sh: Kill off remaining CONFIG_SH_KGDB bits.
[linux-2.6/mini2440.git] / drivers / firmware / dmi_scan.c
blob8daf4793ac32485824194af5e14f332c50fc6f26
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/dmi.h>
6 #include <linux/efi.h>
7 #include <linux/bootmem.h>
8 #include <linux/slab.h>
9 #include <asm/dmi.h>
12 * DMI stands for "Desktop Management Interface". It is part
13 * of and an antecedent to, SMBIOS, which stands for System
14 * Management BIOS. See further: http://www.dmtf.org/standards
16 static char dmi_empty_string[] = " ";
19 * Catch too early calls to dmi_check_system():
21 static int dmi_initialized;
23 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
25 const u8 *bp = ((u8 *) dm) + dm->length;
27 if (s) {
28 s--;
29 while (s > 0 && *bp) {
30 bp += strlen(bp) + 1;
31 s--;
34 if (*bp != 0) {
35 size_t len = strlen(bp)+1;
36 size_t cmp_len = len > 8 ? 8 : len;
38 if (!memcmp(bp, dmi_empty_string, cmp_len))
39 return dmi_empty_string;
40 return bp;
44 return "";
47 static char * __init dmi_string(const struct dmi_header *dm, u8 s)
49 const char *bp = dmi_string_nosave(dm, s);
50 char *str;
51 size_t len;
53 if (bp == dmi_empty_string)
54 return dmi_empty_string;
56 len = strlen(bp) + 1;
57 str = dmi_alloc(len);
58 if (str != NULL)
59 strcpy(str, bp);
60 else
61 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
63 return str;
67 * We have to be cautious here. We have seen BIOSes with DMI pointers
68 * pointing to completely the wrong place for example
70 static void dmi_table(u8 *buf, int len, int num,
71 void (*decode)(const struct dmi_header *))
73 u8 *data = buf;
74 int i = 0;
77 * Stop when we see all the items the table claimed to have
78 * OR we run off the end of the table (also happens)
80 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
81 const struct dmi_header *dm = (const struct dmi_header *)data;
84 * We want to know the total length (formatted area and
85 * strings) before decoding to make sure we won't run off the
86 * table in dmi_decode or dmi_string
88 data += dm->length;
89 while ((data - buf < len - 1) && (data[0] || data[1]))
90 data++;
91 if (data - buf < len - 1)
92 decode(dm);
93 data += 2;
94 i++;
98 static u32 dmi_base;
99 static u16 dmi_len;
100 static u16 dmi_num;
102 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *))
104 u8 *buf;
106 buf = dmi_ioremap(dmi_base, dmi_len);
107 if (buf == NULL)
108 return -1;
110 dmi_table(buf, dmi_len, dmi_num, decode);
112 dmi_iounmap(buf, dmi_len);
113 return 0;
116 static int __init dmi_checksum(const u8 *buf)
118 u8 sum = 0;
119 int a;
121 for (a = 0; a < 15; a++)
122 sum += buf[a];
124 return sum == 0;
127 static char *dmi_ident[DMI_STRING_MAX];
128 static LIST_HEAD(dmi_devices);
129 int dmi_available;
132 * Save a DMI string
134 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
136 const char *d = (const char*) dm;
137 char *p;
139 if (dmi_ident[slot])
140 return;
142 p = dmi_string(dm, d[string]);
143 if (p == NULL)
144 return;
146 dmi_ident[slot] = p;
149 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
151 const u8 *d = (u8*) dm + index;
152 char *s;
153 int is_ff = 1, is_00 = 1, i;
155 if (dmi_ident[slot])
156 return;
158 for (i = 0; i < 16 && (is_ff || is_00); i++) {
159 if(d[i] != 0x00) is_ff = 0;
160 if(d[i] != 0xFF) is_00 = 0;
163 if (is_ff || is_00)
164 return;
166 s = dmi_alloc(16*2+4+1);
167 if (!s)
168 return;
170 sprintf(s,
171 "%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
172 d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7],
173 d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15]);
175 dmi_ident[slot] = s;
178 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
180 const u8 *d = (u8*) dm + index;
181 char *s;
183 if (dmi_ident[slot])
184 return;
186 s = dmi_alloc(4);
187 if (!s)
188 return;
190 sprintf(s, "%u", *d & 0x7F);
191 dmi_ident[slot] = s;
194 static void __init dmi_save_one_device(int type, const char *name)
196 struct dmi_device *dev;
198 /* No duplicate device */
199 if (dmi_find_device(type, name, NULL))
200 return;
202 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
203 if (!dev) {
204 printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
205 return;
208 dev->type = type;
209 strcpy((char *)(dev + 1), name);
210 dev->name = (char *)(dev + 1);
211 dev->device_data = NULL;
212 list_add(&dev->list, &dmi_devices);
215 static void __init dmi_save_devices(const struct dmi_header *dm)
217 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
219 for (i = 0; i < count; i++) {
220 const char *d = (char *)(dm + 1) + (i * 2);
222 /* Skip disabled device */
223 if ((*d & 0x80) == 0)
224 continue;
226 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
230 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
232 int i, count = *(u8 *)(dm + 1);
233 struct dmi_device *dev;
235 for (i = 1; i <= count; i++) {
236 char *devname = dmi_string(dm, i);
238 if (devname == dmi_empty_string)
239 continue;
241 dev = dmi_alloc(sizeof(*dev));
242 if (!dev) {
243 printk(KERN_ERR
244 "dmi_save_oem_strings_devices: out of memory.\n");
245 break;
248 dev->type = DMI_DEV_TYPE_OEM_STRING;
249 dev->name = devname;
250 dev->device_data = NULL;
252 list_add(&dev->list, &dmi_devices);
256 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
258 struct dmi_device *dev;
259 void * data;
261 data = dmi_alloc(dm->length);
262 if (data == NULL) {
263 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
264 return;
267 memcpy(data, dm, dm->length);
269 dev = dmi_alloc(sizeof(*dev));
270 if (!dev) {
271 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
272 return;
275 dev->type = DMI_DEV_TYPE_IPMI;
276 dev->name = "IPMI controller";
277 dev->device_data = data;
279 list_add_tail(&dev->list, &dmi_devices);
282 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
284 const u8 *d = (u8*) dm + 5;
286 /* Skip disabled device */
287 if ((*d & 0x80) == 0)
288 return;
290 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
294 * Process a DMI table entry. Right now all we care about are the BIOS
295 * and machine entries. For 2.5 we should pull the smbus controller info
296 * out of here.
298 static void __init dmi_decode(const struct dmi_header *dm)
300 switch(dm->type) {
301 case 0: /* BIOS Information */
302 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
303 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
304 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
305 break;
306 case 1: /* System Information */
307 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
308 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
309 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
310 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
311 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
312 break;
313 case 2: /* Base Board Information */
314 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
315 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
316 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
317 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
318 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
319 break;
320 case 3: /* Chassis Information */
321 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
322 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
323 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
324 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
325 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
326 break;
327 case 10: /* Onboard Devices Information */
328 dmi_save_devices(dm);
329 break;
330 case 11: /* OEM Strings */
331 dmi_save_oem_strings_devices(dm);
332 break;
333 case 38: /* IPMI Device Information */
334 dmi_save_ipmi_device(dm);
335 break;
336 case 41: /* Onboard Devices Extended Information */
337 dmi_save_extended_devices(dm);
341 static int __init dmi_present(const char __iomem *p)
343 u8 buf[15];
345 memcpy_fromio(buf, p, 15);
346 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
347 dmi_num = (buf[13] << 8) | buf[12];
348 dmi_len = (buf[7] << 8) | buf[6];
349 dmi_base = (buf[11] << 24) | (buf[10] << 16) |
350 (buf[9] << 8) | buf[8];
353 * DMI version 0.0 means that the real version is taken from
354 * the SMBIOS version, which we don't know at this point.
356 if (buf[14] != 0)
357 printk(KERN_INFO "DMI %d.%d present.\n",
358 buf[14] >> 4, buf[14] & 0xF);
359 else
360 printk(KERN_INFO "DMI present.\n");
361 if (dmi_walk_early(dmi_decode) == 0)
362 return 0;
364 return 1;
367 void __init dmi_scan_machine(void)
369 char __iomem *p, *q;
370 int rc;
372 if (efi_enabled) {
373 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
374 goto error;
376 /* This is called as a core_initcall() because it isn't
377 * needed during early boot. This also means we can
378 * iounmap the space when we're done with it.
380 p = dmi_ioremap(efi.smbios, 32);
381 if (p == NULL)
382 goto error;
384 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
385 dmi_iounmap(p, 32);
386 if (!rc) {
387 dmi_available = 1;
388 goto out;
391 else {
393 * no iounmap() for that ioremap(); it would be a no-op, but
394 * it's so early in setup that sucker gets confused into doing
395 * what it shouldn't if we actually call it.
397 p = dmi_ioremap(0xF0000, 0x10000);
398 if (p == NULL)
399 goto error;
401 for (q = p; q < p + 0x10000; q += 16) {
402 rc = dmi_present(q);
403 if (!rc) {
404 dmi_available = 1;
405 dmi_iounmap(p, 0x10000);
406 goto out;
409 dmi_iounmap(p, 0x10000);
411 error:
412 printk(KERN_INFO "DMI not present or invalid.\n");
413 out:
414 dmi_initialized = 1;
418 * dmi_check_system - check system DMI data
419 * @list: array of dmi_system_id structures to match against
420 * All non-null elements of the list must match
421 * their slot's (field index's) data (i.e., each
422 * list string must be a substring of the specified
423 * DMI slot's string data) to be considered a
424 * successful match.
426 * Walk the blacklist table running matching functions until someone
427 * returns non zero or we hit the end. Callback function is called for
428 * each successful match. Returns the number of matches.
430 int dmi_check_system(const struct dmi_system_id *list)
432 int i, count = 0;
433 const struct dmi_system_id *d = list;
435 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
437 while (d->ident) {
438 for (i = 0; i < ARRAY_SIZE(d->matches); i++) {
439 int s = d->matches[i].slot;
440 if (s == DMI_NONE)
441 continue;
442 if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr))
443 continue;
444 /* No match */
445 goto fail;
447 count++;
448 if (d->callback && d->callback(d))
449 break;
450 fail: d++;
453 return count;
455 EXPORT_SYMBOL(dmi_check_system);
458 * dmi_get_system_info - return DMI data value
459 * @field: data index (see enum dmi_field)
461 * Returns one DMI data value, can be used to perform
462 * complex DMI data checks.
464 const char *dmi_get_system_info(int field)
466 return dmi_ident[field];
468 EXPORT_SYMBOL(dmi_get_system_info);
472 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
473 * @str: Case sensitive Name
475 int dmi_name_in_vendors(const char *str)
477 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
478 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
479 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
480 int i;
481 for (i = 0; fields[i] != DMI_NONE; i++) {
482 int f = fields[i];
483 if (dmi_ident[f] && strstr(dmi_ident[f], str))
484 return 1;
486 return 0;
488 EXPORT_SYMBOL(dmi_name_in_vendors);
491 * dmi_find_device - find onboard device by type/name
492 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
493 * @name: device name string or %NULL to match all
494 * @from: previous device found in search, or %NULL for new search.
496 * Iterates through the list of known onboard devices. If a device is
497 * found with a matching @vendor and @device, a pointer to its device
498 * structure is returned. Otherwise, %NULL is returned.
499 * A new search is initiated by passing %NULL as the @from argument.
500 * If @from is not %NULL, searches continue from next device.
502 const struct dmi_device * dmi_find_device(int type, const char *name,
503 const struct dmi_device *from)
505 const struct list_head *head = from ? &from->list : &dmi_devices;
506 struct list_head *d;
508 for(d = head->next; d != &dmi_devices; d = d->next) {
509 const struct dmi_device *dev =
510 list_entry(d, struct dmi_device, list);
512 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
513 ((name == NULL) || (strcmp(dev->name, name) == 0)))
514 return dev;
517 return NULL;
519 EXPORT_SYMBOL(dmi_find_device);
522 * dmi_get_year - Return year of a DMI date
523 * @field: data index (like dmi_get_system_info)
525 * Returns -1 when the field doesn't exist. 0 when it is broken.
527 int dmi_get_year(int field)
529 int year;
530 const char *s = dmi_get_system_info(field);
532 if (!s)
533 return -1;
534 if (*s == '\0')
535 return 0;
536 s = strrchr(s, '/');
537 if (!s)
538 return 0;
540 s += 1;
541 year = simple_strtoul(s, NULL, 0);
542 if (year && year < 100) { /* 2-digit year */
543 year += 1900;
544 if (year < 1996) /* no dates < spec 1.0 */
545 year += 100;
548 return year;
552 * dmi_walk - Walk the DMI table and get called back for every record
553 * @decode: Callback function
555 * Returns -1 when the DMI table can't be reached, 0 on success.
557 int dmi_walk(void (*decode)(const struct dmi_header *))
559 u8 *buf;
561 if (!dmi_available)
562 return -1;
564 buf = ioremap(dmi_base, dmi_len);
565 if (buf == NULL)
566 return -1;
568 dmi_table(buf, dmi_len, dmi_num, decode);
570 iounmap(buf);
571 return 0;
573 EXPORT_SYMBOL_GPL(dmi_walk);