2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 * Copyright (C) 2006, 2007 University of Szeged, Hungary
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc., 51
18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Authors: Artem Bityutskiy (Битюцкий Артём)
26 * This file implements UBIFS I/O subsystem which provides various I/O-related
27 * helper functions (reading/writing/checking/validating nodes) and implements
28 * write-buffering support. Write buffers help to save space which otherwise
29 * would have been wasted for padding to the nearest minimal I/O unit boundary.
30 * Instead, data first goes to the write-buffer and is flushed when the
31 * buffer is full or when it is not used for some time (by timer). This is
32 * similarto the mechanism is used by JFFS2.
34 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
35 * mutexes defined inside these objects. Since sometimes upper-level code
36 * has to lock the write-buffer (e.g. journal space reservation code), many
37 * functions related to write-buffers have "nolock" suffix which means that the
38 * caller has to lock the write-buffer before calling this function.
40 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
41 * aligned, UBIFS starts the next node from the aligned address, and the padded
42 * bytes may contain any rubbish. In other words, UBIFS does not put padding
43 * bytes in those small gaps. Common headers of nodes store real node lengths,
44 * not aligned lengths. Indexing nodes also store real lengths in branches.
46 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
47 * uses padding nodes or padding bytes, if the padding node does not fit.
49 * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes
50 * every time they are read from the flash media.
53 #include <linux/crc32.h>
57 * ubifs_ro_mode - switch UBIFS to read read-only mode.
58 * @c: UBIFS file-system description object
59 * @err: error code which is the reason of switching to R/O mode
61 void ubifs_ro_mode(struct ubifs_info
*c
, int err
)
65 c
->no_chk_data_crc
= 0;
66 ubifs_warn("switched to read-only mode, error %d", err
);
72 * ubifs_check_node - check node.
73 * @c: UBIFS file-system description object
75 * @lnum: logical eraseblock number
76 * @offs: offset within the logical eraseblock
77 * @quiet: print no messages
78 * @chk_crc: indicates whether to always check the CRC
80 * This function checks node magic number and CRC checksum. This function also
81 * validates node length to prevent UBIFS from becoming crazy when an attacker
82 * feeds it a file-system image with incorrect nodes. For example, too large
83 * node length in the common header could cause UBIFS to read memory outside of
84 * allocated buffer when checking the CRC checksum.
86 * This function returns zero in case of success %-EUCLEAN in case of bad CRC
89 int ubifs_check_node(const struct ubifs_info
*c
, const void *buf
, int lnum
,
90 int offs
, int quiet
, int chk_crc
)
92 int err
= -EINVAL
, type
, node_len
;
93 uint32_t crc
, node_crc
, magic
;
94 const struct ubifs_ch
*ch
= buf
;
96 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
97 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
99 magic
= le32_to_cpu(ch
->magic
);
100 if (magic
!= UBIFS_NODE_MAGIC
) {
102 ubifs_err("bad magic %#08x, expected %#08x",
103 magic
, UBIFS_NODE_MAGIC
);
108 type
= ch
->node_type
;
109 if (type
< 0 || type
>= UBIFS_NODE_TYPES_CNT
) {
111 ubifs_err("bad node type %d", type
);
115 node_len
= le32_to_cpu(ch
->len
);
116 if (node_len
+ offs
> c
->leb_size
)
119 if (c
->ranges
[type
].max_len
== 0) {
120 if (node_len
!= c
->ranges
[type
].len
)
122 } else if (node_len
< c
->ranges
[type
].min_len
||
123 node_len
> c
->ranges
[type
].max_len
)
126 if (!chk_crc
&& type
== UBIFS_DATA_NODE
&& !c
->always_chk_crc
)
127 if (c
->no_chk_data_crc
)
130 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, node_len
- 8);
131 node_crc
= le32_to_cpu(ch
->crc
);
132 if (crc
!= node_crc
) {
134 ubifs_err("bad CRC: calculated %#08x, read %#08x",
144 ubifs_err("bad node length %d", node_len
);
147 ubifs_err("bad node at LEB %d:%d", lnum
, offs
);
148 dbg_dump_node(c
, buf
);
155 * ubifs_pad - pad flash space.
156 * @c: UBIFS file-system description object
157 * @buf: buffer to put padding to
158 * @pad: how many bytes to pad
160 * The flash media obliges us to write only in chunks of %c->min_io_size and
161 * when we have to write less data we add padding node to the write-buffer and
162 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
163 * media is being scanned. If the amount of wasted space is not enough to fit a
164 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
165 * pattern (%UBIFS_PADDING_BYTE).
167 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
170 void ubifs_pad(const struct ubifs_info
*c
, void *buf
, int pad
)
174 ubifs_assert(pad
>= 0 && !(pad
& 7));
176 if (pad
>= UBIFS_PAD_NODE_SZ
) {
177 struct ubifs_ch
*ch
= buf
;
178 struct ubifs_pad_node
*pad_node
= buf
;
180 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
181 ch
->node_type
= UBIFS_PAD_NODE
;
182 ch
->group_type
= UBIFS_NO_NODE_GROUP
;
183 ch
->padding
[0] = ch
->padding
[1] = 0;
185 ch
->len
= cpu_to_le32(UBIFS_PAD_NODE_SZ
);
186 pad
-= UBIFS_PAD_NODE_SZ
;
187 pad_node
->pad_len
= cpu_to_le32(pad
);
188 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, UBIFS_PAD_NODE_SZ
- 8);
189 ch
->crc
= cpu_to_le32(crc
);
190 memset(buf
+ UBIFS_PAD_NODE_SZ
, 0, pad
);
192 /* Too little space, padding node won't fit */
193 memset(buf
, UBIFS_PADDING_BYTE
, pad
);
197 * next_sqnum - get next sequence number.
198 * @c: UBIFS file-system description object
200 static unsigned long long next_sqnum(struct ubifs_info
*c
)
202 unsigned long long sqnum
;
204 spin_lock(&c
->cnt_lock
);
205 sqnum
= ++c
->max_sqnum
;
206 spin_unlock(&c
->cnt_lock
);
208 if (unlikely(sqnum
>= SQNUM_WARN_WATERMARK
)) {
209 if (sqnum
>= SQNUM_WATERMARK
) {
210 ubifs_err("sequence number overflow %llu, end of life",
212 ubifs_ro_mode(c
, -EINVAL
);
214 ubifs_warn("running out of sequence numbers, end of life soon");
221 * ubifs_prepare_node - prepare node to be written to flash.
222 * @c: UBIFS file-system description object
223 * @node: the node to pad
225 * @pad: if the buffer has to be padded
227 * This function prepares node at @node to be written to the media - it
228 * calculates node CRC, fills the common header, and adds proper padding up to
229 * the next minimum I/O unit if @pad is not zero.
231 void ubifs_prepare_node(struct ubifs_info
*c
, void *node
, int len
, int pad
)
234 struct ubifs_ch
*ch
= node
;
235 unsigned long long sqnum
= next_sqnum(c
);
237 ubifs_assert(len
>= UBIFS_CH_SZ
);
239 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
240 ch
->len
= cpu_to_le32(len
);
241 ch
->group_type
= UBIFS_NO_NODE_GROUP
;
242 ch
->sqnum
= cpu_to_le64(sqnum
);
243 ch
->padding
[0] = ch
->padding
[1] = 0;
244 crc
= crc32(UBIFS_CRC32_INIT
, node
+ 8, len
- 8);
245 ch
->crc
= cpu_to_le32(crc
);
249 pad
= ALIGN(len
, c
->min_io_size
) - len
;
250 ubifs_pad(c
, node
+ len
, pad
);
255 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
256 * @c: UBIFS file-system description object
257 * @node: the node to pad
259 * @last: indicates the last node of the group
261 * This function prepares node at @node to be written to the media - it
262 * calculates node CRC and fills the common header.
264 void ubifs_prep_grp_node(struct ubifs_info
*c
, void *node
, int len
, int last
)
267 struct ubifs_ch
*ch
= node
;
268 unsigned long long sqnum
= next_sqnum(c
);
270 ubifs_assert(len
>= UBIFS_CH_SZ
);
272 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
273 ch
->len
= cpu_to_le32(len
);
275 ch
->group_type
= UBIFS_LAST_OF_NODE_GROUP
;
277 ch
->group_type
= UBIFS_IN_NODE_GROUP
;
278 ch
->sqnum
= cpu_to_le64(sqnum
);
279 ch
->padding
[0] = ch
->padding
[1] = 0;
280 crc
= crc32(UBIFS_CRC32_INIT
, node
+ 8, len
- 8);
281 ch
->crc
= cpu_to_le32(crc
);
285 * wbuf_timer_callback - write-buffer timer callback function.
286 * @data: timer data (write-buffer descriptor)
288 * This function is called when the write-buffer timer expires.
290 static void wbuf_timer_callback_nolock(unsigned long data
)
292 struct ubifs_wbuf
*wbuf
= (struct ubifs_wbuf
*)data
;
295 wbuf
->c
->need_wbuf_sync
= 1;
296 ubifs_wake_up_bgt(wbuf
->c
);
300 * new_wbuf_timer - start new write-buffer timer.
301 * @wbuf: write-buffer descriptor
303 static void new_wbuf_timer_nolock(struct ubifs_wbuf
*wbuf
)
305 ubifs_assert(!timer_pending(&wbuf
->timer
));
310 wbuf
->timer
.expires
= jiffies
+ wbuf
->timeout
;
311 add_timer(&wbuf
->timer
);
315 * cancel_wbuf_timer - cancel write-buffer timer.
316 * @wbuf: write-buffer descriptor
318 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf
*wbuf
)
321 * If the syncer is waiting for the lock (from the background thread's
322 * context) and another task is changing write-buffer then the syncing
323 * should be canceled.
326 del_timer(&wbuf
->timer
);
330 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
331 * @wbuf: write-buffer to synchronize
333 * This function synchronizes write-buffer @buf and returns zero in case of
334 * success or a negative error code in case of failure.
336 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf
*wbuf
)
338 struct ubifs_info
*c
= wbuf
->c
;
341 cancel_wbuf_timer_nolock(wbuf
);
342 if (!wbuf
->used
|| wbuf
->lnum
== -1)
343 /* Write-buffer is empty or not seeked */
346 dbg_io("LEB %d:%d, %d bytes",
347 wbuf
->lnum
, wbuf
->offs
, wbuf
->used
);
348 ubifs_assert(!(c
->vfs_sb
->s_flags
& MS_RDONLY
));
349 ubifs_assert(!(wbuf
->avail
& 7));
350 ubifs_assert(wbuf
->offs
+ c
->min_io_size
<= c
->leb_size
);
355 ubifs_pad(c
, wbuf
->buf
+ wbuf
->used
, wbuf
->avail
);
356 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
,
357 c
->min_io_size
, wbuf
->dtype
);
359 ubifs_err("cannot write %d bytes to LEB %d:%d",
360 c
->min_io_size
, wbuf
->lnum
, wbuf
->offs
);
367 spin_lock(&wbuf
->lock
);
368 wbuf
->offs
+= c
->min_io_size
;
369 wbuf
->avail
= c
->min_io_size
;
372 spin_unlock(&wbuf
->lock
);
374 if (wbuf
->sync_callback
)
375 err
= wbuf
->sync_callback(c
, wbuf
->lnum
,
376 c
->leb_size
- wbuf
->offs
, dirt
);
381 * ubifs_wbuf_seek_nolock - seek write-buffer.
382 * @wbuf: write-buffer
383 * @lnum: logical eraseblock number to seek to
384 * @offs: logical eraseblock offset to seek to
387 * This function targets the write buffer to logical eraseblock @lnum:@offs.
388 * The write-buffer is synchronized if it is not empty. Returns zero in case of
389 * success and a negative error code in case of failure.
391 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf
*wbuf
, int lnum
, int offs
,
394 const struct ubifs_info
*c
= wbuf
->c
;
396 dbg_io("LEB %d:%d", lnum
, offs
);
397 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
);
398 ubifs_assert(offs
>= 0 && offs
<= c
->leb_size
);
399 ubifs_assert(offs
% c
->min_io_size
== 0 && !(offs
& 7));
400 ubifs_assert(lnum
!= wbuf
->lnum
);
402 if (wbuf
->used
> 0) {
403 int err
= ubifs_wbuf_sync_nolock(wbuf
);
409 spin_lock(&wbuf
->lock
);
412 wbuf
->avail
= c
->min_io_size
;
414 spin_unlock(&wbuf
->lock
);
421 * ubifs_bg_wbufs_sync - synchronize write-buffers.
422 * @c: UBIFS file-system description object
424 * This function is called by background thread to synchronize write-buffers.
425 * Returns zero in case of success and a negative error code in case of
428 int ubifs_bg_wbufs_sync(struct ubifs_info
*c
)
432 if (!c
->need_wbuf_sync
)
434 c
->need_wbuf_sync
= 0;
441 dbg_io("synchronize");
442 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
443 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
448 * If the mutex is locked then wbuf is being changed, so
449 * synchronization is not necessary.
451 if (mutex_is_locked(&wbuf
->io_mutex
))
454 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
455 if (!wbuf
->need_sync
) {
456 mutex_unlock(&wbuf
->io_mutex
);
460 err
= ubifs_wbuf_sync_nolock(wbuf
);
461 mutex_unlock(&wbuf
->io_mutex
);
463 ubifs_err("cannot sync write-buffer, error %d", err
);
464 ubifs_ro_mode(c
, err
);
472 /* Cancel all timers to prevent repeated errors */
473 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
474 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
476 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
477 cancel_wbuf_timer_nolock(wbuf
);
478 mutex_unlock(&wbuf
->io_mutex
);
484 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
485 * @wbuf: write-buffer
486 * @buf: node to write
489 * This function writes data to flash via write-buffer @wbuf. This means that
490 * the last piece of the node won't reach the flash media immediately if it
491 * does not take whole minimal I/O unit. Instead, the node will sit in RAM
492 * until the write-buffer is synchronized (e.g., by timer).
494 * This function returns zero in case of success and a negative error code in
495 * case of failure. If the node cannot be written because there is no more
496 * space in this logical eraseblock, %-ENOSPC is returned.
498 int ubifs_wbuf_write_nolock(struct ubifs_wbuf
*wbuf
, void *buf
, int len
)
500 struct ubifs_info
*c
= wbuf
->c
;
501 int err
, written
, n
, aligned_len
= ALIGN(len
, 8), offs
;
503 dbg_io("%d bytes (%s) to wbuf at LEB %d:%d", len
,
504 dbg_ntype(((struct ubifs_ch
*)buf
)->node_type
), wbuf
->lnum
,
505 wbuf
->offs
+ wbuf
->used
);
506 ubifs_assert(len
> 0 && wbuf
->lnum
>= 0 && wbuf
->lnum
< c
->leb_cnt
);
507 ubifs_assert(wbuf
->offs
>= 0 && wbuf
->offs
% c
->min_io_size
== 0);
508 ubifs_assert(!(wbuf
->offs
& 7) && wbuf
->offs
<= c
->leb_size
);
509 ubifs_assert(wbuf
->avail
> 0 && wbuf
->avail
<= c
->min_io_size
);
510 ubifs_assert(mutex_is_locked(&wbuf
->io_mutex
));
512 if (c
->leb_size
- wbuf
->offs
- wbuf
->used
< aligned_len
) {
517 cancel_wbuf_timer_nolock(wbuf
);
522 if (aligned_len
<= wbuf
->avail
) {
524 * The node is not very large and fits entirely within
527 memcpy(wbuf
->buf
+ wbuf
->used
, buf
, len
);
529 if (aligned_len
== wbuf
->avail
) {
530 dbg_io("flush wbuf to LEB %d:%d", wbuf
->lnum
,
532 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, wbuf
->buf
,
533 wbuf
->offs
, c
->min_io_size
,
538 spin_lock(&wbuf
->lock
);
539 wbuf
->offs
+= c
->min_io_size
;
540 wbuf
->avail
= c
->min_io_size
;
543 spin_unlock(&wbuf
->lock
);
545 spin_lock(&wbuf
->lock
);
546 wbuf
->avail
-= aligned_len
;
547 wbuf
->used
+= aligned_len
;
548 spin_unlock(&wbuf
->lock
);
555 * The node is large enough and does not fit entirely within current
556 * minimal I/O unit. We have to fill and flush write-buffer and switch
557 * to the next min. I/O unit.
559 dbg_io("flush wbuf to LEB %d:%d", wbuf
->lnum
, wbuf
->offs
);
560 memcpy(wbuf
->buf
+ wbuf
->used
, buf
, wbuf
->avail
);
561 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
,
562 c
->min_io_size
, wbuf
->dtype
);
566 offs
= wbuf
->offs
+ c
->min_io_size
;
568 aligned_len
-= wbuf
->avail
;
569 written
= wbuf
->avail
;
572 * The remaining data may take more whole min. I/O units, so write the
573 * remains multiple to min. I/O unit size directly to the flash media.
574 * We align node length to 8-byte boundary because we anyway flash wbuf
575 * if the remaining space is less than 8 bytes.
577 n
= aligned_len
>> c
->min_io_shift
;
579 n
<<= c
->min_io_shift
;
580 dbg_io("write %d bytes to LEB %d:%d", n
, wbuf
->lnum
, offs
);
581 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, buf
+ written
, offs
, n
,
591 spin_lock(&wbuf
->lock
);
594 * And now we have what's left and what does not take whole
595 * min. I/O unit, so write it to the write-buffer and we are
598 memcpy(wbuf
->buf
, buf
+ written
, len
);
601 wbuf
->used
= aligned_len
;
602 wbuf
->avail
= c
->min_io_size
- aligned_len
;
604 spin_unlock(&wbuf
->lock
);
607 if (wbuf
->sync_callback
) {
608 int free
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
610 err
= wbuf
->sync_callback(c
, wbuf
->lnum
, free
, 0);
616 new_wbuf_timer_nolock(wbuf
);
621 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
622 len
, wbuf
->lnum
, wbuf
->offs
, err
);
623 dbg_dump_node(c
, buf
);
625 dbg_dump_leb(c
, wbuf
->lnum
);
630 * ubifs_write_node - write node to the media.
631 * @c: UBIFS file-system description object
632 * @buf: the node to write
634 * @lnum: logical eraseblock number
635 * @offs: offset within the logical eraseblock
636 * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
638 * This function automatically fills node magic number, assigns sequence
639 * number, and calculates node CRC checksum. The length of the @buf buffer has
640 * to be aligned to the minimal I/O unit size. This function automatically
641 * appends padding node and padding bytes if needed. Returns zero in case of
642 * success and a negative error code in case of failure.
644 int ubifs_write_node(struct ubifs_info
*c
, void *buf
, int len
, int lnum
,
647 int err
, buf_len
= ALIGN(len
, c
->min_io_size
);
649 dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
650 lnum
, offs
, dbg_ntype(((struct ubifs_ch
*)buf
)->node_type
), len
,
652 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
653 ubifs_assert(offs
% c
->min_io_size
== 0 && offs
< c
->leb_size
);
658 ubifs_prepare_node(c
, buf
, len
, 1);
659 err
= ubi_leb_write(c
->ubi
, lnum
, buf
, offs
, buf_len
, dtype
);
661 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
662 buf_len
, lnum
, offs
, err
);
663 dbg_dump_node(c
, buf
);
671 * ubifs_read_node_wbuf - read node from the media or write-buffer.
672 * @wbuf: wbuf to check for un-written data
673 * @buf: buffer to read to
676 * @lnum: logical eraseblock number
677 * @offs: offset within the logical eraseblock
679 * This function reads a node of known type and length, checks it and stores
680 * in @buf. If the node partially or fully sits in the write-buffer, this
681 * function takes data from the buffer, otherwise it reads the flash media.
682 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
683 * error code in case of failure.
685 int ubifs_read_node_wbuf(struct ubifs_wbuf
*wbuf
, void *buf
, int type
, int len
,
688 const struct ubifs_info
*c
= wbuf
->c
;
689 int err
, rlen
, overlap
;
690 struct ubifs_ch
*ch
= buf
;
692 dbg_io("LEB %d:%d, %s, length %d", lnum
, offs
, dbg_ntype(type
), len
);
693 ubifs_assert(wbuf
&& lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
694 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
695 ubifs_assert(type
>= 0 && type
< UBIFS_NODE_TYPES_CNT
);
697 spin_lock(&wbuf
->lock
);
698 overlap
= (lnum
== wbuf
->lnum
&& offs
+ len
> wbuf
->offs
);
700 /* We may safely unlock the write-buffer and read the data */
701 spin_unlock(&wbuf
->lock
);
702 return ubifs_read_node(c
, buf
, type
, len
, lnum
, offs
);
705 /* Don't read under wbuf */
706 rlen
= wbuf
->offs
- offs
;
710 /* Copy the rest from the write-buffer */
711 memcpy(buf
+ rlen
, wbuf
->buf
+ offs
+ rlen
- wbuf
->offs
, len
- rlen
);
712 spin_unlock(&wbuf
->lock
);
715 /* Read everything that goes before write-buffer */
716 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, rlen
);
717 if (err
&& err
!= -EBADMSG
) {
718 ubifs_err("failed to read node %d from LEB %d:%d, "
719 "error %d", type
, lnum
, offs
, err
);
725 if (type
!= ch
->node_type
) {
726 ubifs_err("bad node type (%d but expected %d)",
727 ch
->node_type
, type
);
731 err
= ubifs_check_node(c
, buf
, lnum
, offs
, 0, 0);
733 ubifs_err("expected node type %d", type
);
737 rlen
= le32_to_cpu(ch
->len
);
739 ubifs_err("bad node length %d, expected %d", rlen
, len
);
746 ubifs_err("bad node at LEB %d:%d", lnum
, offs
);
747 dbg_dump_node(c
, buf
);
753 * ubifs_read_node - read node.
754 * @c: UBIFS file-system description object
755 * @buf: buffer to read to
757 * @len: node length (not aligned)
758 * @lnum: logical eraseblock number
759 * @offs: offset within the logical eraseblock
761 * This function reads a node of known type and and length, checks it and
762 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
763 * and a negative error code in case of failure.
765 int ubifs_read_node(const struct ubifs_info
*c
, void *buf
, int type
, int len
,
769 struct ubifs_ch
*ch
= buf
;
771 dbg_io("LEB %d:%d, %s, length %d", lnum
, offs
, dbg_ntype(type
), len
);
772 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
773 ubifs_assert(len
>= UBIFS_CH_SZ
&& offs
+ len
<= c
->leb_size
);
774 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
775 ubifs_assert(type
>= 0 && type
< UBIFS_NODE_TYPES_CNT
);
777 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, len
);
778 if (err
&& err
!= -EBADMSG
) {
779 ubifs_err("cannot read node %d from LEB %d:%d, error %d",
780 type
, lnum
, offs
, err
);
784 if (type
!= ch
->node_type
) {
785 ubifs_err("bad node type (%d but expected %d)",
786 ch
->node_type
, type
);
790 err
= ubifs_check_node(c
, buf
, lnum
, offs
, 0, 0);
792 ubifs_err("expected node type %d", type
);
796 l
= le32_to_cpu(ch
->len
);
798 ubifs_err("bad node length %d, expected %d", l
, len
);
805 ubifs_err("bad node at LEB %d:%d", lnum
, offs
);
806 dbg_dump_node(c
, buf
);
812 * ubifs_wbuf_init - initialize write-buffer.
813 * @c: UBIFS file-system description object
814 * @wbuf: write-buffer to initialize
816 * This function initializes write buffer. Returns zero in case of success
817 * %-ENOMEM in case of failure.
819 int ubifs_wbuf_init(struct ubifs_info
*c
, struct ubifs_wbuf
*wbuf
)
823 wbuf
->buf
= kmalloc(c
->min_io_size
, GFP_KERNEL
);
827 size
= (c
->min_io_size
/ UBIFS_CH_SZ
+ 1) * sizeof(ino_t
);
828 wbuf
->inodes
= kmalloc(size
, GFP_KERNEL
);
836 wbuf
->lnum
= wbuf
->offs
= -1;
837 wbuf
->avail
= c
->min_io_size
;
838 wbuf
->dtype
= UBI_UNKNOWN
;
839 wbuf
->sync_callback
= NULL
;
840 mutex_init(&wbuf
->io_mutex
);
841 spin_lock_init(&wbuf
->lock
);
844 init_timer(&wbuf
->timer
);
845 wbuf
->timer
.function
= wbuf_timer_callback_nolock
;
846 wbuf
->timer
.data
= (unsigned long)wbuf
;
847 wbuf
->timeout
= DEFAULT_WBUF_TIMEOUT
;
854 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
855 * @wbuf: the write-buffer whereto add
856 * @inum: the inode number
858 * This function adds an inode number to the inode array of the write-buffer.
860 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf
*wbuf
, ino_t inum
)
863 /* NOR flash or something similar */
866 spin_lock(&wbuf
->lock
);
868 wbuf
->inodes
[wbuf
->next_ino
++] = inum
;
869 spin_unlock(&wbuf
->lock
);
873 * wbuf_has_ino - returns if the wbuf contains data from the inode.
874 * @wbuf: the write-buffer
875 * @inum: the inode number
877 * This function returns with %1 if the write-buffer contains some data from the
878 * given inode otherwise it returns with %0.
880 static int wbuf_has_ino(struct ubifs_wbuf
*wbuf
, ino_t inum
)
884 spin_lock(&wbuf
->lock
);
885 for (i
= 0; i
< wbuf
->next_ino
; i
++)
886 if (inum
== wbuf
->inodes
[i
]) {
890 spin_unlock(&wbuf
->lock
);
896 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
897 * @c: UBIFS file-system description object
898 * @inode: inode to synchronize
900 * This function synchronizes write-buffers which contain nodes belonging to
901 * @inode. Returns zero in case of success and a negative error code in case of
904 int ubifs_sync_wbufs_by_inode(struct ubifs_info
*c
, struct inode
*inode
)
908 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
909 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
913 * GC head is special, do not look at it. Even if the
914 * head contains something related to this inode, it is
915 * a _copy_ of corresponding on-flash node which sits
920 if (!wbuf_has_ino(wbuf
, inode
->i_ino
))
923 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
924 if (wbuf_has_ino(wbuf
, inode
->i_ino
))
925 err
= ubifs_wbuf_sync_nolock(wbuf
);
926 mutex_unlock(&wbuf
->io_mutex
);
929 ubifs_ro_mode(c
, err
);