1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/spinlock.h>
33 #include <linux/seq_file.h>
34 #include <linux/vmalloc.h>
36 #include <asm/uaccess.h>
38 struct cgroup_subsys mem_cgroup_subsys
;
39 static const int MEM_CGROUP_RECLAIM_RETRIES
= 5;
40 static struct kmem_cache
*page_cgroup_cache
;
43 * Statistics for memory cgroup.
45 enum mem_cgroup_stat_index
{
47 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
49 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
50 MEM_CGROUP_STAT_RSS
, /* # of pages charged as rss */
52 MEM_CGROUP_STAT_NSTATS
,
55 struct mem_cgroup_stat_cpu
{
56 s64 count
[MEM_CGROUP_STAT_NSTATS
];
57 } ____cacheline_aligned_in_smp
;
59 struct mem_cgroup_stat
{
60 struct mem_cgroup_stat_cpu cpustat
[NR_CPUS
];
64 * For accounting under irq disable, no need for increment preempt count.
66 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat
*stat
,
67 enum mem_cgroup_stat_index idx
, int val
)
69 int cpu
= smp_processor_id();
70 stat
->cpustat
[cpu
].count
[idx
] += val
;
73 static s64
mem_cgroup_read_stat(struct mem_cgroup_stat
*stat
,
74 enum mem_cgroup_stat_index idx
)
78 for_each_possible_cpu(cpu
)
79 ret
+= stat
->cpustat
[cpu
].count
[idx
];
84 * per-zone information in memory controller.
87 enum mem_cgroup_zstat_index
{
88 MEM_CGROUP_ZSTAT_ACTIVE
,
89 MEM_CGROUP_ZSTAT_INACTIVE
,
94 struct mem_cgroup_per_zone
{
96 * spin_lock to protect the per cgroup LRU
99 struct list_head active_list
;
100 struct list_head inactive_list
;
101 unsigned long count
[NR_MEM_CGROUP_ZSTAT
];
103 /* Macro for accessing counter */
104 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
106 struct mem_cgroup_per_node
{
107 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
110 struct mem_cgroup_lru_info
{
111 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
115 * The memory controller data structure. The memory controller controls both
116 * page cache and RSS per cgroup. We would eventually like to provide
117 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
118 * to help the administrator determine what knobs to tune.
120 * TODO: Add a water mark for the memory controller. Reclaim will begin when
121 * we hit the water mark. May be even add a low water mark, such that
122 * no reclaim occurs from a cgroup at it's low water mark, this is
123 * a feature that will be implemented much later in the future.
126 struct cgroup_subsys_state css
;
128 * the counter to account for memory usage
130 struct res_counter res
;
132 * Per cgroup active and inactive list, similar to the
133 * per zone LRU lists.
135 struct mem_cgroup_lru_info info
;
137 int prev_priority
; /* for recording reclaim priority */
141 struct mem_cgroup_stat stat
;
143 static struct mem_cgroup init_mem_cgroup
;
146 * We use the lower bit of the page->page_cgroup pointer as a bit spin
147 * lock. We need to ensure that page->page_cgroup is at least two
148 * byte aligned (based on comments from Nick Piggin). But since
149 * bit_spin_lock doesn't actually set that lock bit in a non-debug
150 * uniprocessor kernel, we should avoid setting it here too.
152 #define PAGE_CGROUP_LOCK_BIT 0x0
153 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
154 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
156 #define PAGE_CGROUP_LOCK 0x0
160 * A page_cgroup page is associated with every page descriptor. The
161 * page_cgroup helps us identify information about the cgroup
164 struct list_head lru
; /* per cgroup LRU list */
166 struct mem_cgroup
*mem_cgroup
;
167 int ref_cnt
; /* cached, mapped, migrating */
170 #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
171 #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
173 static int page_cgroup_nid(struct page_cgroup
*pc
)
175 return page_to_nid(pc
->page
);
178 static enum zone_type
page_cgroup_zid(struct page_cgroup
*pc
)
180 return page_zonenum(pc
->page
);
184 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
185 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
189 * Always modified under lru lock. Then, not necessary to preempt_disable()
191 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
, int flags
,
194 int val
= (charge
)? 1 : -1;
195 struct mem_cgroup_stat
*stat
= &mem
->stat
;
197 VM_BUG_ON(!irqs_disabled());
198 if (flags
& PAGE_CGROUP_FLAG_CACHE
)
199 __mem_cgroup_stat_add_safe(stat
, MEM_CGROUP_STAT_CACHE
, val
);
201 __mem_cgroup_stat_add_safe(stat
, MEM_CGROUP_STAT_RSS
, val
);
204 static struct mem_cgroup_per_zone
*
205 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
207 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
210 static struct mem_cgroup_per_zone
*
211 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
213 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
214 int nid
= page_cgroup_nid(pc
);
215 int zid
= page_cgroup_zid(pc
);
217 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
220 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup
*mem
,
221 enum mem_cgroup_zstat_index idx
)
224 struct mem_cgroup_per_zone
*mz
;
227 for_each_online_node(nid
)
228 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
229 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
230 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
235 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
237 return container_of(cgroup_subsys_state(cont
,
238 mem_cgroup_subsys_id
), struct mem_cgroup
,
242 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
244 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
245 struct mem_cgroup
, css
);
248 static inline int page_cgroup_locked(struct page
*page
)
250 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT
, &page
->page_cgroup
);
253 static void page_assign_page_cgroup(struct page
*page
, struct page_cgroup
*pc
)
255 VM_BUG_ON(!page_cgroup_locked(page
));
256 page
->page_cgroup
= ((unsigned long)pc
| PAGE_CGROUP_LOCK
);
259 struct page_cgroup
*page_get_page_cgroup(struct page
*page
)
261 return (struct page_cgroup
*) (page
->page_cgroup
& ~PAGE_CGROUP_LOCK
);
264 static void lock_page_cgroup(struct page
*page
)
266 bit_spin_lock(PAGE_CGROUP_LOCK_BIT
, &page
->page_cgroup
);
269 static int try_lock_page_cgroup(struct page
*page
)
271 return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT
, &page
->page_cgroup
);
274 static void unlock_page_cgroup(struct page
*page
)
276 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT
, &page
->page_cgroup
);
279 static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone
*mz
,
280 struct page_cgroup
*pc
)
282 int from
= pc
->flags
& PAGE_CGROUP_FLAG_ACTIVE
;
285 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
) -= 1;
287 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
) -= 1;
289 mem_cgroup_charge_statistics(pc
->mem_cgroup
, pc
->flags
, false);
290 list_del_init(&pc
->lru
);
293 static void __mem_cgroup_add_list(struct mem_cgroup_per_zone
*mz
,
294 struct page_cgroup
*pc
)
296 int to
= pc
->flags
& PAGE_CGROUP_FLAG_ACTIVE
;
299 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
) += 1;
300 list_add(&pc
->lru
, &mz
->inactive_list
);
302 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
) += 1;
303 list_add(&pc
->lru
, &mz
->active_list
);
305 mem_cgroup_charge_statistics(pc
->mem_cgroup
, pc
->flags
, true);
308 static void __mem_cgroup_move_lists(struct page_cgroup
*pc
, bool active
)
310 int from
= pc
->flags
& PAGE_CGROUP_FLAG_ACTIVE
;
311 struct mem_cgroup_per_zone
*mz
= page_cgroup_zoneinfo(pc
);
314 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
) -= 1;
316 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
) -= 1;
319 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
) += 1;
320 pc
->flags
|= PAGE_CGROUP_FLAG_ACTIVE
;
321 list_move(&pc
->lru
, &mz
->active_list
);
323 MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
) += 1;
324 pc
->flags
&= ~PAGE_CGROUP_FLAG_ACTIVE
;
325 list_move(&pc
->lru
, &mz
->inactive_list
);
329 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
334 ret
= task
->mm
&& mm_match_cgroup(task
->mm
, mem
);
340 * This routine assumes that the appropriate zone's lru lock is already held
342 void mem_cgroup_move_lists(struct page
*page
, bool active
)
344 struct page_cgroup
*pc
;
345 struct mem_cgroup_per_zone
*mz
;
349 * We cannot lock_page_cgroup while holding zone's lru_lock,
350 * because other holders of lock_page_cgroup can be interrupted
351 * with an attempt to rotate_reclaimable_page. But we cannot
352 * safely get to page_cgroup without it, so just try_lock it:
353 * mem_cgroup_isolate_pages allows for page left on wrong list.
355 if (!try_lock_page_cgroup(page
))
358 pc
= page_get_page_cgroup(page
);
360 mz
= page_cgroup_zoneinfo(pc
);
361 spin_lock_irqsave(&mz
->lru_lock
, flags
);
362 __mem_cgroup_move_lists(pc
, active
);
363 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
365 unlock_page_cgroup(page
);
369 * Calculate mapped_ratio under memory controller. This will be used in
370 * vmscan.c for deteremining we have to reclaim mapped pages.
372 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup
*mem
)
377 * usage is recorded in bytes. But, here, we assume the number of
378 * physical pages can be represented by "long" on any arch.
380 total
= (long) (mem
->res
.usage
>> PAGE_SHIFT
) + 1L;
381 rss
= (long)mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_RSS
);
382 return (int)((rss
* 100L) / total
);
386 * This function is called from vmscan.c. In page reclaiming loop. balance
387 * between active and inactive list is calculated. For memory controller
388 * page reclaiming, we should use using mem_cgroup's imbalance rather than
389 * zone's global lru imbalance.
391 long mem_cgroup_reclaim_imbalance(struct mem_cgroup
*mem
)
393 unsigned long active
, inactive
;
394 /* active and inactive are the number of pages. 'long' is ok.*/
395 active
= mem_cgroup_get_all_zonestat(mem
, MEM_CGROUP_ZSTAT_ACTIVE
);
396 inactive
= mem_cgroup_get_all_zonestat(mem
, MEM_CGROUP_ZSTAT_INACTIVE
);
397 return (long) (active
/ (inactive
+ 1));
401 * prev_priority control...this will be used in memory reclaim path.
403 int mem_cgroup_get_reclaim_priority(struct mem_cgroup
*mem
)
405 return mem
->prev_priority
;
408 void mem_cgroup_note_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
410 if (priority
< mem
->prev_priority
)
411 mem
->prev_priority
= priority
;
414 void mem_cgroup_record_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
416 mem
->prev_priority
= priority
;
420 * Calculate # of pages to be scanned in this priority/zone.
423 * priority starts from "DEF_PRIORITY" and decremented in each loop.
424 * (see include/linux/mmzone.h)
427 long mem_cgroup_calc_reclaim_active(struct mem_cgroup
*mem
,
428 struct zone
*zone
, int priority
)
431 int nid
= zone
->zone_pgdat
->node_id
;
432 int zid
= zone_idx(zone
);
433 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
435 nr_active
= MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_ACTIVE
);
436 return (nr_active
>> priority
);
439 long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup
*mem
,
440 struct zone
*zone
, int priority
)
443 int nid
= zone
->zone_pgdat
->node_id
;
444 int zid
= zone_idx(zone
);
445 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
447 nr_inactive
= MEM_CGROUP_ZSTAT(mz
, MEM_CGROUP_ZSTAT_INACTIVE
);
448 return (nr_inactive
>> priority
);
451 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
452 struct list_head
*dst
,
453 unsigned long *scanned
, int order
,
454 int mode
, struct zone
*z
,
455 struct mem_cgroup
*mem_cont
,
458 unsigned long nr_taken
= 0;
462 struct list_head
*src
;
463 struct page_cgroup
*pc
, *tmp
;
464 int nid
= z
->zone_pgdat
->node_id
;
465 int zid
= zone_idx(z
);
466 struct mem_cgroup_per_zone
*mz
;
469 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
471 src
= &mz
->active_list
;
473 src
= &mz
->inactive_list
;
476 spin_lock(&mz
->lru_lock
);
478 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
479 if (scan
>= nr_to_scan
)
483 if (unlikely(!PageLRU(page
)))
486 if (PageActive(page
) && !active
) {
487 __mem_cgroup_move_lists(pc
, true);
490 if (!PageActive(page
) && active
) {
491 __mem_cgroup_move_lists(pc
, false);
496 list_move(&pc
->lru
, &pc_list
);
498 if (__isolate_lru_page(page
, mode
) == 0) {
499 list_move(&page
->lru
, dst
);
504 list_splice(&pc_list
, src
);
505 spin_unlock(&mz
->lru_lock
);
512 * Charge the memory controller for page usage.
514 * 0 if the charge was successful
515 * < 0 if the cgroup is over its limit
517 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
518 gfp_t gfp_mask
, enum charge_type ctype
)
520 struct mem_cgroup
*mem
;
521 struct page_cgroup
*pc
;
523 unsigned long nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
524 struct mem_cgroup_per_zone
*mz
;
526 if (mem_cgroup_subsys
.disabled
)
530 * Should page_cgroup's go to their own slab?
531 * One could optimize the performance of the charging routine
532 * by saving a bit in the page_flags and using it as a lock
533 * to see if the cgroup page already has a page_cgroup associated
537 lock_page_cgroup(page
);
538 pc
= page_get_page_cgroup(page
);
540 * The page_cgroup exists and
541 * the page has already been accounted.
544 VM_BUG_ON(pc
->page
!= page
);
545 VM_BUG_ON(pc
->ref_cnt
<= 0);
548 unlock_page_cgroup(page
);
551 unlock_page_cgroup(page
);
553 pc
= kmem_cache_zalloc(page_cgroup_cache
, gfp_mask
);
558 * We always charge the cgroup the mm_struct belongs to.
559 * The mm_struct's mem_cgroup changes on task migration if the
560 * thread group leader migrates. It's possible that mm is not
561 * set, if so charge the init_mm (happens for pagecache usage).
567 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
569 * For every charge from the cgroup, increment reference count
574 while (res_counter_charge(&mem
->res
, PAGE_SIZE
)) {
575 if (!(gfp_mask
& __GFP_WAIT
))
578 if (try_to_free_mem_cgroup_pages(mem
, gfp_mask
))
582 * try_to_free_mem_cgroup_pages() might not give us a full
583 * picture of reclaim. Some pages are reclaimed and might be
584 * moved to swap cache or just unmapped from the cgroup.
585 * Check the limit again to see if the reclaim reduced the
586 * current usage of the cgroup before giving up
588 if (res_counter_check_under_limit(&mem
->res
))
592 mem_cgroup_out_of_memory(mem
, gfp_mask
);
598 pc
->mem_cgroup
= mem
;
600 pc
->flags
= PAGE_CGROUP_FLAG_ACTIVE
;
601 if (ctype
== MEM_CGROUP_CHARGE_TYPE_CACHE
)
602 pc
->flags
= PAGE_CGROUP_FLAG_CACHE
;
604 lock_page_cgroup(page
);
605 if (page_get_page_cgroup(page
)) {
606 unlock_page_cgroup(page
);
608 * Another charge has been added to this page already.
609 * We take lock_page_cgroup(page) again and read
610 * page->cgroup, increment refcnt.... just retry is OK.
612 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
614 kmem_cache_free(page_cgroup_cache
, pc
);
617 page_assign_page_cgroup(page
, pc
);
619 mz
= page_cgroup_zoneinfo(pc
);
620 spin_lock_irqsave(&mz
->lru_lock
, flags
);
621 __mem_cgroup_add_list(mz
, pc
);
622 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
624 unlock_page_cgroup(page
);
629 kmem_cache_free(page_cgroup_cache
, pc
);
634 int mem_cgroup_charge(struct page
*page
, struct mm_struct
*mm
, gfp_t gfp_mask
)
636 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
637 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
640 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
645 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
646 MEM_CGROUP_CHARGE_TYPE_CACHE
);
650 * Uncharging is always a welcome operation, we never complain, simply
653 void mem_cgroup_uncharge_page(struct page
*page
)
655 struct page_cgroup
*pc
;
656 struct mem_cgroup
*mem
;
657 struct mem_cgroup_per_zone
*mz
;
660 if (mem_cgroup_subsys
.disabled
)
664 * Check if our page_cgroup is valid
666 lock_page_cgroup(page
);
667 pc
= page_get_page_cgroup(page
);
671 VM_BUG_ON(pc
->page
!= page
);
672 VM_BUG_ON(pc
->ref_cnt
<= 0);
674 if (--(pc
->ref_cnt
) == 0) {
675 mz
= page_cgroup_zoneinfo(pc
);
676 spin_lock_irqsave(&mz
->lru_lock
, flags
);
677 __mem_cgroup_remove_list(mz
, pc
);
678 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
680 page_assign_page_cgroup(page
, NULL
);
681 unlock_page_cgroup(page
);
683 mem
= pc
->mem_cgroup
;
684 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
687 kmem_cache_free(page_cgroup_cache
, pc
);
692 unlock_page_cgroup(page
);
696 * Returns non-zero if a page (under migration) has valid page_cgroup member.
697 * Refcnt of page_cgroup is incremented.
699 int mem_cgroup_prepare_migration(struct page
*page
)
701 struct page_cgroup
*pc
;
703 if (mem_cgroup_subsys
.disabled
)
706 lock_page_cgroup(page
);
707 pc
= page_get_page_cgroup(page
);
710 unlock_page_cgroup(page
);
714 void mem_cgroup_end_migration(struct page
*page
)
716 mem_cgroup_uncharge_page(page
);
720 * We know both *page* and *newpage* are now not-on-LRU and PG_locked.
721 * And no race with uncharge() routines because page_cgroup for *page*
722 * has extra one reference by mem_cgroup_prepare_migration.
724 void mem_cgroup_page_migration(struct page
*page
, struct page
*newpage
)
726 struct page_cgroup
*pc
;
727 struct mem_cgroup_per_zone
*mz
;
730 lock_page_cgroup(page
);
731 pc
= page_get_page_cgroup(page
);
733 unlock_page_cgroup(page
);
737 mz
= page_cgroup_zoneinfo(pc
);
738 spin_lock_irqsave(&mz
->lru_lock
, flags
);
739 __mem_cgroup_remove_list(mz
, pc
);
740 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
742 page_assign_page_cgroup(page
, NULL
);
743 unlock_page_cgroup(page
);
746 lock_page_cgroup(newpage
);
747 page_assign_page_cgroup(newpage
, pc
);
749 mz
= page_cgroup_zoneinfo(pc
);
750 spin_lock_irqsave(&mz
->lru_lock
, flags
);
751 __mem_cgroup_add_list(mz
, pc
);
752 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
754 unlock_page_cgroup(newpage
);
758 * This routine traverse page_cgroup in given list and drop them all.
759 * This routine ignores page_cgroup->ref_cnt.
760 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
762 #define FORCE_UNCHARGE_BATCH (128)
763 static void mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
764 struct mem_cgroup_per_zone
*mz
,
767 struct page_cgroup
*pc
;
769 int count
= FORCE_UNCHARGE_BATCH
;
771 struct list_head
*list
;
774 list
= &mz
->active_list
;
776 list
= &mz
->inactive_list
;
778 spin_lock_irqsave(&mz
->lru_lock
, flags
);
779 while (!list_empty(list
)) {
780 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
783 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
784 mem_cgroup_uncharge_page(page
);
787 count
= FORCE_UNCHARGE_BATCH
;
790 spin_lock_irqsave(&mz
->lru_lock
, flags
);
792 spin_unlock_irqrestore(&mz
->lru_lock
, flags
);
796 * make mem_cgroup's charge to be 0 if there is no task.
797 * This enables deleting this mem_cgroup.
799 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
)
804 if (mem_cgroup_subsys
.disabled
)
809 * page reclaim code (kswapd etc..) will move pages between
810 * active_list <-> inactive_list while we don't take a lock.
811 * So, we have to do loop here until all lists are empty.
813 while (mem
->res
.usage
> 0) {
814 if (atomic_read(&mem
->css
.cgroup
->count
) > 0)
816 for_each_node_state(node
, N_POSSIBLE
)
817 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
818 struct mem_cgroup_per_zone
*mz
;
819 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
820 /* drop all page_cgroup in active_list */
821 mem_cgroup_force_empty_list(mem
, mz
, 1);
822 /* drop all page_cgroup in inactive_list */
823 mem_cgroup_force_empty_list(mem
, mz
, 0);
832 static int mem_cgroup_write_strategy(char *buf
, unsigned long long *tmp
)
834 *tmp
= memparse(buf
, &buf
);
839 * Round up the value to the closest page size
841 *tmp
= ((*tmp
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
) << PAGE_SHIFT
;
845 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
847 return res_counter_read_u64(&mem_cgroup_from_cont(cont
)->res
,
851 static ssize_t
mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
852 struct file
*file
, const char __user
*userbuf
,
853 size_t nbytes
, loff_t
*ppos
)
855 return res_counter_write(&mem_cgroup_from_cont(cont
)->res
,
856 cft
->private, userbuf
, nbytes
, ppos
,
857 mem_cgroup_write_strategy
);
860 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
862 struct mem_cgroup
*mem
;
864 mem
= mem_cgroup_from_cont(cont
);
867 res_counter_reset_max(&mem
->res
);
870 res_counter_reset_failcnt(&mem
->res
);
876 static int mem_force_empty_write(struct cgroup
*cont
, unsigned int event
)
878 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
));
881 static const struct mem_cgroup_stat_desc
{
884 } mem_cgroup_stat_desc
[] = {
885 [MEM_CGROUP_STAT_CACHE
] = { "cache", PAGE_SIZE
, },
886 [MEM_CGROUP_STAT_RSS
] = { "rss", PAGE_SIZE
, },
889 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
890 struct cgroup_map_cb
*cb
)
892 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
893 struct mem_cgroup_stat
*stat
= &mem_cont
->stat
;
896 for (i
= 0; i
< ARRAY_SIZE(stat
->cpustat
[0].count
); i
++) {
899 val
= mem_cgroup_read_stat(stat
, i
);
900 val
*= mem_cgroup_stat_desc
[i
].unit
;
901 cb
->fill(cb
, mem_cgroup_stat_desc
[i
].msg
, val
);
903 /* showing # of active pages */
905 unsigned long active
, inactive
;
907 inactive
= mem_cgroup_get_all_zonestat(mem_cont
,
908 MEM_CGROUP_ZSTAT_INACTIVE
);
909 active
= mem_cgroup_get_all_zonestat(mem_cont
,
910 MEM_CGROUP_ZSTAT_ACTIVE
);
911 cb
->fill(cb
, "active", (active
) * PAGE_SIZE
);
912 cb
->fill(cb
, "inactive", (inactive
) * PAGE_SIZE
);
917 static struct cftype mem_cgroup_files
[] = {
919 .name
= "usage_in_bytes",
920 .private = RES_USAGE
,
921 .read_u64
= mem_cgroup_read
,
924 .name
= "max_usage_in_bytes",
925 .private = RES_MAX_USAGE
,
926 .trigger
= mem_cgroup_reset
,
927 .read_u64
= mem_cgroup_read
,
930 .name
= "limit_in_bytes",
931 .private = RES_LIMIT
,
932 .write
= mem_cgroup_write
,
933 .read_u64
= mem_cgroup_read
,
937 .private = RES_FAILCNT
,
938 .trigger
= mem_cgroup_reset
,
939 .read_u64
= mem_cgroup_read
,
942 .name
= "force_empty",
943 .trigger
= mem_force_empty_write
,
947 .read_map
= mem_control_stat_show
,
951 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
953 struct mem_cgroup_per_node
*pn
;
954 struct mem_cgroup_per_zone
*mz
;
955 int zone
, tmp
= node
;
957 * This routine is called against possible nodes.
958 * But it's BUG to call kmalloc() against offline node.
960 * TODO: this routine can waste much memory for nodes which will
961 * never be onlined. It's better to use memory hotplug callback
964 if (!node_state(node
, N_NORMAL_MEMORY
))
966 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
970 mem
->info
.nodeinfo
[node
] = pn
;
971 memset(pn
, 0, sizeof(*pn
));
973 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
974 mz
= &pn
->zoneinfo
[zone
];
975 INIT_LIST_HEAD(&mz
->active_list
);
976 INIT_LIST_HEAD(&mz
->inactive_list
);
977 spin_lock_init(&mz
->lru_lock
);
982 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
984 kfree(mem
->info
.nodeinfo
[node
]);
987 static struct mem_cgroup
*mem_cgroup_alloc(void)
989 struct mem_cgroup
*mem
;
991 if (sizeof(*mem
) < PAGE_SIZE
)
992 mem
= kmalloc(sizeof(*mem
), GFP_KERNEL
);
994 mem
= vmalloc(sizeof(*mem
));
997 memset(mem
, 0, sizeof(*mem
));
1001 static void mem_cgroup_free(struct mem_cgroup
*mem
)
1003 if (sizeof(*mem
) < PAGE_SIZE
)
1010 static struct cgroup_subsys_state
*
1011 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
1013 struct mem_cgroup
*mem
;
1016 if (unlikely((cont
->parent
) == NULL
)) {
1017 mem
= &init_mem_cgroup
;
1018 page_cgroup_cache
= KMEM_CACHE(page_cgroup
, SLAB_PANIC
);
1020 mem
= mem_cgroup_alloc();
1022 return ERR_PTR(-ENOMEM
);
1025 res_counter_init(&mem
->res
);
1027 for_each_node_state(node
, N_POSSIBLE
)
1028 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
1033 for_each_node_state(node
, N_POSSIBLE
)
1034 free_mem_cgroup_per_zone_info(mem
, node
);
1035 if (cont
->parent
!= NULL
)
1036 mem_cgroup_free(mem
);
1037 return ERR_PTR(-ENOMEM
);
1040 static void mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
1041 struct cgroup
*cont
)
1043 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1044 mem_cgroup_force_empty(mem
);
1047 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
1048 struct cgroup
*cont
)
1051 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1053 for_each_node_state(node
, N_POSSIBLE
)
1054 free_mem_cgroup_per_zone_info(mem
, node
);
1056 mem_cgroup_free(mem_cgroup_from_cont(cont
));
1059 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
1060 struct cgroup
*cont
)
1062 if (mem_cgroup_subsys
.disabled
)
1064 return cgroup_add_files(cont
, ss
, mem_cgroup_files
,
1065 ARRAY_SIZE(mem_cgroup_files
));
1068 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
1069 struct cgroup
*cont
,
1070 struct cgroup
*old_cont
,
1071 struct task_struct
*p
)
1073 struct mm_struct
*mm
;
1074 struct mem_cgroup
*mem
, *old_mem
;
1076 if (mem_cgroup_subsys
.disabled
)
1079 mm
= get_task_mm(p
);
1083 mem
= mem_cgroup_from_cont(cont
);
1084 old_mem
= mem_cgroup_from_cont(old_cont
);
1090 * Only thread group leaders are allowed to migrate, the mm_struct is
1091 * in effect owned by the leader
1093 if (!thread_group_leader(p
))
1100 struct cgroup_subsys mem_cgroup_subsys
= {
1102 .subsys_id
= mem_cgroup_subsys_id
,
1103 .create
= mem_cgroup_create
,
1104 .pre_destroy
= mem_cgroup_pre_destroy
,
1105 .destroy
= mem_cgroup_destroy
,
1106 .populate
= mem_cgroup_populate
,
1107 .attach
= mem_cgroup_move_task
,