3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
7 * Filesystem Meta Information Block Cache (mbcache)
9 * The mbcache caches blocks of block devices that need to be located
10 * by their device/block number, as well as by other criteria (such
11 * as the block's contents).
13 * There can only be one cache entry in a cache per device and block number.
14 * Additional indexes need not be unique in this sense. The number of
15 * additional indexes (=other criteria) can be hardwired at compile time
16 * or specified at cache create time.
18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
19 * in the cache. A valid entry is in the main hash tables of the cache,
20 * and may also be in the lru list. An invalid entry is not in any hashes
23 * A valid cache entry is only in the lru list if no handles refer to it.
24 * Invalid cache entries will be freed when the last handle to the cache
25 * entry is released. Entries that cannot be freed immediately are put
26 * back on the lru list.
29 #include <linux/kernel.h>
30 #include <linux/module.h>
32 #include <linux/hash.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/init.h>
38 #include <linux/mbcache.h>
42 # define mb_debug(f...) do { \
43 printk(KERN_DEBUG f); \
46 #define mb_assert(c) do { if (!(c)) \
47 printk(KERN_ERR "assertion " #c " failed\n"); \
50 # define mb_debug(f...) do { } while(0)
51 # define mb_assert(c) do { } while(0)
53 #define mb_error(f...) do { \
58 #define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
60 static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue
);
62 MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
63 MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
64 MODULE_LICENSE("GPL");
66 EXPORT_SYMBOL(mb_cache_create
);
67 EXPORT_SYMBOL(mb_cache_shrink
);
68 EXPORT_SYMBOL(mb_cache_destroy
);
69 EXPORT_SYMBOL(mb_cache_entry_alloc
);
70 EXPORT_SYMBOL(mb_cache_entry_insert
);
71 EXPORT_SYMBOL(mb_cache_entry_release
);
72 EXPORT_SYMBOL(mb_cache_entry_free
);
73 EXPORT_SYMBOL(mb_cache_entry_get
);
74 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
75 EXPORT_SYMBOL(mb_cache_entry_find_first
);
76 EXPORT_SYMBOL(mb_cache_entry_find_next
);
80 struct list_head c_cache_list
;
82 struct mb_cache_op c_op
;
83 atomic_t c_entry_count
;
85 #ifndef MB_CACHE_INDEXES_COUNT
88 kmem_cache_t
*c_entry_cache
;
89 struct list_head
*c_block_hash
;
90 struct list_head
*c_indexes_hash
[0];
95 * Global data: list of all mbcache's, lru list, and a spinlock for
96 * accessing cache data structures on SMP machines. The lru list is
97 * global across all mbcaches.
100 static LIST_HEAD(mb_cache_list
);
101 static LIST_HEAD(mb_cache_lru_list
);
102 static DEFINE_SPINLOCK(mb_cache_spinlock
);
103 static struct shrinker
*mb_shrinker
;
106 mb_cache_indexes(struct mb_cache
*cache
)
108 #ifdef MB_CACHE_INDEXES_COUNT
109 return MB_CACHE_INDEXES_COUNT
;
111 return cache
->c_indexes_count
;
116 * What the mbcache registers as to get shrunk dynamically.
119 static int mb_cache_shrink_fn(int nr_to_scan
, gfp_t gfp_mask
);
123 __mb_cache_entry_is_hashed(struct mb_cache_entry
*ce
)
125 return !list_empty(&ce
->e_block_list
);
130 __mb_cache_entry_unhash(struct mb_cache_entry
*ce
)
134 if (__mb_cache_entry_is_hashed(ce
)) {
135 list_del_init(&ce
->e_block_list
);
136 for (n
=0; n
<mb_cache_indexes(ce
->e_cache
); n
++)
137 list_del(&ce
->e_indexes
[n
].o_list
);
143 __mb_cache_entry_forget(struct mb_cache_entry
*ce
, gfp_t gfp_mask
)
145 struct mb_cache
*cache
= ce
->e_cache
;
147 mb_assert(!(ce
->e_used
|| ce
->e_queued
));
148 if (cache
->c_op
.free
&& cache
->c_op
.free(ce
, gfp_mask
)) {
149 /* free failed -- put back on the lru list
150 for freeing later. */
151 spin_lock(&mb_cache_spinlock
);
152 list_add(&ce
->e_lru_list
, &mb_cache_lru_list
);
153 spin_unlock(&mb_cache_spinlock
);
155 kmem_cache_free(cache
->c_entry_cache
, ce
);
156 atomic_dec(&cache
->c_entry_count
);
162 __mb_cache_entry_release_unlock(struct mb_cache_entry
*ce
)
163 __releases(mb_cache_spinlock
)
165 /* Wake up all processes queuing for this cache entry. */
167 wake_up_all(&mb_cache_queue
);
168 if (ce
->e_used
>= MB_CACHE_WRITER
)
169 ce
->e_used
-= MB_CACHE_WRITER
;
171 if (!(ce
->e_used
|| ce
->e_queued
)) {
172 if (!__mb_cache_entry_is_hashed(ce
))
174 mb_assert(list_empty(&ce
->e_lru_list
));
175 list_add_tail(&ce
->e_lru_list
, &mb_cache_lru_list
);
177 spin_unlock(&mb_cache_spinlock
);
180 spin_unlock(&mb_cache_spinlock
);
181 __mb_cache_entry_forget(ce
, GFP_KERNEL
);
186 * mb_cache_shrink_fn() memory pressure callback
188 * This function is called by the kernel memory management when memory
191 * @nr_to_scan: Number of objects to scan
192 * @gfp_mask: (ignored)
194 * Returns the number of objects which are present in the cache.
197 mb_cache_shrink_fn(int nr_to_scan
, gfp_t gfp_mask
)
199 LIST_HEAD(free_list
);
200 struct list_head
*l
, *ltmp
;
203 spin_lock(&mb_cache_spinlock
);
204 list_for_each(l
, &mb_cache_list
) {
205 struct mb_cache
*cache
=
206 list_entry(l
, struct mb_cache
, c_cache_list
);
207 mb_debug("cache %s (%d)", cache
->c_name
,
208 atomic_read(&cache
->c_entry_count
));
209 count
+= atomic_read(&cache
->c_entry_count
);
211 mb_debug("trying to free %d entries", nr_to_scan
);
212 if (nr_to_scan
== 0) {
213 spin_unlock(&mb_cache_spinlock
);
216 while (nr_to_scan
-- && !list_empty(&mb_cache_lru_list
)) {
217 struct mb_cache_entry
*ce
=
218 list_entry(mb_cache_lru_list
.next
,
219 struct mb_cache_entry
, e_lru_list
);
220 list_move_tail(&ce
->e_lru_list
, &free_list
);
221 __mb_cache_entry_unhash(ce
);
223 spin_unlock(&mb_cache_spinlock
);
224 list_for_each_safe(l
, ltmp
, &free_list
) {
225 __mb_cache_entry_forget(list_entry(l
, struct mb_cache_entry
,
226 e_lru_list
), gfp_mask
);
229 return (count
/ 100) * sysctl_vfs_cache_pressure
;
234 * mb_cache_create() create a new cache
236 * All entries in one cache are equal size. Cache entries may be from
237 * multiple devices. If this is the first mbcache created, registers
238 * the cache with kernel memory management. Returns NULL if no more
239 * memory was available.
241 * @name: name of the cache (informal)
242 * @cache_op: contains the callback called when freeing a cache entry
243 * @entry_size: The size of a cache entry, including
244 * struct mb_cache_entry
245 * @indexes_count: number of additional indexes in the cache. Must equal
246 * MB_CACHE_INDEXES_COUNT if the number of indexes is
248 * @bucket_bits: log2(number of hash buckets)
251 mb_cache_create(const char *name
, struct mb_cache_op
*cache_op
,
252 size_t entry_size
, int indexes_count
, int bucket_bits
)
254 int m
=0, n
, bucket_count
= 1 << bucket_bits
;
255 struct mb_cache
*cache
= NULL
;
257 if(entry_size
< sizeof(struct mb_cache_entry
) +
258 indexes_count
* sizeof(((struct mb_cache_entry
*) 0)->e_indexes
[0]))
261 cache
= kmalloc(sizeof(struct mb_cache
) +
262 indexes_count
* sizeof(struct list_head
), GFP_KERNEL
);
265 cache
->c_name
= name
;
266 cache
->c_op
.free
= NULL
;
268 cache
->c_op
.free
= cache_op
->free
;
269 atomic_set(&cache
->c_entry_count
, 0);
270 cache
->c_bucket_bits
= bucket_bits
;
271 #ifdef MB_CACHE_INDEXES_COUNT
272 mb_assert(indexes_count
== MB_CACHE_INDEXES_COUNT
);
274 cache
->c_indexes_count
= indexes_count
;
276 cache
->c_block_hash
= kmalloc(bucket_count
* sizeof(struct list_head
),
278 if (!cache
->c_block_hash
)
280 for (n
=0; n
<bucket_count
; n
++)
281 INIT_LIST_HEAD(&cache
->c_block_hash
[n
]);
282 for (m
=0; m
<indexes_count
; m
++) {
283 cache
->c_indexes_hash
[m
] = kmalloc(bucket_count
*
284 sizeof(struct list_head
),
286 if (!cache
->c_indexes_hash
[m
])
288 for (n
=0; n
<bucket_count
; n
++)
289 INIT_LIST_HEAD(&cache
->c_indexes_hash
[m
][n
]);
291 cache
->c_entry_cache
= kmem_cache_create(name
, entry_size
, 0,
292 SLAB_RECLAIM_ACCOUNT
|SLAB_MEM_SPREAD
, NULL
, NULL
);
293 if (!cache
->c_entry_cache
)
296 spin_lock(&mb_cache_spinlock
);
297 list_add(&cache
->c_cache_list
, &mb_cache_list
);
298 spin_unlock(&mb_cache_spinlock
);
304 kfree(cache
->c_indexes_hash
[m
]);
305 kfree(cache
->c_block_hash
);
315 * Removes all cache entries of a device from the cache. All cache entries
316 * currently in use cannot be freed, and thus remain in the cache. All others
319 * @bdev: which device's cache entries to shrink
322 mb_cache_shrink(struct block_device
*bdev
)
324 LIST_HEAD(free_list
);
325 struct list_head
*l
, *ltmp
;
327 spin_lock(&mb_cache_spinlock
);
328 list_for_each_safe(l
, ltmp
, &mb_cache_lru_list
) {
329 struct mb_cache_entry
*ce
=
330 list_entry(l
, struct mb_cache_entry
, e_lru_list
);
331 if (ce
->e_bdev
== bdev
) {
332 list_move_tail(&ce
->e_lru_list
, &free_list
);
333 __mb_cache_entry_unhash(ce
);
336 spin_unlock(&mb_cache_spinlock
);
337 list_for_each_safe(l
, ltmp
, &free_list
) {
338 __mb_cache_entry_forget(list_entry(l
, struct mb_cache_entry
,
339 e_lru_list
), GFP_KERNEL
);
347 * Shrinks the cache to its minimum possible size (hopefully 0 entries),
348 * and then destroys it. If this was the last mbcache, un-registers the
349 * mbcache from kernel memory management.
352 mb_cache_destroy(struct mb_cache
*cache
)
354 LIST_HEAD(free_list
);
355 struct list_head
*l
, *ltmp
;
358 spin_lock(&mb_cache_spinlock
);
359 list_for_each_safe(l
, ltmp
, &mb_cache_lru_list
) {
360 struct mb_cache_entry
*ce
=
361 list_entry(l
, struct mb_cache_entry
, e_lru_list
);
362 if (ce
->e_cache
== cache
) {
363 list_move_tail(&ce
->e_lru_list
, &free_list
);
364 __mb_cache_entry_unhash(ce
);
367 list_del(&cache
->c_cache_list
);
368 spin_unlock(&mb_cache_spinlock
);
370 list_for_each_safe(l
, ltmp
, &free_list
) {
371 __mb_cache_entry_forget(list_entry(l
, struct mb_cache_entry
,
372 e_lru_list
), GFP_KERNEL
);
375 if (atomic_read(&cache
->c_entry_count
) > 0) {
376 mb_error("cache %s: %d orphaned entries",
378 atomic_read(&cache
->c_entry_count
));
381 kmem_cache_destroy(cache
->c_entry_cache
);
383 for (n
=0; n
< mb_cache_indexes(cache
); n
++)
384 kfree(cache
->c_indexes_hash
[n
]);
385 kfree(cache
->c_block_hash
);
391 * mb_cache_entry_alloc()
393 * Allocates a new cache entry. The new entry will not be valid initially,
394 * and thus cannot be looked up yet. It should be filled with data, and
395 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
396 * if no more memory was available.
398 struct mb_cache_entry
*
399 mb_cache_entry_alloc(struct mb_cache
*cache
)
401 struct mb_cache_entry
*ce
;
403 atomic_inc(&cache
->c_entry_count
);
404 ce
= kmem_cache_alloc(cache
->c_entry_cache
, GFP_KERNEL
);
406 INIT_LIST_HEAD(&ce
->e_lru_list
);
407 INIT_LIST_HEAD(&ce
->e_block_list
);
409 ce
->e_used
= 1 + MB_CACHE_WRITER
;
417 * mb_cache_entry_insert()
419 * Inserts an entry that was allocated using mb_cache_entry_alloc() into
420 * the cache. After this, the cache entry can be looked up, but is not yet
421 * in the lru list as the caller still holds a handle to it. Returns 0 on
422 * success, or -EBUSY if a cache entry for that device + inode exists
423 * already (this may happen after a failed lookup, but when another process
424 * has inserted the same cache entry in the meantime).
426 * @bdev: device the cache entry belongs to
427 * @block: block number
428 * @keys: array of additional keys. There must be indexes_count entries
429 * in the array (as specified when creating the cache).
432 mb_cache_entry_insert(struct mb_cache_entry
*ce
, struct block_device
*bdev
,
433 sector_t block
, unsigned int keys
[])
435 struct mb_cache
*cache
= ce
->e_cache
;
438 int error
= -EBUSY
, n
;
440 bucket
= hash_long((unsigned long)bdev
+ (block
& 0xffffffff),
441 cache
->c_bucket_bits
);
442 spin_lock(&mb_cache_spinlock
);
443 list_for_each_prev(l
, &cache
->c_block_hash
[bucket
]) {
444 struct mb_cache_entry
*ce
=
445 list_entry(l
, struct mb_cache_entry
, e_block_list
);
446 if (ce
->e_bdev
== bdev
&& ce
->e_block
== block
)
449 __mb_cache_entry_unhash(ce
);
452 list_add(&ce
->e_block_list
, &cache
->c_block_hash
[bucket
]);
453 for (n
=0; n
<mb_cache_indexes(cache
); n
++) {
454 ce
->e_indexes
[n
].o_key
= keys
[n
];
455 bucket
= hash_long(keys
[n
], cache
->c_bucket_bits
);
456 list_add(&ce
->e_indexes
[n
].o_list
,
457 &cache
->c_indexes_hash
[n
][bucket
]);
461 spin_unlock(&mb_cache_spinlock
);
467 * mb_cache_entry_release()
469 * Release a handle to a cache entry. When the last handle to a cache entry
470 * is released it is either freed (if it is invalid) or otherwise inserted
471 * in to the lru list.
474 mb_cache_entry_release(struct mb_cache_entry
*ce
)
476 spin_lock(&mb_cache_spinlock
);
477 __mb_cache_entry_release_unlock(ce
);
482 * mb_cache_entry_free()
484 * This is equivalent to the sequence mb_cache_entry_takeout() --
485 * mb_cache_entry_release().
488 mb_cache_entry_free(struct mb_cache_entry
*ce
)
490 spin_lock(&mb_cache_spinlock
);
491 mb_assert(list_empty(&ce
->e_lru_list
));
492 __mb_cache_entry_unhash(ce
);
493 __mb_cache_entry_release_unlock(ce
);
498 * mb_cache_entry_get()
500 * Get a cache entry by device / block number. (There can only be one entry
501 * in the cache per device and block.) Returns NULL if no such cache entry
502 * exists. The returned cache entry is locked for exclusive access ("single
505 struct mb_cache_entry
*
506 mb_cache_entry_get(struct mb_cache
*cache
, struct block_device
*bdev
,
511 struct mb_cache_entry
*ce
;
513 bucket
= hash_long((unsigned long)bdev
+ (block
& 0xffffffff),
514 cache
->c_bucket_bits
);
515 spin_lock(&mb_cache_spinlock
);
516 list_for_each(l
, &cache
->c_block_hash
[bucket
]) {
517 ce
= list_entry(l
, struct mb_cache_entry
, e_block_list
);
518 if (ce
->e_bdev
== bdev
&& ce
->e_block
== block
) {
521 if (!list_empty(&ce
->e_lru_list
))
522 list_del_init(&ce
->e_lru_list
);
524 while (ce
->e_used
> 0) {
526 prepare_to_wait(&mb_cache_queue
, &wait
,
527 TASK_UNINTERRUPTIBLE
);
528 spin_unlock(&mb_cache_spinlock
);
530 spin_lock(&mb_cache_spinlock
);
533 finish_wait(&mb_cache_queue
, &wait
);
534 ce
->e_used
+= 1 + MB_CACHE_WRITER
;
536 if (!__mb_cache_entry_is_hashed(ce
)) {
537 __mb_cache_entry_release_unlock(ce
);
546 spin_unlock(&mb_cache_spinlock
);
550 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
552 static struct mb_cache_entry
*
553 __mb_cache_entry_find(struct list_head
*l
, struct list_head
*head
,
554 int index
, struct block_device
*bdev
, unsigned int key
)
557 struct mb_cache_entry
*ce
=
558 list_entry(l
, struct mb_cache_entry
,
559 e_indexes
[index
].o_list
);
560 if (ce
->e_bdev
== bdev
&& ce
->e_indexes
[index
].o_key
== key
) {
563 if (!list_empty(&ce
->e_lru_list
))
564 list_del_init(&ce
->e_lru_list
);
566 /* Incrementing before holding the lock gives readers
567 priority over writers. */
569 while (ce
->e_used
>= MB_CACHE_WRITER
) {
571 prepare_to_wait(&mb_cache_queue
, &wait
,
572 TASK_UNINTERRUPTIBLE
);
573 spin_unlock(&mb_cache_spinlock
);
575 spin_lock(&mb_cache_spinlock
);
578 finish_wait(&mb_cache_queue
, &wait
);
580 if (!__mb_cache_entry_is_hashed(ce
)) {
581 __mb_cache_entry_release_unlock(ce
);
582 spin_lock(&mb_cache_spinlock
);
583 return ERR_PTR(-EAGAIN
);
594 * mb_cache_entry_find_first()
596 * Find the first cache entry on a given device with a certain key in
597 * an additional index. Additonal matches can be found with
598 * mb_cache_entry_find_next(). Returns NULL if no match was found. The
599 * returned cache entry is locked for shared access ("multiple readers").
601 * @cache: the cache to search
602 * @index: the number of the additonal index to search (0<=index<indexes_count)
603 * @bdev: the device the cache entry should belong to
604 * @key: the key in the index
606 struct mb_cache_entry
*
607 mb_cache_entry_find_first(struct mb_cache
*cache
, int index
,
608 struct block_device
*bdev
, unsigned int key
)
610 unsigned int bucket
= hash_long(key
, cache
->c_bucket_bits
);
612 struct mb_cache_entry
*ce
;
614 mb_assert(index
< mb_cache_indexes(cache
));
615 spin_lock(&mb_cache_spinlock
);
616 l
= cache
->c_indexes_hash
[index
][bucket
].next
;
617 ce
= __mb_cache_entry_find(l
, &cache
->c_indexes_hash
[index
][bucket
],
619 spin_unlock(&mb_cache_spinlock
);
625 * mb_cache_entry_find_next()
627 * Find the next cache entry on a given device with a certain key in an
628 * additional index. Returns NULL if no match could be found. The previous
629 * entry is atomatically released, so that mb_cache_entry_find_next() can
630 * be called like this:
632 * entry = mb_cache_entry_find_first();
635 * entry = mb_cache_entry_find_next(entry, ...);
638 * @prev: The previous match
639 * @index: the number of the additonal index to search (0<=index<indexes_count)
640 * @bdev: the device the cache entry should belong to
641 * @key: the key in the index
643 struct mb_cache_entry
*
644 mb_cache_entry_find_next(struct mb_cache_entry
*prev
, int index
,
645 struct block_device
*bdev
, unsigned int key
)
647 struct mb_cache
*cache
= prev
->e_cache
;
648 unsigned int bucket
= hash_long(key
, cache
->c_bucket_bits
);
650 struct mb_cache_entry
*ce
;
652 mb_assert(index
< mb_cache_indexes(cache
));
653 spin_lock(&mb_cache_spinlock
);
654 l
= prev
->e_indexes
[index
].o_list
.next
;
655 ce
= __mb_cache_entry_find(l
, &cache
->c_indexes_hash
[index
][bucket
],
657 __mb_cache_entry_release_unlock(prev
);
661 #endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
663 static int __init
init_mbcache(void)
665 mb_shrinker
= set_shrinker(DEFAULT_SEEKS
, mb_cache_shrink_fn
);
669 static void __exit
exit_mbcache(void)
671 remove_shrinker(mb_shrinker
);
674 module_init(init_mbcache
)
675 module_exit(exit_mbcache
)