sysctl: merge equal proc_sys_read and proc_sys_write
[linux-2.6/mini2440.git] / mm / memcontrol.c
blob33add96cd5fbf98c2f804fb2511aeec3f5a2594d
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/page-flags.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bit_spinlock.h>
28 #include <linux/rcupdate.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/spinlock.h>
32 #include <linux/fs.h>
33 #include <linux/seq_file.h>
34 #include <linux/vmalloc.h>
36 #include <asm/uaccess.h>
38 struct cgroup_subsys mem_cgroup_subsys;
39 static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
40 static struct kmem_cache *page_cgroup_cache;
43 * Statistics for memory cgroup.
45 enum mem_cgroup_stat_index {
47 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
49 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
50 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
52 MEM_CGROUP_STAT_NSTATS,
55 struct mem_cgroup_stat_cpu {
56 s64 count[MEM_CGROUP_STAT_NSTATS];
57 } ____cacheline_aligned_in_smp;
59 struct mem_cgroup_stat {
60 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
64 * For accounting under irq disable, no need for increment preempt count.
66 static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
67 enum mem_cgroup_stat_index idx, int val)
69 int cpu = smp_processor_id();
70 stat->cpustat[cpu].count[idx] += val;
73 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
74 enum mem_cgroup_stat_index idx)
76 int cpu;
77 s64 ret = 0;
78 for_each_possible_cpu(cpu)
79 ret += stat->cpustat[cpu].count[idx];
80 return ret;
84 * per-zone information in memory controller.
87 enum mem_cgroup_zstat_index {
88 MEM_CGROUP_ZSTAT_ACTIVE,
89 MEM_CGROUP_ZSTAT_INACTIVE,
91 NR_MEM_CGROUP_ZSTAT,
94 struct mem_cgroup_per_zone {
96 * spin_lock to protect the per cgroup LRU
98 spinlock_t lru_lock;
99 struct list_head active_list;
100 struct list_head inactive_list;
101 unsigned long count[NR_MEM_CGROUP_ZSTAT];
103 /* Macro for accessing counter */
104 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
106 struct mem_cgroup_per_node {
107 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
110 struct mem_cgroup_lru_info {
111 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
115 * The memory controller data structure. The memory controller controls both
116 * page cache and RSS per cgroup. We would eventually like to provide
117 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
118 * to help the administrator determine what knobs to tune.
120 * TODO: Add a water mark for the memory controller. Reclaim will begin when
121 * we hit the water mark. May be even add a low water mark, such that
122 * no reclaim occurs from a cgroup at it's low water mark, this is
123 * a feature that will be implemented much later in the future.
125 struct mem_cgroup {
126 struct cgroup_subsys_state css;
128 * the counter to account for memory usage
130 struct res_counter res;
132 * Per cgroup active and inactive list, similar to the
133 * per zone LRU lists.
135 struct mem_cgroup_lru_info info;
137 int prev_priority; /* for recording reclaim priority */
139 * statistics.
141 struct mem_cgroup_stat stat;
143 static struct mem_cgroup init_mem_cgroup;
146 * We use the lower bit of the page->page_cgroup pointer as a bit spin
147 * lock. We need to ensure that page->page_cgroup is at least two
148 * byte aligned (based on comments from Nick Piggin). But since
149 * bit_spin_lock doesn't actually set that lock bit in a non-debug
150 * uniprocessor kernel, we should avoid setting it here too.
152 #define PAGE_CGROUP_LOCK_BIT 0x0
153 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
154 #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
155 #else
156 #define PAGE_CGROUP_LOCK 0x0
157 #endif
160 * A page_cgroup page is associated with every page descriptor. The
161 * page_cgroup helps us identify information about the cgroup
163 struct page_cgroup {
164 struct list_head lru; /* per cgroup LRU list */
165 struct page *page;
166 struct mem_cgroup *mem_cgroup;
167 int ref_cnt; /* cached, mapped, migrating */
168 int flags;
170 #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
171 #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
173 static int page_cgroup_nid(struct page_cgroup *pc)
175 return page_to_nid(pc->page);
178 static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
180 return page_zonenum(pc->page);
183 enum charge_type {
184 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
185 MEM_CGROUP_CHARGE_TYPE_MAPPED,
189 * Always modified under lru lock. Then, not necessary to preempt_disable()
191 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
192 bool charge)
194 int val = (charge)? 1 : -1;
195 struct mem_cgroup_stat *stat = &mem->stat;
197 VM_BUG_ON(!irqs_disabled());
198 if (flags & PAGE_CGROUP_FLAG_CACHE)
199 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
200 else
201 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
204 static struct mem_cgroup_per_zone *
205 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
207 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
210 static struct mem_cgroup_per_zone *
211 page_cgroup_zoneinfo(struct page_cgroup *pc)
213 struct mem_cgroup *mem = pc->mem_cgroup;
214 int nid = page_cgroup_nid(pc);
215 int zid = page_cgroup_zid(pc);
217 return mem_cgroup_zoneinfo(mem, nid, zid);
220 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
221 enum mem_cgroup_zstat_index idx)
223 int nid, zid;
224 struct mem_cgroup_per_zone *mz;
225 u64 total = 0;
227 for_each_online_node(nid)
228 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
229 mz = mem_cgroup_zoneinfo(mem, nid, zid);
230 total += MEM_CGROUP_ZSTAT(mz, idx);
232 return total;
235 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
237 return container_of(cgroup_subsys_state(cont,
238 mem_cgroup_subsys_id), struct mem_cgroup,
239 css);
242 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
244 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
245 struct mem_cgroup, css);
248 static inline int page_cgroup_locked(struct page *page)
250 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
253 static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
255 VM_BUG_ON(!page_cgroup_locked(page));
256 page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
259 struct page_cgroup *page_get_page_cgroup(struct page *page)
261 return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
264 static void lock_page_cgroup(struct page *page)
266 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
269 static int try_lock_page_cgroup(struct page *page)
271 return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
274 static void unlock_page_cgroup(struct page *page)
276 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
279 static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
280 struct page_cgroup *pc)
282 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
284 if (from)
285 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
286 else
287 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
289 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
290 list_del_init(&pc->lru);
293 static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
294 struct page_cgroup *pc)
296 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
298 if (!to) {
299 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
300 list_add(&pc->lru, &mz->inactive_list);
301 } else {
302 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
303 list_add(&pc->lru, &mz->active_list);
305 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
308 static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
310 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
311 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
313 if (from)
314 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
315 else
316 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
318 if (active) {
319 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
320 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
321 list_move(&pc->lru, &mz->active_list);
322 } else {
323 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
324 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
325 list_move(&pc->lru, &mz->inactive_list);
329 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
331 int ret;
333 task_lock(task);
334 ret = task->mm && mm_match_cgroup(task->mm, mem);
335 task_unlock(task);
336 return ret;
340 * This routine assumes that the appropriate zone's lru lock is already held
342 void mem_cgroup_move_lists(struct page *page, bool active)
344 struct page_cgroup *pc;
345 struct mem_cgroup_per_zone *mz;
346 unsigned long flags;
349 * We cannot lock_page_cgroup while holding zone's lru_lock,
350 * because other holders of lock_page_cgroup can be interrupted
351 * with an attempt to rotate_reclaimable_page. But we cannot
352 * safely get to page_cgroup without it, so just try_lock it:
353 * mem_cgroup_isolate_pages allows for page left on wrong list.
355 if (!try_lock_page_cgroup(page))
356 return;
358 pc = page_get_page_cgroup(page);
359 if (pc) {
360 mz = page_cgroup_zoneinfo(pc);
361 spin_lock_irqsave(&mz->lru_lock, flags);
362 __mem_cgroup_move_lists(pc, active);
363 spin_unlock_irqrestore(&mz->lru_lock, flags);
365 unlock_page_cgroup(page);
369 * Calculate mapped_ratio under memory controller. This will be used in
370 * vmscan.c for deteremining we have to reclaim mapped pages.
372 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
374 long total, rss;
377 * usage is recorded in bytes. But, here, we assume the number of
378 * physical pages can be represented by "long" on any arch.
380 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
381 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
382 return (int)((rss * 100L) / total);
386 * This function is called from vmscan.c. In page reclaiming loop. balance
387 * between active and inactive list is calculated. For memory controller
388 * page reclaiming, we should use using mem_cgroup's imbalance rather than
389 * zone's global lru imbalance.
391 long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
393 unsigned long active, inactive;
394 /* active and inactive are the number of pages. 'long' is ok.*/
395 active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
396 inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
397 return (long) (active / (inactive + 1));
401 * prev_priority control...this will be used in memory reclaim path.
403 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
405 return mem->prev_priority;
408 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
410 if (priority < mem->prev_priority)
411 mem->prev_priority = priority;
414 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
416 mem->prev_priority = priority;
420 * Calculate # of pages to be scanned in this priority/zone.
421 * See also vmscan.c
423 * priority starts from "DEF_PRIORITY" and decremented in each loop.
424 * (see include/linux/mmzone.h)
427 long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
428 struct zone *zone, int priority)
430 long nr_active;
431 int nid = zone->zone_pgdat->node_id;
432 int zid = zone_idx(zone);
433 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
435 nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
436 return (nr_active >> priority);
439 long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
440 struct zone *zone, int priority)
442 long nr_inactive;
443 int nid = zone->zone_pgdat->node_id;
444 int zid = zone_idx(zone);
445 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
447 nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
448 return (nr_inactive >> priority);
451 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
452 struct list_head *dst,
453 unsigned long *scanned, int order,
454 int mode, struct zone *z,
455 struct mem_cgroup *mem_cont,
456 int active)
458 unsigned long nr_taken = 0;
459 struct page *page;
460 unsigned long scan;
461 LIST_HEAD(pc_list);
462 struct list_head *src;
463 struct page_cgroup *pc, *tmp;
464 int nid = z->zone_pgdat->node_id;
465 int zid = zone_idx(z);
466 struct mem_cgroup_per_zone *mz;
468 BUG_ON(!mem_cont);
469 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
470 if (active)
471 src = &mz->active_list;
472 else
473 src = &mz->inactive_list;
476 spin_lock(&mz->lru_lock);
477 scan = 0;
478 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
479 if (scan >= nr_to_scan)
480 break;
481 page = pc->page;
483 if (unlikely(!PageLRU(page)))
484 continue;
486 if (PageActive(page) && !active) {
487 __mem_cgroup_move_lists(pc, true);
488 continue;
490 if (!PageActive(page) && active) {
491 __mem_cgroup_move_lists(pc, false);
492 continue;
495 scan++;
496 list_move(&pc->lru, &pc_list);
498 if (__isolate_lru_page(page, mode) == 0) {
499 list_move(&page->lru, dst);
500 nr_taken++;
504 list_splice(&pc_list, src);
505 spin_unlock(&mz->lru_lock);
507 *scanned = scan;
508 return nr_taken;
512 * Charge the memory controller for page usage.
513 * Return
514 * 0 if the charge was successful
515 * < 0 if the cgroup is over its limit
517 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
518 gfp_t gfp_mask, enum charge_type ctype)
520 struct mem_cgroup *mem;
521 struct page_cgroup *pc;
522 unsigned long flags;
523 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
524 struct mem_cgroup_per_zone *mz;
526 if (mem_cgroup_subsys.disabled)
527 return 0;
530 * Should page_cgroup's go to their own slab?
531 * One could optimize the performance of the charging routine
532 * by saving a bit in the page_flags and using it as a lock
533 * to see if the cgroup page already has a page_cgroup associated
534 * with it
536 retry:
537 lock_page_cgroup(page);
538 pc = page_get_page_cgroup(page);
540 * The page_cgroup exists and
541 * the page has already been accounted.
543 if (pc) {
544 VM_BUG_ON(pc->page != page);
545 VM_BUG_ON(pc->ref_cnt <= 0);
547 pc->ref_cnt++;
548 unlock_page_cgroup(page);
549 goto done;
551 unlock_page_cgroup(page);
553 pc = kmem_cache_zalloc(page_cgroup_cache, gfp_mask);
554 if (pc == NULL)
555 goto err;
558 * We always charge the cgroup the mm_struct belongs to.
559 * The mm_struct's mem_cgroup changes on task migration if the
560 * thread group leader migrates. It's possible that mm is not
561 * set, if so charge the init_mm (happens for pagecache usage).
563 if (!mm)
564 mm = &init_mm;
566 rcu_read_lock();
567 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
569 * For every charge from the cgroup, increment reference count
571 css_get(&mem->css);
572 rcu_read_unlock();
574 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
575 if (!(gfp_mask & __GFP_WAIT))
576 goto out;
578 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
579 continue;
582 * try_to_free_mem_cgroup_pages() might not give us a full
583 * picture of reclaim. Some pages are reclaimed and might be
584 * moved to swap cache or just unmapped from the cgroup.
585 * Check the limit again to see if the reclaim reduced the
586 * current usage of the cgroup before giving up
588 if (res_counter_check_under_limit(&mem->res))
589 continue;
591 if (!nr_retries--) {
592 mem_cgroup_out_of_memory(mem, gfp_mask);
593 goto out;
597 pc->ref_cnt = 1;
598 pc->mem_cgroup = mem;
599 pc->page = page;
600 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
601 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
602 pc->flags = PAGE_CGROUP_FLAG_CACHE;
604 lock_page_cgroup(page);
605 if (page_get_page_cgroup(page)) {
606 unlock_page_cgroup(page);
608 * Another charge has been added to this page already.
609 * We take lock_page_cgroup(page) again and read
610 * page->cgroup, increment refcnt.... just retry is OK.
612 res_counter_uncharge(&mem->res, PAGE_SIZE);
613 css_put(&mem->css);
614 kmem_cache_free(page_cgroup_cache, pc);
615 goto retry;
617 page_assign_page_cgroup(page, pc);
619 mz = page_cgroup_zoneinfo(pc);
620 spin_lock_irqsave(&mz->lru_lock, flags);
621 __mem_cgroup_add_list(mz, pc);
622 spin_unlock_irqrestore(&mz->lru_lock, flags);
624 unlock_page_cgroup(page);
625 done:
626 return 0;
627 out:
628 css_put(&mem->css);
629 kmem_cache_free(page_cgroup_cache, pc);
630 err:
631 return -ENOMEM;
634 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
636 return mem_cgroup_charge_common(page, mm, gfp_mask,
637 MEM_CGROUP_CHARGE_TYPE_MAPPED);
640 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
641 gfp_t gfp_mask)
643 if (!mm)
644 mm = &init_mm;
645 return mem_cgroup_charge_common(page, mm, gfp_mask,
646 MEM_CGROUP_CHARGE_TYPE_CACHE);
650 * Uncharging is always a welcome operation, we never complain, simply
651 * uncharge.
653 void mem_cgroup_uncharge_page(struct page *page)
655 struct page_cgroup *pc;
656 struct mem_cgroup *mem;
657 struct mem_cgroup_per_zone *mz;
658 unsigned long flags;
660 if (mem_cgroup_subsys.disabled)
661 return;
664 * Check if our page_cgroup is valid
666 lock_page_cgroup(page);
667 pc = page_get_page_cgroup(page);
668 if (!pc)
669 goto unlock;
671 VM_BUG_ON(pc->page != page);
672 VM_BUG_ON(pc->ref_cnt <= 0);
674 if (--(pc->ref_cnt) == 0) {
675 mz = page_cgroup_zoneinfo(pc);
676 spin_lock_irqsave(&mz->lru_lock, flags);
677 __mem_cgroup_remove_list(mz, pc);
678 spin_unlock_irqrestore(&mz->lru_lock, flags);
680 page_assign_page_cgroup(page, NULL);
681 unlock_page_cgroup(page);
683 mem = pc->mem_cgroup;
684 res_counter_uncharge(&mem->res, PAGE_SIZE);
685 css_put(&mem->css);
687 kmem_cache_free(page_cgroup_cache, pc);
688 return;
691 unlock:
692 unlock_page_cgroup(page);
696 * Returns non-zero if a page (under migration) has valid page_cgroup member.
697 * Refcnt of page_cgroup is incremented.
699 int mem_cgroup_prepare_migration(struct page *page)
701 struct page_cgroup *pc;
703 if (mem_cgroup_subsys.disabled)
704 return 0;
706 lock_page_cgroup(page);
707 pc = page_get_page_cgroup(page);
708 if (pc)
709 pc->ref_cnt++;
710 unlock_page_cgroup(page);
711 return pc != NULL;
714 void mem_cgroup_end_migration(struct page *page)
716 mem_cgroup_uncharge_page(page);
720 * We know both *page* and *newpage* are now not-on-LRU and PG_locked.
721 * And no race with uncharge() routines because page_cgroup for *page*
722 * has extra one reference by mem_cgroup_prepare_migration.
724 void mem_cgroup_page_migration(struct page *page, struct page *newpage)
726 struct page_cgroup *pc;
727 struct mem_cgroup_per_zone *mz;
728 unsigned long flags;
730 lock_page_cgroup(page);
731 pc = page_get_page_cgroup(page);
732 if (!pc) {
733 unlock_page_cgroup(page);
734 return;
737 mz = page_cgroup_zoneinfo(pc);
738 spin_lock_irqsave(&mz->lru_lock, flags);
739 __mem_cgroup_remove_list(mz, pc);
740 spin_unlock_irqrestore(&mz->lru_lock, flags);
742 page_assign_page_cgroup(page, NULL);
743 unlock_page_cgroup(page);
745 pc->page = newpage;
746 lock_page_cgroup(newpage);
747 page_assign_page_cgroup(newpage, pc);
749 mz = page_cgroup_zoneinfo(pc);
750 spin_lock_irqsave(&mz->lru_lock, flags);
751 __mem_cgroup_add_list(mz, pc);
752 spin_unlock_irqrestore(&mz->lru_lock, flags);
754 unlock_page_cgroup(newpage);
758 * This routine traverse page_cgroup in given list and drop them all.
759 * This routine ignores page_cgroup->ref_cnt.
760 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
762 #define FORCE_UNCHARGE_BATCH (128)
763 static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
764 struct mem_cgroup_per_zone *mz,
765 int active)
767 struct page_cgroup *pc;
768 struct page *page;
769 int count = FORCE_UNCHARGE_BATCH;
770 unsigned long flags;
771 struct list_head *list;
773 if (active)
774 list = &mz->active_list;
775 else
776 list = &mz->inactive_list;
778 spin_lock_irqsave(&mz->lru_lock, flags);
779 while (!list_empty(list)) {
780 pc = list_entry(list->prev, struct page_cgroup, lru);
781 page = pc->page;
782 get_page(page);
783 spin_unlock_irqrestore(&mz->lru_lock, flags);
784 mem_cgroup_uncharge_page(page);
785 put_page(page);
786 if (--count <= 0) {
787 count = FORCE_UNCHARGE_BATCH;
788 cond_resched();
790 spin_lock_irqsave(&mz->lru_lock, flags);
792 spin_unlock_irqrestore(&mz->lru_lock, flags);
796 * make mem_cgroup's charge to be 0 if there is no task.
797 * This enables deleting this mem_cgroup.
799 static int mem_cgroup_force_empty(struct mem_cgroup *mem)
801 int ret = -EBUSY;
802 int node, zid;
804 if (mem_cgroup_subsys.disabled)
805 return 0;
807 css_get(&mem->css);
809 * page reclaim code (kswapd etc..) will move pages between
810 * active_list <-> inactive_list while we don't take a lock.
811 * So, we have to do loop here until all lists are empty.
813 while (mem->res.usage > 0) {
814 if (atomic_read(&mem->css.cgroup->count) > 0)
815 goto out;
816 for_each_node_state(node, N_POSSIBLE)
817 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
818 struct mem_cgroup_per_zone *mz;
819 mz = mem_cgroup_zoneinfo(mem, node, zid);
820 /* drop all page_cgroup in active_list */
821 mem_cgroup_force_empty_list(mem, mz, 1);
822 /* drop all page_cgroup in inactive_list */
823 mem_cgroup_force_empty_list(mem, mz, 0);
826 ret = 0;
827 out:
828 css_put(&mem->css);
829 return ret;
832 static int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
834 *tmp = memparse(buf, &buf);
835 if (*buf != '\0')
836 return -EINVAL;
839 * Round up the value to the closest page size
841 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
842 return 0;
845 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
847 return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
848 cft->private);
851 static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
852 struct file *file, const char __user *userbuf,
853 size_t nbytes, loff_t *ppos)
855 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
856 cft->private, userbuf, nbytes, ppos,
857 mem_cgroup_write_strategy);
860 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
862 struct mem_cgroup *mem;
864 mem = mem_cgroup_from_cont(cont);
865 switch (event) {
866 case RES_MAX_USAGE:
867 res_counter_reset_max(&mem->res);
868 break;
869 case RES_FAILCNT:
870 res_counter_reset_failcnt(&mem->res);
871 break;
873 return 0;
876 static int mem_force_empty_write(struct cgroup *cont, unsigned int event)
878 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont));
881 static const struct mem_cgroup_stat_desc {
882 const char *msg;
883 u64 unit;
884 } mem_cgroup_stat_desc[] = {
885 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
886 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
889 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
890 struct cgroup_map_cb *cb)
892 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
893 struct mem_cgroup_stat *stat = &mem_cont->stat;
894 int i;
896 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
897 s64 val;
899 val = mem_cgroup_read_stat(stat, i);
900 val *= mem_cgroup_stat_desc[i].unit;
901 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
903 /* showing # of active pages */
905 unsigned long active, inactive;
907 inactive = mem_cgroup_get_all_zonestat(mem_cont,
908 MEM_CGROUP_ZSTAT_INACTIVE);
909 active = mem_cgroup_get_all_zonestat(mem_cont,
910 MEM_CGROUP_ZSTAT_ACTIVE);
911 cb->fill(cb, "active", (active) * PAGE_SIZE);
912 cb->fill(cb, "inactive", (inactive) * PAGE_SIZE);
914 return 0;
917 static struct cftype mem_cgroup_files[] = {
919 .name = "usage_in_bytes",
920 .private = RES_USAGE,
921 .read_u64 = mem_cgroup_read,
924 .name = "max_usage_in_bytes",
925 .private = RES_MAX_USAGE,
926 .trigger = mem_cgroup_reset,
927 .read_u64 = mem_cgroup_read,
930 .name = "limit_in_bytes",
931 .private = RES_LIMIT,
932 .write = mem_cgroup_write,
933 .read_u64 = mem_cgroup_read,
936 .name = "failcnt",
937 .private = RES_FAILCNT,
938 .trigger = mem_cgroup_reset,
939 .read_u64 = mem_cgroup_read,
942 .name = "force_empty",
943 .trigger = mem_force_empty_write,
946 .name = "stat",
947 .read_map = mem_control_stat_show,
951 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
953 struct mem_cgroup_per_node *pn;
954 struct mem_cgroup_per_zone *mz;
955 int zone, tmp = node;
957 * This routine is called against possible nodes.
958 * But it's BUG to call kmalloc() against offline node.
960 * TODO: this routine can waste much memory for nodes which will
961 * never be onlined. It's better to use memory hotplug callback
962 * function.
964 if (!node_state(node, N_NORMAL_MEMORY))
965 tmp = -1;
966 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
967 if (!pn)
968 return 1;
970 mem->info.nodeinfo[node] = pn;
971 memset(pn, 0, sizeof(*pn));
973 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
974 mz = &pn->zoneinfo[zone];
975 INIT_LIST_HEAD(&mz->active_list);
976 INIT_LIST_HEAD(&mz->inactive_list);
977 spin_lock_init(&mz->lru_lock);
979 return 0;
982 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
984 kfree(mem->info.nodeinfo[node]);
987 static struct mem_cgroup *mem_cgroup_alloc(void)
989 struct mem_cgroup *mem;
991 if (sizeof(*mem) < PAGE_SIZE)
992 mem = kmalloc(sizeof(*mem), GFP_KERNEL);
993 else
994 mem = vmalloc(sizeof(*mem));
996 if (mem)
997 memset(mem, 0, sizeof(*mem));
998 return mem;
1001 static void mem_cgroup_free(struct mem_cgroup *mem)
1003 if (sizeof(*mem) < PAGE_SIZE)
1004 kfree(mem);
1005 else
1006 vfree(mem);
1010 static struct cgroup_subsys_state *
1011 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1013 struct mem_cgroup *mem;
1014 int node;
1016 if (unlikely((cont->parent) == NULL)) {
1017 mem = &init_mem_cgroup;
1018 page_cgroup_cache = KMEM_CACHE(page_cgroup, SLAB_PANIC);
1019 } else {
1020 mem = mem_cgroup_alloc();
1021 if (!mem)
1022 return ERR_PTR(-ENOMEM);
1025 res_counter_init(&mem->res);
1027 for_each_node_state(node, N_POSSIBLE)
1028 if (alloc_mem_cgroup_per_zone_info(mem, node))
1029 goto free_out;
1031 return &mem->css;
1032 free_out:
1033 for_each_node_state(node, N_POSSIBLE)
1034 free_mem_cgroup_per_zone_info(mem, node);
1035 if (cont->parent != NULL)
1036 mem_cgroup_free(mem);
1037 return ERR_PTR(-ENOMEM);
1040 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1041 struct cgroup *cont)
1043 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1044 mem_cgroup_force_empty(mem);
1047 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1048 struct cgroup *cont)
1050 int node;
1051 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1053 for_each_node_state(node, N_POSSIBLE)
1054 free_mem_cgroup_per_zone_info(mem, node);
1056 mem_cgroup_free(mem_cgroup_from_cont(cont));
1059 static int mem_cgroup_populate(struct cgroup_subsys *ss,
1060 struct cgroup *cont)
1062 if (mem_cgroup_subsys.disabled)
1063 return 0;
1064 return cgroup_add_files(cont, ss, mem_cgroup_files,
1065 ARRAY_SIZE(mem_cgroup_files));
1068 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1069 struct cgroup *cont,
1070 struct cgroup *old_cont,
1071 struct task_struct *p)
1073 struct mm_struct *mm;
1074 struct mem_cgroup *mem, *old_mem;
1076 if (mem_cgroup_subsys.disabled)
1077 return;
1079 mm = get_task_mm(p);
1080 if (mm == NULL)
1081 return;
1083 mem = mem_cgroup_from_cont(cont);
1084 old_mem = mem_cgroup_from_cont(old_cont);
1086 if (mem == old_mem)
1087 goto out;
1090 * Only thread group leaders are allowed to migrate, the mm_struct is
1091 * in effect owned by the leader
1093 if (!thread_group_leader(p))
1094 goto out;
1096 out:
1097 mmput(mm);
1100 struct cgroup_subsys mem_cgroup_subsys = {
1101 .name = "memory",
1102 .subsys_id = mem_cgroup_subsys_id,
1103 .create = mem_cgroup_create,
1104 .pre_destroy = mem_cgroup_pre_destroy,
1105 .destroy = mem_cgroup_destroy,
1106 .populate = mem_cgroup_populate,
1107 .attach = mem_cgroup_move_task,
1108 .early_init = 0,