2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
37 unsigned int sysctl_sched_latency __read_mostly
= 20000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 2 msec, units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity __read_mostly
= 2000000ULL;
46 * sys_sched_yield() compat mode
48 * This option switches the agressive yield implementation of the
49 * old scheduler back on.
51 unsigned int __read_mostly sysctl_sched_compat_yield
;
54 * SCHED_BATCH wake-up granularity.
55 * (default: 25 msec, units: nanoseconds)
57 * This option delays the preemption effects of decoupled workloads
58 * and reduces their over-scheduling. Synchronous workloads will still
59 * have immediate wakeup/sleep latencies.
61 unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly
= 25000000UL;
64 * SCHED_OTHER wake-up granularity.
65 * (default: 1 msec, units: nanoseconds)
67 * This option delays the preemption effects of decoupled workloads
68 * and reduces their over-scheduling. Synchronous workloads will still
69 * have immediate wakeup/sleep latencies.
71 unsigned int sysctl_sched_wakeup_granularity __read_mostly
= 1000000UL;
73 unsigned int sysctl_sched_stat_granularity __read_mostly
;
76 * Initialized in sched_init_granularity() [to 5 times the base granularity]:
78 unsigned int sysctl_sched_runtime_limit __read_mostly
;
81 * Debugging: various feature bits
84 SCHED_FEAT_FAIR_SLEEPERS
= 1,
85 SCHED_FEAT_SLEEPER_AVG
= 2,
86 SCHED_FEAT_SLEEPER_LOAD_AVG
= 4,
87 SCHED_FEAT_PRECISE_CPU_LOAD
= 8,
88 SCHED_FEAT_START_DEBIT
= 16,
89 SCHED_FEAT_SKIP_INITIAL
= 32,
92 unsigned int sysctl_sched_features __read_mostly
=
93 SCHED_FEAT_FAIR_SLEEPERS
*1 |
94 SCHED_FEAT_SLEEPER_AVG
*0 |
95 SCHED_FEAT_SLEEPER_LOAD_AVG
*1 |
96 SCHED_FEAT_PRECISE_CPU_LOAD
*1 |
97 SCHED_FEAT_START_DEBIT
*1 |
98 SCHED_FEAT_SKIP_INITIAL
*0;
100 extern struct sched_class fair_sched_class
;
102 /**************************************************************
103 * CFS operations on generic schedulable entities:
106 #ifdef CONFIG_FAIR_GROUP_SCHED
108 /* cpu runqueue to which this cfs_rq is attached */
109 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
114 /* currently running entity (if any) on this cfs_rq */
115 static inline struct sched_entity
*cfs_rq_curr(struct cfs_rq
*cfs_rq
)
120 /* An entity is a task if it doesn't "own" a runqueue */
121 #define entity_is_task(se) (!se->my_q)
124 set_cfs_rq_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
129 #else /* CONFIG_FAIR_GROUP_SCHED */
131 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
133 return container_of(cfs_rq
, struct rq
, cfs
);
136 static inline struct sched_entity
*cfs_rq_curr(struct cfs_rq
*cfs_rq
)
138 struct rq
*rq
= rq_of(cfs_rq
);
140 if (unlikely(rq
->curr
->sched_class
!= &fair_sched_class
))
143 return &rq
->curr
->se
;
146 #define entity_is_task(se) 1
149 set_cfs_rq_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
151 #endif /* CONFIG_FAIR_GROUP_SCHED */
153 static inline struct task_struct
*task_of(struct sched_entity
*se
)
155 return container_of(se
, struct task_struct
, se
);
159 /**************************************************************
160 * Scheduling class tree data structure manipulation methods:
164 * Enqueue an entity into the rb-tree:
167 __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
169 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
170 struct rb_node
*parent
= NULL
;
171 struct sched_entity
*entry
;
172 s64 key
= se
->fair_key
;
176 * Find the right place in the rbtree:
180 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
182 * We dont care about collisions. Nodes with
183 * the same key stay together.
185 if (key
- entry
->fair_key
< 0) {
186 link
= &parent
->rb_left
;
188 link
= &parent
->rb_right
;
194 * Maintain a cache of leftmost tree entries (it is frequently
198 cfs_rq
->rb_leftmost
= &se
->run_node
;
200 rb_link_node(&se
->run_node
, parent
, link
);
201 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
202 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
203 cfs_rq
->nr_running
++;
206 schedstat_add(cfs_rq
, wait_runtime
, se
->wait_runtime
);
210 __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
212 if (cfs_rq
->rb_leftmost
== &se
->run_node
)
213 cfs_rq
->rb_leftmost
= rb_next(&se
->run_node
);
214 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
215 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
216 cfs_rq
->nr_running
--;
219 schedstat_add(cfs_rq
, wait_runtime
, -se
->wait_runtime
);
222 static inline struct rb_node
*first_fair(struct cfs_rq
*cfs_rq
)
224 return cfs_rq
->rb_leftmost
;
227 static struct sched_entity
*__pick_next_entity(struct cfs_rq
*cfs_rq
)
229 return rb_entry(first_fair(cfs_rq
), struct sched_entity
, run_node
);
232 /**************************************************************
233 * Scheduling class statistics methods:
237 * Calculate the preemption granularity needed to schedule every
238 * runnable task once per sysctl_sched_latency amount of time.
239 * (down to a sensible low limit on granularity)
241 * For example, if there are 2 tasks running and latency is 10 msecs,
242 * we switch tasks every 5 msecs. If we have 3 tasks running, we have
243 * to switch tasks every 3.33 msecs to get a 10 msecs observed latency
244 * for each task. We do finer and finer scheduling up to until we
245 * reach the minimum granularity value.
247 * To achieve this we use the following dynamic-granularity rule:
249 * gran = lat/nr - lat/nr/nr
251 * This comes out of the following equations:
256 * kB2 = kB1 - d + d/nr
259 * Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running),
260 * '1' is start of time, '2' is end of time, 'd' is delay between
261 * 1 and 2 (during which task B was running), 'nr' is number of tasks
262 * running, 'lat' is the the period of each task. ('lat' is the
263 * sched_latency that we aim for.)
266 sched_granularity(struct cfs_rq
*cfs_rq
)
268 unsigned int gran
= sysctl_sched_latency
;
269 unsigned int nr
= cfs_rq
->nr_running
;
272 gran
= gran
/nr
- gran
/nr
/nr
;
273 gran
= max(gran
, sysctl_sched_min_granularity
);
280 * We rescale the rescheduling granularity of tasks according to their
281 * nice level, but only linearly, not exponentially:
284 niced_granularity(struct sched_entity
*curr
, unsigned long granularity
)
288 if (likely(curr
->load
.weight
== NICE_0_LOAD
))
291 * Positive nice levels get the same granularity as nice-0:
293 if (likely(curr
->load
.weight
< NICE_0_LOAD
)) {
294 tmp
= curr
->load
.weight
* (u64
)granularity
;
295 return (long) (tmp
>> NICE_0_SHIFT
);
298 * Negative nice level tasks get linearly finer
301 tmp
= curr
->load
.inv_weight
* (u64
)granularity
;
304 * It will always fit into 'long':
306 return (long) (tmp
>> (WMULT_SHIFT
-NICE_0_SHIFT
));
310 limit_wait_runtime(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
312 long limit
= sysctl_sched_runtime_limit
;
315 * Niced tasks have the same history dynamic range as
318 if (unlikely(se
->wait_runtime
> limit
)) {
319 se
->wait_runtime
= limit
;
320 schedstat_inc(se
, wait_runtime_overruns
);
321 schedstat_inc(cfs_rq
, wait_runtime_overruns
);
323 if (unlikely(se
->wait_runtime
< -limit
)) {
324 se
->wait_runtime
= -limit
;
325 schedstat_inc(se
, wait_runtime_underruns
);
326 schedstat_inc(cfs_rq
, wait_runtime_underruns
);
331 __add_wait_runtime(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, long delta
)
333 se
->wait_runtime
+= delta
;
334 schedstat_add(se
, sum_wait_runtime
, delta
);
335 limit_wait_runtime(cfs_rq
, se
);
339 add_wait_runtime(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, long delta
)
341 schedstat_add(cfs_rq
, wait_runtime
, -se
->wait_runtime
);
342 __add_wait_runtime(cfs_rq
, se
, delta
);
343 schedstat_add(cfs_rq
, wait_runtime
, se
->wait_runtime
);
347 * Update the current task's runtime statistics. Skip current tasks that
348 * are not in our scheduling class.
351 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
353 unsigned long delta
, delta_exec
, delta_fair
, delta_mine
;
354 struct load_weight
*lw
= &cfs_rq
->load
;
355 unsigned long load
= lw
->weight
;
357 delta_exec
= curr
->delta_exec
;
358 schedstat_set(curr
->exec_max
, max((u64
)delta_exec
, curr
->exec_max
));
360 curr
->sum_exec_runtime
+= delta_exec
;
361 cfs_rq
->exec_clock
+= delta_exec
;
366 delta_fair
= calc_delta_fair(delta_exec
, lw
);
367 delta_mine
= calc_delta_mine(delta_exec
, curr
->load
.weight
, lw
);
369 if (cfs_rq
->sleeper_bonus
> sysctl_sched_min_granularity
) {
370 delta
= min((u64
)delta_mine
, cfs_rq
->sleeper_bonus
);
371 delta
= min(delta
, (unsigned long)(
372 (long)sysctl_sched_runtime_limit
- curr
->wait_runtime
));
373 cfs_rq
->sleeper_bonus
-= delta
;
377 cfs_rq
->fair_clock
+= delta_fair
;
379 * We executed delta_exec amount of time on the CPU,
380 * but we were only entitled to delta_mine amount of
381 * time during that period (if nr_running == 1 then
382 * the two values are equal)
383 * [Note: delta_mine - delta_exec is negative]:
385 add_wait_runtime(cfs_rq
, curr
, delta_mine
- delta_exec
);
388 static void update_curr(struct cfs_rq
*cfs_rq
)
390 struct sched_entity
*curr
= cfs_rq_curr(cfs_rq
);
391 unsigned long delta_exec
;
397 * Get the amount of time the current task was running
398 * since the last time we changed load (this cannot
399 * overflow on 32 bits):
401 delta_exec
= (unsigned long)(rq_of(cfs_rq
)->clock
- curr
->exec_start
);
403 curr
->delta_exec
+= delta_exec
;
405 if (unlikely(curr
->delta_exec
> sysctl_sched_stat_granularity
)) {
406 __update_curr(cfs_rq
, curr
);
407 curr
->delta_exec
= 0;
409 curr
->exec_start
= rq_of(cfs_rq
)->clock
;
413 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
415 se
->wait_start_fair
= cfs_rq
->fair_clock
;
416 schedstat_set(se
->wait_start
, rq_of(cfs_rq
)->clock
);
420 * We calculate fair deltas here, so protect against the random effects
421 * of a multiplication overflow by capping it to the runtime limit:
423 #if BITS_PER_LONG == 32
424 static inline unsigned long
425 calc_weighted(unsigned long delta
, unsigned long weight
, int shift
)
427 u64 tmp
= (u64
)delta
* weight
>> shift
;
429 if (unlikely(tmp
> sysctl_sched_runtime_limit
*2))
430 return sysctl_sched_runtime_limit
*2;
434 static inline unsigned long
435 calc_weighted(unsigned long delta
, unsigned long weight
, int shift
)
437 return delta
* weight
>> shift
;
442 * Task is being enqueued - update stats:
444 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
449 * Are we enqueueing a waiting task? (for current tasks
450 * a dequeue/enqueue event is a NOP)
452 if (se
!= cfs_rq_curr(cfs_rq
))
453 update_stats_wait_start(cfs_rq
, se
);
457 key
= cfs_rq
->fair_clock
;
460 * Optimize the common nice 0 case:
462 if (likely(se
->load
.weight
== NICE_0_LOAD
)) {
463 key
-= se
->wait_runtime
;
467 if (se
->wait_runtime
< 0) {
468 tmp
= -se
->wait_runtime
;
469 key
+= (tmp
* se
->load
.inv_weight
) >>
470 (WMULT_SHIFT
- NICE_0_SHIFT
);
472 tmp
= se
->wait_runtime
;
473 key
-= (tmp
* se
->load
.inv_weight
) >>
474 (WMULT_SHIFT
- NICE_0_SHIFT
);
482 * Note: must be called with a freshly updated rq->fair_clock.
485 __update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
487 unsigned long delta_fair
= se
->delta_fair_run
;
489 schedstat_set(se
->wait_max
, max(se
->wait_max
,
490 rq_of(cfs_rq
)->clock
- se
->wait_start
));
492 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
493 delta_fair
= calc_weighted(delta_fair
, se
->load
.weight
,
496 add_wait_runtime(cfs_rq
, se
, delta_fair
);
500 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
502 unsigned long delta_fair
;
504 if (unlikely(!se
->wait_start_fair
))
507 delta_fair
= (unsigned long)min((u64
)(2*sysctl_sched_runtime_limit
),
508 (u64
)(cfs_rq
->fair_clock
- se
->wait_start_fair
));
510 se
->delta_fair_run
+= delta_fair
;
511 if (unlikely(abs(se
->delta_fair_run
) >=
512 sysctl_sched_stat_granularity
)) {
513 __update_stats_wait_end(cfs_rq
, se
);
514 se
->delta_fair_run
= 0;
517 se
->wait_start_fair
= 0;
518 schedstat_set(se
->wait_start
, 0);
522 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
526 * Mark the end of the wait period if dequeueing a
529 if (se
!= cfs_rq_curr(cfs_rq
))
530 update_stats_wait_end(cfs_rq
, se
);
534 * We are picking a new current task - update its stats:
537 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
540 * We are starting a new run period:
542 se
->exec_start
= rq_of(cfs_rq
)->clock
;
546 * We are descheduling a task - update its stats:
549 update_stats_curr_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
554 /**************************************************
555 * Scheduling class queueing methods:
558 static void __enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
560 unsigned long load
= cfs_rq
->load
.weight
, delta_fair
;
564 * Do not boost sleepers if there's too much bonus 'in flight'
567 if (unlikely(cfs_rq
->sleeper_bonus
> sysctl_sched_runtime_limit
))
570 if (sysctl_sched_features
& SCHED_FEAT_SLEEPER_LOAD_AVG
)
571 load
= rq_of(cfs_rq
)->cpu_load
[2];
573 delta_fair
= se
->delta_fair_sleep
;
576 * Fix up delta_fair with the effect of us running
577 * during the whole sleep period:
579 if (sysctl_sched_features
& SCHED_FEAT_SLEEPER_AVG
)
580 delta_fair
= div64_likely32((u64
)delta_fair
* load
,
581 load
+ se
->load
.weight
);
583 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
584 delta_fair
= calc_weighted(delta_fair
, se
->load
.weight
,
587 prev_runtime
= se
->wait_runtime
;
588 __add_wait_runtime(cfs_rq
, se
, delta_fair
);
589 delta_fair
= se
->wait_runtime
- prev_runtime
;
592 * Track the amount of bonus we've given to sleepers:
594 cfs_rq
->sleeper_bonus
+= delta_fair
;
597 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
599 struct task_struct
*tsk
= task_of(se
);
600 unsigned long delta_fair
;
602 if ((entity_is_task(se
) && tsk
->policy
== SCHED_BATCH
) ||
603 !(sysctl_sched_features
& SCHED_FEAT_FAIR_SLEEPERS
))
606 delta_fair
= (unsigned long)min((u64
)(2*sysctl_sched_runtime_limit
),
607 (u64
)(cfs_rq
->fair_clock
- se
->sleep_start_fair
));
609 se
->delta_fair_sleep
+= delta_fair
;
610 if (unlikely(abs(se
->delta_fair_sleep
) >=
611 sysctl_sched_stat_granularity
)) {
612 __enqueue_sleeper(cfs_rq
, se
);
613 se
->delta_fair_sleep
= 0;
616 se
->sleep_start_fair
= 0;
618 #ifdef CONFIG_SCHEDSTATS
619 if (se
->sleep_start
) {
620 u64 delta
= rq_of(cfs_rq
)->clock
- se
->sleep_start
;
625 if (unlikely(delta
> se
->sleep_max
))
626 se
->sleep_max
= delta
;
629 se
->sum_sleep_runtime
+= delta
;
631 if (se
->block_start
) {
632 u64 delta
= rq_of(cfs_rq
)->clock
- se
->block_start
;
637 if (unlikely(delta
> se
->block_max
))
638 se
->block_max
= delta
;
641 se
->sum_sleep_runtime
+= delta
;
647 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int wakeup
)
650 * Update the fair clock.
655 enqueue_sleeper(cfs_rq
, se
);
657 update_stats_enqueue(cfs_rq
, se
);
658 __enqueue_entity(cfs_rq
, se
);
662 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int sleep
)
664 update_stats_dequeue(cfs_rq
, se
);
666 se
->sleep_start_fair
= cfs_rq
->fair_clock
;
667 #ifdef CONFIG_SCHEDSTATS
668 if (entity_is_task(se
)) {
669 struct task_struct
*tsk
= task_of(se
);
671 if (tsk
->state
& TASK_INTERRUPTIBLE
)
672 se
->sleep_start
= rq_of(cfs_rq
)->clock
;
673 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
674 se
->block_start
= rq_of(cfs_rq
)->clock
;
678 __dequeue_entity(cfs_rq
, se
);
682 * Preempt the current task with a newly woken task if needed:
685 __check_preempt_curr_fair(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
686 struct sched_entity
*curr
, unsigned long granularity
)
688 s64 __delta
= curr
->fair_key
- se
->fair_key
;
689 unsigned long ideal_runtime
, delta_exec
;
692 * ideal_runtime is compared against sum_exec_runtime, which is
693 * walltime, hence do not scale.
695 ideal_runtime
= max(sysctl_sched_latency
/ cfs_rq
->nr_running
,
696 (unsigned long)sysctl_sched_min_granularity
);
699 * If we executed more than what the latency constraint suggests,
700 * reduce the rescheduling granularity. This way the total latency
701 * of how much a task is not scheduled converges to
702 * sysctl_sched_latency:
704 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
705 if (delta_exec
> ideal_runtime
)
709 * Take scheduling granularity into account - do not
710 * preempt the current task unless the best task has
711 * a larger than sched_granularity fairness advantage:
713 * scale granularity as key space is in fair_clock.
715 if (__delta
> niced_granularity(curr
, granularity
))
716 resched_task(rq_of(cfs_rq
)->curr
);
720 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
723 * Any task has to be enqueued before it get to execute on
724 * a CPU. So account for the time it spent waiting on the
725 * runqueue. (note, here we rely on pick_next_task() having
726 * done a put_prev_task_fair() shortly before this, which
727 * updated rq->fair_clock - used by update_stats_wait_end())
729 update_stats_wait_end(cfs_rq
, se
);
730 update_stats_curr_start(cfs_rq
, se
);
731 set_cfs_rq_curr(cfs_rq
, se
);
732 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
735 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
737 struct sched_entity
*se
= __pick_next_entity(cfs_rq
);
739 set_next_entity(cfs_rq
, se
);
744 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
747 * If still on the runqueue then deactivate_task()
748 * was not called and update_curr() has to be done:
753 update_stats_curr_end(cfs_rq
, prev
);
756 update_stats_wait_start(cfs_rq
, prev
);
757 set_cfs_rq_curr(cfs_rq
, NULL
);
760 static void entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
762 struct sched_entity
*next
;
765 * Dequeue and enqueue the task to update its
766 * position within the tree:
768 dequeue_entity(cfs_rq
, curr
, 0);
769 enqueue_entity(cfs_rq
, curr
, 0);
772 * Reschedule if another task tops the current one.
774 next
= __pick_next_entity(cfs_rq
);
778 __check_preempt_curr_fair(cfs_rq
, next
, curr
,
779 sched_granularity(cfs_rq
));
782 /**************************************************
783 * CFS operations on tasks:
786 #ifdef CONFIG_FAIR_GROUP_SCHED
788 /* Walk up scheduling entities hierarchy */
789 #define for_each_sched_entity(se) \
790 for (; se; se = se->parent)
792 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
797 /* runqueue on which this entity is (to be) queued */
798 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
803 /* runqueue "owned" by this group */
804 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
809 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
810 * another cpu ('this_cpu')
812 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
814 /* A later patch will take group into account */
815 return &cpu_rq(this_cpu
)->cfs
;
818 /* Iterate thr' all leaf cfs_rq's on a runqueue */
819 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
820 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
822 /* Do the two (enqueued) tasks belong to the same group ? */
823 static inline int is_same_group(struct task_struct
*curr
, struct task_struct
*p
)
825 if (curr
->se
.cfs_rq
== p
->se
.cfs_rq
)
831 #else /* CONFIG_FAIR_GROUP_SCHED */
833 #define for_each_sched_entity(se) \
834 for (; se; se = NULL)
836 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
838 return &task_rq(p
)->cfs
;
841 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
843 struct task_struct
*p
= task_of(se
);
844 struct rq
*rq
= task_rq(p
);
849 /* runqueue "owned" by this group */
850 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
855 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
857 return &cpu_rq(this_cpu
)->cfs
;
860 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
861 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
863 static inline int is_same_group(struct task_struct
*curr
, struct task_struct
*p
)
868 #endif /* CONFIG_FAIR_GROUP_SCHED */
871 * The enqueue_task method is called before nr_running is
872 * increased. Here we update the fair scheduling stats and
873 * then put the task into the rbtree:
875 static void enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
877 struct cfs_rq
*cfs_rq
;
878 struct sched_entity
*se
= &p
->se
;
880 for_each_sched_entity(se
) {
883 cfs_rq
= cfs_rq_of(se
);
884 enqueue_entity(cfs_rq
, se
, wakeup
);
889 * The dequeue_task method is called before nr_running is
890 * decreased. We remove the task from the rbtree and
891 * update the fair scheduling stats:
893 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int sleep
)
895 struct cfs_rq
*cfs_rq
;
896 struct sched_entity
*se
= &p
->se
;
898 for_each_sched_entity(se
) {
899 cfs_rq
= cfs_rq_of(se
);
900 dequeue_entity(cfs_rq
, se
, sleep
);
901 /* Don't dequeue parent if it has other entities besides us */
902 if (cfs_rq
->load
.weight
)
908 * sched_yield() support is very simple - we dequeue and enqueue.
910 * If compat_yield is turned on then we requeue to the end of the tree.
912 static void yield_task_fair(struct rq
*rq
, struct task_struct
*p
)
914 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
915 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
916 struct sched_entity
*rightmost
, *se
= &p
->se
;
917 struct rb_node
*parent
;
920 * Are we the only task in the tree?
922 if (unlikely(cfs_rq
->nr_running
== 1))
925 if (likely(!sysctl_sched_compat_yield
)) {
926 __update_rq_clock(rq
);
928 * Dequeue and enqueue the task to update its
929 * position within the tree:
931 dequeue_entity(cfs_rq
, &p
->se
, 0);
932 enqueue_entity(cfs_rq
, &p
->se
, 0);
937 * Find the rightmost entry in the rbtree:
941 link
= &parent
->rb_right
;
944 rightmost
= rb_entry(parent
, struct sched_entity
, run_node
);
946 * Already in the rightmost position?
948 if (unlikely(rightmost
== se
))
952 * Minimally necessary key value to be last in the tree:
954 se
->fair_key
= rightmost
->fair_key
+ 1;
956 if (cfs_rq
->rb_leftmost
== &se
->run_node
)
957 cfs_rq
->rb_leftmost
= rb_next(&se
->run_node
);
959 * Relink the task to the rightmost position:
961 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
962 rb_link_node(&se
->run_node
, parent
, link
);
963 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
967 * Preempt the current task with a newly woken task if needed:
969 static void check_preempt_curr_fair(struct rq
*rq
, struct task_struct
*p
)
971 struct task_struct
*curr
= rq
->curr
;
972 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
975 if (unlikely(rt_prio(p
->prio
))) {
982 gran
= sysctl_sched_wakeup_granularity
;
984 * Batch tasks prefer throughput over latency:
986 if (unlikely(p
->policy
== SCHED_BATCH
))
987 gran
= sysctl_sched_batch_wakeup_granularity
;
989 if (is_same_group(curr
, p
))
990 __check_preempt_curr_fair(cfs_rq
, &p
->se
, &curr
->se
, gran
);
993 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
995 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
996 struct sched_entity
*se
;
998 if (unlikely(!cfs_rq
->nr_running
))
1002 se
= pick_next_entity(cfs_rq
);
1003 cfs_rq
= group_cfs_rq(se
);
1010 * Account for a descheduled task:
1012 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
1014 struct sched_entity
*se
= &prev
->se
;
1015 struct cfs_rq
*cfs_rq
;
1017 for_each_sched_entity(se
) {
1018 cfs_rq
= cfs_rq_of(se
);
1019 put_prev_entity(cfs_rq
, se
);
1023 /**************************************************
1024 * Fair scheduling class load-balancing methods:
1028 * Load-balancing iterator. Note: while the runqueue stays locked
1029 * during the whole iteration, the current task might be
1030 * dequeued so the iterator has to be dequeue-safe. Here we
1031 * achieve that by always pre-iterating before returning
1034 static inline struct task_struct
*
1035 __load_balance_iterator(struct cfs_rq
*cfs_rq
, struct rb_node
*curr
)
1037 struct task_struct
*p
;
1042 p
= rb_entry(curr
, struct task_struct
, se
.run_node
);
1043 cfs_rq
->rb_load_balance_curr
= rb_next(curr
);
1048 static struct task_struct
*load_balance_start_fair(void *arg
)
1050 struct cfs_rq
*cfs_rq
= arg
;
1052 return __load_balance_iterator(cfs_rq
, first_fair(cfs_rq
));
1055 static struct task_struct
*load_balance_next_fair(void *arg
)
1057 struct cfs_rq
*cfs_rq
= arg
;
1059 return __load_balance_iterator(cfs_rq
, cfs_rq
->rb_load_balance_curr
);
1062 #ifdef CONFIG_FAIR_GROUP_SCHED
1063 static int cfs_rq_best_prio(struct cfs_rq
*cfs_rq
)
1065 struct sched_entity
*curr
;
1066 struct task_struct
*p
;
1068 if (!cfs_rq
->nr_running
)
1071 curr
= __pick_next_entity(cfs_rq
);
1078 static unsigned long
1079 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1080 unsigned long max_nr_move
, unsigned long max_load_move
,
1081 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1082 int *all_pinned
, int *this_best_prio
)
1084 struct cfs_rq
*busy_cfs_rq
;
1085 unsigned long load_moved
, total_nr_moved
= 0, nr_moved
;
1086 long rem_load_move
= max_load_move
;
1087 struct rq_iterator cfs_rq_iterator
;
1089 cfs_rq_iterator
.start
= load_balance_start_fair
;
1090 cfs_rq_iterator
.next
= load_balance_next_fair
;
1092 for_each_leaf_cfs_rq(busiest
, busy_cfs_rq
) {
1093 #ifdef CONFIG_FAIR_GROUP_SCHED
1094 struct cfs_rq
*this_cfs_rq
;
1096 unsigned long maxload
;
1098 this_cfs_rq
= cpu_cfs_rq(busy_cfs_rq
, this_cpu
);
1100 imbalance
= busy_cfs_rq
->load
.weight
- this_cfs_rq
->load
.weight
;
1101 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1105 /* Don't pull more than imbalance/2 */
1107 maxload
= min(rem_load_move
, imbalance
);
1109 *this_best_prio
= cfs_rq_best_prio(this_cfs_rq
);
1111 # define maxload rem_load_move
1113 /* pass busy_cfs_rq argument into
1114 * load_balance_[start|next]_fair iterators
1116 cfs_rq_iterator
.arg
= busy_cfs_rq
;
1117 nr_moved
= balance_tasks(this_rq
, this_cpu
, busiest
,
1118 max_nr_move
, maxload
, sd
, idle
, all_pinned
,
1119 &load_moved
, this_best_prio
, &cfs_rq_iterator
);
1121 total_nr_moved
+= nr_moved
;
1122 max_nr_move
-= nr_moved
;
1123 rem_load_move
-= load_moved
;
1125 if (max_nr_move
<= 0 || rem_load_move
<= 0)
1129 return max_load_move
- rem_load_move
;
1133 * scheduler tick hitting a task of our scheduling class:
1135 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
)
1137 struct cfs_rq
*cfs_rq
;
1138 struct sched_entity
*se
= &curr
->se
;
1140 for_each_sched_entity(se
) {
1141 cfs_rq
= cfs_rq_of(se
);
1142 entity_tick(cfs_rq
, se
);
1147 * Share the fairness runtime between parent and child, thus the
1148 * total amount of pressure for CPU stays equal - new tasks
1149 * get a chance to run but frequent forkers are not allowed to
1150 * monopolize the CPU. Note: the parent runqueue is locked,
1151 * the child is not running yet.
1153 static void task_new_fair(struct rq
*rq
, struct task_struct
*p
)
1155 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
1156 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq_curr(cfs_rq
);
1158 sched_info_queued(p
);
1160 update_curr(cfs_rq
);
1161 update_stats_enqueue(cfs_rq
, se
);
1163 * Child runs first: we let it run before the parent
1164 * until it reschedules once. We set up the key so that
1165 * it will preempt the parent:
1167 se
->fair_key
= curr
->fair_key
-
1168 niced_granularity(curr
, sched_granularity(cfs_rq
)) - 1;
1170 * The first wait is dominated by the child-runs-first logic,
1171 * so do not credit it with that waiting time yet:
1173 if (sysctl_sched_features
& SCHED_FEAT_SKIP_INITIAL
)
1174 se
->wait_start_fair
= 0;
1177 * The statistical average of wait_runtime is about
1178 * -granularity/2, so initialize the task with that:
1180 if (sysctl_sched_features
& SCHED_FEAT_START_DEBIT
)
1181 se
->wait_runtime
= -(sched_granularity(cfs_rq
) / 2);
1183 __enqueue_entity(cfs_rq
, se
);
1186 #ifdef CONFIG_FAIR_GROUP_SCHED
1187 /* Account for a task changing its policy or group.
1189 * This routine is mostly called to set cfs_rq->curr field when a task
1190 * migrates between groups/classes.
1192 static void set_curr_task_fair(struct rq
*rq
)
1194 struct sched_entity
*se
= &rq
->curr
->se
;
1196 for_each_sched_entity(se
)
1197 set_next_entity(cfs_rq_of(se
), se
);
1200 static void set_curr_task_fair(struct rq
*rq
)
1206 * All the scheduling class methods:
1208 struct sched_class fair_sched_class __read_mostly
= {
1209 .enqueue_task
= enqueue_task_fair
,
1210 .dequeue_task
= dequeue_task_fair
,
1211 .yield_task
= yield_task_fair
,
1213 .check_preempt_curr
= check_preempt_curr_fair
,
1215 .pick_next_task
= pick_next_task_fair
,
1216 .put_prev_task
= put_prev_task_fair
,
1218 .load_balance
= load_balance_fair
,
1220 .set_curr_task
= set_curr_task_fair
,
1221 .task_tick
= task_tick_fair
,
1222 .task_new
= task_new_fair
,
1225 #ifdef CONFIG_SCHED_DEBUG
1226 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
1228 struct cfs_rq
*cfs_rq
;
1230 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
1231 print_cfs_rq(m
, cpu
, cfs_rq
);