page
) &&
1382 (s
->flags
& SLAB_STORE_USER
))
1387 stat(c
, DEACTIVATE_EMPTY
);
1388 if (n
->nr_partial
< s
->min_partial
) {
1390 * Adding an empty slab to the partial slabs in order
1391 * to avoid page allocator overhead. This slab needs
1392 * to come after the other slabs with objects in
1393 * so that the others get filled first. That way the
1394 * size of the partial list stays small.
1396 * kmem_cache_shrink can reclaim any empty slabs from
1399 add_partial(n
, page
, 1);
1403 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1404 discard_slab(s
, page
);
1410 * Remove the cpu slab
1412 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1414 struct page
*page
= c
->page
;
1418 stat(c
, DEACTIVATE_REMOTE_FREES
);
1420 * Merge cpu freelist into slab freelist. Typically we get here
1421 * because both freelists are empty. So this is unlikely
1424 while (unlikely(c
->freelist
)) {
1427 tail
= 0; /* Hot objects. Put the slab first */
1429 /* Retrieve object from cpu_freelist */
1430 object
= c
->freelist
;
1431 c
->freelist
= c
->freelist
[c
->offset
];
1433 /* And put onto the regular freelist */
1434 object
[c
->offset
] = page
->freelist
;
1435 page
->freelist
= object
;
1439 unfreeze_slab(s
, page
, tail
);
1442 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1444 stat(c
, CPUSLAB_FLUSH
);
1446 deactivate_slab(s
, c
);
1452 * Called from IPI handler with interrupts disabled.
1454 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1456 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1458 if (likely(c
&& c
->page
))
1462 static void flush_cpu_slab(void *d
)
1464 struct kmem_cache
*s
= d
;
1466 __flush_cpu_slab(s
, smp_processor_id());
1469 static void flush_all(struct kmem_cache
*s
)
1471 on_each_cpu(flush_cpu_slab
, s
, 1);
1475 * Check if the objects in a per cpu structure fit numa
1476 * locality expectations.
1478 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1481 if (node
!= -1 && c
->node
!= node
)
1488 * Slow path. The lockless freelist is empty or we need to perform
1491 * Interrupts are disabled.
1493 * Processing is still very fast if new objects have been freed to the
1494 * regular freelist. In that case we simply take over the regular freelist
1495 * as the lockless freelist and zap the regular freelist.
1497 * If that is not working then we fall back to the partial lists. We take the
1498 * first element of the freelist as the object to allocate now and move the
1499 * rest of the freelist to the lockless freelist.
1501 * And if we were unable to get a new slab from the partial slab lists then
1502 * we need to allocate a new slab. This is the slowest path since it involves
1503 * a call to the page allocator and the setup of a new slab.
1505 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
1506 unsigned long addr
, struct kmem_cache_cpu
*c
)
1511 /* We handle __GFP_ZERO in the caller */
1512 gfpflags
&= ~__GFP_ZERO
;
1518 if (unlikely(!node_match(c
, node
)))
1521 stat(c
, ALLOC_REFILL
);
1524 object
= c
->page
->freelist
;
1525 if (unlikely(!object
))
1527 if (unlikely(SLABDEBUG
&& PageSlubDebug(c
->page
)))
1530 c
->freelist
= object
[c
->offset
];
1531 c
->page
->inuse
= c
->page
->objects
;
1532 c
->page
->freelist
= NULL
;
1533 c
->node
= page_to_nid(c
->page
);
1535 slab_unlock(c
->page
);
1536 stat(c
, ALLOC_SLOWPATH
);
1540 deactivate_slab(s
, c
);
1543 new = get_partial(s
, gfpflags
, node
);
1546 stat(c
, ALLOC_FROM_PARTIAL
);
1550 if (gfpflags
& __GFP_WAIT
)
1553 new = new_slab(s
, gfpflags
, node
);
1555 if (gfpflags
& __GFP_WAIT
)
1556 local_irq_disable();
1559 c
= get_cpu_slab(s
, smp_processor_id());
1560 stat(c
, ALLOC_SLAB
);
1564 __SetPageSlubFrozen(new);
1570 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1574 c
->page
->freelist
= object
[c
->offset
];
1580 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1581 * have the fastpath folded into their functions. So no function call
1582 * overhead for requests that can be satisfied on the fastpath.
1584 * The fastpath works by first checking if the lockless freelist can be used.
1585 * If not then __slab_alloc is called for slow processing.
1587 * Otherwise we can simply pick the next object from the lockless free list.
1589 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1590 gfp_t gfpflags
, int node
, unsigned long addr
)
1593 struct kmem_cache_cpu
*c
;
1594 unsigned long flags
;
1595 unsigned int objsize
;
1597 lockdep_trace_alloc(gfpflags
);
1598 might_sleep_if(gfpflags
& __GFP_WAIT
);
1600 if (should_failslab(s
->objsize
, gfpflags
))
1603 local_irq_save(flags
);
1604 c
= get_cpu_slab(s
, smp_processor_id());
1605 objsize
= c
->objsize
;
1606 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1608 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1611 object
= c
->freelist
;
1612 c
->freelist
= object
[c
->offset
];
1613 stat(c
, ALLOC_FASTPATH
);
1615 local_irq_restore(flags
);
1617 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1618 memset(object
, 0, objsize
);
1623 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1625 void *ret
= slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1627 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->objsize
, s
->size
, gfpflags
);
1631 EXPORT_SYMBOL(kmem_cache_alloc
);
1633 #ifdef CONFIG_KMEMTRACE
1634 void *kmem_cache_alloc_notrace(struct kmem_cache
*s
, gfp_t gfpflags
)
1636 return slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1638 EXPORT_SYMBOL(kmem_cache_alloc_notrace
);
1642 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1644 void *ret
= slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1646 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
1647 s
->objsize
, s
->size
, gfpflags
, node
);
1651 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1654 #ifdef CONFIG_KMEMTRACE
1655 void *kmem_cache_alloc_node_notrace(struct kmem_cache
*s
,
1659 return slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1661 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace
);
1665 * Slow patch handling. This may still be called frequently since objects
1666 * have a longer lifetime than the cpu slabs in most processing loads.
1668 * So we still attempt to reduce cache line usage. Just take the slab
1669 * lock and free the item. If there is no additional partial page
1670 * handling required then we can return immediately.
1672 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1673 void *x
, unsigned long addr
, unsigned int offset
)
1676 void **object
= (void *)x
;
1677 struct kmem_cache_cpu
*c
;
1679 c
= get_cpu_slab(s
, raw_smp_processor_id());
1680 stat(c
, FREE_SLOWPATH
);
1683 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
)))
1687 prior
= object
[offset
] = page
->freelist
;
1688 page
->freelist
= object
;
1691 if (unlikely(PageSlubFrozen(page
))) {
1692 stat(c
, FREE_FROZEN
);
1696 if (unlikely(!page
->inuse
))
1700 * Objects left in the slab. If it was not on the partial list before
1703 if (unlikely(!prior
)) {
1704 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1705 stat(c
, FREE_ADD_PARTIAL
);
1715 * Slab still on the partial list.
1717 remove_partial(s
, page
);
1718 stat(c
, FREE_REMOVE_PARTIAL
);
1722 discard_slab(s
, page
);
1726 if (!free_debug_processing(s
, page
, x
, addr
))
1732 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1733 * can perform fastpath freeing without additional function calls.
1735 * The fastpath is only possible if we are freeing to the current cpu slab
1736 * of this processor. This typically the case if we have just allocated
1739 * If fastpath is not possible then fall back to __slab_free where we deal
1740 * with all sorts of special processing.
1742 static __always_inline
void slab_free(struct kmem_cache
*s
,
1743 struct page
*page
, void *x
, unsigned long addr
)
1745 void **object
= (void *)x
;
1746 struct kmem_cache_cpu
*c
;
1747 unsigned long flags
;
1749 local_irq_save(flags
);
1750 c
= get_cpu_slab(s
, smp_processor_id());
1751 debug_check_no_locks_freed(object
, c
->objsize
);
1752 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1753 debug_check_no_obj_freed(object
, c
->objsize
);
1754 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1755 object
[c
->offset
] = c
->freelist
;
1756 c
->freelist
= object
;
1757 stat(c
, FREE_FASTPATH
);
1759 __slab_free(s
, page
, x
, addr
, c
->offset
);
1761 local_irq_restore(flags
);
1764 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1768 page
= virt_to_head_page(x
);
1770 slab_free(s
, page
, x
, _RET_IP_
);
1772 trace_kmem_cache_free(_RET_IP_
, x
);
1774 EXPORT_SYMBOL(kmem_cache_free
);
1776 /* Figure out on which slab page the object resides */
1777 static struct page
*get_object_page(const void *x
)
1779 struct page
*page
= virt_to_head_page(x
);
1781 if (!PageSlab(page
))
1788 * Object placement in a slab is made very easy because we always start at
1789 * offset 0. If we tune the size of the object to the alignment then we can
1790 * get the required alignment by putting one properly sized object after
1793 * Notice that the allocation order determines the sizes of the per cpu
1794 * caches. Each processor has always one slab available for allocations.
1795 * Increasing the allocation order reduces the number of times that slabs
1796 * must be moved on and off the partial lists and is therefore a factor in
1801 * Mininum / Maximum order of slab pages. This influences locking overhead
1802 * and slab fragmentation. A higher order reduces the number of partial slabs
1803 * and increases the number of allocations possible without having to
1804 * take the list_lock.
1806 static int slub_min_order
;
1807 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
1808 static int slub_min_objects
;
1811 * Merge control. If this is set then no merging of slab caches will occur.
1812 * (Could be removed. This was introduced to pacify the merge skeptics.)
1814 static int slub_nomerge
;
1817 * Calculate the order of allocation given an slab object size.
1819 * The order of allocation has significant impact on performance and other
1820 * system components. Generally order 0 allocations should be preferred since
1821 * order 0 does not cause fragmentation in the page allocator. Larger objects
1822 * be problematic to put into order 0 slabs because there may be too much
1823 * unused space left. We go to a higher order if more than 1/16th of the slab
1826 * In order to reach satisfactory performance we must ensure that a minimum
1827 * number of objects is in one slab. Otherwise we may generate too much
1828 * activity on the partial lists which requires taking the list_lock. This is
1829 * less a concern for large slabs though which are rarely used.
1831 * slub_max_order specifies the order where we begin to stop considering the
1832 * number of objects in a slab as critical. If we reach slub_max_order then
1833 * we try to keep the page order as low as possible. So we accept more waste
1834 * of space in favor of a small page order.
1836 * Higher order allocations also allow the placement of more objects in a
1837 * slab and thereby reduce object handling overhead. If the user has
1838 * requested a higher mininum order then we start with that one instead of
1839 * the smallest order which will fit the object.
1841 static inline int slab_order(int size
, int min_objects
,
1842 int max_order
, int fract_leftover
)
1846 int min_order
= slub_min_order
;
1848 if ((PAGE_SIZE
<< min_order
) / size
> MAX_OBJS_PER_PAGE
)
1849 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
1851 for (order
= max(min_order
,
1852 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1853 order
<= max_order
; order
++) {
1855 unsigned long slab_size
= PAGE_SIZE
<< order
;
1857 if (slab_size
< min_objects
* size
)
1860 rem
= slab_size
% size
;
1862 if (rem
<= slab_size
/ fract_leftover
)
1870 static inline int calculate_order(int size
)
1878 * Attempt to find best configuration for a slab. This
1879 * works by first attempting to generate a layout with
1880 * the best configuration and backing off gradually.
1882 * First we reduce the acceptable waste in a slab. Then
1883 * we reduce the minimum objects required in a slab.
1885 min_objects
= slub_min_objects
;
1887 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
1888 max_objects
= (PAGE_SIZE
<< slub_max_order
)/size
;
1889 min_objects
= min(min_objects
, max_objects
);
1891 while (min_objects
> 1) {
1893 while (fraction
>= 4) {
1894 order
= slab_order(size
, min_objects
,
1895 slub_max_order
, fraction
);
1896 if (order
<= slub_max_order
)
1904 * We were unable to place multiple objects in a slab. Now
1905 * lets see if we can place a single object there.
1907 order
= slab_order(size
, 1, slub_max_order
, 1);
1908 if (order
<= slub_max_order
)
1912 * Doh this slab cannot be placed using slub_max_order.
1914 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1915 if (order
< MAX_ORDER
)
1921 * Figure out what the alignment of the objects will be.
1923 static unsigned long calculate_alignment(unsigned long flags
,
1924 unsigned long align
, unsigned long size
)
1927 * If the user wants hardware cache aligned objects then follow that
1928 * suggestion if the object is sufficiently large.
1930 * The hardware cache alignment cannot override the specified
1931 * alignment though. If that is greater then use it.
1933 if (flags
& SLAB_HWCACHE_ALIGN
) {
1934 unsigned long ralign
= cache_line_size();
1935 while (size
<= ralign
/ 2)
1937 align
= max(align
, ralign
);
1940 if (align
< ARCH_SLAB_MINALIGN
)
1941 align
= ARCH_SLAB_MINALIGN
;
1943 return ALIGN(align
, sizeof(void *));
1946 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1947 struct kmem_cache_cpu
*c
)
1952 c
->offset
= s
->offset
/ sizeof(void *);
1953 c
->objsize
= s
->objsize
;
1954 #ifdef CONFIG_SLUB_STATS
1955 memset(c
->stat
, 0, NR_SLUB_STAT_ITEMS
* sizeof(unsigned));
1960 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
1963 spin_lock_init(&n
->list_lock
);
1964 INIT_LIST_HEAD(&n
->partial
);
1965 #ifdef CONFIG_SLUB_DEBUG
1966 atomic_long_set(&n
->nr_slabs
, 0);
1967 atomic_long_set(&n
->total_objects
, 0);
1968 INIT_LIST_HEAD(&n
->full
);
1974 * Per cpu array for per cpu structures.
1976 * The per cpu array places all kmem_cache_cpu structures from one processor
1977 * close together meaning that it becomes possible that multiple per cpu
1978 * structures are contained in one cacheline. This may be particularly
1979 * beneficial for the kmalloc caches.
1981 * A desktop system typically has around 60-80 slabs. With 100 here we are
1982 * likely able to get per cpu structures for all caches from the array defined
1983 * here. We must be able to cover all kmalloc caches during bootstrap.
1985 * If the per cpu array is exhausted then fall back to kmalloc
1986 * of individual cachelines. No sharing is possible then.
1988 #define NR_KMEM_CACHE_CPU 100
1990 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
1991 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
1993 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
1994 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once
, CONFIG_NR_CPUS
);
1996 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
1997 int cpu
, gfp_t flags
)
1999 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
2002 per_cpu(kmem_cache_cpu_free
, cpu
) =
2003 (void *)c
->freelist
;
2005 /* Table overflow: So allocate ourselves */
2007 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
2008 flags
, cpu_to_node(cpu
));
2013 init_kmem_cache_cpu(s
, c
);
2017 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
2019 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
2020 c
>= per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
2024 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
2025 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
2028 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
2032 for_each_online_cpu(cpu
) {
2033 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2036 s
->cpu_slab
[cpu
] = NULL
;
2037 free_kmem_cache_cpu(c
, cpu
);
2042 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2046 for_each_online_cpu(cpu
) {
2047 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2052 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2054 free_kmem_cache_cpus(s
);
2057 s
->cpu_slab
[cpu
] = c
;
2063 * Initialize the per cpu array.
2065 static void init_alloc_cpu_cpu(int cpu
)
2069 if (cpumask_test_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
)))
2072 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2073 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2075 cpumask_set_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
));
2078 static void __init
init_alloc_cpu(void)
2082 for_each_online_cpu(cpu
)
2083 init_alloc_cpu_cpu(cpu
);
2087 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2088 static inline void init_alloc_cpu(void) {}
2090 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2092 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2099 * No kmalloc_node yet so do it by hand. We know that this is the first
2100 * slab on the node for this slabcache. There are no concurrent accesses
2103 * Note that this function only works on the kmalloc_node_cache
2104 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2105 * memory on a fresh node that has no slab structures yet.
2107 static void early_kmem_cache_node_alloc(gfp_t gfpflags
, int node
)
2110 struct kmem_cache_node
*n
;
2111 unsigned long flags
;
2113 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2115 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2118 if (page_to_nid(page
) != node
) {
2119 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2121 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2122 "in order to be able to continue\n");
2127 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2129 kmalloc_caches
->node
[node
] = n
;
2130 #ifdef CONFIG_SLUB_DEBUG
2131 init_object(kmalloc_caches
, n
, 1);
2132 init_tracking(kmalloc_caches
, n
);
2134 init_kmem_cache_node(n
, kmalloc_caches
);
2135 inc_slabs_node(kmalloc_caches
, node
, page
->objects
);
2138 * lockdep requires consistent irq usage for each lock
2139 * so even though there cannot be a race this early in
2140 * the boot sequence, we still disable irqs.
2142 local_irq_save(flags
);
2143 add_partial(n
, page
, 0);
2144 local_irq_restore(flags
);
2147 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2151 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2152 struct kmem_cache_node
*n
= s
->node
[node
];
2153 if (n
&& n
!= &s
->local_node
)
2154 kmem_cache_free(kmalloc_caches
, n
);
2155 s
->node
[node
] = NULL
;
2159 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2164 if (slab_state
>= UP
)
2165 local_node
= page_to_nid(virt_to_page(s
));
2169 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2170 struct kmem_cache_node
*n
;
2172 if (local_node
== node
)
2175 if (slab_state
== DOWN
) {
2176 early_kmem_cache_node_alloc(gfpflags
, node
);
2179 n
= kmem_cache_alloc_node(kmalloc_caches
,
2183 free_kmem_cache_nodes(s
);
2189 init_kmem_cache_node(n
, s
);
2194 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2198 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2200 init_kmem_cache_node(&s
->local_node
, s
);
2205 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2207 if (min
< MIN_PARTIAL
)
2209 else if (min
> MAX_PARTIAL
)
2211 s
->min_partial
= min
;
2215 * calculate_sizes() determines the order and the distribution of data within
2218 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2220 unsigned long flags
= s
->flags
;
2221 unsigned long size
= s
->objsize
;
2222 unsigned long align
= s
->align
;
2226 * Round up object size to the next word boundary. We can only
2227 * place the free pointer at word boundaries and this determines
2228 * the possible location of the free pointer.
2230 size
= ALIGN(size
, sizeof(void *));
2232 #ifdef CONFIG_SLUB_DEBUG
2234 * Determine if we can poison the object itself. If the user of
2235 * the slab may touch the object after free or before allocation
2236 * then we should never poison the object itself.
2238 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2240 s
->flags
|= __OBJECT_POISON
;
2242 s
->flags
&= ~__OBJECT_POISON
;
2246 * If we are Redzoning then check if there is some space between the
2247 * end of the object and the free pointer. If not then add an
2248 * additional word to have some bytes to store Redzone information.
2250 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2251 size
+= sizeof(void *);
2255 * With that we have determined the number of bytes in actual use
2256 * by the object. This is the potential offset to the free pointer.
2260 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2263 * Relocate free pointer after the object if it is not
2264 * permitted to overwrite the first word of the object on
2267 * This is the case if we do RCU, have a constructor or
2268 * destructor or are poisoning the objects.
2271 size
+= sizeof(void *);
2274 #ifdef CONFIG_SLUB_DEBUG
2275 if (flags
& SLAB_STORE_USER
)
2277 * Need to store information about allocs and frees after
2280 size
+= 2 * sizeof(struct track
);
2282 if (flags
& SLAB_RED_ZONE
)
2284 * Add some empty padding so that we can catch
2285 * overwrites from earlier objects rather than let
2286 * tracking information or the free pointer be
2287 * corrupted if a user writes before the start
2290 size
+= sizeof(void *);
2294 * Determine the alignment based on various parameters that the
2295 * user specified and the dynamic determination of cache line size
2298 align
= calculate_alignment(flags
, align
, s
->objsize
);
2301 * SLUB stores one object immediately after another beginning from
2302 * offset 0. In order to align the objects we have to simply size
2303 * each object to conform to the alignment.
2305 size
= ALIGN(size
, align
);
2307 if (forced_order
>= 0)
2308 order
= forced_order
;
2310 order
= calculate_order(size
);
2317 s
->allocflags
|= __GFP_COMP
;
2319 if (s
->flags
& SLAB_CACHE_DMA
)
2320 s
->allocflags
|= SLUB_DMA
;
2322 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2323 s
->allocflags
|= __GFP_RECLAIMABLE
;
2326 * Determine the number of objects per slab
2328 s
->oo
= oo_make(order
, size
);
2329 s
->min
= oo_make(get_order(size
), size
);
2330 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2333 return !!oo_objects(s
->oo
);
2337 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2338 const char *name
, size_t size
,
2339 size_t align
, unsigned long flags
,
2340 void (*ctor
)(void *))
2342 memset(s
, 0, kmem_size
);
2347 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2349 if (!calculate_sizes(s
, -1))
2353 * The larger the object size is, the more pages we want on the partial
2354 * list to avoid pounding the page allocator excessively.
2356 set_min_partial(s
, ilog2(s
->size
));
2359 s
->remote_node_defrag_ratio
= 1000;
2361 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2364 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2366 free_kmem_cache_nodes(s
);
2368 if (flags
& SLAB_PANIC
)
2369 panic("Cannot create slab %s size=%lu realsize=%u "
2370 "order=%u offset=%u flags=%lx\n",
2371 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2377 * Check if a given pointer is valid
2379 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2383 page
= get_object_page(object
);
2385 if (!page
|| s
!= page
->slab
)
2386 /* No slab or wrong slab */
2389 if (!check_valid_pointer(s
, page
, object
))
2393 * We could also check if the object is on the slabs freelist.
2394 * But this would be too expensive and it seems that the main
2395 * purpose of kmem_ptr_valid() is to check if the object belongs
2396 * to a certain slab.
2400 EXPORT_SYMBOL(kmem_ptr_validate
);
2403 * Determine the size of a slab object
2405 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2409 EXPORT_SYMBOL(kmem_cache_size
);
2411 const char *kmem_cache_name(struct kmem_cache
*s
)
2415 EXPORT_SYMBOL(kmem_cache_name
);
2417 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2420 #ifdef CONFIG_SLUB_DEBUG
2421 void *addr
= page_address(page
);
2423 DECLARE_BITMAP(map
, page
->objects
);
2425 bitmap_zero(map
, page
->objects
);
2426 slab_err(s
, page
, "%s", text
);
2428 for_each_free_object(p
, s
, page
->freelist
)
2429 set_bit(slab_index(p
, s
, addr
), map
);
2431 for_each_object(p
, s
, addr
, page
->objects
) {
2433 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2434 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2436 print_tracking(s
, p
);
2444 * Attempt to free all partial slabs on a node.
2446 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2448 unsigned long flags
;
2449 struct page
*page
, *h
;
2451 spin_lock_irqsave(&n
->list_lock
, flags
);
2452 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2454 list_del(&page
->lru
);
2455 discard_slab(s
, page
);
2458 list_slab_objects(s
, page
,
2459 "Objects remaining on kmem_cache_close()");
2462 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2466 * Release all resources used by a slab cache.
2468 static inline int kmem_cache_close(struct kmem_cache
*s
)
2474 /* Attempt to free all objects */
2475 free_kmem_cache_cpus(s
);
2476 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2477 struct kmem_cache_node
*n
= get_node(s
, node
);
2480 if (n
->nr_partial
|| slabs_node(s
, node
))
2483 free_kmem_cache_nodes(s
);
2488 * Close a cache and release the kmem_cache structure
2489 * (must be used for caches created using kmem_cache_create)
2491 void kmem_cache_destroy(struct kmem_cache
*s
)
2493 down_write(&slub_lock
);
2497 up_write(&slub_lock
);
2498 if (kmem_cache_close(s
)) {
2499 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2500 "still has objects.\n", s
->name
, __func__
);
2503 sysfs_slab_remove(s
);
2505 up_write(&slub_lock
);
2507 EXPORT_SYMBOL(kmem_cache_destroy
);
2509 /********************************************************************
2511 *******************************************************************/
2513 struct kmem_cache kmalloc_caches
[SLUB_PAGE_SHIFT
] __cacheline_aligned
;
2514 EXPORT_SYMBOL(kmalloc_caches
);
2516 static int __init
setup_slub_min_order(char *str
)
2518 get_option(&str
, &slub_min_order
);
2523 __setup("slub_min_order=", setup_slub_min_order
);
2525 static int __init
setup_slub_max_order(char *str
)
2527 get_option(&str
, &slub_max_order
);
2528 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
2533 __setup("slub_max_order=", setup_slub_max_order
);
2535 static int __init
setup_slub_min_objects(char *str
)
2537 get_option(&str
, &slub_min_objects
);
2542 __setup("slub_min_objects=", setup_slub_min_objects
);
2544 static int __init
setup_slub_nomerge(char *str
)
2550 __setup("slub_nomerge", setup_slub_nomerge
);
2552 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2553 const char *name
, int size
, gfp_t gfp_flags
)
2555 unsigned int flags
= 0;
2557 if (gfp_flags
& SLUB_DMA
)
2558 flags
= SLAB_CACHE_DMA
;
2560 down_write(&slub_lock
);
2561 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2565 list_add(&s
->list
, &slab_caches
);
2566 up_write(&slub_lock
);
2567 if (sysfs_slab_add(s
))
2572 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2575 #ifdef CONFIG_ZONE_DMA
2576 static struct kmem_cache
*kmalloc_caches_dma
[SLUB_PAGE_SHIFT
];
2578 static void sysfs_add_func(struct work_struct
*w
)
2580 struct kmem_cache
*s
;
2582 down_write(&slub_lock
);
2583 list_for_each_entry(s
, &slab_caches
, list
) {
2584 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2585 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2589 up_write(&slub_lock
);
2592 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2594 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2596 struct kmem_cache
*s
;
2600 s
= kmalloc_caches_dma
[index
];
2604 /* Dynamically create dma cache */
2605 if (flags
& __GFP_WAIT
)
2606 down_write(&slub_lock
);
2608 if (!down_write_trylock(&slub_lock
))
2612 if (kmalloc_caches_dma
[index
])
2615 realsize
= kmalloc_caches
[index
].objsize
;
2616 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2617 (unsigned int)realsize
);
2618 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2620 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2621 realsize
, ARCH_KMALLOC_MINALIGN
,
2622 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2628 list_add(&s
->list
, &slab_caches
);
2629 kmalloc_caches_dma
[index
] = s
;
2631 schedule_work(&sysfs_add_work
);
2634 up_write(&slub_lock
);
2636 return kmalloc_caches_dma
[index
];
2641 * Conversion table for small slabs sizes / 8 to the index in the
2642 * kmalloc array. This is necessary for slabs < 192 since we have non power
2643 * of two cache sizes there. The size of larger slabs can be determined using
2646 static s8 size_index
[24] = {
2673 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2679 return ZERO_SIZE_PTR
;
2681 index
= size_index
[(size
- 1) / 8];
2683 index
= fls(size
- 1);
2685 #ifdef CONFIG_ZONE_DMA
2686 if (unlikely((flags
& SLUB_DMA
)))
2687 return dma_kmalloc_cache(index
, flags
);
2690 return &kmalloc_caches
[index
];
2693 void *__kmalloc(size_t size
, gfp_t flags
)
2695 struct kmem_cache
*s
;
2698 if (unlikely(size
> SLUB_MAX_SIZE
))
2699 return kmalloc_large(size
, flags
);
2701 s
= get_slab(size
, flags
);
2703 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2706 ret
= slab_alloc(s
, flags
, -1, _RET_IP_
);
2708 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
2712 EXPORT_SYMBOL(__kmalloc
);
2714 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2716 struct page
*page
= alloc_pages_node(node
, flags
| __GFP_COMP
,
2720 return page_address(page
);
2726 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2728 struct kmem_cache
*s
;
2731 if (unlikely(size
> SLUB_MAX_SIZE
)) {
2732 ret
= kmalloc_large_node(size
, flags
, node
);
2734 trace_kmalloc_node(_RET_IP_
, ret
,
2735 size
, PAGE_SIZE
<< get_order(size
),
2741 s
= get_slab(size
, flags
);
2743 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2746 ret
= slab_alloc(s
, flags
, node
, _RET_IP_
);
2748 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
2752 EXPORT_SYMBOL(__kmalloc_node
);
2755 size_t ksize(const void *object
)
2758 struct kmem_cache
*s
;
2760 if (unlikely(object
== ZERO_SIZE_PTR
))
2763 page
= virt_to_head_page(object
);
2765 if (unlikely(!PageSlab(page
))) {
2766 WARN_ON(!PageCompound(page
));
2767 return PAGE_SIZE
<< compound_order(page
);
2771 #ifdef CONFIG_SLUB_DEBUG
2773 * Debugging requires use of the padding between object
2774 * and whatever may come after it.
2776 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2781 * If we have the need to store the freelist pointer
2782 * back there or track user information then we can
2783 * only use the space before that information.
2785 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2788 * Else we can use all the padding etc for the allocation
2792 EXPORT_SYMBOL(ksize
);
2794 void kfree(const void *x
)
2797 void *object
= (void *)x
;
2799 trace_kfree(_RET_IP_
, x
);
2801 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2804 page
= virt_to_head_page(x
);
2805 if (unlikely(!PageSlab(page
))) {
2806 BUG_ON(!PageCompound(page
));
2810 slab_free(page
->slab
, page
, object
, _RET_IP_
);
2812 EXPORT_SYMBOL(kfree
);
2815 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2816 * the remaining slabs by the number of items in use. The slabs with the
2817 * most items in use come first. New allocations will then fill those up
2818 * and thus they can be removed from the partial lists.
2820 * The slabs with the least items are placed last. This results in them
2821 * being allocated from last increasing the chance that the last objects
2822 * are freed in them.
2824 int kmem_cache_shrink(struct kmem_cache
*s
)
2828 struct kmem_cache_node
*n
;
2831 int objects
= oo_objects(s
->max
);
2832 struct list_head
*slabs_by_inuse
=
2833 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
2834 unsigned long flags
;
2836 if (!slabs_by_inuse
)
2840 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2841 n
= get_node(s
, node
);
2846 for (i
= 0; i
< objects
; i
++)
2847 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2849 spin_lock_irqsave(&n
->list_lock
, flags
);
2852 * Build lists indexed by the items in use in each slab.
2854 * Note that concurrent frees may occur while we hold the
2855 * list_lock. page->inuse here is the upper limit.
2857 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2858 if (!page
->inuse
&& slab_trylock(page
)) {
2860 * Must hold slab lock here because slab_free
2861 * may have freed the last object and be
2862 * waiting to release the slab.
2864 list_del(&page
->lru
);
2867 discard_slab(s
, page
);
2869 list_move(&page
->lru
,
2870 slabs_by_inuse
+ page
->inuse
);
2875 * Rebuild the partial list with the slabs filled up most
2876 * first and the least used slabs at the end.
2878 for (i
= objects
- 1; i
>= 0; i
--)
2879 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2881 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2884 kfree(slabs_by_inuse
);
2887 EXPORT_SYMBOL(kmem_cache_shrink
);
2889 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2890 static int slab_mem_going_offline_callback(void *arg
)
2892 struct kmem_cache
*s
;
2894 down_read(&slub_lock
);
2895 list_for_each_entry(s
, &slab_caches
, list
)
2896 kmem_cache_shrink(s
);
2897 up_read(&slub_lock
);
2902 static void slab_mem_offline_callback(void *arg
)
2904 struct kmem_cache_node
*n
;
2905 struct kmem_cache
*s
;
2906 struct memory_notify
*marg
= arg
;
2909 offline_node
= marg
->status_change_nid
;
2912 * If the node still has available memory. we need kmem_cache_node
2915 if (offline_node
< 0)
2918 down_read(&slub_lock
);
2919 list_for_each_entry(s
, &slab_caches
, list
) {
2920 n
= get_node(s
, offline_node
);
2923 * if n->nr_slabs > 0, slabs still exist on the node
2924 * that is going down. We were unable to free them,
2925 * and offline_pages() function shoudn't call this
2926 * callback. So, we must fail.
2928 BUG_ON(slabs_node(s
, offline_node
));
2930 s
->node
[offline_node
] = NULL
;
2931 kmem_cache_free(kmalloc_caches
, n
);
2934 up_read(&slub_lock
);
2937 static int slab_mem_going_online_callback(void *arg
)
2939 struct kmem_cache_node
*n
;
2940 struct kmem_cache
*s
;
2941 struct memory_notify
*marg
= arg
;
2942 int nid
= marg
->status_change_nid
;
2946 * If the node's memory is already available, then kmem_cache_node is
2947 * already created. Nothing to do.
2953 * We are bringing a node online. No memory is available yet. We must
2954 * allocate a kmem_cache_node structure in order to bring the node
2957 down_read(&slub_lock
);
2958 list_for_each_entry(s
, &slab_caches
, list
) {
2960 * XXX: kmem_cache_alloc_node will fallback to other nodes
2961 * since memory is not yet available from the node that
2964 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2969 init_kmem_cache_node(n
, s
);
2973 up_read(&slub_lock
);
2977 static int slab_memory_callback(struct notifier_block
*self
,
2978 unsigned long action
, void *arg
)
2983 case MEM_GOING_ONLINE
:
2984 ret
= slab_mem_going_online_callback(arg
);
2986 case MEM_GOING_OFFLINE
:
2987 ret
= slab_mem_going_offline_callback(arg
);
2990 case MEM_CANCEL_ONLINE
:
2991 slab_mem_offline_callback(arg
);
2994 case MEM_CANCEL_OFFLINE
:
2998 ret
= notifier_from_errno(ret
);
3004 #endif /* CONFIG_MEMORY_HOTPLUG */
3006 /********************************************************************
3007 * Basic setup of slabs
3008 *******************************************************************/
3010 void __init
kmem_cache_init(void)
3019 * Must first have the slab cache available for the allocations of the
3020 * struct kmem_cache_node's. There is special bootstrap code in
3021 * kmem_cache_open for slab_state == DOWN.
3023 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
3024 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
3025 kmalloc_caches
[0].refcount
= -1;
3028 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3031 /* Able to allocate the per node structures */
3032 slab_state
= PARTIAL
;
3034 /* Caches that are not of the two-to-the-power-of size */
3035 if (KMALLOC_MIN_SIZE
<= 64) {
3036 create_kmalloc_cache(&kmalloc_caches
[1],
3037 "kmalloc-96", 96, GFP_KERNEL
);
3039 create_kmalloc_cache(&kmalloc_caches
[2],
3040 "kmalloc-192", 192, GFP_KERNEL
);
3044 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3045 create_kmalloc_cache(&kmalloc_caches
[i
],
3046 "kmalloc", 1 << i
, GFP_KERNEL
);
3052 * Patch up the size_index table if we have strange large alignment
3053 * requirements for the kmalloc array. This is only the case for
3054 * MIPS it seems. The standard arches will not generate any code here.
3056 * Largest permitted alignment is 256 bytes due to the way we
3057 * handle the index determination for the smaller caches.
3059 * Make sure that nothing crazy happens if someone starts tinkering
3060 * around with ARCH_KMALLOC_MINALIGN
3062 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3063 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3065 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
3066 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
3068 if (KMALLOC_MIN_SIZE
== 128) {
3070 * The 192 byte sized cache is not used if the alignment
3071 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3074 for (i
= 128 + 8; i
<= 192; i
+= 8)
3075 size_index
[(i
- 1) / 8] = 8;
3080 /* Provide the correct kmalloc names now that the caches are up */
3081 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++)
3082 kmalloc_caches
[i
]. name
=
3083 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
3086 register_cpu_notifier(&slab_notifier
);
3087 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
3088 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
3090 kmem_size
= sizeof(struct kmem_cache
);
3094 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3095 " CPUs=%d, Nodes=%d\n",
3096 caches
, cache_line_size(),
3097 slub_min_order
, slub_max_order
, slub_min_objects
,
3098 nr_cpu_ids
, nr_node_ids
);
3102 * Find a mergeable slab cache
3104 static int slab_unmergeable(struct kmem_cache
*s
)
3106 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3113 * We may have set a slab to be unmergeable during bootstrap.
3115 if (s
->refcount
< 0)
3121 static struct kmem_cache
*find_mergeable(size_t size
,
3122 size_t align
, unsigned long flags
, const char *name
,
3123 void (*ctor
)(void *))
3125 struct kmem_cache
*s
;
3127 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3133 size
= ALIGN(size
, sizeof(void *));
3134 align
= calculate_alignment(flags
, align
, size
);
3135 size
= ALIGN(size
, align
);
3136 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3138 list_for_each_entry(s
, &slab_caches
, list
) {
3139 if (slab_unmergeable(s
))
3145 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3148 * Check if alignment is compatible.
3149 * Courtesy of Adrian Drzewiecki
3151 if ((s
->size
& ~(align
- 1)) != s
->size
)
3154 if (s
->size
- size
>= sizeof(void *))
3162 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3163 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3165 struct kmem_cache
*s
;
3167 down_write(&slub_lock
);
3168 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3174 * Adjust the object sizes so that we clear
3175 * the complete object on kzalloc.
3177 s
->objsize
= max(s
->objsize
, (int)size
);
3180 * And then we need to update the object size in the
3181 * per cpu structures
3183 for_each_online_cpu(cpu
)
3184 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3186 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3187 up_write(&slub_lock
);
3189 if (sysfs_slab_alias(s
, name
)) {
3190 down_write(&slub_lock
);
3192 up_write(&slub_lock
);
3198 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3200 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3201 size
, align
, flags
, ctor
)) {
3202 list_add(&s
->list
, &slab_caches
);
3203 up_write(&slub_lock
);
3204 if (sysfs_slab_add(s
)) {
3205 down_write(&slub_lock
);
3207 up_write(&slub_lock
);
3215 up_write(&slub_lock
);
3218 if (flags
& SLAB_PANIC
)
3219 panic("Cannot create slabcache %s\n", name
);
3224 EXPORT_SYMBOL(kmem_cache_create
);
3228 * Use the cpu notifier to insure that the cpu slabs are flushed when
3231 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3232 unsigned long action
, void *hcpu
)
3234 long cpu
= (long)hcpu
;
3235 struct kmem_cache
*s
;
3236 unsigned long flags
;
3239 case CPU_UP_PREPARE
:
3240 case CPU_UP_PREPARE_FROZEN
:
3241 init_alloc_cpu_cpu(cpu
);
3242 down_read(&slub_lock
);
3243 list_for_each_entry(s
, &slab_caches
, list
)
3244 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3246 up_read(&slub_lock
);
3249 case CPU_UP_CANCELED
:
3250 case CPU_UP_CANCELED_FROZEN
:
3252 case CPU_DEAD_FROZEN
:
3253 down_read(&slub_lock
);
3254 list_for_each_entry(s
, &slab_caches
, list
) {
3255 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3257 local_irq_save(flags
);
3258 __flush_cpu_slab(s
, cpu
);
3259 local_irq_restore(flags
);
3260 free_kmem_cache_cpu(c
, cpu
);
3261 s
->cpu_slab
[cpu
] = NULL
;
3263 up_read(&slub_lock
);
3271 static struct notifier_block __cpuinitdata slab_notifier
= {
3272 .notifier_call
= slab_cpuup_callback
3277 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3279 struct kmem_cache
*s
;
3282 if (unlikely(size
> SLUB_MAX_SIZE
))
3283 return kmalloc_large(size
, gfpflags
);
3285 s
= get_slab(size
, gfpflags
);
3287 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3290 ret
= slab_alloc(s
, gfpflags
, -1, caller
);
3292 /* Honor the call site pointer we recieved. */
3293 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
3298 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3299 int node
, unsigned long caller
)
3301 struct kmem_cache
*s
;
3304 if (unlikely(size
> SLUB_MAX_SIZE
))
3305 return kmalloc_large_node(size
, gfpflags
, node
);
3307 s
= get_slab(size
, gfpflags
);
3309 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3312 ret
= slab_alloc(s
, gfpflags
, node
, caller
);
3314 /* Honor the call site pointer we recieved. */
3315 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
3320 #ifdef CONFIG_SLUB_DEBUG
3321 static unsigned long count_partial(struct kmem_cache_node
*n
,
3322 int (*get_count
)(struct page
*))
3324 unsigned long flags
;
3325 unsigned long x
= 0;
3328 spin_lock_irqsave(&n
->list_lock
, flags
);
3329 list_for_each_entry(page
, &n
->partial
, lru
)
3330 x
+= get_count(page
);
3331 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3335 static int count_inuse(struct page
*page
)
3340 static int count_total(struct page
*page
)
3342 return page
->objects
;
3345 static int count_free(struct page
*page
)
3347 return page
->objects
- page
->inuse
;
3350 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3354 void *addr
= page_address(page
);
3356 if (!check_slab(s
, page
) ||
3357 !on_freelist(s
, page
, NULL
))
3360 /* Now we know that a valid freelist exists */
3361 bitmap_zero(map
, page
->objects
);
3363 for_each_free_object(p
, s
, page
->freelist
) {
3364 set_bit(slab_index(p
, s
, addr
), map
);
3365 if (!check_object(s
, page
, p
, 0))
3369 for_each_object(p
, s
, addr
, page
->objects
)
3370 if (!test_bit(slab_index(p
, s
, addr
), map
))
3371 if (!check_object(s
, page
, p
, 1))
3376 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3379 if (slab_trylock(page
)) {
3380 validate_slab(s
, page
, map
);
3383 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3386 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3387 if (!PageSlubDebug(page
))
3388 printk(KERN_ERR
"SLUB %s: SlubDebug not set "
3389 "on slab 0x%p\n", s
->name
, page
);
3391 if (PageSlubDebug(page
))
3392 printk(KERN_ERR
"SLUB %s: SlubDebug set on "
3393 "slab 0x%p\n", s
->name
, page
);
3397 static int validate_slab_node(struct kmem_cache
*s
,
3398 struct kmem_cache_node
*n
, unsigned long *map
)
3400 unsigned long count
= 0;
3402 unsigned long flags
;
3404 spin_lock_irqsave(&n
->list_lock
, flags
);
3406 list_for_each_entry(page
, &n
->partial
, lru
) {
3407 validate_slab_slab(s
, page
, map
);
3410 if (count
!= n
->nr_partial
)
3411 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3412 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3414 if (!(s
->flags
& SLAB_STORE_USER
))
3417 list_for_each_entry(page
, &n
->full
, lru
) {
3418 validate_slab_slab(s
, page
, map
);
3421 if (count
!= atomic_long_read(&n
->nr_slabs
))
3422 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3423 "counter=%ld\n", s
->name
, count
,
3424 atomic_long_read(&n
->nr_slabs
));
3427 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3431 static long validate_slab_cache(struct kmem_cache
*s
)
3434 unsigned long count
= 0;
3435 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3436 sizeof(unsigned long), GFP_KERNEL
);
3442 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3443 struct kmem_cache_node
*n
= get_node(s
, node
);
3445 count
+= validate_slab_node(s
, n
, map
);
3451 #ifdef SLUB_RESILIENCY_TEST
3452 static void resiliency_test(void)
3456 printk(KERN_ERR
"SLUB resiliency testing\n");
3457 printk(KERN_ERR
"-----------------------\n");
3458 printk(KERN_ERR
"A. Corruption after allocation\n");
3460 p
= kzalloc(16, GFP_KERNEL
);
3462 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3463 " 0x12->0x%p\n\n", p
+ 16);
3465 validate_slab_cache(kmalloc_caches
+ 4);
3467 /* Hmmm... The next two are dangerous */
3468 p
= kzalloc(32, GFP_KERNEL
);
3469 p
[32 + sizeof(void *)] = 0x34;
3470 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3471 " 0x34 -> -0x%p\n", p
);
3473 "If allocated object is overwritten then not detectable\n\n");
3475 validate_slab_cache(kmalloc_caches
+ 5);
3476 p
= kzalloc(64, GFP_KERNEL
);
3477 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3479 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3482 "If allocated object is overwritten then not detectable\n\n");
3483 validate_slab_cache(kmalloc_caches
+ 6);
3485 printk(KERN_ERR
"\nB. Corruption after free\n");
3486 p
= kzalloc(128, GFP_KERNEL
);
3489 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3490 validate_slab_cache(kmalloc_caches
+ 7);
3492 p
= kzalloc(256, GFP_KERNEL
);
3495 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3497 validate_slab_cache(kmalloc_caches
+ 8);
3499 p
= kzalloc(512, GFP_KERNEL
);
3502 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3503 validate_slab_cache(kmalloc_caches
+ 9);
3506 static void resiliency_test(void) {};
3510 * Generate lists of code addresses where slabcache objects are allocated
3515 unsigned long count
;
3522 DECLARE_BITMAP(cpus
, NR_CPUS
);
3528 unsigned long count
;
3529 struct location
*loc
;
3532 static void free_loc_track(struct loc_track
*t
)
3535 free_pages((unsigned long)t
->loc
,
3536 get_order(sizeof(struct location
) * t
->max
));
3539 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3544 order
= get_order(sizeof(struct location
) * max
);
3546 l
= (void *)__get_free_pages(flags
, order
);
3551 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3559 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3560 const struct track
*track
)
3562 long start
, end
, pos
;
3564 unsigned long caddr
;
3565 unsigned long age
= jiffies
- track
->when
;
3571 pos
= start
+ (end
- start
+ 1) / 2;
3574 * There is nothing at "end". If we end up there
3575 * we need to add something to before end.
3580 caddr
= t
->loc
[pos
].addr
;
3581 if (track
->addr
== caddr
) {
3587 if (age
< l
->min_time
)
3589 if (age
> l
->max_time
)
3592 if (track
->pid
< l
->min_pid
)
3593 l
->min_pid
= track
->pid
;
3594 if (track
->pid
> l
->max_pid
)
3595 l
->max_pid
= track
->pid
;
3597 cpumask_set_cpu(track
->cpu
,
3598 to_cpumask(l
->cpus
));
3600 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3604 if (track
->addr
< caddr
)
3611 * Not found. Insert new tracking element.
3613 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3619 (t
->count
- pos
) * sizeof(struct location
));
3622 l
->addr
= track
->addr
;
3626 l
->min_pid
= track
->pid
;
3627 l
->max_pid
= track
->pid
;
3628 cpumask_clear(to_cpumask(l
->cpus
));
3629 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
3630 nodes_clear(l
->nodes
);
3631 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3635 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3636 struct page
*page
, enum track_item alloc
)
3638 void *addr
= page_address(page
);
3639 DECLARE_BITMAP(map
, page
->objects
);
3642 bitmap_zero(map
, page
->objects
);
3643 for_each_free_object(p
, s
, page
->freelist
)
3644 set_bit(slab_index(p
, s
, addr
), map
);
3646 for_each_object(p
, s
, addr
, page
->objects
)
3647 if (!test_bit(slab_index(p
, s
, addr
), map
))
3648 add_location(t
, s
, get_track(s
, p
, alloc
));
3651 static int list_locations(struct kmem_cache
*s
, char *buf
,
3652 enum track_item alloc
)
3656 struct loc_track t
= { 0, 0, NULL
};
3659 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3661 return sprintf(buf
, "Out of memory\n");
3663 /* Push back cpu slabs */
3666 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3667 struct kmem_cache_node
*n
= get_node(s
, node
);
3668 unsigned long flags
;
3671 if (!atomic_long_read(&n
->nr_slabs
))
3674 spin_lock_irqsave(&n
->list_lock
, flags
);
3675 list_for_each_entry(page
, &n
->partial
, lru
)
3676 process_slab(&t
, s
, page
, alloc
);
3677 list_for_each_entry(page
, &n
->full
, lru
)
3678 process_slab(&t
, s
, page
, alloc
);
3679 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3682 for (i
= 0; i
< t
.count
; i
++) {
3683 struct location
*l
= &t
.loc
[i
];
3685 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
3687 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3690 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3692 len
+= sprintf(buf
+ len
, "<not-available>");
3694 if (l
->sum_time
!= l
->min_time
) {
3695 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3697 (long)div_u64(l
->sum_time
, l
->count
),
3700 len
+= sprintf(buf
+ len
, " age=%ld",
3703 if (l
->min_pid
!= l
->max_pid
)
3704 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3705 l
->min_pid
, l
->max_pid
);
3707 len
+= sprintf(buf
+ len
, " pid=%ld",
3710 if (num_online_cpus() > 1 &&
3711 !cpumask_empty(to_cpumask(l
->cpus
)) &&
3712 len
< PAGE_SIZE
- 60) {
3713 len
+= sprintf(buf
+ len
, " cpus=");
3714 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3715 to_cpumask(l
->cpus
));
3718 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3719 len
< PAGE_SIZE
- 60) {
3720 len
+= sprintf(buf
+ len
, " nodes=");
3721 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3725 len
+= sprintf(buf
+ len
, "\n");
3730 len
+= sprintf(buf
, "No data\n");
3734 enum slab_stat_type
{
3735 SL_ALL
, /* All slabs */
3736 SL_PARTIAL
, /* Only partially allocated slabs */
3737 SL_CPU
, /* Only slabs used for cpu caches */
3738 SL_OBJECTS
, /* Determine allocated objects not slabs */
3739 SL_TOTAL
/* Determine object capacity not slabs */
3742 #define SO_ALL (1 << SL_ALL)
3743 #define SO_PARTIAL (1 << SL_PARTIAL)
3744 #define SO_CPU (1 << SL_CPU)
3745 #define SO_OBJECTS (1 << SL_OBJECTS)
3746 #define SO_TOTAL (1 << SL_TOTAL)
3748 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3749 char *buf
, unsigned long flags
)
3751 unsigned long total
= 0;
3754 unsigned long *nodes
;
3755 unsigned long *per_cpu
;
3757 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3760 per_cpu
= nodes
+ nr_node_ids
;
3762 if (flags
& SO_CPU
) {
3765 for_each_possible_cpu(cpu
) {
3766 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3768 if (!c
|| c
->node
< 0)
3772 if (flags
& SO_TOTAL
)
3773 x
= c
->page
->objects
;
3774 else if (flags
& SO_OBJECTS
)
3780 nodes
[c
->node
] += x
;
3786 if (flags
& SO_ALL
) {
3787 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3788 struct kmem_cache_node
*n
= get_node(s
, node
);
3790 if (flags
& SO_TOTAL
)
3791 x
= atomic_long_read(&n
->total_objects
);
3792 else if (flags
& SO_OBJECTS
)
3793 x
= atomic_long_read(&n
->total_objects
) -
3794 count_partial(n
, count_free
);
3797 x
= atomic_long_read(&n
->nr_slabs
);
3802 } else if (flags
& SO_PARTIAL
) {
3803 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3804 struct kmem_cache_node
*n
= get_node(s
, node
);
3806 if (flags
& SO_TOTAL
)
3807 x
= count_partial(n
, count_total
);
3808 else if (flags
& SO_OBJECTS
)
3809 x
= count_partial(n
, count_inuse
);
3816 x
= sprintf(buf
, "%lu", total
);
3818 for_each_node_state(node
, N_NORMAL_MEMORY
)
3820 x
+= sprintf(buf
+ x
, " N%d=%lu",
3824 return x
+ sprintf(buf
+ x
, "\n");
3827 static int any_slab_objects(struct kmem_cache
*s
)
3831 for_each_online_node(node
) {
3832 struct kmem_cache_node
*n
= get_node(s
, node
);
3837 if (atomic_long_read(&n
->total_objects
))
3843 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3844 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3846 struct slab_attribute
{
3847 struct attribute attr
;
3848 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3849 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3852 #define SLAB_ATTR_RO(_name) \
3853 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3855 #define SLAB_ATTR(_name) \
3856 static struct slab_attribute _name##_attr = \
3857 __ATTR(_name, 0644, _name##_show, _name##_store)
3859 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3861 return sprintf(buf
, "%d\n", s
->size
);
3863 SLAB_ATTR_RO(slab_size
);
3865 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3867 return sprintf(buf
, "%d\n", s
->align
);
3869 SLAB_ATTR_RO(align
);
3871 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3873 return sprintf(buf
, "%d\n", s
->objsize
);
3875 SLAB_ATTR_RO(object_size
);
3877 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3879 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
3881 SLAB_ATTR_RO(objs_per_slab
);
3883 static ssize_t
order_store(struct kmem_cache
*s
,
3884 const char *buf
, size_t length
)
3886 unsigned long order
;
3889 err
= strict_strtoul(buf
, 10, &order
);
3893 if (order
> slub_max_order
|| order
< slub_min_order
)
3896 calculate_sizes(s
, order
);
3900 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3902 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
3906 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
3908 return sprintf(buf
, "%lu\n", s
->min_partial
);
3911 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
3917 err
= strict_strtoul(buf
, 10, &min
);
3921 set_min_partial(s
, min
);
3924 SLAB_ATTR(min_partial
);
3926 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3929 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3931 return n
+ sprintf(buf
+ n
, "\n");
3937 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3939 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3941 SLAB_ATTR_RO(aliases
);
3943 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3945 return show_slab_objects(s
, buf
, SO_ALL
);
3947 SLAB_ATTR_RO(slabs
);
3949 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3951 return show_slab_objects(s
, buf
, SO_PARTIAL
);
3953 SLAB_ATTR_RO(partial
);
3955 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3957 return show_slab_objects(s
, buf
, SO_CPU
);
3959 SLAB_ATTR_RO(cpu_slabs
);
3961 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3963 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
3965 SLAB_ATTR_RO(objects
);
3967 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
3969 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
3971 SLAB_ATTR_RO(objects_partial
);
3973 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
3975 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
3977 SLAB_ATTR_RO(total_objects
);
3979 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3981 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3984 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3985 const char *buf
, size_t length
)
3987 s
->flags
&= ~SLAB_DEBUG_FREE
;
3989 s
->flags
|= SLAB_DEBUG_FREE
;
3992 SLAB_ATTR(sanity_checks
);
3994 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3996 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3999 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4002 s
->flags
&= ~SLAB_TRACE
;
4004 s
->flags
|= SLAB_TRACE
;
4009 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4011 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4014 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4015 const char *buf
, size_t length
)
4017 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4019 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4022 SLAB_ATTR(reclaim_account
);
4024 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4026 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4028 SLAB_ATTR_RO(hwcache_align
);
4030 #ifdef CONFIG_ZONE_DMA
4031 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4033 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4035 SLAB_ATTR_RO(cache_dma
);
4038 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4040 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4042 SLAB_ATTR_RO(destroy_by_rcu
);
4044 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4046 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4049 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4050 const char *buf
, size_t length
)
4052 if (any_slab_objects(s
))
4055 s
->flags
&= ~SLAB_RED_ZONE
;
4057 s
->flags
|= SLAB_RED_ZONE
;
4058 calculate_sizes(s
, -1);
4061 SLAB_ATTR(red_zone
);
4063 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4065 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4068 static ssize_t
poison_store(struct kmem_cache
*s
,
4069 const char *buf
, size_t length
)
4071 if (any_slab_objects(s
))
4074 s
->flags
&= ~SLAB_POISON
;
4076 s
->flags
|= SLAB_POISON
;
4077 calculate_sizes(s
, -1);
4082 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4084 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4087 static ssize_t
store_user_store(struct kmem_cache
*s
,
4088 const char *buf
, size_t length
)
4090 if (any_slab_objects(s
))
4093 s
->flags
&= ~SLAB_STORE_USER
;
4095 s
->flags
|= SLAB_STORE_USER
;
4096 calculate_sizes(s
, -1);
4099 SLAB_ATTR(store_user
);
4101 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4106 static ssize_t
validate_store(struct kmem_cache
*s
,
4107 const char *buf
, size_t length
)
4111 if (buf
[0] == '1') {
4112 ret
= validate_slab_cache(s
);
4118 SLAB_ATTR(validate
);
4120 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4125 static ssize_t
shrink_store(struct kmem_cache
*s
,
4126 const char *buf
, size_t length
)
4128 if (buf
[0] == '1') {
4129 int rc
= kmem_cache_shrink(s
);
4139 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4141 if (!(s
->flags
& SLAB_STORE_USER
))
4143 return list_locations(s
, buf
, TRACK_ALLOC
);
4145 SLAB_ATTR_RO(alloc_calls
);
4147 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4149 if (!(s
->flags
& SLAB_STORE_USER
))
4151 return list_locations(s
, buf
, TRACK_FREE
);
4153 SLAB_ATTR_RO(free_calls
);
4156 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4158 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4161 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4162 const char *buf
, size_t length
)
4164 unsigned long ratio
;
4167 err
= strict_strtoul(buf
, 10, &ratio
);
4172 s
->remote_node_defrag_ratio
= ratio
* 10;
4176 SLAB_ATTR(remote_node_defrag_ratio
);
4179 #ifdef CONFIG_SLUB_STATS
4180 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4182 unsigned long sum
= 0;
4185 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4190 for_each_online_cpu(cpu
) {
4191 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4197 len
= sprintf(buf
, "%lu", sum
);
4200 for_each_online_cpu(cpu
) {
4201 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4202 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4206 return len
+ sprintf(buf
+ len
, "\n");
4209 #define STAT_ATTR(si, text) \
4210 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4212 return show_stat(s, buf, si); \
4214 SLAB_ATTR_RO(text); \
4216 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4217 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4218 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4219 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4220 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4221 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4222 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4223 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4224 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4225 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4226 STAT_ATTR(FREE_SLAB
, free_slab
);
4227 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4228 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4229 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4230 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4231 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4232 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4233 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4236 static struct attribute
*slab_attrs
[] = {
4237 &slab_size_attr
.attr
,
4238 &object_size_attr
.attr
,
4239 &objs_per_slab_attr
.attr
,
4241 &min_partial_attr
.attr
,
4243 &objects_partial_attr
.attr
,
4244 &total_objects_attr
.attr
,
4247 &cpu_slabs_attr
.attr
,
4251 &sanity_checks_attr
.attr
,
4253 &hwcache_align_attr
.attr
,
4254 &reclaim_account_attr
.attr
,
4255 &destroy_by_rcu_attr
.attr
,
4256 &red_zone_attr
.attr
,
4258 &store_user_attr
.attr
,
4259 &validate_attr
.attr
,
4261 &alloc_calls_attr
.attr
,
4262 &free_calls_attr
.attr
,
4263 #ifdef CONFIG_ZONE_DMA
4264 &cache_dma_attr
.attr
,
4267 &remote_node_defrag_ratio_attr
.attr
,
4269 #ifdef CONFIG_SLUB_STATS
4270 &alloc_fastpath_attr
.attr
,
4271 &alloc_slowpath_attr
.attr
,
4272 &free_fastpath_attr
.attr
,
4273 &free_slowpath_attr
.attr
,
4274 &free_frozen_attr
.attr
,
4275 &free_add_partial_attr
.attr
,
4276 &free_remove_partial_attr
.attr
,
4277 &alloc_from_partial_attr
.attr
,
4278 &alloc_slab_attr
.attr
,
4279 &alloc_refill_attr
.attr
,
4280 &free_slab_attr
.attr
,
4281 &cpuslab_flush_attr
.attr
,
4282 &deactivate_full_attr
.attr
,
4283 &deactivate_empty_attr
.attr
,
4284 &deactivate_to_head_attr
.attr
,
4285 &deactivate_to_tail_attr
.attr
,
4286 &deactivate_remote_frees_attr
.attr
,
4287 &order_fallback_attr
.attr
,
4292 static struct attribute_group slab_attr_group
= {
4293 .attrs
= slab_attrs
,
4296 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4297 struct attribute
*attr
,
4300 struct slab_attribute
*attribute
;
4301 struct kmem_cache
*s
;
4304 attribute
= to_slab_attr(attr
);
4307 if (!attribute
->show
)
4310 err
= attribute
->show(s
, buf
);
4315 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4316 struct attribute
*attr
,
4317 const char *buf
, size_t len
)
4319 struct slab_attribute
*attribute
;
4320 struct kmem_cache
*s
;
4323 attribute
= to_slab_attr(attr
);
4326 if (!attribute
->store
)
4329 err
= attribute
->store(s
, buf
, len
);
4334 static void kmem_cache_release(struct kobject
*kobj
)
4336 struct kmem_cache
*s
= to_slab(kobj
);
4341 static struct sysfs_ops slab_sysfs_ops
= {
4342 .show
= slab_attr_show
,
4343 .store
= slab_attr_store
,
4346 static struct kobj_type slab_ktype
= {
4347 .sysfs_ops
= &slab_sysfs_ops
,
4348 .release
= kmem_cache_release
4351 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4353 struct kobj_type
*ktype
= get_ktype(kobj
);
4355 if (ktype
== &slab_ktype
)
4360 static struct kset_uevent_ops slab_uevent_ops
= {
4361 .filter
= uevent_filter
,
4364 static struct kset
*slab_kset
;
4366 #define ID_STR_LENGTH 64
4368 /* Create a unique string id for a slab cache:
4370 * Format :[flags-]size
4372 static char *create_unique_id(struct kmem_cache
*s
)
4374 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4381 * First flags affecting slabcache operations. We will only
4382 * get here for aliasable slabs so we do not need to support
4383 * too many flags. The flags here must cover all flags that
4384 * are matched during merging to guarantee that the id is
4387 if (s
->flags
& SLAB_CACHE_DMA
)
4389 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4391 if (s
->flags
& SLAB_DEBUG_FREE
)
4395 p
+= sprintf(p
, "%07d", s
->size
);
4396 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4400 static int sysfs_slab_add(struct kmem_cache
*s
)
4406 if (slab_state
< SYSFS
)
4407 /* Defer until later */
4410 unmergeable
= slab_unmergeable(s
);
4413 * Slabcache can never be merged so we can use the name proper.
4414 * This is typically the case for debug situations. In that
4415 * case we can catch duplicate names easily.
4417 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4421 * Create a unique name for the slab as a target
4424 name
= create_unique_id(s
);
4427 s
->kobj
.kset
= slab_kset
;
4428 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4430 kobject_put(&s
->kobj
);
4434 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4437 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4439 /* Setup first alias */
4440 sysfs_slab_alias(s
, s
->name
);
4446 static void sysfs_slab_remove(struct kmem_cache
*s
)
4448 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4449 kobject_del(&s
->kobj
);
4450 kobject_put(&s
->kobj
);
4454 * Need to buffer aliases during bootup until sysfs becomes
4455 * available lest we lose that information.
4457 struct saved_alias
{
4458 struct kmem_cache
*s
;
4460 struct saved_alias
*next
;
4463 static struct saved_alias
*alias_list
;
4465 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4467 struct saved_alias
*al
;
4469 if (slab_state
== SYSFS
) {
4471 * If we have a leftover link then remove it.
4473 sysfs_remove_link(&slab_kset
->kobj
, name
);
4474 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4477 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4483 al
->next
= alias_list
;
4488 static int __init
slab_sysfs_init(void)
4490 struct kmem_cache
*s
;
4493 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4495 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4501 list_for_each_entry(s
, &slab_caches
, list
) {
4502 err
= sysfs_slab_add(s
);
4504 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4505 " to sysfs\n", s
->name
);
4508 while (alias_list
) {
4509 struct saved_alias
*al
= alias_list
;
4511 alias_list
= alias_list
->next
;
4512 err
= sysfs_slab_alias(al
->s
, al
->name
);
4514 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4515 " %s to sysfs\n", s
->name
);
4523 __initcall(slab_sysfs_init
);
4527 * The /proc/slabinfo ABI
4529 #ifdef CONFIG_SLABINFO
4530 static void print_slabinfo_header(struct seq_file
*m
)
4532 seq_puts(m
, "slabinfo - version: 2.1\n");
4533 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4534 "<objperslab> <pagesperslab>");
4535 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4536 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4540 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4544 down_read(&slub_lock
);
4546 print_slabinfo_header(m
);
4548 return seq_list_start(&slab_caches
, *pos
);
4551 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4553 return seq_list_next(p
, &slab_caches
, pos
);
4556 static void s_stop(struct seq_file
*m
, void *p
)
4558 up_read(&slub_lock
);
4561 static int s_show(struct seq_file
*m
, void *p
)
4563 unsigned long nr_partials
= 0;
4564 unsigned long nr_slabs
= 0;
4565 unsigned long nr_inuse
= 0;
4566 unsigned long nr_objs
= 0;
4567 unsigned long nr_free
= 0;
4568 struct kmem_cache
*s
;
4571 s
= list_entry(p
, struct kmem_cache
, list
);
4573 for_each_online_node(node
) {
4574 struct kmem_cache_node
*n
= get_node(s
, node
);
4579 nr_partials
+= n
->nr_partial
;
4580 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4581 nr_objs
+= atomic_long_read(&n
->total_objects
);
4582 nr_free
+= count_partial(n
, count_free
);
4585 nr_inuse
= nr_objs
- nr_free
;
4587 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4588 nr_objs
, s
->size
, oo_objects(s
->oo
),
4589 (1 << oo_order(s
->oo
)));
4590 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4591 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4597 static const struct seq_operations slabinfo_op
= {
4604 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4606 return seq_open(file
, &slabinfo_op
);
4609 static const struct file_operations proc_slabinfo_operations
= {
4610 .open
= slabinfo_open
,
4612 .llseek
= seq_lseek
,
4613 .release
= seq_release
,
4616 static int __init
slab_proc_init(void)
4618 proc_create("slabinfo",S_IWUSR
|S_IRUGO
,NULL
,&proc_slabinfo_operations
);
4621 module_init(slab_proc_init
);
4622 #endif /* CONFIG_SLABINFO */