2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
11 static int check_clock(const clockid_t which_clock
)
14 struct task_struct
*p
;
15 const pid_t pid
= CPUCLOCK_PID(which_clock
);
17 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
23 read_lock(&tasklist_lock
);
24 p
= find_task_by_vpid(pid
);
25 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
26 same_thread_group(p
, current
) : thread_group_leader(p
))) {
29 read_unlock(&tasklist_lock
);
34 static inline union cpu_time_count
35 timespec_to_sample(const clockid_t which_clock
, const struct timespec
*tp
)
37 union cpu_time_count ret
;
38 ret
.sched
= 0; /* high half always zero when .cpu used */
39 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
40 ret
.sched
= (unsigned long long)tp
->tv_sec
* NSEC_PER_SEC
+ tp
->tv_nsec
;
42 ret
.cpu
= timespec_to_cputime(tp
);
47 static void sample_to_timespec(const clockid_t which_clock
,
48 union cpu_time_count cpu
,
51 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
)
52 *tp
= ns_to_timespec(cpu
.sched
);
54 cputime_to_timespec(cpu
.cpu
, tp
);
57 static inline int cpu_time_before(const clockid_t which_clock
,
58 union cpu_time_count now
,
59 union cpu_time_count then
)
61 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
62 return now
.sched
< then
.sched
;
64 return cputime_lt(now
.cpu
, then
.cpu
);
67 static inline void cpu_time_add(const clockid_t which_clock
,
68 union cpu_time_count
*acc
,
69 union cpu_time_count val
)
71 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
72 acc
->sched
+= val
.sched
;
74 acc
->cpu
= cputime_add(acc
->cpu
, val
.cpu
);
77 static inline union cpu_time_count
cpu_time_sub(const clockid_t which_clock
,
78 union cpu_time_count a
,
79 union cpu_time_count b
)
81 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
84 a
.cpu
= cputime_sub(a
.cpu
, b
.cpu
);
90 * Divide and limit the result to res >= 1
92 * This is necessary to prevent signal delivery starvation, when the result of
93 * the division would be rounded down to 0.
95 static inline cputime_t
cputime_div_non_zero(cputime_t time
, unsigned long div
)
97 cputime_t res
= cputime_div(time
, div
);
99 return max_t(cputime_t
, res
, 1);
103 * Update expiry time from increment, and increase overrun count,
104 * given the current clock sample.
106 static void bump_cpu_timer(struct k_itimer
*timer
,
107 union cpu_time_count now
)
111 if (timer
->it
.cpu
.incr
.sched
== 0)
114 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
115 unsigned long long delta
, incr
;
117 if (now
.sched
< timer
->it
.cpu
.expires
.sched
)
119 incr
= timer
->it
.cpu
.incr
.sched
;
120 delta
= now
.sched
+ incr
- timer
->it
.cpu
.expires
.sched
;
121 /* Don't use (incr*2 < delta), incr*2 might overflow. */
122 for (i
= 0; incr
< delta
- incr
; i
++)
124 for (; i
>= 0; incr
>>= 1, i
--) {
127 timer
->it
.cpu
.expires
.sched
+= incr
;
128 timer
->it_overrun
+= 1 << i
;
132 cputime_t delta
, incr
;
134 if (cputime_lt(now
.cpu
, timer
->it
.cpu
.expires
.cpu
))
136 incr
= timer
->it
.cpu
.incr
.cpu
;
137 delta
= cputime_sub(cputime_add(now
.cpu
, incr
),
138 timer
->it
.cpu
.expires
.cpu
);
139 /* Don't use (incr*2 < delta), incr*2 might overflow. */
140 for (i
= 0; cputime_lt(incr
, cputime_sub(delta
, incr
)); i
++)
141 incr
= cputime_add(incr
, incr
);
142 for (; i
>= 0; incr
= cputime_halve(incr
), i
--) {
143 if (cputime_lt(delta
, incr
))
145 timer
->it
.cpu
.expires
.cpu
=
146 cputime_add(timer
->it
.cpu
.expires
.cpu
, incr
);
147 timer
->it_overrun
+= 1 << i
;
148 delta
= cputime_sub(delta
, incr
);
153 static inline cputime_t
prof_ticks(struct task_struct
*p
)
155 return cputime_add(p
->utime
, p
->stime
);
157 static inline cputime_t
virt_ticks(struct task_struct
*p
)
161 static inline unsigned long long sched_ns(struct task_struct
*p
)
163 return task_sched_runtime(p
);
166 int posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
168 int error
= check_clock(which_clock
);
171 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
172 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
174 * If sched_clock is using a cycle counter, we
175 * don't have any idea of its true resolution
176 * exported, but it is much more than 1s/HZ.
184 int posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
187 * You can never reset a CPU clock, but we check for other errors
188 * in the call before failing with EPERM.
190 int error
= check_clock(which_clock
);
199 * Sample a per-thread clock for the given task.
201 static int cpu_clock_sample(const clockid_t which_clock
, struct task_struct
*p
,
202 union cpu_time_count
*cpu
)
204 switch (CPUCLOCK_WHICH(which_clock
)) {
208 cpu
->cpu
= prof_ticks(p
);
211 cpu
->cpu
= virt_ticks(p
);
214 cpu
->sched
= sched_ns(p
);
221 * Sample a process (thread group) clock for the given group_leader task.
222 * Must be called with tasklist_lock held for reading.
223 * Must be called with tasklist_lock held for reading, and p->sighand->siglock.
225 static int cpu_clock_sample_group_locked(unsigned int clock_idx
,
226 struct task_struct
*p
,
227 union cpu_time_count
*cpu
)
229 struct task_struct
*t
= p
;
234 cpu
->cpu
= cputime_add(p
->signal
->utime
, p
->signal
->stime
);
236 cpu
->cpu
= cputime_add(cpu
->cpu
, prof_ticks(t
));
241 cpu
->cpu
= p
->signal
->utime
;
243 cpu
->cpu
= cputime_add(cpu
->cpu
, virt_ticks(t
));
248 cpu
->sched
= p
->signal
->sum_sched_runtime
;
249 /* Add in each other live thread. */
250 while ((t
= next_thread(t
)) != p
) {
251 cpu
->sched
+= t
->se
.sum_exec_runtime
;
253 cpu
->sched
+= sched_ns(p
);
260 * Sample a process (thread group) clock for the given group_leader task.
261 * Must be called with tasklist_lock held for reading.
263 static int cpu_clock_sample_group(const clockid_t which_clock
,
264 struct task_struct
*p
,
265 union cpu_time_count
*cpu
)
269 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
270 ret
= cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock
), p
,
272 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
277 int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
279 const pid_t pid
= CPUCLOCK_PID(which_clock
);
281 union cpu_time_count rtn
;
285 * Special case constant value for our own clocks.
286 * We don't have to do any lookup to find ourselves.
288 if (CPUCLOCK_PERTHREAD(which_clock
)) {
290 * Sampling just ourselves we can do with no locking.
292 error
= cpu_clock_sample(which_clock
,
295 read_lock(&tasklist_lock
);
296 error
= cpu_clock_sample_group(which_clock
,
298 read_unlock(&tasklist_lock
);
302 * Find the given PID, and validate that the caller
303 * should be able to see it.
305 struct task_struct
*p
;
307 p
= find_task_by_vpid(pid
);
309 if (CPUCLOCK_PERTHREAD(which_clock
)) {
310 if (same_thread_group(p
, current
)) {
311 error
= cpu_clock_sample(which_clock
,
315 read_lock(&tasklist_lock
);
316 if (thread_group_leader(p
) && p
->signal
) {
318 cpu_clock_sample_group(which_clock
,
321 read_unlock(&tasklist_lock
);
329 sample_to_timespec(which_clock
, rtn
, tp
);
335 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
336 * This is called from sys_timer_create with the new timer already locked.
338 int posix_cpu_timer_create(struct k_itimer
*new_timer
)
341 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
342 struct task_struct
*p
;
344 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
347 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
348 new_timer
->it
.cpu
.incr
.sched
= 0;
349 new_timer
->it
.cpu
.expires
.sched
= 0;
351 read_lock(&tasklist_lock
);
352 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
356 p
= find_task_by_vpid(pid
);
357 if (p
&& !same_thread_group(p
, current
))
362 p
= current
->group_leader
;
364 p
= find_task_by_vpid(pid
);
365 if (p
&& !thread_group_leader(p
))
369 new_timer
->it
.cpu
.task
= p
;
375 read_unlock(&tasklist_lock
);
381 * Clean up a CPU-clock timer that is about to be destroyed.
382 * This is called from timer deletion with the timer already locked.
383 * If we return TIMER_RETRY, it's necessary to release the timer's lock
384 * and try again. (This happens when the timer is in the middle of firing.)
386 int posix_cpu_timer_del(struct k_itimer
*timer
)
388 struct task_struct
*p
= timer
->it
.cpu
.task
;
391 if (likely(p
!= NULL
)) {
392 read_lock(&tasklist_lock
);
393 if (unlikely(p
->signal
== NULL
)) {
395 * We raced with the reaping of the task.
396 * The deletion should have cleared us off the list.
398 BUG_ON(!list_empty(&timer
->it
.cpu
.entry
));
400 spin_lock(&p
->sighand
->siglock
);
401 if (timer
->it
.cpu
.firing
)
404 list_del(&timer
->it
.cpu
.entry
);
405 spin_unlock(&p
->sighand
->siglock
);
407 read_unlock(&tasklist_lock
);
417 * Clean out CPU timers still ticking when a thread exited. The task
418 * pointer is cleared, and the expiry time is replaced with the residual
419 * time for later timer_gettime calls to return.
420 * This must be called with the siglock held.
422 static void cleanup_timers(struct list_head
*head
,
423 cputime_t utime
, cputime_t stime
,
424 unsigned long long sum_exec_runtime
)
426 struct cpu_timer_list
*timer
, *next
;
427 cputime_t ptime
= cputime_add(utime
, stime
);
429 list_for_each_entry_safe(timer
, next
, head
, entry
) {
430 list_del_init(&timer
->entry
);
431 if (cputime_lt(timer
->expires
.cpu
, ptime
)) {
432 timer
->expires
.cpu
= cputime_zero
;
434 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
440 list_for_each_entry_safe(timer
, next
, head
, entry
) {
441 list_del_init(&timer
->entry
);
442 if (cputime_lt(timer
->expires
.cpu
, utime
)) {
443 timer
->expires
.cpu
= cputime_zero
;
445 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
451 list_for_each_entry_safe(timer
, next
, head
, entry
) {
452 list_del_init(&timer
->entry
);
453 if (timer
->expires
.sched
< sum_exec_runtime
) {
454 timer
->expires
.sched
= 0;
456 timer
->expires
.sched
-= sum_exec_runtime
;
462 * These are both called with the siglock held, when the current thread
463 * is being reaped. When the final (leader) thread in the group is reaped,
464 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
466 void posix_cpu_timers_exit(struct task_struct
*tsk
)
468 cleanup_timers(tsk
->cpu_timers
,
469 tsk
->utime
, tsk
->stime
, tsk
->se
.sum_exec_runtime
);
472 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
474 cleanup_timers(tsk
->signal
->cpu_timers
,
475 cputime_add(tsk
->utime
, tsk
->signal
->utime
),
476 cputime_add(tsk
->stime
, tsk
->signal
->stime
),
477 tsk
->se
.sum_exec_runtime
+ tsk
->signal
->sum_sched_runtime
);
482 * Set the expiry times of all the threads in the process so one of them
483 * will go off before the process cumulative expiry total is reached.
485 static void process_timer_rebalance(struct task_struct
*p
,
486 unsigned int clock_idx
,
487 union cpu_time_count expires
,
488 union cpu_time_count val
)
490 cputime_t ticks
, left
;
491 unsigned long long ns
, nsleft
;
492 struct task_struct
*t
= p
;
493 unsigned int nthreads
= atomic_read(&p
->signal
->live
);
503 left
= cputime_div_non_zero(cputime_sub(expires
.cpu
, val
.cpu
),
506 if (likely(!(t
->flags
& PF_EXITING
))) {
507 ticks
= cputime_add(prof_ticks(t
), left
);
508 if (cputime_eq(t
->it_prof_expires
,
510 cputime_gt(t
->it_prof_expires
, ticks
)) {
511 t
->it_prof_expires
= ticks
;
518 left
= cputime_div_non_zero(cputime_sub(expires
.cpu
, val
.cpu
),
521 if (likely(!(t
->flags
& PF_EXITING
))) {
522 ticks
= cputime_add(virt_ticks(t
), left
);
523 if (cputime_eq(t
->it_virt_expires
,
525 cputime_gt(t
->it_virt_expires
, ticks
)) {
526 t
->it_virt_expires
= ticks
;
533 nsleft
= expires
.sched
- val
.sched
;
534 do_div(nsleft
, nthreads
);
535 nsleft
= max_t(unsigned long long, nsleft
, 1);
537 if (likely(!(t
->flags
& PF_EXITING
))) {
538 ns
= t
->se
.sum_exec_runtime
+ nsleft
;
539 if (t
->it_sched_expires
== 0 ||
540 t
->it_sched_expires
> ns
) {
541 t
->it_sched_expires
= ns
;
550 static void clear_dead_task(struct k_itimer
*timer
, union cpu_time_count now
)
553 * That's all for this thread or process.
554 * We leave our residual in expires to be reported.
556 put_task_struct(timer
->it
.cpu
.task
);
557 timer
->it
.cpu
.task
= NULL
;
558 timer
->it
.cpu
.expires
= cpu_time_sub(timer
->it_clock
,
559 timer
->it
.cpu
.expires
,
564 * Insert the timer on the appropriate list before any timers that
565 * expire later. This must be called with the tasklist_lock held
566 * for reading, and interrupts disabled.
568 static void arm_timer(struct k_itimer
*timer
, union cpu_time_count now
)
570 struct task_struct
*p
= timer
->it
.cpu
.task
;
571 struct list_head
*head
, *listpos
;
572 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
573 struct cpu_timer_list
*next
;
576 head
= (CPUCLOCK_PERTHREAD(timer
->it_clock
) ?
577 p
->cpu_timers
: p
->signal
->cpu_timers
);
578 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
580 BUG_ON(!irqs_disabled());
581 spin_lock(&p
->sighand
->siglock
);
584 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
585 list_for_each_entry(next
, head
, entry
) {
586 if (next
->expires
.sched
> nt
->expires
.sched
)
588 listpos
= &next
->entry
;
591 list_for_each_entry(next
, head
, entry
) {
592 if (cputime_gt(next
->expires
.cpu
, nt
->expires
.cpu
))
594 listpos
= &next
->entry
;
597 list_add(&nt
->entry
, listpos
);
599 if (listpos
== head
) {
601 * We are the new earliest-expiring timer.
602 * If we are a thread timer, there can always
603 * be a process timer telling us to stop earlier.
606 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
607 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
611 if (cputime_eq(p
->it_prof_expires
,
613 cputime_gt(p
->it_prof_expires
,
615 p
->it_prof_expires
= nt
->expires
.cpu
;
618 if (cputime_eq(p
->it_virt_expires
,
620 cputime_gt(p
->it_virt_expires
,
622 p
->it_virt_expires
= nt
->expires
.cpu
;
625 if (p
->it_sched_expires
== 0 ||
626 p
->it_sched_expires
> nt
->expires
.sched
)
627 p
->it_sched_expires
= nt
->expires
.sched
;
632 * For a process timer, we must balance
633 * all the live threads' expirations.
635 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
639 if (!cputime_eq(p
->signal
->it_virt_expires
,
641 cputime_lt(p
->signal
->it_virt_expires
,
642 timer
->it
.cpu
.expires
.cpu
))
646 if (!cputime_eq(p
->signal
->it_prof_expires
,
648 cputime_lt(p
->signal
->it_prof_expires
,
649 timer
->it
.cpu
.expires
.cpu
))
651 i
= p
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
;
652 if (i
!= RLIM_INFINITY
&&
653 i
<= cputime_to_secs(timer
->it
.cpu
.expires
.cpu
))
658 process_timer_rebalance(
660 CPUCLOCK_WHICH(timer
->it_clock
),
661 timer
->it
.cpu
.expires
, now
);
667 spin_unlock(&p
->sighand
->siglock
);
671 * The timer is locked, fire it and arrange for its reload.
673 static void cpu_timer_fire(struct k_itimer
*timer
)
675 if (unlikely(timer
->sigq
== NULL
)) {
677 * This a special case for clock_nanosleep,
678 * not a normal timer from sys_timer_create.
680 wake_up_process(timer
->it_process
);
681 timer
->it
.cpu
.expires
.sched
= 0;
682 } else if (timer
->it
.cpu
.incr
.sched
== 0) {
684 * One-shot timer. Clear it as soon as it's fired.
686 posix_timer_event(timer
, 0);
687 timer
->it
.cpu
.expires
.sched
= 0;
688 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
690 * The signal did not get queued because the signal
691 * was ignored, so we won't get any callback to
692 * reload the timer. But we need to keep it
693 * ticking in case the signal is deliverable next time.
695 posix_cpu_timer_schedule(timer
);
700 * Guts of sys_timer_settime for CPU timers.
701 * This is called with the timer locked and interrupts disabled.
702 * If we return TIMER_RETRY, it's necessary to release the timer's lock
703 * and try again. (This happens when the timer is in the middle of firing.)
705 int posix_cpu_timer_set(struct k_itimer
*timer
, int flags
,
706 struct itimerspec
*new, struct itimerspec
*old
)
708 struct task_struct
*p
= timer
->it
.cpu
.task
;
709 union cpu_time_count old_expires
, new_expires
, val
;
712 if (unlikely(p
== NULL
)) {
714 * Timer refers to a dead task's clock.
719 new_expires
= timespec_to_sample(timer
->it_clock
, &new->it_value
);
721 read_lock(&tasklist_lock
);
723 * We need the tasklist_lock to protect against reaping that
724 * clears p->signal. If p has just been reaped, we can no
725 * longer get any information about it at all.
727 if (unlikely(p
->signal
== NULL
)) {
728 read_unlock(&tasklist_lock
);
730 timer
->it
.cpu
.task
= NULL
;
735 * Disarm any old timer after extracting its expiry time.
737 BUG_ON(!irqs_disabled());
740 spin_lock(&p
->sighand
->siglock
);
741 old_expires
= timer
->it
.cpu
.expires
;
742 if (unlikely(timer
->it
.cpu
.firing
)) {
743 timer
->it
.cpu
.firing
= -1;
746 list_del_init(&timer
->it
.cpu
.entry
);
747 spin_unlock(&p
->sighand
->siglock
);
750 * We need to sample the current value to convert the new
751 * value from to relative and absolute, and to convert the
752 * old value from absolute to relative. To set a process
753 * timer, we need a sample to balance the thread expiry
754 * times (in arm_timer). With an absolute time, we must
755 * check if it's already passed. In short, we need a sample.
757 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
758 cpu_clock_sample(timer
->it_clock
, p
, &val
);
760 cpu_clock_sample_group(timer
->it_clock
, p
, &val
);
764 if (old_expires
.sched
== 0) {
765 old
->it_value
.tv_sec
= 0;
766 old
->it_value
.tv_nsec
= 0;
769 * Update the timer in case it has
770 * overrun already. If it has,
771 * we'll report it as having overrun
772 * and with the next reloaded timer
773 * already ticking, though we are
774 * swallowing that pending
775 * notification here to install the
778 bump_cpu_timer(timer
, val
);
779 if (cpu_time_before(timer
->it_clock
, val
,
780 timer
->it
.cpu
.expires
)) {
781 old_expires
= cpu_time_sub(
783 timer
->it
.cpu
.expires
, val
);
784 sample_to_timespec(timer
->it_clock
,
788 old
->it_value
.tv_nsec
= 1;
789 old
->it_value
.tv_sec
= 0;
796 * We are colliding with the timer actually firing.
797 * Punt after filling in the timer's old value, and
798 * disable this firing since we are already reporting
799 * it as an overrun (thanks to bump_cpu_timer above).
801 read_unlock(&tasklist_lock
);
805 if (new_expires
.sched
!= 0 && !(flags
& TIMER_ABSTIME
)) {
806 cpu_time_add(timer
->it_clock
, &new_expires
, val
);
810 * Install the new expiry time (or zero).
811 * For a timer with no notification action, we don't actually
812 * arm the timer (we'll just fake it for timer_gettime).
814 timer
->it
.cpu
.expires
= new_expires
;
815 if (new_expires
.sched
!= 0 &&
816 (timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
&&
817 cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
818 arm_timer(timer
, val
);
821 read_unlock(&tasklist_lock
);
824 * Install the new reload setting, and
825 * set up the signal and overrun bookkeeping.
827 timer
->it
.cpu
.incr
= timespec_to_sample(timer
->it_clock
,
831 * This acts as a modification timestamp for the timer,
832 * so any automatic reload attempt will punt on seeing
833 * that we have reset the timer manually.
835 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
837 timer
->it_overrun_last
= 0;
838 timer
->it_overrun
= -1;
840 if (new_expires
.sched
!= 0 &&
841 (timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
&&
842 !cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
844 * The designated time already passed, so we notify
845 * immediately, even if the thread never runs to
846 * accumulate more time on this clock.
848 cpu_timer_fire(timer
);
854 sample_to_timespec(timer
->it_clock
,
855 timer
->it
.cpu
.incr
, &old
->it_interval
);
860 void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
862 union cpu_time_count now
;
863 struct task_struct
*p
= timer
->it
.cpu
.task
;
867 * Easy part: convert the reload time.
869 sample_to_timespec(timer
->it_clock
,
870 timer
->it
.cpu
.incr
, &itp
->it_interval
);
872 if (timer
->it
.cpu
.expires
.sched
== 0) { /* Timer not armed at all. */
873 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
877 if (unlikely(p
== NULL
)) {
879 * This task already died and the timer will never fire.
880 * In this case, expires is actually the dead value.
883 sample_to_timespec(timer
->it_clock
, timer
->it
.cpu
.expires
,
889 * Sample the clock to take the difference with the expiry time.
891 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
892 cpu_clock_sample(timer
->it_clock
, p
, &now
);
893 clear_dead
= p
->exit_state
;
895 read_lock(&tasklist_lock
);
896 if (unlikely(p
->signal
== NULL
)) {
898 * The process has been reaped.
899 * We can't even collect a sample any more.
900 * Call the timer disarmed, nothing else to do.
903 timer
->it
.cpu
.task
= NULL
;
904 timer
->it
.cpu
.expires
.sched
= 0;
905 read_unlock(&tasklist_lock
);
908 cpu_clock_sample_group(timer
->it_clock
, p
, &now
);
909 clear_dead
= (unlikely(p
->exit_state
) &&
910 thread_group_empty(p
));
912 read_unlock(&tasklist_lock
);
915 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
916 if (timer
->it
.cpu
.incr
.sched
== 0 &&
917 cpu_time_before(timer
->it_clock
,
918 timer
->it
.cpu
.expires
, now
)) {
920 * Do-nothing timer expired and has no reload,
921 * so it's as if it was never set.
923 timer
->it
.cpu
.expires
.sched
= 0;
924 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
928 * Account for any expirations and reloads that should
931 bump_cpu_timer(timer
, now
);
934 if (unlikely(clear_dead
)) {
936 * We've noticed that the thread is dead, but
937 * not yet reaped. Take this opportunity to
940 clear_dead_task(timer
, now
);
944 if (cpu_time_before(timer
->it_clock
, now
, timer
->it
.cpu
.expires
)) {
945 sample_to_timespec(timer
->it_clock
,
946 cpu_time_sub(timer
->it_clock
,
947 timer
->it
.cpu
.expires
, now
),
951 * The timer should have expired already, but the firing
952 * hasn't taken place yet. Say it's just about to expire.
954 itp
->it_value
.tv_nsec
= 1;
955 itp
->it_value
.tv_sec
= 0;
960 * Check for any per-thread CPU timers that have fired and move them off
961 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
962 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
964 static void check_thread_timers(struct task_struct
*tsk
,
965 struct list_head
*firing
)
968 struct list_head
*timers
= tsk
->cpu_timers
;
969 struct signal_struct
*const sig
= tsk
->signal
;
972 tsk
->it_prof_expires
= cputime_zero
;
973 while (!list_empty(timers
)) {
974 struct cpu_timer_list
*t
= list_first_entry(timers
,
975 struct cpu_timer_list
,
977 if (!--maxfire
|| cputime_lt(prof_ticks(tsk
), t
->expires
.cpu
)) {
978 tsk
->it_prof_expires
= t
->expires
.cpu
;
982 list_move_tail(&t
->entry
, firing
);
987 tsk
->it_virt_expires
= cputime_zero
;
988 while (!list_empty(timers
)) {
989 struct cpu_timer_list
*t
= list_first_entry(timers
,
990 struct cpu_timer_list
,
992 if (!--maxfire
|| cputime_lt(virt_ticks(tsk
), t
->expires
.cpu
)) {
993 tsk
->it_virt_expires
= t
->expires
.cpu
;
997 list_move_tail(&t
->entry
, firing
);
1002 tsk
->it_sched_expires
= 0;
1003 while (!list_empty(timers
)) {
1004 struct cpu_timer_list
*t
= list_first_entry(timers
,
1005 struct cpu_timer_list
,
1007 if (!--maxfire
|| tsk
->se
.sum_exec_runtime
< t
->expires
.sched
) {
1008 tsk
->it_sched_expires
= t
->expires
.sched
;
1012 list_move_tail(&t
->entry
, firing
);
1016 * Check for the special case thread timers.
1018 if (sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
!= RLIM_INFINITY
) {
1019 unsigned long hard
= sig
->rlim
[RLIMIT_RTTIME
].rlim_max
;
1020 unsigned long *soft
= &sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
;
1022 if (hard
!= RLIM_INFINITY
&&
1023 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
1025 * At the hard limit, we just die.
1026 * No need to calculate anything else now.
1028 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1031 if (tsk
->rt
.timeout
> DIV_ROUND_UP(*soft
, USEC_PER_SEC
/HZ
)) {
1033 * At the soft limit, send a SIGXCPU every second.
1035 if (sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
1036 < sig
->rlim
[RLIMIT_RTTIME
].rlim_max
) {
1037 sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
+=
1040 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1046 * Check for any per-thread CPU timers that have fired and move them
1047 * off the tsk->*_timers list onto the firing list. Per-thread timers
1048 * have already been taken off.
1050 static void check_process_timers(struct task_struct
*tsk
,
1051 struct list_head
*firing
)
1054 struct signal_struct
*const sig
= tsk
->signal
;
1055 cputime_t utime
, stime
, ptime
, virt_expires
, prof_expires
;
1056 unsigned long long sum_sched_runtime
, sched_expires
;
1057 struct task_struct
*t
;
1058 struct list_head
*timers
= sig
->cpu_timers
;
1061 * Don't sample the current process CPU clocks if there are no timers.
1063 if (list_empty(&timers
[CPUCLOCK_PROF
]) &&
1064 cputime_eq(sig
->it_prof_expires
, cputime_zero
) &&
1065 sig
->rlim
[RLIMIT_CPU
].rlim_cur
== RLIM_INFINITY
&&
1066 list_empty(&timers
[CPUCLOCK_VIRT
]) &&
1067 cputime_eq(sig
->it_virt_expires
, cputime_zero
) &&
1068 list_empty(&timers
[CPUCLOCK_SCHED
]))
1072 * Collect the current process totals.
1076 sum_sched_runtime
= sig
->sum_sched_runtime
;
1079 utime
= cputime_add(utime
, t
->utime
);
1080 stime
= cputime_add(stime
, t
->stime
);
1081 sum_sched_runtime
+= t
->se
.sum_exec_runtime
;
1084 ptime
= cputime_add(utime
, stime
);
1087 prof_expires
= cputime_zero
;
1088 while (!list_empty(timers
)) {
1089 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1090 struct cpu_timer_list
,
1092 if (!--maxfire
|| cputime_lt(ptime
, tl
->expires
.cpu
)) {
1093 prof_expires
= tl
->expires
.cpu
;
1097 list_move_tail(&tl
->entry
, firing
);
1102 virt_expires
= cputime_zero
;
1103 while (!list_empty(timers
)) {
1104 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1105 struct cpu_timer_list
,
1107 if (!--maxfire
|| cputime_lt(utime
, tl
->expires
.cpu
)) {
1108 virt_expires
= tl
->expires
.cpu
;
1112 list_move_tail(&tl
->entry
, firing
);
1118 while (!list_empty(timers
)) {
1119 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1120 struct cpu_timer_list
,
1122 if (!--maxfire
|| sum_sched_runtime
< tl
->expires
.sched
) {
1123 sched_expires
= tl
->expires
.sched
;
1127 list_move_tail(&tl
->entry
, firing
);
1131 * Check for the special case process timers.
1133 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
)) {
1134 if (cputime_ge(ptime
, sig
->it_prof_expires
)) {
1135 /* ITIMER_PROF fires and reloads. */
1136 sig
->it_prof_expires
= sig
->it_prof_incr
;
1137 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
)) {
1138 sig
->it_prof_expires
= cputime_add(
1139 sig
->it_prof_expires
, ptime
);
1141 __group_send_sig_info(SIGPROF
, SEND_SIG_PRIV
, tsk
);
1143 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
) &&
1144 (cputime_eq(prof_expires
, cputime_zero
) ||
1145 cputime_lt(sig
->it_prof_expires
, prof_expires
))) {
1146 prof_expires
= sig
->it_prof_expires
;
1149 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
)) {
1150 if (cputime_ge(utime
, sig
->it_virt_expires
)) {
1151 /* ITIMER_VIRTUAL fires and reloads. */
1152 sig
->it_virt_expires
= sig
->it_virt_incr
;
1153 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
)) {
1154 sig
->it_virt_expires
= cputime_add(
1155 sig
->it_virt_expires
, utime
);
1157 __group_send_sig_info(SIGVTALRM
, SEND_SIG_PRIV
, tsk
);
1159 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
) &&
1160 (cputime_eq(virt_expires
, cputime_zero
) ||
1161 cputime_lt(sig
->it_virt_expires
, virt_expires
))) {
1162 virt_expires
= sig
->it_virt_expires
;
1165 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
1166 unsigned long psecs
= cputime_to_secs(ptime
);
1168 if (psecs
>= sig
->rlim
[RLIMIT_CPU
].rlim_max
) {
1170 * At the hard limit, we just die.
1171 * No need to calculate anything else now.
1173 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1176 if (psecs
>= sig
->rlim
[RLIMIT_CPU
].rlim_cur
) {
1178 * At the soft limit, send a SIGXCPU every second.
1180 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1181 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
1182 < sig
->rlim
[RLIMIT_CPU
].rlim_max
) {
1183 sig
->rlim
[RLIMIT_CPU
].rlim_cur
++;
1186 x
= secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1187 if (cputime_eq(prof_expires
, cputime_zero
) ||
1188 cputime_lt(x
, prof_expires
)) {
1193 if (!cputime_eq(prof_expires
, cputime_zero
) ||
1194 !cputime_eq(virt_expires
, cputime_zero
) ||
1195 sched_expires
!= 0) {
1197 * Rebalance the threads' expiry times for the remaining
1198 * process CPU timers.
1201 cputime_t prof_left
, virt_left
, ticks
;
1202 unsigned long long sched_left
, sched
;
1203 const unsigned int nthreads
= atomic_read(&sig
->live
);
1208 prof_left
= cputime_sub(prof_expires
, utime
);
1209 prof_left
= cputime_sub(prof_left
, stime
);
1210 prof_left
= cputime_div_non_zero(prof_left
, nthreads
);
1211 virt_left
= cputime_sub(virt_expires
, utime
);
1212 virt_left
= cputime_div_non_zero(virt_left
, nthreads
);
1213 if (sched_expires
) {
1214 sched_left
= sched_expires
- sum_sched_runtime
;
1215 do_div(sched_left
, nthreads
);
1216 sched_left
= max_t(unsigned long long, sched_left
, 1);
1222 if (unlikely(t
->flags
& PF_EXITING
))
1225 ticks
= cputime_add(cputime_add(t
->utime
, t
->stime
),
1227 if (!cputime_eq(prof_expires
, cputime_zero
) &&
1228 (cputime_eq(t
->it_prof_expires
, cputime_zero
) ||
1229 cputime_gt(t
->it_prof_expires
, ticks
))) {
1230 t
->it_prof_expires
= ticks
;
1233 ticks
= cputime_add(t
->utime
, virt_left
);
1234 if (!cputime_eq(virt_expires
, cputime_zero
) &&
1235 (cputime_eq(t
->it_virt_expires
, cputime_zero
) ||
1236 cputime_gt(t
->it_virt_expires
, ticks
))) {
1237 t
->it_virt_expires
= ticks
;
1240 sched
= t
->se
.sum_exec_runtime
+ sched_left
;
1241 if (sched_expires
&& (t
->it_sched_expires
== 0 ||
1242 t
->it_sched_expires
> sched
)) {
1243 t
->it_sched_expires
= sched
;
1245 } while ((t
= next_thread(t
)) != tsk
);
1250 * This is called from the signal code (via do_schedule_next_timer)
1251 * when the last timer signal was delivered and we have to reload the timer.
1253 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
1255 struct task_struct
*p
= timer
->it
.cpu
.task
;
1256 union cpu_time_count now
;
1258 if (unlikely(p
== NULL
))
1260 * The task was cleaned up already, no future firings.
1265 * Fetch the current sample and update the timer's expiry time.
1267 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1268 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1269 bump_cpu_timer(timer
, now
);
1270 if (unlikely(p
->exit_state
)) {
1271 clear_dead_task(timer
, now
);
1274 read_lock(&tasklist_lock
); /* arm_timer needs it. */
1276 read_lock(&tasklist_lock
);
1277 if (unlikely(p
->signal
== NULL
)) {
1279 * The process has been reaped.
1280 * We can't even collect a sample any more.
1283 timer
->it
.cpu
.task
= p
= NULL
;
1284 timer
->it
.cpu
.expires
.sched
= 0;
1286 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1288 * We've noticed that the thread is dead, but
1289 * not yet reaped. Take this opportunity to
1290 * drop our task ref.
1292 clear_dead_task(timer
, now
);
1295 cpu_clock_sample_group(timer
->it_clock
, p
, &now
);
1296 bump_cpu_timer(timer
, now
);
1297 /* Leave the tasklist_lock locked for the call below. */
1301 * Now re-arm for the new expiry time.
1303 arm_timer(timer
, now
);
1306 read_unlock(&tasklist_lock
);
1309 timer
->it_overrun_last
= timer
->it_overrun
;
1310 timer
->it_overrun
= -1;
1311 ++timer
->it_requeue_pending
;
1315 * This is called from the timer interrupt handler. The irq handler has
1316 * already updated our counts. We need to check if any timers fire now.
1317 * Interrupts are disabled.
1319 void run_posix_cpu_timers(struct task_struct
*tsk
)
1322 struct k_itimer
*timer
, *next
;
1324 BUG_ON(!irqs_disabled());
1326 #define UNEXPIRED(clock) \
1327 (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \
1328 cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires))
1330 if (UNEXPIRED(prof
) && UNEXPIRED(virt
) &&
1331 (tsk
->it_sched_expires
== 0 ||
1332 tsk
->se
.sum_exec_runtime
< tsk
->it_sched_expires
))
1338 * Double-check with locks held.
1340 read_lock(&tasklist_lock
);
1341 if (likely(tsk
->signal
!= NULL
)) {
1342 spin_lock(&tsk
->sighand
->siglock
);
1345 * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N]
1346 * all the timers that are firing, and put them on the firing list.
1348 check_thread_timers(tsk
, &firing
);
1349 check_process_timers(tsk
, &firing
);
1352 * We must release these locks before taking any timer's lock.
1353 * There is a potential race with timer deletion here, as the
1354 * siglock now protects our private firing list. We have set
1355 * the firing flag in each timer, so that a deletion attempt
1356 * that gets the timer lock before we do will give it up and
1357 * spin until we've taken care of that timer below.
1359 spin_unlock(&tsk
->sighand
->siglock
);
1361 read_unlock(&tasklist_lock
);
1364 * Now that all the timers on our list have the firing flag,
1365 * noone will touch their list entries but us. We'll take
1366 * each timer's lock before clearing its firing flag, so no
1367 * timer call will interfere.
1369 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1371 spin_lock(&timer
->it_lock
);
1372 list_del_init(&timer
->it
.cpu
.entry
);
1373 firing
= timer
->it
.cpu
.firing
;
1374 timer
->it
.cpu
.firing
= 0;
1376 * The firing flag is -1 if we collided with a reset
1377 * of the timer, which already reported this
1378 * almost-firing as an overrun. So don't generate an event.
1380 if (likely(firing
>= 0)) {
1381 cpu_timer_fire(timer
);
1383 spin_unlock(&timer
->it_lock
);
1388 * Set one of the process-wide special case CPU timers.
1389 * The tasklist_lock and tsk->sighand->siglock must be held by the caller.
1390 * The oldval argument is null for the RLIMIT_CPU timer, where *newval is
1391 * absolute; non-null for ITIMER_*, where *newval is relative and we update
1392 * it to be absolute, *oldval is absolute and we update it to be relative.
1394 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1395 cputime_t
*newval
, cputime_t
*oldval
)
1397 union cpu_time_count now
;
1398 struct list_head
*head
;
1400 BUG_ON(clock_idx
== CPUCLOCK_SCHED
);
1401 cpu_clock_sample_group_locked(clock_idx
, tsk
, &now
);
1404 if (!cputime_eq(*oldval
, cputime_zero
)) {
1405 if (cputime_le(*oldval
, now
.cpu
)) {
1406 /* Just about to fire. */
1407 *oldval
= jiffies_to_cputime(1);
1409 *oldval
= cputime_sub(*oldval
, now
.cpu
);
1413 if (cputime_eq(*newval
, cputime_zero
))
1415 *newval
= cputime_add(*newval
, now
.cpu
);
1418 * If the RLIMIT_CPU timer will expire before the
1419 * ITIMER_PROF timer, we have nothing else to do.
1421 if (tsk
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
1422 < cputime_to_secs(*newval
))
1427 * Check whether there are any process timers already set to fire
1428 * before this one. If so, we don't have anything more to do.
1430 head
= &tsk
->signal
->cpu_timers
[clock_idx
];
1431 if (list_empty(head
) ||
1432 cputime_ge(list_first_entry(head
,
1433 struct cpu_timer_list
, entry
)->expires
.cpu
,
1436 * Rejigger each thread's expiry time so that one will
1437 * notice before we hit the process-cumulative expiry time.
1439 union cpu_time_count expires
= { .sched
= 0 };
1440 expires
.cpu
= *newval
;
1441 process_timer_rebalance(tsk
, clock_idx
, expires
, now
);
1445 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1446 struct timespec
*rqtp
, struct itimerspec
*it
)
1448 struct k_itimer timer
;
1452 * Set up a temporary timer and then wait for it to go off.
1454 memset(&timer
, 0, sizeof timer
);
1455 spin_lock_init(&timer
.it_lock
);
1456 timer
.it_clock
= which_clock
;
1457 timer
.it_overrun
= -1;
1458 error
= posix_cpu_timer_create(&timer
);
1459 timer
.it_process
= current
;
1461 static struct itimerspec zero_it
;
1463 memset(it
, 0, sizeof *it
);
1464 it
->it_value
= *rqtp
;
1466 spin_lock_irq(&timer
.it_lock
);
1467 error
= posix_cpu_timer_set(&timer
, flags
, it
, NULL
);
1469 spin_unlock_irq(&timer
.it_lock
);
1473 while (!signal_pending(current
)) {
1474 if (timer
.it
.cpu
.expires
.sched
== 0) {
1476 * Our timer fired and was reset.
1478 spin_unlock_irq(&timer
.it_lock
);
1483 * Block until cpu_timer_fire (or a signal) wakes us.
1485 __set_current_state(TASK_INTERRUPTIBLE
);
1486 spin_unlock_irq(&timer
.it_lock
);
1488 spin_lock_irq(&timer
.it_lock
);
1492 * We were interrupted by a signal.
1494 sample_to_timespec(which_clock
, timer
.it
.cpu
.expires
, rqtp
);
1495 posix_cpu_timer_set(&timer
, 0, &zero_it
, it
);
1496 spin_unlock_irq(&timer
.it_lock
);
1498 if ((it
->it_value
.tv_sec
| it
->it_value
.tv_nsec
) == 0) {
1500 * It actually did fire already.
1505 error
= -ERESTART_RESTARTBLOCK
;
1511 int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1512 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1514 struct restart_block
*restart_block
=
1515 ¤t_thread_info()->restart_block
;
1516 struct itimerspec it
;
1520 * Diagnose required errors first.
1522 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1523 (CPUCLOCK_PID(which_clock
) == 0 ||
1524 CPUCLOCK_PID(which_clock
) == current
->pid
))
1527 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
, &it
);
1529 if (error
== -ERESTART_RESTARTBLOCK
) {
1531 if (flags
& TIMER_ABSTIME
)
1532 return -ERESTARTNOHAND
;
1534 * Report back to the user the time still remaining.
1536 if (rmtp
!= NULL
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1539 restart_block
->fn
= posix_cpu_nsleep_restart
;
1540 restart_block
->arg0
= which_clock
;
1541 restart_block
->arg1
= (unsigned long) rmtp
;
1542 restart_block
->arg2
= rqtp
->tv_sec
;
1543 restart_block
->arg3
= rqtp
->tv_nsec
;
1548 long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1550 clockid_t which_clock
= restart_block
->arg0
;
1551 struct timespec __user
*rmtp
;
1553 struct itimerspec it
;
1556 rmtp
= (struct timespec __user
*) restart_block
->arg1
;
1557 t
.tv_sec
= restart_block
->arg2
;
1558 t
.tv_nsec
= restart_block
->arg3
;
1560 restart_block
->fn
= do_no_restart_syscall
;
1561 error
= do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
, &it
);
1563 if (error
== -ERESTART_RESTARTBLOCK
) {
1565 * Report back to the user the time still remaining.
1567 if (rmtp
!= NULL
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1570 restart_block
->fn
= posix_cpu_nsleep_restart
;
1571 restart_block
->arg0
= which_clock
;
1572 restart_block
->arg1
= (unsigned long) rmtp
;
1573 restart_block
->arg2
= t
.tv_sec
;
1574 restart_block
->arg3
= t
.tv_nsec
;
1581 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1582 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1584 static int process_cpu_clock_getres(const clockid_t which_clock
,
1585 struct timespec
*tp
)
1587 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1589 static int process_cpu_clock_get(const clockid_t which_clock
,
1590 struct timespec
*tp
)
1592 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1594 static int process_cpu_timer_create(struct k_itimer
*timer
)
1596 timer
->it_clock
= PROCESS_CLOCK
;
1597 return posix_cpu_timer_create(timer
);
1599 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1600 struct timespec
*rqtp
,
1601 struct timespec __user
*rmtp
)
1603 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1605 static long process_cpu_nsleep_restart(struct restart_block
*restart_block
)
1609 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1610 struct timespec
*tp
)
1612 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1614 static int thread_cpu_clock_get(const clockid_t which_clock
,
1615 struct timespec
*tp
)
1617 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1619 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1621 timer
->it_clock
= THREAD_CLOCK
;
1622 return posix_cpu_timer_create(timer
);
1624 static int thread_cpu_nsleep(const clockid_t which_clock
, int flags
,
1625 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1629 static long thread_cpu_nsleep_restart(struct restart_block
*restart_block
)
1634 static __init
int init_posix_cpu_timers(void)
1636 struct k_clock process
= {
1637 .clock_getres
= process_cpu_clock_getres
,
1638 .clock_get
= process_cpu_clock_get
,
1639 .clock_set
= do_posix_clock_nosettime
,
1640 .timer_create
= process_cpu_timer_create
,
1641 .nsleep
= process_cpu_nsleep
,
1642 .nsleep_restart
= process_cpu_nsleep_restart
,
1644 struct k_clock thread
= {
1645 .clock_getres
= thread_cpu_clock_getres
,
1646 .clock_get
= thread_cpu_clock_get
,
1647 .clock_set
= do_posix_clock_nosettime
,
1648 .timer_create
= thread_cpu_timer_create
,
1649 .nsleep
= thread_cpu_nsleep
,
1650 .nsleep_restart
= thread_cpu_nsleep_restart
,
1653 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1654 register_posix_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1658 __initcall(init_posix_cpu_timers
);