ACPI: Rename ACPI processor device bus ID
[linux-2.6/mini2440.git] / fs / pipe.c
blob13414ec45b8d5b42012d8c5fbd56d54df5a96749
1 /*
2 * linux/fs/pipe.c
4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/mount.h>
15 #include <linux/pipe_fs_i.h>
16 #include <linux/uio.h>
17 #include <linux/highmem.h>
18 #include <linux/pagemap.h>
19 #include <linux/audit.h>
20 #include <linux/syscalls.h>
22 #include <asm/uaccess.h>
23 #include <asm/ioctls.h>
26 * We use a start+len construction, which provides full use of the
27 * allocated memory.
28 * -- Florian Coosmann (FGC)
30 * Reads with count = 0 should always return 0.
31 * -- Julian Bradfield 1999-06-07.
33 * FIFOs and Pipes now generate SIGIO for both readers and writers.
34 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
36 * pipe_read & write cleanup
37 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
40 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
42 if (pipe->inode)
43 mutex_lock_nested(&pipe->inode->i_mutex, subclass);
46 void pipe_lock(struct pipe_inode_info *pipe)
49 * pipe_lock() nests non-pipe inode locks (for writing to a file)
51 pipe_lock_nested(pipe, I_MUTEX_PARENT);
53 EXPORT_SYMBOL(pipe_lock);
55 void pipe_unlock(struct pipe_inode_info *pipe)
57 if (pipe->inode)
58 mutex_unlock(&pipe->inode->i_mutex);
60 EXPORT_SYMBOL(pipe_unlock);
62 void pipe_double_lock(struct pipe_inode_info *pipe1,
63 struct pipe_inode_info *pipe2)
65 BUG_ON(pipe1 == pipe2);
67 if (pipe1 < pipe2) {
68 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
69 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
70 } else {
71 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
72 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
76 /* Drop the inode semaphore and wait for a pipe event, atomically */
77 void pipe_wait(struct pipe_inode_info *pipe)
79 DEFINE_WAIT(wait);
82 * Pipes are system-local resources, so sleeping on them
83 * is considered a noninteractive wait:
85 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
86 pipe_unlock(pipe);
87 schedule();
88 finish_wait(&pipe->wait, &wait);
89 pipe_lock(pipe);
92 static int
93 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
94 int atomic)
96 unsigned long copy;
98 while (len > 0) {
99 while (!iov->iov_len)
100 iov++;
101 copy = min_t(unsigned long, len, iov->iov_len);
103 if (atomic) {
104 if (__copy_from_user_inatomic(to, iov->iov_base, copy))
105 return -EFAULT;
106 } else {
107 if (copy_from_user(to, iov->iov_base, copy))
108 return -EFAULT;
110 to += copy;
111 len -= copy;
112 iov->iov_base += copy;
113 iov->iov_len -= copy;
115 return 0;
118 static int
119 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
120 int atomic)
122 unsigned long copy;
124 while (len > 0) {
125 while (!iov->iov_len)
126 iov++;
127 copy = min_t(unsigned long, len, iov->iov_len);
129 if (atomic) {
130 if (__copy_to_user_inatomic(iov->iov_base, from, copy))
131 return -EFAULT;
132 } else {
133 if (copy_to_user(iov->iov_base, from, copy))
134 return -EFAULT;
136 from += copy;
137 len -= copy;
138 iov->iov_base += copy;
139 iov->iov_len -= copy;
141 return 0;
145 * Attempt to pre-fault in the user memory, so we can use atomic copies.
146 * Returns the number of bytes not faulted in.
148 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
150 while (!iov->iov_len)
151 iov++;
153 while (len > 0) {
154 unsigned long this_len;
156 this_len = min_t(unsigned long, len, iov->iov_len);
157 if (fault_in_pages_writeable(iov->iov_base, this_len))
158 break;
160 len -= this_len;
161 iov++;
164 return len;
168 * Pre-fault in the user memory, so we can use atomic copies.
170 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
172 while (!iov->iov_len)
173 iov++;
175 while (len > 0) {
176 unsigned long this_len;
178 this_len = min_t(unsigned long, len, iov->iov_len);
179 fault_in_pages_readable(iov->iov_base, this_len);
180 len -= this_len;
181 iov++;
185 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
186 struct pipe_buffer *buf)
188 struct page *page = buf->page;
191 * If nobody else uses this page, and we don't already have a
192 * temporary page, let's keep track of it as a one-deep
193 * allocation cache. (Otherwise just release our reference to it)
195 if (page_count(page) == 1 && !pipe->tmp_page)
196 pipe->tmp_page = page;
197 else
198 page_cache_release(page);
202 * generic_pipe_buf_map - virtually map a pipe buffer
203 * @pipe: the pipe that the buffer belongs to
204 * @buf: the buffer that should be mapped
205 * @atomic: whether to use an atomic map
207 * Description:
208 * This function returns a kernel virtual address mapping for the
209 * pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
210 * and the caller has to be careful not to fault before calling
211 * the unmap function.
213 * Note that this function occupies KM_USER0 if @atomic != 0.
215 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
216 struct pipe_buffer *buf, int atomic)
218 if (atomic) {
219 buf->flags |= PIPE_BUF_FLAG_ATOMIC;
220 return kmap_atomic(buf->page, KM_USER0);
223 return kmap(buf->page);
227 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
228 * @pipe: the pipe that the buffer belongs to
229 * @buf: the buffer that should be unmapped
230 * @map_data: the data that the mapping function returned
232 * Description:
233 * This function undoes the mapping that ->map() provided.
235 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
236 struct pipe_buffer *buf, void *map_data)
238 if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
239 buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
240 kunmap_atomic(map_data, KM_USER0);
241 } else
242 kunmap(buf->page);
246 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
247 * @pipe: the pipe that the buffer belongs to
248 * @buf: the buffer to attempt to steal
250 * Description:
251 * This function attempts to steal the &struct page attached to
252 * @buf. If successful, this function returns 0 and returns with
253 * the page locked. The caller may then reuse the page for whatever
254 * he wishes; the typical use is insertion into a different file
255 * page cache.
257 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
258 struct pipe_buffer *buf)
260 struct page *page = buf->page;
263 * A reference of one is golden, that means that the owner of this
264 * page is the only one holding a reference to it. lock the page
265 * and return OK.
267 if (page_count(page) == 1) {
268 lock_page(page);
269 return 0;
272 return 1;
276 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
277 * @pipe: the pipe that the buffer belongs to
278 * @buf: the buffer to get a reference to
280 * Description:
281 * This function grabs an extra reference to @buf. It's used in
282 * in the tee() system call, when we duplicate the buffers in one
283 * pipe into another.
285 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
287 page_cache_get(buf->page);
291 * generic_pipe_buf_confirm - verify contents of the pipe buffer
292 * @info: the pipe that the buffer belongs to
293 * @buf: the buffer to confirm
295 * Description:
296 * This function does nothing, because the generic pipe code uses
297 * pages that are always good when inserted into the pipe.
299 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
300 struct pipe_buffer *buf)
302 return 0;
305 static const struct pipe_buf_operations anon_pipe_buf_ops = {
306 .can_merge = 1,
307 .map = generic_pipe_buf_map,
308 .unmap = generic_pipe_buf_unmap,
309 .confirm = generic_pipe_buf_confirm,
310 .release = anon_pipe_buf_release,
311 .steal = generic_pipe_buf_steal,
312 .get = generic_pipe_buf_get,
315 static ssize_t
316 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
317 unsigned long nr_segs, loff_t pos)
319 struct file *filp = iocb->ki_filp;
320 struct inode *inode = filp->f_path.dentry->d_inode;
321 struct pipe_inode_info *pipe;
322 int do_wakeup;
323 ssize_t ret;
324 struct iovec *iov = (struct iovec *)_iov;
325 size_t total_len;
327 total_len = iov_length(iov, nr_segs);
328 /* Null read succeeds. */
329 if (unlikely(total_len == 0))
330 return 0;
332 do_wakeup = 0;
333 ret = 0;
334 mutex_lock(&inode->i_mutex);
335 pipe = inode->i_pipe;
336 for (;;) {
337 int bufs = pipe->nrbufs;
338 if (bufs) {
339 int curbuf = pipe->curbuf;
340 struct pipe_buffer *buf = pipe->bufs + curbuf;
341 const struct pipe_buf_operations *ops = buf->ops;
342 void *addr;
343 size_t chars = buf->len;
344 int error, atomic;
346 if (chars > total_len)
347 chars = total_len;
349 error = ops->confirm(pipe, buf);
350 if (error) {
351 if (!ret)
352 error = ret;
353 break;
356 atomic = !iov_fault_in_pages_write(iov, chars);
357 redo:
358 addr = ops->map(pipe, buf, atomic);
359 error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
360 ops->unmap(pipe, buf, addr);
361 if (unlikely(error)) {
363 * Just retry with the slow path if we failed.
365 if (atomic) {
366 atomic = 0;
367 goto redo;
369 if (!ret)
370 ret = error;
371 break;
373 ret += chars;
374 buf->offset += chars;
375 buf->len -= chars;
376 if (!buf->len) {
377 buf->ops = NULL;
378 ops->release(pipe, buf);
379 curbuf = (curbuf + 1) & (PIPE_BUFFERS-1);
380 pipe->curbuf = curbuf;
381 pipe->nrbufs = --bufs;
382 do_wakeup = 1;
384 total_len -= chars;
385 if (!total_len)
386 break; /* common path: read succeeded */
388 if (bufs) /* More to do? */
389 continue;
390 if (!pipe->writers)
391 break;
392 if (!pipe->waiting_writers) {
393 /* syscall merging: Usually we must not sleep
394 * if O_NONBLOCK is set, or if we got some data.
395 * But if a writer sleeps in kernel space, then
396 * we can wait for that data without violating POSIX.
398 if (ret)
399 break;
400 if (filp->f_flags & O_NONBLOCK) {
401 ret = -EAGAIN;
402 break;
405 if (signal_pending(current)) {
406 if (!ret)
407 ret = -ERESTARTSYS;
408 break;
410 if (do_wakeup) {
411 wake_up_interruptible_sync(&pipe->wait);
412 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
414 pipe_wait(pipe);
416 mutex_unlock(&inode->i_mutex);
418 /* Signal writers asynchronously that there is more room. */
419 if (do_wakeup) {
420 wake_up_interruptible_sync(&pipe->wait);
421 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
423 if (ret > 0)
424 file_accessed(filp);
425 return ret;
428 static ssize_t
429 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
430 unsigned long nr_segs, loff_t ppos)
432 struct file *filp = iocb->ki_filp;
433 struct inode *inode = filp->f_path.dentry->d_inode;
434 struct pipe_inode_info *pipe;
435 ssize_t ret;
436 int do_wakeup;
437 struct iovec *iov = (struct iovec *)_iov;
438 size_t total_len;
439 ssize_t chars;
441 total_len = iov_length(iov, nr_segs);
442 /* Null write succeeds. */
443 if (unlikely(total_len == 0))
444 return 0;
446 do_wakeup = 0;
447 ret = 0;
448 mutex_lock(&inode->i_mutex);
449 pipe = inode->i_pipe;
451 if (!pipe->readers) {
452 send_sig(SIGPIPE, current, 0);
453 ret = -EPIPE;
454 goto out;
457 /* We try to merge small writes */
458 chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
459 if (pipe->nrbufs && chars != 0) {
460 int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
461 (PIPE_BUFFERS-1);
462 struct pipe_buffer *buf = pipe->bufs + lastbuf;
463 const struct pipe_buf_operations *ops = buf->ops;
464 int offset = buf->offset + buf->len;
466 if (ops->can_merge && offset + chars <= PAGE_SIZE) {
467 int error, atomic = 1;
468 void *addr;
470 error = ops->confirm(pipe, buf);
471 if (error)
472 goto out;
474 iov_fault_in_pages_read(iov, chars);
475 redo1:
476 addr = ops->map(pipe, buf, atomic);
477 error = pipe_iov_copy_from_user(offset + addr, iov,
478 chars, atomic);
479 ops->unmap(pipe, buf, addr);
480 ret = error;
481 do_wakeup = 1;
482 if (error) {
483 if (atomic) {
484 atomic = 0;
485 goto redo1;
487 goto out;
489 buf->len += chars;
490 total_len -= chars;
491 ret = chars;
492 if (!total_len)
493 goto out;
497 for (;;) {
498 int bufs;
500 if (!pipe->readers) {
501 send_sig(SIGPIPE, current, 0);
502 if (!ret)
503 ret = -EPIPE;
504 break;
506 bufs = pipe->nrbufs;
507 if (bufs < PIPE_BUFFERS) {
508 int newbuf = (pipe->curbuf + bufs) & (PIPE_BUFFERS-1);
509 struct pipe_buffer *buf = pipe->bufs + newbuf;
510 struct page *page = pipe->tmp_page;
511 char *src;
512 int error, atomic = 1;
514 if (!page) {
515 page = alloc_page(GFP_HIGHUSER);
516 if (unlikely(!page)) {
517 ret = ret ? : -ENOMEM;
518 break;
520 pipe->tmp_page = page;
522 /* Always wake up, even if the copy fails. Otherwise
523 * we lock up (O_NONBLOCK-)readers that sleep due to
524 * syscall merging.
525 * FIXME! Is this really true?
527 do_wakeup = 1;
528 chars = PAGE_SIZE;
529 if (chars > total_len)
530 chars = total_len;
532 iov_fault_in_pages_read(iov, chars);
533 redo2:
534 if (atomic)
535 src = kmap_atomic(page, KM_USER0);
536 else
537 src = kmap(page);
539 error = pipe_iov_copy_from_user(src, iov, chars,
540 atomic);
541 if (atomic)
542 kunmap_atomic(src, KM_USER0);
543 else
544 kunmap(page);
546 if (unlikely(error)) {
547 if (atomic) {
548 atomic = 0;
549 goto redo2;
551 if (!ret)
552 ret = error;
553 break;
555 ret += chars;
557 /* Insert it into the buffer array */
558 buf->page = page;
559 buf->ops = &anon_pipe_buf_ops;
560 buf->offset = 0;
561 buf->len = chars;
562 pipe->nrbufs = ++bufs;
563 pipe->tmp_page = NULL;
565 total_len -= chars;
566 if (!total_len)
567 break;
569 if (bufs < PIPE_BUFFERS)
570 continue;
571 if (filp->f_flags & O_NONBLOCK) {
572 if (!ret)
573 ret = -EAGAIN;
574 break;
576 if (signal_pending(current)) {
577 if (!ret)
578 ret = -ERESTARTSYS;
579 break;
581 if (do_wakeup) {
582 wake_up_interruptible_sync(&pipe->wait);
583 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
584 do_wakeup = 0;
586 pipe->waiting_writers++;
587 pipe_wait(pipe);
588 pipe->waiting_writers--;
590 out:
591 mutex_unlock(&inode->i_mutex);
592 if (do_wakeup) {
593 wake_up_interruptible_sync(&pipe->wait);
594 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
596 if (ret > 0)
597 file_update_time(filp);
598 return ret;
601 static ssize_t
602 bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
604 return -EBADF;
607 static ssize_t
608 bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
609 loff_t *ppos)
611 return -EBADF;
614 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
616 struct inode *inode = filp->f_path.dentry->d_inode;
617 struct pipe_inode_info *pipe;
618 int count, buf, nrbufs;
620 switch (cmd) {
621 case FIONREAD:
622 mutex_lock(&inode->i_mutex);
623 pipe = inode->i_pipe;
624 count = 0;
625 buf = pipe->curbuf;
626 nrbufs = pipe->nrbufs;
627 while (--nrbufs >= 0) {
628 count += pipe->bufs[buf].len;
629 buf = (buf+1) & (PIPE_BUFFERS-1);
631 mutex_unlock(&inode->i_mutex);
633 return put_user(count, (int __user *)arg);
634 default:
635 return -EINVAL;
639 /* No kernel lock held - fine */
640 static unsigned int
641 pipe_poll(struct file *filp, poll_table *wait)
643 unsigned int mask;
644 struct inode *inode = filp->f_path.dentry->d_inode;
645 struct pipe_inode_info *pipe = inode->i_pipe;
646 int nrbufs;
648 poll_wait(filp, &pipe->wait, wait);
650 /* Reading only -- no need for acquiring the semaphore. */
651 nrbufs = pipe->nrbufs;
652 mask = 0;
653 if (filp->f_mode & FMODE_READ) {
654 mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
655 if (!pipe->writers && filp->f_version != pipe->w_counter)
656 mask |= POLLHUP;
659 if (filp->f_mode & FMODE_WRITE) {
660 mask |= (nrbufs < PIPE_BUFFERS) ? POLLOUT | POLLWRNORM : 0;
662 * Most Unices do not set POLLERR for FIFOs but on Linux they
663 * behave exactly like pipes for poll().
665 if (!pipe->readers)
666 mask |= POLLERR;
669 return mask;
672 static int
673 pipe_release(struct inode *inode, int decr, int decw)
675 struct pipe_inode_info *pipe;
677 mutex_lock(&inode->i_mutex);
678 pipe = inode->i_pipe;
679 pipe->readers -= decr;
680 pipe->writers -= decw;
682 if (!pipe->readers && !pipe->writers) {
683 free_pipe_info(inode);
684 } else {
685 wake_up_interruptible_sync(&pipe->wait);
686 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
687 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
689 mutex_unlock(&inode->i_mutex);
691 return 0;
694 static int
695 pipe_read_fasync(int fd, struct file *filp, int on)
697 struct inode *inode = filp->f_path.dentry->d_inode;
698 int retval;
700 mutex_lock(&inode->i_mutex);
701 retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
702 mutex_unlock(&inode->i_mutex);
704 return retval;
708 static int
709 pipe_write_fasync(int fd, struct file *filp, int on)
711 struct inode *inode = filp->f_path.dentry->d_inode;
712 int retval;
714 mutex_lock(&inode->i_mutex);
715 retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
716 mutex_unlock(&inode->i_mutex);
718 return retval;
722 static int
723 pipe_rdwr_fasync(int fd, struct file *filp, int on)
725 struct inode *inode = filp->f_path.dentry->d_inode;
726 struct pipe_inode_info *pipe = inode->i_pipe;
727 int retval;
729 mutex_lock(&inode->i_mutex);
730 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
731 if (retval >= 0) {
732 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
733 if (retval < 0) /* this can happen only if on == T */
734 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
736 mutex_unlock(&inode->i_mutex);
737 return retval;
741 static int
742 pipe_read_release(struct inode *inode, struct file *filp)
744 return pipe_release(inode, 1, 0);
747 static int
748 pipe_write_release(struct inode *inode, struct file *filp)
750 return pipe_release(inode, 0, 1);
753 static int
754 pipe_rdwr_release(struct inode *inode, struct file *filp)
756 int decr, decw;
758 decr = (filp->f_mode & FMODE_READ) != 0;
759 decw = (filp->f_mode & FMODE_WRITE) != 0;
760 return pipe_release(inode, decr, decw);
763 static int
764 pipe_read_open(struct inode *inode, struct file *filp)
766 /* We could have perhaps used atomic_t, but this and friends
767 below are the only places. So it doesn't seem worthwhile. */
768 mutex_lock(&inode->i_mutex);
769 inode->i_pipe->readers++;
770 mutex_unlock(&inode->i_mutex);
772 return 0;
775 static int
776 pipe_write_open(struct inode *inode, struct file *filp)
778 mutex_lock(&inode->i_mutex);
779 inode->i_pipe->writers++;
780 mutex_unlock(&inode->i_mutex);
782 return 0;
785 static int
786 pipe_rdwr_open(struct inode *inode, struct file *filp)
788 mutex_lock(&inode->i_mutex);
789 if (filp->f_mode & FMODE_READ)
790 inode->i_pipe->readers++;
791 if (filp->f_mode & FMODE_WRITE)
792 inode->i_pipe->writers++;
793 mutex_unlock(&inode->i_mutex);
795 return 0;
799 * The file_operations structs are not static because they
800 * are also used in linux/fs/fifo.c to do operations on FIFOs.
802 * Pipes reuse fifos' file_operations structs.
804 const struct file_operations read_pipefifo_fops = {
805 .llseek = no_llseek,
806 .read = do_sync_read,
807 .aio_read = pipe_read,
808 .write = bad_pipe_w,
809 .poll = pipe_poll,
810 .unlocked_ioctl = pipe_ioctl,
811 .open = pipe_read_open,
812 .release = pipe_read_release,
813 .fasync = pipe_read_fasync,
816 const struct file_operations write_pipefifo_fops = {
817 .llseek = no_llseek,
818 .read = bad_pipe_r,
819 .write = do_sync_write,
820 .aio_write = pipe_write,
821 .poll = pipe_poll,
822 .unlocked_ioctl = pipe_ioctl,
823 .open = pipe_write_open,
824 .release = pipe_write_release,
825 .fasync = pipe_write_fasync,
828 const struct file_operations rdwr_pipefifo_fops = {
829 .llseek = no_llseek,
830 .read = do_sync_read,
831 .aio_read = pipe_read,
832 .write = do_sync_write,
833 .aio_write = pipe_write,
834 .poll = pipe_poll,
835 .unlocked_ioctl = pipe_ioctl,
836 .open = pipe_rdwr_open,
837 .release = pipe_rdwr_release,
838 .fasync = pipe_rdwr_fasync,
841 struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
843 struct pipe_inode_info *pipe;
845 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
846 if (pipe) {
847 init_waitqueue_head(&pipe->wait);
848 pipe->r_counter = pipe->w_counter = 1;
849 pipe->inode = inode;
852 return pipe;
855 void __free_pipe_info(struct pipe_inode_info *pipe)
857 int i;
859 for (i = 0; i < PIPE_BUFFERS; i++) {
860 struct pipe_buffer *buf = pipe->bufs + i;
861 if (buf->ops)
862 buf->ops->release(pipe, buf);
864 if (pipe->tmp_page)
865 __free_page(pipe->tmp_page);
866 kfree(pipe);
869 void free_pipe_info(struct inode *inode)
871 __free_pipe_info(inode->i_pipe);
872 inode->i_pipe = NULL;
875 static struct vfsmount *pipe_mnt __read_mostly;
876 static int pipefs_delete_dentry(struct dentry *dentry)
879 * At creation time, we pretended this dentry was hashed
880 * (by clearing DCACHE_UNHASHED bit in d_flags)
881 * At delete time, we restore the truth : not hashed.
882 * (so that dput() can proceed correctly)
884 dentry->d_flags |= DCACHE_UNHASHED;
885 return 0;
889 * pipefs_dname() is called from d_path().
891 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
893 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
894 dentry->d_inode->i_ino);
897 static const struct dentry_operations pipefs_dentry_operations = {
898 .d_delete = pipefs_delete_dentry,
899 .d_dname = pipefs_dname,
902 static struct inode * get_pipe_inode(void)
904 struct inode *inode = new_inode(pipe_mnt->mnt_sb);
905 struct pipe_inode_info *pipe;
907 if (!inode)
908 goto fail_inode;
910 pipe = alloc_pipe_info(inode);
911 if (!pipe)
912 goto fail_iput;
913 inode->i_pipe = pipe;
915 pipe->readers = pipe->writers = 1;
916 inode->i_fop = &rdwr_pipefifo_fops;
919 * Mark the inode dirty from the very beginning,
920 * that way it will never be moved to the dirty
921 * list because "mark_inode_dirty()" will think
922 * that it already _is_ on the dirty list.
924 inode->i_state = I_DIRTY;
925 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
926 inode->i_uid = current_fsuid();
927 inode->i_gid = current_fsgid();
928 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
930 return inode;
932 fail_iput:
933 iput(inode);
935 fail_inode:
936 return NULL;
939 struct file *create_write_pipe(int flags)
941 int err;
942 struct inode *inode;
943 struct file *f;
944 struct dentry *dentry;
945 struct qstr name = { .name = "" };
947 err = -ENFILE;
948 inode = get_pipe_inode();
949 if (!inode)
950 goto err;
952 err = -ENOMEM;
953 dentry = d_alloc(pipe_mnt->mnt_sb->s_root, &name);
954 if (!dentry)
955 goto err_inode;
957 dentry->d_op = &pipefs_dentry_operations;
959 * We dont want to publish this dentry into global dentry hash table.
960 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
961 * This permits a working /proc/$pid/fd/XXX on pipes
963 dentry->d_flags &= ~DCACHE_UNHASHED;
964 d_instantiate(dentry, inode);
966 err = -ENFILE;
967 f = alloc_file(pipe_mnt, dentry, FMODE_WRITE, &write_pipefifo_fops);
968 if (!f)
969 goto err_dentry;
970 f->f_mapping = inode->i_mapping;
972 f->f_flags = O_WRONLY | (flags & O_NONBLOCK);
973 f->f_version = 0;
975 return f;
977 err_dentry:
978 free_pipe_info(inode);
979 dput(dentry);
980 return ERR_PTR(err);
982 err_inode:
983 free_pipe_info(inode);
984 iput(inode);
985 err:
986 return ERR_PTR(err);
989 void free_write_pipe(struct file *f)
991 free_pipe_info(f->f_dentry->d_inode);
992 path_put(&f->f_path);
993 put_filp(f);
996 struct file *create_read_pipe(struct file *wrf, int flags)
998 struct file *f = get_empty_filp();
999 if (!f)
1000 return ERR_PTR(-ENFILE);
1002 /* Grab pipe from the writer */
1003 f->f_path = wrf->f_path;
1004 path_get(&wrf->f_path);
1005 f->f_mapping = wrf->f_path.dentry->d_inode->i_mapping;
1007 f->f_pos = 0;
1008 f->f_flags = O_RDONLY | (flags & O_NONBLOCK);
1009 f->f_op = &read_pipefifo_fops;
1010 f->f_mode = FMODE_READ;
1011 f->f_version = 0;
1013 return f;
1016 int do_pipe_flags(int *fd, int flags)
1018 struct file *fw, *fr;
1019 int error;
1020 int fdw, fdr;
1022 if (flags & ~(O_CLOEXEC | O_NONBLOCK))
1023 return -EINVAL;
1025 fw = create_write_pipe(flags);
1026 if (IS_ERR(fw))
1027 return PTR_ERR(fw);
1028 fr = create_read_pipe(fw, flags);
1029 error = PTR_ERR(fr);
1030 if (IS_ERR(fr))
1031 goto err_write_pipe;
1033 error = get_unused_fd_flags(flags);
1034 if (error < 0)
1035 goto err_read_pipe;
1036 fdr = error;
1038 error = get_unused_fd_flags(flags);
1039 if (error < 0)
1040 goto err_fdr;
1041 fdw = error;
1043 audit_fd_pair(fdr, fdw);
1044 fd_install(fdr, fr);
1045 fd_install(fdw, fw);
1046 fd[0] = fdr;
1047 fd[1] = fdw;
1049 return 0;
1051 err_fdr:
1052 put_unused_fd(fdr);
1053 err_read_pipe:
1054 path_put(&fr->f_path);
1055 put_filp(fr);
1056 err_write_pipe:
1057 free_write_pipe(fw);
1058 return error;
1062 * sys_pipe() is the normal C calling standard for creating
1063 * a pipe. It's not the way Unix traditionally does this, though.
1065 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1067 int fd[2];
1068 int error;
1070 error = do_pipe_flags(fd, flags);
1071 if (!error) {
1072 if (copy_to_user(fildes, fd, sizeof(fd))) {
1073 sys_close(fd[0]);
1074 sys_close(fd[1]);
1075 error = -EFAULT;
1078 return error;
1081 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1083 return sys_pipe2(fildes, 0);
1087 * pipefs should _never_ be mounted by userland - too much of security hassle,
1088 * no real gain from having the whole whorehouse mounted. So we don't need
1089 * any operations on the root directory. However, we need a non-trivial
1090 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1092 static int pipefs_get_sb(struct file_system_type *fs_type,
1093 int flags, const char *dev_name, void *data,
1094 struct vfsmount *mnt)
1096 return get_sb_pseudo(fs_type, "pipe:", NULL, PIPEFS_MAGIC, mnt);
1099 static struct file_system_type pipe_fs_type = {
1100 .name = "pipefs",
1101 .get_sb = pipefs_get_sb,
1102 .kill_sb = kill_anon_super,
1105 static int __init init_pipe_fs(void)
1107 int err = register_filesystem(&pipe_fs_type);
1109 if (!err) {
1110 pipe_mnt = kern_mount(&pipe_fs_type);
1111 if (IS_ERR(pipe_mnt)) {
1112 err = PTR_ERR(pipe_mnt);
1113 unregister_filesystem(&pipe_fs_type);
1116 return err;
1119 static void __exit exit_pipe_fs(void)
1121 unregister_filesystem(&pipe_fs_type);
1122 mntput(pipe_mnt);
1125 fs_initcall(init_pipe_fs);
1126 module_exit(exit_pipe_fs);