Document usage of multiple-instances of devpts
[linux-2.6/mini2440.git] / drivers / md / raid1.c
blob9c788e2489b18934eadb62cac4d4b33b3c121620
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include "dm-bio-list.h"
35 #include <linux/delay.h>
36 #include <linux/raid/raid1.h>
37 #include <linux/raid/bitmap.h>
39 #define DEBUG 0
40 #if DEBUG
41 #define PRINTK(x...) printk(x)
42 #else
43 #define PRINTK(x...)
44 #endif
47 * Number of guaranteed r1bios in case of extreme VM load:
49 #define NR_RAID1_BIOS 256
52 static void unplug_slaves(mddev_t *mddev);
54 static void allow_barrier(conf_t *conf);
55 static void lower_barrier(conf_t *conf);
57 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
59 struct pool_info *pi = data;
60 r1bio_t *r1_bio;
61 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
63 /* allocate a r1bio with room for raid_disks entries in the bios array */
64 r1_bio = kzalloc(size, gfp_flags);
65 if (!r1_bio)
66 unplug_slaves(pi->mddev);
68 return r1_bio;
71 static void r1bio_pool_free(void *r1_bio, void *data)
73 kfree(r1_bio);
76 #define RESYNC_BLOCK_SIZE (64*1024)
77 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
78 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
80 #define RESYNC_WINDOW (2048*1024)
82 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
84 struct pool_info *pi = data;
85 struct page *page;
86 r1bio_t *r1_bio;
87 struct bio *bio;
88 int i, j;
90 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
91 if (!r1_bio) {
92 unplug_slaves(pi->mddev);
93 return NULL;
97 * Allocate bios : 1 for reading, n-1 for writing
99 for (j = pi->raid_disks ; j-- ; ) {
100 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
101 if (!bio)
102 goto out_free_bio;
103 r1_bio->bios[j] = bio;
106 * Allocate RESYNC_PAGES data pages and attach them to
107 * the first bio.
108 * If this is a user-requested check/repair, allocate
109 * RESYNC_PAGES for each bio.
111 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
112 j = pi->raid_disks;
113 else
114 j = 1;
115 while(j--) {
116 bio = r1_bio->bios[j];
117 for (i = 0; i < RESYNC_PAGES; i++) {
118 page = alloc_page(gfp_flags);
119 if (unlikely(!page))
120 goto out_free_pages;
122 bio->bi_io_vec[i].bv_page = page;
125 /* If not user-requests, copy the page pointers to all bios */
126 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
127 for (i=0; i<RESYNC_PAGES ; i++)
128 for (j=1; j<pi->raid_disks; j++)
129 r1_bio->bios[j]->bi_io_vec[i].bv_page =
130 r1_bio->bios[0]->bi_io_vec[i].bv_page;
133 r1_bio->master_bio = NULL;
135 return r1_bio;
137 out_free_pages:
138 for (i=0; i < RESYNC_PAGES ; i++)
139 for (j=0 ; j < pi->raid_disks; j++)
140 safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
141 j = -1;
142 out_free_bio:
143 while ( ++j < pi->raid_disks )
144 bio_put(r1_bio->bios[j]);
145 r1bio_pool_free(r1_bio, data);
146 return NULL;
149 static void r1buf_pool_free(void *__r1_bio, void *data)
151 struct pool_info *pi = data;
152 int i,j;
153 r1bio_t *r1bio = __r1_bio;
155 for (i = 0; i < RESYNC_PAGES; i++)
156 for (j = pi->raid_disks; j-- ;) {
157 if (j == 0 ||
158 r1bio->bios[j]->bi_io_vec[i].bv_page !=
159 r1bio->bios[0]->bi_io_vec[i].bv_page)
160 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
162 for (i=0 ; i < pi->raid_disks; i++)
163 bio_put(r1bio->bios[i]);
165 r1bio_pool_free(r1bio, data);
168 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
170 int i;
172 for (i = 0; i < conf->raid_disks; i++) {
173 struct bio **bio = r1_bio->bios + i;
174 if (*bio && *bio != IO_BLOCKED)
175 bio_put(*bio);
176 *bio = NULL;
180 static void free_r1bio(r1bio_t *r1_bio)
182 conf_t *conf = mddev_to_conf(r1_bio->mddev);
185 * Wake up any possible resync thread that waits for the device
186 * to go idle.
188 allow_barrier(conf);
190 put_all_bios(conf, r1_bio);
191 mempool_free(r1_bio, conf->r1bio_pool);
194 static void put_buf(r1bio_t *r1_bio)
196 conf_t *conf = mddev_to_conf(r1_bio->mddev);
197 int i;
199 for (i=0; i<conf->raid_disks; i++) {
200 struct bio *bio = r1_bio->bios[i];
201 if (bio->bi_end_io)
202 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
205 mempool_free(r1_bio, conf->r1buf_pool);
207 lower_barrier(conf);
210 static void reschedule_retry(r1bio_t *r1_bio)
212 unsigned long flags;
213 mddev_t *mddev = r1_bio->mddev;
214 conf_t *conf = mddev_to_conf(mddev);
216 spin_lock_irqsave(&conf->device_lock, flags);
217 list_add(&r1_bio->retry_list, &conf->retry_list);
218 conf->nr_queued ++;
219 spin_unlock_irqrestore(&conf->device_lock, flags);
221 wake_up(&conf->wait_barrier);
222 md_wakeup_thread(mddev->thread);
226 * raid_end_bio_io() is called when we have finished servicing a mirrored
227 * operation and are ready to return a success/failure code to the buffer
228 * cache layer.
230 static void raid_end_bio_io(r1bio_t *r1_bio)
232 struct bio *bio = r1_bio->master_bio;
234 /* if nobody has done the final endio yet, do it now */
235 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
236 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
237 (bio_data_dir(bio) == WRITE) ? "write" : "read",
238 (unsigned long long) bio->bi_sector,
239 (unsigned long long) bio->bi_sector +
240 (bio->bi_size >> 9) - 1);
242 bio_endio(bio,
243 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
245 free_r1bio(r1_bio);
249 * Update disk head position estimator based on IRQ completion info.
251 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
253 conf_t *conf = mddev_to_conf(r1_bio->mddev);
255 conf->mirrors[disk].head_position =
256 r1_bio->sector + (r1_bio->sectors);
259 static void raid1_end_read_request(struct bio *bio, int error)
261 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
262 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
263 int mirror;
264 conf_t *conf = mddev_to_conf(r1_bio->mddev);
266 mirror = r1_bio->read_disk;
268 * this branch is our 'one mirror IO has finished' event handler:
270 update_head_pos(mirror, r1_bio);
272 if (uptodate)
273 set_bit(R1BIO_Uptodate, &r1_bio->state);
274 else {
275 /* If all other devices have failed, we want to return
276 * the error upwards rather than fail the last device.
277 * Here we redefine "uptodate" to mean "Don't want to retry"
279 unsigned long flags;
280 spin_lock_irqsave(&conf->device_lock, flags);
281 if (r1_bio->mddev->degraded == conf->raid_disks ||
282 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
283 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
284 uptodate = 1;
285 spin_unlock_irqrestore(&conf->device_lock, flags);
288 if (uptodate)
289 raid_end_bio_io(r1_bio);
290 else {
292 * oops, read error:
294 char b[BDEVNAME_SIZE];
295 if (printk_ratelimit())
296 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
297 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
298 reschedule_retry(r1_bio);
301 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
304 static void raid1_end_write_request(struct bio *bio, int error)
306 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
307 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
308 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
309 conf_t *conf = mddev_to_conf(r1_bio->mddev);
310 struct bio *to_put = NULL;
313 for (mirror = 0; mirror < conf->raid_disks; mirror++)
314 if (r1_bio->bios[mirror] == bio)
315 break;
317 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
318 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
319 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
320 r1_bio->mddev->barriers_work = 0;
321 /* Don't rdev_dec_pending in this branch - keep it for the retry */
322 } else {
324 * this branch is our 'one mirror IO has finished' event handler:
326 r1_bio->bios[mirror] = NULL;
327 to_put = bio;
328 if (!uptodate) {
329 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
330 /* an I/O failed, we can't clear the bitmap */
331 set_bit(R1BIO_Degraded, &r1_bio->state);
332 } else
334 * Set R1BIO_Uptodate in our master bio, so that
335 * we will return a good error code for to the higher
336 * levels even if IO on some other mirrored buffer fails.
338 * The 'master' represents the composite IO operation to
339 * user-side. So if something waits for IO, then it will
340 * wait for the 'master' bio.
342 set_bit(R1BIO_Uptodate, &r1_bio->state);
344 update_head_pos(mirror, r1_bio);
346 if (behind) {
347 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
348 atomic_dec(&r1_bio->behind_remaining);
350 /* In behind mode, we ACK the master bio once the I/O has safely
351 * reached all non-writemostly disks. Setting the Returned bit
352 * ensures that this gets done only once -- we don't ever want to
353 * return -EIO here, instead we'll wait */
355 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
356 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
357 /* Maybe we can return now */
358 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
359 struct bio *mbio = r1_bio->master_bio;
360 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
361 (unsigned long long) mbio->bi_sector,
362 (unsigned long long) mbio->bi_sector +
363 (mbio->bi_size >> 9) - 1);
364 bio_endio(mbio, 0);
368 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
372 * Let's see if all mirrored write operations have finished
373 * already.
375 if (atomic_dec_and_test(&r1_bio->remaining)) {
376 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
377 reschedule_retry(r1_bio);
378 else {
379 /* it really is the end of this request */
380 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
381 /* free extra copy of the data pages */
382 int i = bio->bi_vcnt;
383 while (i--)
384 safe_put_page(bio->bi_io_vec[i].bv_page);
386 /* clear the bitmap if all writes complete successfully */
387 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
388 r1_bio->sectors,
389 !test_bit(R1BIO_Degraded, &r1_bio->state),
390 behind);
391 md_write_end(r1_bio->mddev);
392 raid_end_bio_io(r1_bio);
396 if (to_put)
397 bio_put(to_put);
402 * This routine returns the disk from which the requested read should
403 * be done. There is a per-array 'next expected sequential IO' sector
404 * number - if this matches on the next IO then we use the last disk.
405 * There is also a per-disk 'last know head position' sector that is
406 * maintained from IRQ contexts, both the normal and the resync IO
407 * completion handlers update this position correctly. If there is no
408 * perfect sequential match then we pick the disk whose head is closest.
410 * If there are 2 mirrors in the same 2 devices, performance degrades
411 * because position is mirror, not device based.
413 * The rdev for the device selected will have nr_pending incremented.
415 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
417 const unsigned long this_sector = r1_bio->sector;
418 int new_disk = conf->last_used, disk = new_disk;
419 int wonly_disk = -1;
420 const int sectors = r1_bio->sectors;
421 sector_t new_distance, current_distance;
422 mdk_rdev_t *rdev;
424 rcu_read_lock();
426 * Check if we can balance. We can balance on the whole
427 * device if no resync is going on, or below the resync window.
428 * We take the first readable disk when above the resync window.
430 retry:
431 if (conf->mddev->recovery_cp < MaxSector &&
432 (this_sector + sectors >= conf->next_resync)) {
433 /* Choose the first operation device, for consistancy */
434 new_disk = 0;
436 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
437 r1_bio->bios[new_disk] == IO_BLOCKED ||
438 !rdev || !test_bit(In_sync, &rdev->flags)
439 || test_bit(WriteMostly, &rdev->flags);
440 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
442 if (rdev && test_bit(In_sync, &rdev->flags) &&
443 r1_bio->bios[new_disk] != IO_BLOCKED)
444 wonly_disk = new_disk;
446 if (new_disk == conf->raid_disks - 1) {
447 new_disk = wonly_disk;
448 break;
451 goto rb_out;
455 /* make sure the disk is operational */
456 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
457 r1_bio->bios[new_disk] == IO_BLOCKED ||
458 !rdev || !test_bit(In_sync, &rdev->flags) ||
459 test_bit(WriteMostly, &rdev->flags);
460 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
462 if (rdev && test_bit(In_sync, &rdev->flags) &&
463 r1_bio->bios[new_disk] != IO_BLOCKED)
464 wonly_disk = new_disk;
466 if (new_disk <= 0)
467 new_disk = conf->raid_disks;
468 new_disk--;
469 if (new_disk == disk) {
470 new_disk = wonly_disk;
471 break;
475 if (new_disk < 0)
476 goto rb_out;
478 disk = new_disk;
479 /* now disk == new_disk == starting point for search */
482 * Don't change to another disk for sequential reads:
484 if (conf->next_seq_sect == this_sector)
485 goto rb_out;
486 if (this_sector == conf->mirrors[new_disk].head_position)
487 goto rb_out;
489 current_distance = abs(this_sector - conf->mirrors[disk].head_position);
491 /* Find the disk whose head is closest */
493 do {
494 if (disk <= 0)
495 disk = conf->raid_disks;
496 disk--;
498 rdev = rcu_dereference(conf->mirrors[disk].rdev);
500 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
501 !test_bit(In_sync, &rdev->flags) ||
502 test_bit(WriteMostly, &rdev->flags))
503 continue;
505 if (!atomic_read(&rdev->nr_pending)) {
506 new_disk = disk;
507 break;
509 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
510 if (new_distance < current_distance) {
511 current_distance = new_distance;
512 new_disk = disk;
514 } while (disk != conf->last_used);
516 rb_out:
519 if (new_disk >= 0) {
520 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
521 if (!rdev)
522 goto retry;
523 atomic_inc(&rdev->nr_pending);
524 if (!test_bit(In_sync, &rdev->flags)) {
525 /* cannot risk returning a device that failed
526 * before we inc'ed nr_pending
528 rdev_dec_pending(rdev, conf->mddev);
529 goto retry;
531 conf->next_seq_sect = this_sector + sectors;
532 conf->last_used = new_disk;
534 rcu_read_unlock();
536 return new_disk;
539 static void unplug_slaves(mddev_t *mddev)
541 conf_t *conf = mddev_to_conf(mddev);
542 int i;
544 rcu_read_lock();
545 for (i=0; i<mddev->raid_disks; i++) {
546 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
547 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
548 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
550 atomic_inc(&rdev->nr_pending);
551 rcu_read_unlock();
553 blk_unplug(r_queue);
555 rdev_dec_pending(rdev, mddev);
556 rcu_read_lock();
559 rcu_read_unlock();
562 static void raid1_unplug(struct request_queue *q)
564 mddev_t *mddev = q->queuedata;
566 unplug_slaves(mddev);
567 md_wakeup_thread(mddev->thread);
570 static int raid1_congested(void *data, int bits)
572 mddev_t *mddev = data;
573 conf_t *conf = mddev_to_conf(mddev);
574 int i, ret = 0;
576 rcu_read_lock();
577 for (i = 0; i < mddev->raid_disks; i++) {
578 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
579 if (rdev && !test_bit(Faulty, &rdev->flags)) {
580 struct request_queue *q = bdev_get_queue(rdev->bdev);
582 /* Note the '|| 1' - when read_balance prefers
583 * non-congested targets, it can be removed
585 if ((bits & (1<<BDI_write_congested)) || 1)
586 ret |= bdi_congested(&q->backing_dev_info, bits);
587 else
588 ret &= bdi_congested(&q->backing_dev_info, bits);
591 rcu_read_unlock();
592 return ret;
596 static int flush_pending_writes(conf_t *conf)
598 /* Any writes that have been queued but are awaiting
599 * bitmap updates get flushed here.
600 * We return 1 if any requests were actually submitted.
602 int rv = 0;
604 spin_lock_irq(&conf->device_lock);
606 if (conf->pending_bio_list.head) {
607 struct bio *bio;
608 bio = bio_list_get(&conf->pending_bio_list);
609 blk_remove_plug(conf->mddev->queue);
610 spin_unlock_irq(&conf->device_lock);
611 /* flush any pending bitmap writes to
612 * disk before proceeding w/ I/O */
613 bitmap_unplug(conf->mddev->bitmap);
615 while (bio) { /* submit pending writes */
616 struct bio *next = bio->bi_next;
617 bio->bi_next = NULL;
618 generic_make_request(bio);
619 bio = next;
621 rv = 1;
622 } else
623 spin_unlock_irq(&conf->device_lock);
624 return rv;
627 /* Barriers....
628 * Sometimes we need to suspend IO while we do something else,
629 * either some resync/recovery, or reconfigure the array.
630 * To do this we raise a 'barrier'.
631 * The 'barrier' is a counter that can be raised multiple times
632 * to count how many activities are happening which preclude
633 * normal IO.
634 * We can only raise the barrier if there is no pending IO.
635 * i.e. if nr_pending == 0.
636 * We choose only to raise the barrier if no-one is waiting for the
637 * barrier to go down. This means that as soon as an IO request
638 * is ready, no other operations which require a barrier will start
639 * until the IO request has had a chance.
641 * So: regular IO calls 'wait_barrier'. When that returns there
642 * is no backgroup IO happening, It must arrange to call
643 * allow_barrier when it has finished its IO.
644 * backgroup IO calls must call raise_barrier. Once that returns
645 * there is no normal IO happeing. It must arrange to call
646 * lower_barrier when the particular background IO completes.
648 #define RESYNC_DEPTH 32
650 static void raise_barrier(conf_t *conf)
652 spin_lock_irq(&conf->resync_lock);
654 /* Wait until no block IO is waiting */
655 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
656 conf->resync_lock,
657 raid1_unplug(conf->mddev->queue));
659 /* block any new IO from starting */
660 conf->barrier++;
662 /* No wait for all pending IO to complete */
663 wait_event_lock_irq(conf->wait_barrier,
664 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
665 conf->resync_lock,
666 raid1_unplug(conf->mddev->queue));
668 spin_unlock_irq(&conf->resync_lock);
671 static void lower_barrier(conf_t *conf)
673 unsigned long flags;
674 spin_lock_irqsave(&conf->resync_lock, flags);
675 conf->barrier--;
676 spin_unlock_irqrestore(&conf->resync_lock, flags);
677 wake_up(&conf->wait_barrier);
680 static void wait_barrier(conf_t *conf)
682 spin_lock_irq(&conf->resync_lock);
683 if (conf->barrier) {
684 conf->nr_waiting++;
685 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
686 conf->resync_lock,
687 raid1_unplug(conf->mddev->queue));
688 conf->nr_waiting--;
690 conf->nr_pending++;
691 spin_unlock_irq(&conf->resync_lock);
694 static void allow_barrier(conf_t *conf)
696 unsigned long flags;
697 spin_lock_irqsave(&conf->resync_lock, flags);
698 conf->nr_pending--;
699 spin_unlock_irqrestore(&conf->resync_lock, flags);
700 wake_up(&conf->wait_barrier);
703 static void freeze_array(conf_t *conf)
705 /* stop syncio and normal IO and wait for everything to
706 * go quite.
707 * We increment barrier and nr_waiting, and then
708 * wait until nr_pending match nr_queued+1
709 * This is called in the context of one normal IO request
710 * that has failed. Thus any sync request that might be pending
711 * will be blocked by nr_pending, and we need to wait for
712 * pending IO requests to complete or be queued for re-try.
713 * Thus the number queued (nr_queued) plus this request (1)
714 * must match the number of pending IOs (nr_pending) before
715 * we continue.
717 spin_lock_irq(&conf->resync_lock);
718 conf->barrier++;
719 conf->nr_waiting++;
720 wait_event_lock_irq(conf->wait_barrier,
721 conf->nr_pending == conf->nr_queued+1,
722 conf->resync_lock,
723 ({ flush_pending_writes(conf);
724 raid1_unplug(conf->mddev->queue); }));
725 spin_unlock_irq(&conf->resync_lock);
727 static void unfreeze_array(conf_t *conf)
729 /* reverse the effect of the freeze */
730 spin_lock_irq(&conf->resync_lock);
731 conf->barrier--;
732 conf->nr_waiting--;
733 wake_up(&conf->wait_barrier);
734 spin_unlock_irq(&conf->resync_lock);
738 /* duplicate the data pages for behind I/O */
739 static struct page **alloc_behind_pages(struct bio *bio)
741 int i;
742 struct bio_vec *bvec;
743 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
744 GFP_NOIO);
745 if (unlikely(!pages))
746 goto do_sync_io;
748 bio_for_each_segment(bvec, bio, i) {
749 pages[i] = alloc_page(GFP_NOIO);
750 if (unlikely(!pages[i]))
751 goto do_sync_io;
752 memcpy(kmap(pages[i]) + bvec->bv_offset,
753 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
754 kunmap(pages[i]);
755 kunmap(bvec->bv_page);
758 return pages;
760 do_sync_io:
761 if (pages)
762 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
763 put_page(pages[i]);
764 kfree(pages);
765 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
766 return NULL;
769 static int make_request(struct request_queue *q, struct bio * bio)
771 mddev_t *mddev = q->queuedata;
772 conf_t *conf = mddev_to_conf(mddev);
773 mirror_info_t *mirror;
774 r1bio_t *r1_bio;
775 struct bio *read_bio;
776 int i, targets = 0, disks;
777 struct bitmap *bitmap;
778 unsigned long flags;
779 struct bio_list bl;
780 struct page **behind_pages = NULL;
781 const int rw = bio_data_dir(bio);
782 const int do_sync = bio_sync(bio);
783 int cpu, do_barriers;
784 mdk_rdev_t *blocked_rdev;
787 * Register the new request and wait if the reconstruction
788 * thread has put up a bar for new requests.
789 * Continue immediately if no resync is active currently.
790 * We test barriers_work *after* md_write_start as md_write_start
791 * may cause the first superblock write, and that will check out
792 * if barriers work.
795 md_write_start(mddev, bio); /* wait on superblock update early */
797 if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
798 if (rw == WRITE)
799 md_write_end(mddev);
800 bio_endio(bio, -EOPNOTSUPP);
801 return 0;
804 wait_barrier(conf);
806 bitmap = mddev->bitmap;
808 cpu = part_stat_lock();
809 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
810 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
811 bio_sectors(bio));
812 part_stat_unlock();
815 * make_request() can abort the operation when READA is being
816 * used and no empty request is available.
819 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
821 r1_bio->master_bio = bio;
822 r1_bio->sectors = bio->bi_size >> 9;
823 r1_bio->state = 0;
824 r1_bio->mddev = mddev;
825 r1_bio->sector = bio->bi_sector;
827 if (rw == READ) {
829 * read balancing logic:
831 int rdisk = read_balance(conf, r1_bio);
833 if (rdisk < 0) {
834 /* couldn't find anywhere to read from */
835 raid_end_bio_io(r1_bio);
836 return 0;
838 mirror = conf->mirrors + rdisk;
840 r1_bio->read_disk = rdisk;
842 read_bio = bio_clone(bio, GFP_NOIO);
844 r1_bio->bios[rdisk] = read_bio;
846 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
847 read_bio->bi_bdev = mirror->rdev->bdev;
848 read_bio->bi_end_io = raid1_end_read_request;
849 read_bio->bi_rw = READ | do_sync;
850 read_bio->bi_private = r1_bio;
852 generic_make_request(read_bio);
853 return 0;
857 * WRITE:
859 /* first select target devices under spinlock and
860 * inc refcount on their rdev. Record them by setting
861 * bios[x] to bio
863 disks = conf->raid_disks;
864 #if 0
865 { static int first=1;
866 if (first) printk("First Write sector %llu disks %d\n",
867 (unsigned long long)r1_bio->sector, disks);
868 first = 0;
870 #endif
871 retry_write:
872 blocked_rdev = NULL;
873 rcu_read_lock();
874 for (i = 0; i < disks; i++) {
875 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
876 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
877 atomic_inc(&rdev->nr_pending);
878 blocked_rdev = rdev;
879 break;
881 if (rdev && !test_bit(Faulty, &rdev->flags)) {
882 atomic_inc(&rdev->nr_pending);
883 if (test_bit(Faulty, &rdev->flags)) {
884 rdev_dec_pending(rdev, mddev);
885 r1_bio->bios[i] = NULL;
886 } else
887 r1_bio->bios[i] = bio;
888 targets++;
889 } else
890 r1_bio->bios[i] = NULL;
892 rcu_read_unlock();
894 if (unlikely(blocked_rdev)) {
895 /* Wait for this device to become unblocked */
896 int j;
898 for (j = 0; j < i; j++)
899 if (r1_bio->bios[j])
900 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
902 allow_barrier(conf);
903 md_wait_for_blocked_rdev(blocked_rdev, mddev);
904 wait_barrier(conf);
905 goto retry_write;
908 BUG_ON(targets == 0); /* we never fail the last device */
910 if (targets < conf->raid_disks) {
911 /* array is degraded, we will not clear the bitmap
912 * on I/O completion (see raid1_end_write_request) */
913 set_bit(R1BIO_Degraded, &r1_bio->state);
916 /* do behind I/O ? */
917 if (bitmap &&
918 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
919 (behind_pages = alloc_behind_pages(bio)) != NULL)
920 set_bit(R1BIO_BehindIO, &r1_bio->state);
922 atomic_set(&r1_bio->remaining, 0);
923 atomic_set(&r1_bio->behind_remaining, 0);
925 do_barriers = bio_barrier(bio);
926 if (do_barriers)
927 set_bit(R1BIO_Barrier, &r1_bio->state);
929 bio_list_init(&bl);
930 for (i = 0; i < disks; i++) {
931 struct bio *mbio;
932 if (!r1_bio->bios[i])
933 continue;
935 mbio = bio_clone(bio, GFP_NOIO);
936 r1_bio->bios[i] = mbio;
938 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
939 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
940 mbio->bi_end_io = raid1_end_write_request;
941 mbio->bi_rw = WRITE | do_barriers | do_sync;
942 mbio->bi_private = r1_bio;
944 if (behind_pages) {
945 struct bio_vec *bvec;
946 int j;
948 /* Yes, I really want the '__' version so that
949 * we clear any unused pointer in the io_vec, rather
950 * than leave them unchanged. This is important
951 * because when we come to free the pages, we won't
952 * know the originial bi_idx, so we just free
953 * them all
955 __bio_for_each_segment(bvec, mbio, j, 0)
956 bvec->bv_page = behind_pages[j];
957 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
958 atomic_inc(&r1_bio->behind_remaining);
961 atomic_inc(&r1_bio->remaining);
963 bio_list_add(&bl, mbio);
965 kfree(behind_pages); /* the behind pages are attached to the bios now */
967 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
968 test_bit(R1BIO_BehindIO, &r1_bio->state));
969 spin_lock_irqsave(&conf->device_lock, flags);
970 bio_list_merge(&conf->pending_bio_list, &bl);
971 bio_list_init(&bl);
973 blk_plug_device(mddev->queue);
974 spin_unlock_irqrestore(&conf->device_lock, flags);
976 /* In case raid1d snuck into freeze_array */
977 wake_up(&conf->wait_barrier);
979 if (do_sync)
980 md_wakeup_thread(mddev->thread);
981 #if 0
982 while ((bio = bio_list_pop(&bl)) != NULL)
983 generic_make_request(bio);
984 #endif
986 return 0;
989 static void status(struct seq_file *seq, mddev_t *mddev)
991 conf_t *conf = mddev_to_conf(mddev);
992 int i;
994 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
995 conf->raid_disks - mddev->degraded);
996 rcu_read_lock();
997 for (i = 0; i < conf->raid_disks; i++) {
998 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
999 seq_printf(seq, "%s",
1000 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1002 rcu_read_unlock();
1003 seq_printf(seq, "]");
1007 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1009 char b[BDEVNAME_SIZE];
1010 conf_t *conf = mddev_to_conf(mddev);
1013 * If it is not operational, then we have already marked it as dead
1014 * else if it is the last working disks, ignore the error, let the
1015 * next level up know.
1016 * else mark the drive as failed
1018 if (test_bit(In_sync, &rdev->flags)
1019 && (conf->raid_disks - mddev->degraded) == 1)
1021 * Don't fail the drive, act as though we were just a
1022 * normal single drive
1024 return;
1025 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1026 unsigned long flags;
1027 spin_lock_irqsave(&conf->device_lock, flags);
1028 mddev->degraded++;
1029 set_bit(Faulty, &rdev->flags);
1030 spin_unlock_irqrestore(&conf->device_lock, flags);
1032 * if recovery is running, make sure it aborts.
1034 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1035 } else
1036 set_bit(Faulty, &rdev->flags);
1037 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1038 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n"
1039 "raid1: Operation continuing on %d devices.\n",
1040 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1043 static void print_conf(conf_t *conf)
1045 int i;
1047 printk("RAID1 conf printout:\n");
1048 if (!conf) {
1049 printk("(!conf)\n");
1050 return;
1052 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1053 conf->raid_disks);
1055 rcu_read_lock();
1056 for (i = 0; i < conf->raid_disks; i++) {
1057 char b[BDEVNAME_SIZE];
1058 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1059 if (rdev)
1060 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1061 i, !test_bit(In_sync, &rdev->flags),
1062 !test_bit(Faulty, &rdev->flags),
1063 bdevname(rdev->bdev,b));
1065 rcu_read_unlock();
1068 static void close_sync(conf_t *conf)
1070 wait_barrier(conf);
1071 allow_barrier(conf);
1073 mempool_destroy(conf->r1buf_pool);
1074 conf->r1buf_pool = NULL;
1077 static int raid1_spare_active(mddev_t *mddev)
1079 int i;
1080 conf_t *conf = mddev->private;
1083 * Find all failed disks within the RAID1 configuration
1084 * and mark them readable.
1085 * Called under mddev lock, so rcu protection not needed.
1087 for (i = 0; i < conf->raid_disks; i++) {
1088 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1089 if (rdev
1090 && !test_bit(Faulty, &rdev->flags)
1091 && !test_and_set_bit(In_sync, &rdev->flags)) {
1092 unsigned long flags;
1093 spin_lock_irqsave(&conf->device_lock, flags);
1094 mddev->degraded--;
1095 spin_unlock_irqrestore(&conf->device_lock, flags);
1099 print_conf(conf);
1100 return 0;
1104 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1106 conf_t *conf = mddev->private;
1107 int err = -EEXIST;
1108 int mirror = 0;
1109 mirror_info_t *p;
1110 int first = 0;
1111 int last = mddev->raid_disks - 1;
1113 if (rdev->raid_disk >= 0)
1114 first = last = rdev->raid_disk;
1116 for (mirror = first; mirror <= last; mirror++)
1117 if ( !(p=conf->mirrors+mirror)->rdev) {
1119 blk_queue_stack_limits(mddev->queue,
1120 rdev->bdev->bd_disk->queue);
1121 /* as we don't honour merge_bvec_fn, we must never risk
1122 * violating it, so limit ->max_sector to one PAGE, as
1123 * a one page request is never in violation.
1125 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1126 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1127 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1129 p->head_position = 0;
1130 rdev->raid_disk = mirror;
1131 err = 0;
1132 /* As all devices are equivalent, we don't need a full recovery
1133 * if this was recently any drive of the array
1135 if (rdev->saved_raid_disk < 0)
1136 conf->fullsync = 1;
1137 rcu_assign_pointer(p->rdev, rdev);
1138 break;
1141 print_conf(conf);
1142 return err;
1145 static int raid1_remove_disk(mddev_t *mddev, int number)
1147 conf_t *conf = mddev->private;
1148 int err = 0;
1149 mdk_rdev_t *rdev;
1150 mirror_info_t *p = conf->mirrors+ number;
1152 print_conf(conf);
1153 rdev = p->rdev;
1154 if (rdev) {
1155 if (test_bit(In_sync, &rdev->flags) ||
1156 atomic_read(&rdev->nr_pending)) {
1157 err = -EBUSY;
1158 goto abort;
1160 /* Only remove non-faulty devices is recovery
1161 * is not possible.
1163 if (!test_bit(Faulty, &rdev->flags) &&
1164 mddev->degraded < conf->raid_disks) {
1165 err = -EBUSY;
1166 goto abort;
1168 p->rdev = NULL;
1169 synchronize_rcu();
1170 if (atomic_read(&rdev->nr_pending)) {
1171 /* lost the race, try later */
1172 err = -EBUSY;
1173 p->rdev = rdev;
1176 abort:
1178 print_conf(conf);
1179 return err;
1183 static void end_sync_read(struct bio *bio, int error)
1185 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1186 int i;
1188 for (i=r1_bio->mddev->raid_disks; i--; )
1189 if (r1_bio->bios[i] == bio)
1190 break;
1191 BUG_ON(i < 0);
1192 update_head_pos(i, r1_bio);
1194 * we have read a block, now it needs to be re-written,
1195 * or re-read if the read failed.
1196 * We don't do much here, just schedule handling by raid1d
1198 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1199 set_bit(R1BIO_Uptodate, &r1_bio->state);
1201 if (atomic_dec_and_test(&r1_bio->remaining))
1202 reschedule_retry(r1_bio);
1205 static void end_sync_write(struct bio *bio, int error)
1207 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1208 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1209 mddev_t *mddev = r1_bio->mddev;
1210 conf_t *conf = mddev_to_conf(mddev);
1211 int i;
1212 int mirror=0;
1214 for (i = 0; i < conf->raid_disks; i++)
1215 if (r1_bio->bios[i] == bio) {
1216 mirror = i;
1217 break;
1219 if (!uptodate) {
1220 int sync_blocks = 0;
1221 sector_t s = r1_bio->sector;
1222 long sectors_to_go = r1_bio->sectors;
1223 /* make sure these bits doesn't get cleared. */
1224 do {
1225 bitmap_end_sync(mddev->bitmap, s,
1226 &sync_blocks, 1);
1227 s += sync_blocks;
1228 sectors_to_go -= sync_blocks;
1229 } while (sectors_to_go > 0);
1230 md_error(mddev, conf->mirrors[mirror].rdev);
1233 update_head_pos(mirror, r1_bio);
1235 if (atomic_dec_and_test(&r1_bio->remaining)) {
1236 md_done_sync(mddev, r1_bio->sectors, uptodate);
1237 put_buf(r1_bio);
1241 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1243 conf_t *conf = mddev_to_conf(mddev);
1244 int i;
1245 int disks = conf->raid_disks;
1246 struct bio *bio, *wbio;
1248 bio = r1_bio->bios[r1_bio->read_disk];
1251 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1252 /* We have read all readable devices. If we haven't
1253 * got the block, then there is no hope left.
1254 * If we have, then we want to do a comparison
1255 * and skip the write if everything is the same.
1256 * If any blocks failed to read, then we need to
1257 * attempt an over-write
1259 int primary;
1260 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1261 for (i=0; i<mddev->raid_disks; i++)
1262 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1263 md_error(mddev, conf->mirrors[i].rdev);
1265 md_done_sync(mddev, r1_bio->sectors, 1);
1266 put_buf(r1_bio);
1267 return;
1269 for (primary=0; primary<mddev->raid_disks; primary++)
1270 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1271 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1272 r1_bio->bios[primary]->bi_end_io = NULL;
1273 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1274 break;
1276 r1_bio->read_disk = primary;
1277 for (i=0; i<mddev->raid_disks; i++)
1278 if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1279 int j;
1280 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1281 struct bio *pbio = r1_bio->bios[primary];
1282 struct bio *sbio = r1_bio->bios[i];
1284 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1285 for (j = vcnt; j-- ; ) {
1286 struct page *p, *s;
1287 p = pbio->bi_io_vec[j].bv_page;
1288 s = sbio->bi_io_vec[j].bv_page;
1289 if (memcmp(page_address(p),
1290 page_address(s),
1291 PAGE_SIZE))
1292 break;
1294 } else
1295 j = 0;
1296 if (j >= 0)
1297 mddev->resync_mismatches += r1_bio->sectors;
1298 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1299 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1300 sbio->bi_end_io = NULL;
1301 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1302 } else {
1303 /* fixup the bio for reuse */
1304 int size;
1305 sbio->bi_vcnt = vcnt;
1306 sbio->bi_size = r1_bio->sectors << 9;
1307 sbio->bi_idx = 0;
1308 sbio->bi_phys_segments = 0;
1309 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1310 sbio->bi_flags |= 1 << BIO_UPTODATE;
1311 sbio->bi_next = NULL;
1312 sbio->bi_sector = r1_bio->sector +
1313 conf->mirrors[i].rdev->data_offset;
1314 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1315 size = sbio->bi_size;
1316 for (j = 0; j < vcnt ; j++) {
1317 struct bio_vec *bi;
1318 bi = &sbio->bi_io_vec[j];
1319 bi->bv_offset = 0;
1320 if (size > PAGE_SIZE)
1321 bi->bv_len = PAGE_SIZE;
1322 else
1323 bi->bv_len = size;
1324 size -= PAGE_SIZE;
1325 memcpy(page_address(bi->bv_page),
1326 page_address(pbio->bi_io_vec[j].bv_page),
1327 PAGE_SIZE);
1333 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1334 /* ouch - failed to read all of that.
1335 * Try some synchronous reads of other devices to get
1336 * good data, much like with normal read errors. Only
1337 * read into the pages we already have so we don't
1338 * need to re-issue the read request.
1339 * We don't need to freeze the array, because being in an
1340 * active sync request, there is no normal IO, and
1341 * no overlapping syncs.
1343 sector_t sect = r1_bio->sector;
1344 int sectors = r1_bio->sectors;
1345 int idx = 0;
1347 while(sectors) {
1348 int s = sectors;
1349 int d = r1_bio->read_disk;
1350 int success = 0;
1351 mdk_rdev_t *rdev;
1353 if (s > (PAGE_SIZE>>9))
1354 s = PAGE_SIZE >> 9;
1355 do {
1356 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1357 /* No rcu protection needed here devices
1358 * can only be removed when no resync is
1359 * active, and resync is currently active
1361 rdev = conf->mirrors[d].rdev;
1362 if (sync_page_io(rdev->bdev,
1363 sect + rdev->data_offset,
1364 s<<9,
1365 bio->bi_io_vec[idx].bv_page,
1366 READ)) {
1367 success = 1;
1368 break;
1371 d++;
1372 if (d == conf->raid_disks)
1373 d = 0;
1374 } while (!success && d != r1_bio->read_disk);
1376 if (success) {
1377 int start = d;
1378 /* write it back and re-read */
1379 set_bit(R1BIO_Uptodate, &r1_bio->state);
1380 while (d != r1_bio->read_disk) {
1381 if (d == 0)
1382 d = conf->raid_disks;
1383 d--;
1384 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1385 continue;
1386 rdev = conf->mirrors[d].rdev;
1387 atomic_add(s, &rdev->corrected_errors);
1388 if (sync_page_io(rdev->bdev,
1389 sect + rdev->data_offset,
1390 s<<9,
1391 bio->bi_io_vec[idx].bv_page,
1392 WRITE) == 0)
1393 md_error(mddev, rdev);
1395 d = start;
1396 while (d != r1_bio->read_disk) {
1397 if (d == 0)
1398 d = conf->raid_disks;
1399 d--;
1400 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1401 continue;
1402 rdev = conf->mirrors[d].rdev;
1403 if (sync_page_io(rdev->bdev,
1404 sect + rdev->data_offset,
1405 s<<9,
1406 bio->bi_io_vec[idx].bv_page,
1407 READ) == 0)
1408 md_error(mddev, rdev);
1410 } else {
1411 char b[BDEVNAME_SIZE];
1412 /* Cannot read from anywhere, array is toast */
1413 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1414 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1415 " for block %llu\n",
1416 bdevname(bio->bi_bdev,b),
1417 (unsigned long long)r1_bio->sector);
1418 md_done_sync(mddev, r1_bio->sectors, 0);
1419 put_buf(r1_bio);
1420 return;
1422 sectors -= s;
1423 sect += s;
1424 idx ++;
1429 * schedule writes
1431 atomic_set(&r1_bio->remaining, 1);
1432 for (i = 0; i < disks ; i++) {
1433 wbio = r1_bio->bios[i];
1434 if (wbio->bi_end_io == NULL ||
1435 (wbio->bi_end_io == end_sync_read &&
1436 (i == r1_bio->read_disk ||
1437 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1438 continue;
1440 wbio->bi_rw = WRITE;
1441 wbio->bi_end_io = end_sync_write;
1442 atomic_inc(&r1_bio->remaining);
1443 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1445 generic_make_request(wbio);
1448 if (atomic_dec_and_test(&r1_bio->remaining)) {
1449 /* if we're here, all write(s) have completed, so clean up */
1450 md_done_sync(mddev, r1_bio->sectors, 1);
1451 put_buf(r1_bio);
1456 * This is a kernel thread which:
1458 * 1. Retries failed read operations on working mirrors.
1459 * 2. Updates the raid superblock when problems encounter.
1460 * 3. Performs writes following reads for array syncronising.
1463 static void fix_read_error(conf_t *conf, int read_disk,
1464 sector_t sect, int sectors)
1466 mddev_t *mddev = conf->mddev;
1467 while(sectors) {
1468 int s = sectors;
1469 int d = read_disk;
1470 int success = 0;
1471 int start;
1472 mdk_rdev_t *rdev;
1474 if (s > (PAGE_SIZE>>9))
1475 s = PAGE_SIZE >> 9;
1477 do {
1478 /* Note: no rcu protection needed here
1479 * as this is synchronous in the raid1d thread
1480 * which is the thread that might remove
1481 * a device. If raid1d ever becomes multi-threaded....
1483 rdev = conf->mirrors[d].rdev;
1484 if (rdev &&
1485 test_bit(In_sync, &rdev->flags) &&
1486 sync_page_io(rdev->bdev,
1487 sect + rdev->data_offset,
1488 s<<9,
1489 conf->tmppage, READ))
1490 success = 1;
1491 else {
1492 d++;
1493 if (d == conf->raid_disks)
1494 d = 0;
1496 } while (!success && d != read_disk);
1498 if (!success) {
1499 /* Cannot read from anywhere -- bye bye array */
1500 md_error(mddev, conf->mirrors[read_disk].rdev);
1501 break;
1503 /* write it back and re-read */
1504 start = d;
1505 while (d != read_disk) {
1506 if (d==0)
1507 d = conf->raid_disks;
1508 d--;
1509 rdev = conf->mirrors[d].rdev;
1510 if (rdev &&
1511 test_bit(In_sync, &rdev->flags)) {
1512 if (sync_page_io(rdev->bdev,
1513 sect + rdev->data_offset,
1514 s<<9, conf->tmppage, WRITE)
1515 == 0)
1516 /* Well, this device is dead */
1517 md_error(mddev, rdev);
1520 d = start;
1521 while (d != read_disk) {
1522 char b[BDEVNAME_SIZE];
1523 if (d==0)
1524 d = conf->raid_disks;
1525 d--;
1526 rdev = conf->mirrors[d].rdev;
1527 if (rdev &&
1528 test_bit(In_sync, &rdev->flags)) {
1529 if (sync_page_io(rdev->bdev,
1530 sect + rdev->data_offset,
1531 s<<9, conf->tmppage, READ)
1532 == 0)
1533 /* Well, this device is dead */
1534 md_error(mddev, rdev);
1535 else {
1536 atomic_add(s, &rdev->corrected_errors);
1537 printk(KERN_INFO
1538 "raid1:%s: read error corrected "
1539 "(%d sectors at %llu on %s)\n",
1540 mdname(mddev), s,
1541 (unsigned long long)(sect +
1542 rdev->data_offset),
1543 bdevname(rdev->bdev, b));
1547 sectors -= s;
1548 sect += s;
1552 static void raid1d(mddev_t *mddev)
1554 r1bio_t *r1_bio;
1555 struct bio *bio;
1556 unsigned long flags;
1557 conf_t *conf = mddev_to_conf(mddev);
1558 struct list_head *head = &conf->retry_list;
1559 int unplug=0;
1560 mdk_rdev_t *rdev;
1562 md_check_recovery(mddev);
1564 for (;;) {
1565 char b[BDEVNAME_SIZE];
1567 unplug += flush_pending_writes(conf);
1569 spin_lock_irqsave(&conf->device_lock, flags);
1570 if (list_empty(head)) {
1571 spin_unlock_irqrestore(&conf->device_lock, flags);
1572 break;
1574 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1575 list_del(head->prev);
1576 conf->nr_queued--;
1577 spin_unlock_irqrestore(&conf->device_lock, flags);
1579 mddev = r1_bio->mddev;
1580 conf = mddev_to_conf(mddev);
1581 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1582 sync_request_write(mddev, r1_bio);
1583 unplug = 1;
1584 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1585 /* some requests in the r1bio were BIO_RW_BARRIER
1586 * requests which failed with -EOPNOTSUPP. Hohumm..
1587 * Better resubmit without the barrier.
1588 * We know which devices to resubmit for, because
1589 * all others have had their bios[] entry cleared.
1590 * We already have a nr_pending reference on these rdevs.
1592 int i;
1593 const int do_sync = bio_sync(r1_bio->master_bio);
1594 clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1595 clear_bit(R1BIO_Barrier, &r1_bio->state);
1596 for (i=0; i < conf->raid_disks; i++)
1597 if (r1_bio->bios[i])
1598 atomic_inc(&r1_bio->remaining);
1599 for (i=0; i < conf->raid_disks; i++)
1600 if (r1_bio->bios[i]) {
1601 struct bio_vec *bvec;
1602 int j;
1604 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1605 /* copy pages from the failed bio, as
1606 * this might be a write-behind device */
1607 __bio_for_each_segment(bvec, bio, j, 0)
1608 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1609 bio_put(r1_bio->bios[i]);
1610 bio->bi_sector = r1_bio->sector +
1611 conf->mirrors[i].rdev->data_offset;
1612 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1613 bio->bi_end_io = raid1_end_write_request;
1614 bio->bi_rw = WRITE | do_sync;
1615 bio->bi_private = r1_bio;
1616 r1_bio->bios[i] = bio;
1617 generic_make_request(bio);
1619 } else {
1620 int disk;
1622 /* we got a read error. Maybe the drive is bad. Maybe just
1623 * the block and we can fix it.
1624 * We freeze all other IO, and try reading the block from
1625 * other devices. When we find one, we re-write
1626 * and check it that fixes the read error.
1627 * This is all done synchronously while the array is
1628 * frozen
1630 if (mddev->ro == 0) {
1631 freeze_array(conf);
1632 fix_read_error(conf, r1_bio->read_disk,
1633 r1_bio->sector,
1634 r1_bio->sectors);
1635 unfreeze_array(conf);
1638 bio = r1_bio->bios[r1_bio->read_disk];
1639 if ((disk=read_balance(conf, r1_bio)) == -1) {
1640 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1641 " read error for block %llu\n",
1642 bdevname(bio->bi_bdev,b),
1643 (unsigned long long)r1_bio->sector);
1644 raid_end_bio_io(r1_bio);
1645 } else {
1646 const int do_sync = bio_sync(r1_bio->master_bio);
1647 r1_bio->bios[r1_bio->read_disk] =
1648 mddev->ro ? IO_BLOCKED : NULL;
1649 r1_bio->read_disk = disk;
1650 bio_put(bio);
1651 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1652 r1_bio->bios[r1_bio->read_disk] = bio;
1653 rdev = conf->mirrors[disk].rdev;
1654 if (printk_ratelimit())
1655 printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1656 " another mirror\n",
1657 bdevname(rdev->bdev,b),
1658 (unsigned long long)r1_bio->sector);
1659 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1660 bio->bi_bdev = rdev->bdev;
1661 bio->bi_end_io = raid1_end_read_request;
1662 bio->bi_rw = READ | do_sync;
1663 bio->bi_private = r1_bio;
1664 unplug = 1;
1665 generic_make_request(bio);
1669 if (unplug)
1670 unplug_slaves(mddev);
1674 static int init_resync(conf_t *conf)
1676 int buffs;
1678 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1679 BUG_ON(conf->r1buf_pool);
1680 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1681 conf->poolinfo);
1682 if (!conf->r1buf_pool)
1683 return -ENOMEM;
1684 conf->next_resync = 0;
1685 return 0;
1689 * perform a "sync" on one "block"
1691 * We need to make sure that no normal I/O request - particularly write
1692 * requests - conflict with active sync requests.
1694 * This is achieved by tracking pending requests and a 'barrier' concept
1695 * that can be installed to exclude normal IO requests.
1698 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1700 conf_t *conf = mddev_to_conf(mddev);
1701 r1bio_t *r1_bio;
1702 struct bio *bio;
1703 sector_t max_sector, nr_sectors;
1704 int disk = -1;
1705 int i;
1706 int wonly = -1;
1707 int write_targets = 0, read_targets = 0;
1708 int sync_blocks;
1709 int still_degraded = 0;
1711 if (!conf->r1buf_pool)
1714 printk("sync start - bitmap %p\n", mddev->bitmap);
1716 if (init_resync(conf))
1717 return 0;
1720 max_sector = mddev->size << 1;
1721 if (sector_nr >= max_sector) {
1722 /* If we aborted, we need to abort the
1723 * sync on the 'current' bitmap chunk (there will
1724 * only be one in raid1 resync.
1725 * We can find the current addess in mddev->curr_resync
1727 if (mddev->curr_resync < max_sector) /* aborted */
1728 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1729 &sync_blocks, 1);
1730 else /* completed sync */
1731 conf->fullsync = 0;
1733 bitmap_close_sync(mddev->bitmap);
1734 close_sync(conf);
1735 return 0;
1738 if (mddev->bitmap == NULL &&
1739 mddev->recovery_cp == MaxSector &&
1740 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1741 conf->fullsync == 0) {
1742 *skipped = 1;
1743 return max_sector - sector_nr;
1745 /* before building a request, check if we can skip these blocks..
1746 * This call the bitmap_start_sync doesn't actually record anything
1748 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1749 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1750 /* We can skip this block, and probably several more */
1751 *skipped = 1;
1752 return sync_blocks;
1755 * If there is non-resync activity waiting for a turn,
1756 * and resync is going fast enough,
1757 * then let it though before starting on this new sync request.
1759 if (!go_faster && conf->nr_waiting)
1760 msleep_interruptible(1000);
1762 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1763 raise_barrier(conf);
1765 conf->next_resync = sector_nr;
1767 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1768 rcu_read_lock();
1770 * If we get a correctably read error during resync or recovery,
1771 * we might want to read from a different device. So we
1772 * flag all drives that could conceivably be read from for READ,
1773 * and any others (which will be non-In_sync devices) for WRITE.
1774 * If a read fails, we try reading from something else for which READ
1775 * is OK.
1778 r1_bio->mddev = mddev;
1779 r1_bio->sector = sector_nr;
1780 r1_bio->state = 0;
1781 set_bit(R1BIO_IsSync, &r1_bio->state);
1783 for (i=0; i < conf->raid_disks; i++) {
1784 mdk_rdev_t *rdev;
1785 bio = r1_bio->bios[i];
1787 /* take from bio_init */
1788 bio->bi_next = NULL;
1789 bio->bi_flags |= 1 << BIO_UPTODATE;
1790 bio->bi_rw = READ;
1791 bio->bi_vcnt = 0;
1792 bio->bi_idx = 0;
1793 bio->bi_phys_segments = 0;
1794 bio->bi_size = 0;
1795 bio->bi_end_io = NULL;
1796 bio->bi_private = NULL;
1798 rdev = rcu_dereference(conf->mirrors[i].rdev);
1799 if (rdev == NULL ||
1800 test_bit(Faulty, &rdev->flags)) {
1801 still_degraded = 1;
1802 continue;
1803 } else if (!test_bit(In_sync, &rdev->flags)) {
1804 bio->bi_rw = WRITE;
1805 bio->bi_end_io = end_sync_write;
1806 write_targets ++;
1807 } else {
1808 /* may need to read from here */
1809 bio->bi_rw = READ;
1810 bio->bi_end_io = end_sync_read;
1811 if (test_bit(WriteMostly, &rdev->flags)) {
1812 if (wonly < 0)
1813 wonly = i;
1814 } else {
1815 if (disk < 0)
1816 disk = i;
1818 read_targets++;
1820 atomic_inc(&rdev->nr_pending);
1821 bio->bi_sector = sector_nr + rdev->data_offset;
1822 bio->bi_bdev = rdev->bdev;
1823 bio->bi_private = r1_bio;
1825 rcu_read_unlock();
1826 if (disk < 0)
1827 disk = wonly;
1828 r1_bio->read_disk = disk;
1830 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1831 /* extra read targets are also write targets */
1832 write_targets += read_targets-1;
1834 if (write_targets == 0 || read_targets == 0) {
1835 /* There is nowhere to write, so all non-sync
1836 * drives must be failed - so we are finished
1838 sector_t rv = max_sector - sector_nr;
1839 *skipped = 1;
1840 put_buf(r1_bio);
1841 return rv;
1844 if (max_sector > mddev->resync_max)
1845 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1846 nr_sectors = 0;
1847 sync_blocks = 0;
1848 do {
1849 struct page *page;
1850 int len = PAGE_SIZE;
1851 if (sector_nr + (len>>9) > max_sector)
1852 len = (max_sector - sector_nr) << 9;
1853 if (len == 0)
1854 break;
1855 if (sync_blocks == 0) {
1856 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1857 &sync_blocks, still_degraded) &&
1858 !conf->fullsync &&
1859 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1860 break;
1861 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1862 if (len > (sync_blocks<<9))
1863 len = sync_blocks<<9;
1866 for (i=0 ; i < conf->raid_disks; i++) {
1867 bio = r1_bio->bios[i];
1868 if (bio->bi_end_io) {
1869 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1870 if (bio_add_page(bio, page, len, 0) == 0) {
1871 /* stop here */
1872 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1873 while (i > 0) {
1874 i--;
1875 bio = r1_bio->bios[i];
1876 if (bio->bi_end_io==NULL)
1877 continue;
1878 /* remove last page from this bio */
1879 bio->bi_vcnt--;
1880 bio->bi_size -= len;
1881 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1883 goto bio_full;
1887 nr_sectors += len>>9;
1888 sector_nr += len>>9;
1889 sync_blocks -= (len>>9);
1890 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1891 bio_full:
1892 r1_bio->sectors = nr_sectors;
1894 /* For a user-requested sync, we read all readable devices and do a
1895 * compare
1897 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1898 atomic_set(&r1_bio->remaining, read_targets);
1899 for (i=0; i<conf->raid_disks; i++) {
1900 bio = r1_bio->bios[i];
1901 if (bio->bi_end_io == end_sync_read) {
1902 md_sync_acct(bio->bi_bdev, nr_sectors);
1903 generic_make_request(bio);
1906 } else {
1907 atomic_set(&r1_bio->remaining, 1);
1908 bio = r1_bio->bios[r1_bio->read_disk];
1909 md_sync_acct(bio->bi_bdev, nr_sectors);
1910 generic_make_request(bio);
1913 return nr_sectors;
1916 static int run(mddev_t *mddev)
1918 conf_t *conf;
1919 int i, j, disk_idx;
1920 mirror_info_t *disk;
1921 mdk_rdev_t *rdev;
1922 struct list_head *tmp;
1924 if (mddev->level != 1) {
1925 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1926 mdname(mddev), mddev->level);
1927 goto out;
1929 if (mddev->reshape_position != MaxSector) {
1930 printk("raid1: %s: reshape_position set but not supported\n",
1931 mdname(mddev));
1932 goto out;
1935 * copy the already verified devices into our private RAID1
1936 * bookkeeping area. [whatever we allocate in run(),
1937 * should be freed in stop()]
1939 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1940 mddev->private = conf;
1941 if (!conf)
1942 goto out_no_mem;
1944 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1945 GFP_KERNEL);
1946 if (!conf->mirrors)
1947 goto out_no_mem;
1949 conf->tmppage = alloc_page(GFP_KERNEL);
1950 if (!conf->tmppage)
1951 goto out_no_mem;
1953 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1954 if (!conf->poolinfo)
1955 goto out_no_mem;
1956 conf->poolinfo->mddev = mddev;
1957 conf->poolinfo->raid_disks = mddev->raid_disks;
1958 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1959 r1bio_pool_free,
1960 conf->poolinfo);
1961 if (!conf->r1bio_pool)
1962 goto out_no_mem;
1964 spin_lock_init(&conf->device_lock);
1965 mddev->queue->queue_lock = &conf->device_lock;
1967 rdev_for_each(rdev, tmp, mddev) {
1968 disk_idx = rdev->raid_disk;
1969 if (disk_idx >= mddev->raid_disks
1970 || disk_idx < 0)
1971 continue;
1972 disk = conf->mirrors + disk_idx;
1974 disk->rdev = rdev;
1976 blk_queue_stack_limits(mddev->queue,
1977 rdev->bdev->bd_disk->queue);
1978 /* as we don't honour merge_bvec_fn, we must never risk
1979 * violating it, so limit ->max_sector to one PAGE, as
1980 * a one page request is never in violation.
1982 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1983 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1984 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1986 disk->head_position = 0;
1988 conf->raid_disks = mddev->raid_disks;
1989 conf->mddev = mddev;
1990 INIT_LIST_HEAD(&conf->retry_list);
1992 spin_lock_init(&conf->resync_lock);
1993 init_waitqueue_head(&conf->wait_barrier);
1995 bio_list_init(&conf->pending_bio_list);
1996 bio_list_init(&conf->flushing_bio_list);
1999 mddev->degraded = 0;
2000 for (i = 0; i < conf->raid_disks; i++) {
2002 disk = conf->mirrors + i;
2004 if (!disk->rdev ||
2005 !test_bit(In_sync, &disk->rdev->flags)) {
2006 disk->head_position = 0;
2007 mddev->degraded++;
2008 if (disk->rdev)
2009 conf->fullsync = 1;
2012 if (mddev->degraded == conf->raid_disks) {
2013 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
2014 mdname(mddev));
2015 goto out_free_conf;
2017 if (conf->raid_disks - mddev->degraded == 1)
2018 mddev->recovery_cp = MaxSector;
2021 * find the first working one and use it as a starting point
2022 * to read balancing.
2024 for (j = 0; j < conf->raid_disks &&
2025 (!conf->mirrors[j].rdev ||
2026 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
2027 /* nothing */;
2028 conf->last_used = j;
2031 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
2032 if (!mddev->thread) {
2033 printk(KERN_ERR
2034 "raid1: couldn't allocate thread for %s\n",
2035 mdname(mddev));
2036 goto out_free_conf;
2039 printk(KERN_INFO
2040 "raid1: raid set %s active with %d out of %d mirrors\n",
2041 mdname(mddev), mddev->raid_disks - mddev->degraded,
2042 mddev->raid_disks);
2044 * Ok, everything is just fine now
2046 mddev->array_sectors = mddev->size * 2;
2048 mddev->queue->unplug_fn = raid1_unplug;
2049 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2050 mddev->queue->backing_dev_info.congested_data = mddev;
2052 return 0;
2054 out_no_mem:
2055 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
2056 mdname(mddev));
2058 out_free_conf:
2059 if (conf) {
2060 if (conf->r1bio_pool)
2061 mempool_destroy(conf->r1bio_pool);
2062 kfree(conf->mirrors);
2063 safe_put_page(conf->tmppage);
2064 kfree(conf->poolinfo);
2065 kfree(conf);
2066 mddev->private = NULL;
2068 out:
2069 return -EIO;
2072 static int stop(mddev_t *mddev)
2074 conf_t *conf = mddev_to_conf(mddev);
2075 struct bitmap *bitmap = mddev->bitmap;
2076 int behind_wait = 0;
2078 /* wait for behind writes to complete */
2079 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2080 behind_wait++;
2081 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2082 set_current_state(TASK_UNINTERRUPTIBLE);
2083 schedule_timeout(HZ); /* wait a second */
2084 /* need to kick something here to make sure I/O goes? */
2087 md_unregister_thread(mddev->thread);
2088 mddev->thread = NULL;
2089 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2090 if (conf->r1bio_pool)
2091 mempool_destroy(conf->r1bio_pool);
2092 kfree(conf->mirrors);
2093 kfree(conf->poolinfo);
2094 kfree(conf);
2095 mddev->private = NULL;
2096 return 0;
2099 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2101 /* no resync is happening, and there is enough space
2102 * on all devices, so we can resize.
2103 * We need to make sure resync covers any new space.
2104 * If the array is shrinking we should possibly wait until
2105 * any io in the removed space completes, but it hardly seems
2106 * worth it.
2108 mddev->array_sectors = sectors;
2109 set_capacity(mddev->gendisk, mddev->array_sectors);
2110 mddev->changed = 1;
2111 if (mddev->array_sectors / 2 > mddev->size &&
2112 mddev->recovery_cp == MaxSector) {
2113 mddev->recovery_cp = mddev->size << 1;
2114 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2116 mddev->size = mddev->array_sectors / 2;
2117 mddev->resync_max_sectors = sectors;
2118 return 0;
2121 static int raid1_reshape(mddev_t *mddev)
2123 /* We need to:
2124 * 1/ resize the r1bio_pool
2125 * 2/ resize conf->mirrors
2127 * We allocate a new r1bio_pool if we can.
2128 * Then raise a device barrier and wait until all IO stops.
2129 * Then resize conf->mirrors and swap in the new r1bio pool.
2131 * At the same time, we "pack" the devices so that all the missing
2132 * devices have the higher raid_disk numbers.
2134 mempool_t *newpool, *oldpool;
2135 struct pool_info *newpoolinfo;
2136 mirror_info_t *newmirrors;
2137 conf_t *conf = mddev_to_conf(mddev);
2138 int cnt, raid_disks;
2139 unsigned long flags;
2140 int d, d2, err;
2142 /* Cannot change chunk_size, layout, or level */
2143 if (mddev->chunk_size != mddev->new_chunk ||
2144 mddev->layout != mddev->new_layout ||
2145 mddev->level != mddev->new_level) {
2146 mddev->new_chunk = mddev->chunk_size;
2147 mddev->new_layout = mddev->layout;
2148 mddev->new_level = mddev->level;
2149 return -EINVAL;
2152 err = md_allow_write(mddev);
2153 if (err)
2154 return err;
2156 raid_disks = mddev->raid_disks + mddev->delta_disks;
2158 if (raid_disks < conf->raid_disks) {
2159 cnt=0;
2160 for (d= 0; d < conf->raid_disks; d++)
2161 if (conf->mirrors[d].rdev)
2162 cnt++;
2163 if (cnt > raid_disks)
2164 return -EBUSY;
2167 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2168 if (!newpoolinfo)
2169 return -ENOMEM;
2170 newpoolinfo->mddev = mddev;
2171 newpoolinfo->raid_disks = raid_disks;
2173 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2174 r1bio_pool_free, newpoolinfo);
2175 if (!newpool) {
2176 kfree(newpoolinfo);
2177 return -ENOMEM;
2179 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2180 if (!newmirrors) {
2181 kfree(newpoolinfo);
2182 mempool_destroy(newpool);
2183 return -ENOMEM;
2186 raise_barrier(conf);
2188 /* ok, everything is stopped */
2189 oldpool = conf->r1bio_pool;
2190 conf->r1bio_pool = newpool;
2192 for (d = d2 = 0; d < conf->raid_disks; d++) {
2193 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2194 if (rdev && rdev->raid_disk != d2) {
2195 char nm[20];
2196 sprintf(nm, "rd%d", rdev->raid_disk);
2197 sysfs_remove_link(&mddev->kobj, nm);
2198 rdev->raid_disk = d2;
2199 sprintf(nm, "rd%d", rdev->raid_disk);
2200 sysfs_remove_link(&mddev->kobj, nm);
2201 if (sysfs_create_link(&mddev->kobj,
2202 &rdev->kobj, nm))
2203 printk(KERN_WARNING
2204 "md/raid1: cannot register "
2205 "%s for %s\n",
2206 nm, mdname(mddev));
2208 if (rdev)
2209 newmirrors[d2++].rdev = rdev;
2211 kfree(conf->mirrors);
2212 conf->mirrors = newmirrors;
2213 kfree(conf->poolinfo);
2214 conf->poolinfo = newpoolinfo;
2216 spin_lock_irqsave(&conf->device_lock, flags);
2217 mddev->degraded += (raid_disks - conf->raid_disks);
2218 spin_unlock_irqrestore(&conf->device_lock, flags);
2219 conf->raid_disks = mddev->raid_disks = raid_disks;
2220 mddev->delta_disks = 0;
2222 conf->last_used = 0; /* just make sure it is in-range */
2223 lower_barrier(conf);
2225 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2226 md_wakeup_thread(mddev->thread);
2228 mempool_destroy(oldpool);
2229 return 0;
2232 static void raid1_quiesce(mddev_t *mddev, int state)
2234 conf_t *conf = mddev_to_conf(mddev);
2236 switch(state) {
2237 case 1:
2238 raise_barrier(conf);
2239 break;
2240 case 0:
2241 lower_barrier(conf);
2242 break;
2247 static struct mdk_personality raid1_personality =
2249 .name = "raid1",
2250 .level = 1,
2251 .owner = THIS_MODULE,
2252 .make_request = make_request,
2253 .run = run,
2254 .stop = stop,
2255 .status = status,
2256 .error_handler = error,
2257 .hot_add_disk = raid1_add_disk,
2258 .hot_remove_disk= raid1_remove_disk,
2259 .spare_active = raid1_spare_active,
2260 .sync_request = sync_request,
2261 .resize = raid1_resize,
2262 .check_reshape = raid1_reshape,
2263 .quiesce = raid1_quiesce,
2266 static int __init raid_init(void)
2268 return register_md_personality(&raid1_personality);
2271 static void raid_exit(void)
2273 unregister_md_personality(&raid1_personality);
2276 module_init(raid_init);
2277 module_exit(raid_exit);
2278 MODULE_LICENSE("GPL");
2279 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2280 MODULE_ALIAS("md-raid1");
2281 MODULE_ALIAS("md-level-1");