via: some PCI posting flushes
[linux-2.6/mini2440.git] / arch / xtensa / mm / init.c
blobe1ec2d1e8189e64c998ba8dba7d9b3a9d30d5cc1
1 /*
2 * arch/xtensa/mm/init.c
4 * Derived from MIPS, PPC.
6 * This file is subject to the terms and conditions of the GNU General Public
7 * License. See the file "COPYING" in the main directory of this archive
8 * for more details.
10 * Copyright (C) 2001 - 2005 Tensilica Inc.
12 * Chris Zankel <chris@zankel.net>
13 * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
14 * Marc Gauthier
15 * Kevin Chea
18 #include <linux/init.h>
19 #include <linux/signal.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/ptrace.h>
26 #include <linux/bootmem.h>
27 #include <linux/swap.h>
29 #include <asm/pgtable.h>
30 #include <asm/bootparam.h>
31 #include <asm/mmu_context.h>
32 #include <asm/tlb.h>
33 #include <asm/tlbflush.h>
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/pgtable.h>
39 #define DEBUG 0
41 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
42 //static DEFINE_SPINLOCK(tlb_lock);
45 * This flag is used to indicate that the page was mapped and modified in
46 * kernel space, so the cache is probably dirty at that address.
47 * If cache aliasing is enabled and the page color mismatches, update_mmu_cache
48 * synchronizes the caches if this bit is set.
51 #define PG_cache_clean PG_arch_1
53 /* References to section boundaries */
55 extern char _ftext, _etext, _fdata, _edata, _rodata_end;
56 extern char __init_begin, __init_end;
59 * mem_reserve(start, end, must_exist)
61 * Reserve some memory from the memory pool.
63 * Parameters:
64 * start Start of region,
65 * end End of region,
66 * must_exist Must exist in memory pool.
68 * Returns:
69 * 0 (memory area couldn't be mapped)
70 * -1 (success)
73 int __init mem_reserve(unsigned long start, unsigned long end, int must_exist)
75 int i;
77 if (start == end)
78 return 0;
80 start = start & PAGE_MASK;
81 end = PAGE_ALIGN(end);
83 for (i = 0; i < sysmem.nr_banks; i++)
84 if (start < sysmem.bank[i].end
85 && end >= sysmem.bank[i].start)
86 break;
88 if (i == sysmem.nr_banks) {
89 if (must_exist)
90 printk (KERN_WARNING "mem_reserve: [0x%0lx, 0x%0lx) "
91 "not in any region!\n", start, end);
92 return 0;
95 if (start > sysmem.bank[i].start) {
96 if (end < sysmem.bank[i].end) {
97 /* split entry */
98 if (sysmem.nr_banks >= SYSMEM_BANKS_MAX)
99 panic("meminfo overflow\n");
100 sysmem.bank[sysmem.nr_banks].start = end;
101 sysmem.bank[sysmem.nr_banks].end = sysmem.bank[i].end;
102 sysmem.nr_banks++;
104 sysmem.bank[i].end = start;
105 } else {
106 if (end < sysmem.bank[i].end)
107 sysmem.bank[i].start = end;
108 else {
109 /* remove entry */
110 sysmem.nr_banks--;
111 sysmem.bank[i].start = sysmem.bank[sysmem.nr_banks].start;
112 sysmem.bank[i].end = sysmem.bank[sysmem.nr_banks].end;
115 return -1;
120 * Initialize the bootmem system and give it all the memory we have available.
123 void __init bootmem_init(void)
125 unsigned long pfn;
126 unsigned long bootmap_start, bootmap_size;
127 int i;
129 max_low_pfn = max_pfn = 0;
130 min_low_pfn = ~0;
132 for (i=0; i < sysmem.nr_banks; i++) {
133 pfn = PAGE_ALIGN(sysmem.bank[i].start) >> PAGE_SHIFT;
134 if (pfn < min_low_pfn)
135 min_low_pfn = pfn;
136 pfn = PAGE_ALIGN(sysmem.bank[i].end - 1) >> PAGE_SHIFT;
137 if (pfn > max_pfn)
138 max_pfn = pfn;
141 if (min_low_pfn > max_pfn)
142 panic("No memory found!\n");
144 max_low_pfn = max_pfn < MAX_MEM_PFN >> PAGE_SHIFT ?
145 max_pfn : MAX_MEM_PFN >> PAGE_SHIFT;
147 /* Find an area to use for the bootmem bitmap. */
149 bootmap_size = bootmem_bootmap_pages(max_low_pfn) << PAGE_SHIFT;
150 bootmap_start = ~0;
152 for (i=0; i<sysmem.nr_banks; i++)
153 if (sysmem.bank[i].end - sysmem.bank[i].start >= bootmap_size) {
154 bootmap_start = sysmem.bank[i].start;
155 break;
158 if (bootmap_start == ~0UL)
159 panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
161 /* Reserve the bootmem bitmap area */
163 mem_reserve(bootmap_start, bootmap_start + bootmap_size, 1);
164 bootmap_size = init_bootmem_node(NODE_DATA(0), min_low_pfn,
165 bootmap_start >> PAGE_SHIFT,
166 max_low_pfn);
168 /* Add all remaining memory pieces into the bootmem map */
170 for (i=0; i<sysmem.nr_banks; i++)
171 free_bootmem(sysmem.bank[i].start,
172 sysmem.bank[i].end - sysmem.bank[i].start);
177 void __init paging_init(void)
179 unsigned long zones_size[MAX_NR_ZONES];
180 int i;
182 /* All pages are DMA-able, so we put them all in the DMA zone. */
184 zones_size[ZONE_DMA] = max_low_pfn;
185 for (i = 1; i < MAX_NR_ZONES; i++)
186 zones_size[i] = 0;
188 #ifdef CONFIG_HIGHMEM
189 zones_size[ZONE_HIGHMEM] = max_pfn - max_low_pfn;
190 #endif
192 /* Initialize the kernel's page tables. */
194 memset(swapper_pg_dir, 0, PAGE_SIZE);
196 free_area_init(zones_size);
200 * Flush the mmu and reset associated register to default values.
203 void __init init_mmu (void)
205 /* Writing zeros to the <t>TLBCFG special registers ensure
206 * that valid values exist in the register. For existing
207 * PGSZID<w> fields, zero selects the first element of the
208 * page-size array. For nonexistant PGSZID<w> fields, zero is
209 * the best value to write. Also, when changing PGSZID<w>
210 * fields, the corresponding TLB must be flushed.
212 set_itlbcfg_register (0);
213 set_dtlbcfg_register (0);
214 flush_tlb_all ();
216 /* Set rasid register to a known value. */
218 set_rasid_register (ASID_USER_FIRST);
220 /* Set PTEVADDR special register to the start of the page
221 * table, which is in kernel mappable space (ie. not
222 * statically mapped). This register's value is undefined on
223 * reset.
225 set_ptevaddr_register (PGTABLE_START);
229 * Initialize memory pages.
232 void __init mem_init(void)
234 unsigned long codesize, reservedpages, datasize, initsize;
235 unsigned long highmemsize, tmp, ram;
237 max_mapnr = num_physpages = max_low_pfn;
238 high_memory = (void *) __va(max_mapnr << PAGE_SHIFT);
239 highmemsize = 0;
241 #ifdef CONFIG_HIGHMEM
242 #error HIGHGMEM not implemented in init.c
243 #endif
245 totalram_pages += free_all_bootmem();
247 reservedpages = ram = 0;
248 for (tmp = 0; tmp < max_low_pfn; tmp++) {
249 ram++;
250 if (PageReserved(mem_map+tmp))
251 reservedpages++;
254 codesize = (unsigned long) &_etext - (unsigned long) &_ftext;
255 datasize = (unsigned long) &_edata - (unsigned long) &_fdata;
256 initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
258 printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, "
259 "%ldk data, %ldk init %ldk highmem)\n",
260 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
261 ram << (PAGE_SHIFT-10),
262 codesize >> 10,
263 reservedpages << (PAGE_SHIFT-10),
264 datasize >> 10,
265 initsize >> 10,
266 highmemsize >> 10);
269 void
270 free_reserved_mem(void *start, void *end)
272 for (; start < end; start += PAGE_SIZE) {
273 ClearPageReserved(virt_to_page(start));
274 init_page_count(virt_to_page(start));
275 free_page((unsigned long)start);
276 totalram_pages++;
280 #ifdef CONFIG_BLK_DEV_INITRD
281 extern int initrd_is_mapped;
283 void free_initrd_mem(unsigned long start, unsigned long end)
285 if (initrd_is_mapped) {
286 free_reserved_mem((void*)start, (void*)end);
287 printk ("Freeing initrd memory: %ldk freed\n",(end-start)>>10);
290 #endif
292 void free_initmem(void)
294 free_reserved_mem(&__init_begin, &__init_end);
295 printk("Freeing unused kernel memory: %dk freed\n",
296 (&__init_end - &__init_begin) >> 10);
299 void show_mem(void)
301 int i, free = 0, total = 0, reserved = 0;
302 int shared = 0, cached = 0;
304 printk("Mem-info:\n");
305 show_free_areas();
306 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
307 i = max_mapnr;
308 while (i-- > 0) {
309 total++;
310 if (PageReserved(mem_map+i))
311 reserved++;
312 else if (PageSwapCache(mem_map+i))
313 cached++;
314 else if (!page_count(mem_map + i))
315 free++;
316 else
317 shared += page_count(mem_map + i) - 1;
319 printk("%d pages of RAM\n", total);
320 printk("%d reserved pages\n", reserved);
321 printk("%d pages shared\n", shared);
322 printk("%d pages swap cached\n",cached);
323 printk("%d free pages\n", free);
326 /* ------------------------------------------------------------------------- */
328 #if (DCACHE_WAY_SIZE > PAGE_SIZE)
331 * With cache aliasing, the page color of the page in kernel space and user
332 * space might mismatch. We temporarily map the page to a different virtual
333 * address with the same color and clear the page there.
336 void clear_user_page(void *kaddr, unsigned long vaddr, struct page* page)
339 /* There shouldn't be any entries for this page. */
341 __flush_invalidate_dcache_page_phys(__pa(page_address(page)));
343 if (!PAGE_COLOR_EQ(vaddr, kaddr)) {
344 unsigned long v, p;
346 /* Temporarily map page to DTLB_WAY_DCACHE_ALIAS0. */
348 spin_lock(&tlb_lock);
350 p = (unsigned long)pte_val((mk_pte(page,PAGE_KERNEL)));
351 kaddr = (void*)PAGE_COLOR_MAP0(vaddr);
352 v = (unsigned long)kaddr | DTLB_WAY_DCACHE_ALIAS0;
353 __asm__ __volatile__("wdtlb %0,%1; dsync" : :"a" (p), "a" (v));
355 clear_page(kaddr);
357 spin_unlock(&tlb_lock);
358 } else {
359 clear_page(kaddr);
362 /* We need to make sure that i$ and d$ are coherent. */
364 clear_bit(PG_cache_clean, &page->flags);
368 * With cache aliasing, we have to make sure that the page color of the page
369 * in kernel space matches that of the virtual user address before we read
370 * the page. If the page color differ, we create a temporary DTLB entry with
371 * the corrent page color and use this 'temporary' address as the source.
372 * We then use the same approach as in clear_user_page and copy the data
373 * to the kernel space and clear the PG_cache_clean bit to synchronize caches
374 * later.
376 * Note:
377 * Instead of using another 'way' for the temporary DTLB entry, we could
378 * probably use the same entry that points to the kernel address (after
379 * saving the original value and restoring it when we are done).
382 void copy_user_page(void* to, void* from, unsigned long vaddr,
383 struct page* to_page)
385 /* There shouldn't be any entries for the new page. */
387 __flush_invalidate_dcache_page_phys(__pa(page_address(to_page)));
389 spin_lock(&tlb_lock);
391 if (!PAGE_COLOR_EQ(vaddr, from)) {
392 unsigned long v, p, t;
394 __asm__ __volatile__ ("pdtlb %1,%2; rdtlb1 %0,%1"
395 : "=a"(p), "=a"(t) : "a"(from));
396 from = (void*)PAGE_COLOR_MAP0(vaddr);
397 v = (unsigned long)from | DTLB_WAY_DCACHE_ALIAS0;
398 __asm__ __volatile__ ("wdtlb %0,%1; dsync" ::"a" (p), "a" (v));
401 if (!PAGE_COLOR_EQ(vaddr, to)) {
402 unsigned long v, p;
404 p = (unsigned long)pte_val((mk_pte(to_page,PAGE_KERNEL)));
405 to = (void*)PAGE_COLOR_MAP1(vaddr);
406 v = (unsigned long)to | DTLB_WAY_DCACHE_ALIAS1;
407 __asm__ __volatile__ ("wdtlb %0,%1; dsync" ::"a" (p), "a" (v));
409 copy_page(to, from);
411 spin_unlock(&tlb_lock);
413 /* We need to make sure that i$ and d$ are coherent. */
415 clear_bit(PG_cache_clean, &to_page->flags);
421 * Any time the kernel writes to a user page cache page, or it is about to
422 * read from a page cache page this routine is called.
424 * Note:
425 * The kernel currently only provides one architecture bit in the page
426 * flags that we use for I$/D$ coherency. Maybe, in future, we can
427 * use a sepearte bit for deferred dcache aliasing:
428 * If the page is not mapped yet, we only need to set a flag,
429 * if mapped, we need to invalidate the page.
431 // FIXME: we probably need this for WB caches not only for Page Coloring..
433 void flush_dcache_page(struct page *page)
435 unsigned long addr = __pa(page_address(page));
436 struct address_space *mapping = page_mapping(page);
438 __flush_invalidate_dcache_page_phys(addr);
440 if (!test_bit(PG_cache_clean, &page->flags))
441 return;
443 /* If this page hasn't been mapped, yet, handle I$/D$ coherency later.*/
444 #if 0
445 if (mapping && !mapping_mapped(mapping))
446 clear_bit(PG_cache_clean, &page->flags);
447 else
448 #endif
449 __invalidate_icache_page_phys(addr);
452 void flush_cache_range(struct vm_area_struct* vma, unsigned long s,
453 unsigned long e)
455 __flush_invalidate_cache_all();
458 void flush_cache_page(struct vm_area_struct* vma, unsigned long address,
459 unsigned long pfn)
461 struct page *page = pfn_to_page(pfn);
463 /* Remove any entry for the old mapping. */
465 if (current->active_mm == vma->vm_mm) {
466 unsigned long addr = __pa(page_address(page));
467 __flush_invalidate_dcache_page_phys(addr);
468 if ((vma->vm_flags & VM_EXEC) != 0)
469 __invalidate_icache_page_phys(addr);
470 } else {
471 BUG();
475 #endif /* (DCACHE_WAY_SIZE > PAGE_SIZE) */
478 pte_t* pte_alloc_one_kernel (struct mm_struct* mm, unsigned long addr)
480 pte_t* pte = (pte_t*)__get_free_pages(GFP_KERNEL|__GFP_REPEAT, 0);
481 if (likely(pte)) {
482 pte_t* ptep = (pte_t*)(pte_val(*pte) + PAGE_OFFSET);
483 int i;
484 for (i = 0; i < 1024; i++, ptep++)
485 pte_clear(mm, addr, ptep);
487 return pte;
490 struct page* pte_alloc_one(struct mm_struct *mm, unsigned long addr)
492 struct page *page;
494 page = alloc_pages(GFP_KERNEL | __GFP_REPEAT, 0);
496 if (likely(page)) {
497 pte_t* ptep = kmap_atomic(page, KM_USER0);
498 int i;
500 for (i = 0; i < 1024; i++, ptep++)
501 pte_clear(mm, addr, ptep);
503 kunmap_atomic(ptep, KM_USER0);
505 return page;
510 * Handle D$/I$ coherency.
512 * Note:
513 * We only have one architecture bit for the page flags, so we cannot handle
514 * cache aliasing, yet.
517 void
518 update_mmu_cache(struct vm_area_struct * vma, unsigned long addr, pte_t pte)
520 unsigned long pfn = pte_pfn(pte);
521 struct page *page;
522 unsigned long vaddr = addr & PAGE_MASK;
524 if (!pfn_valid(pfn))
525 return;
527 page = pfn_to_page(pfn);
529 invalidate_itlb_mapping(addr);
530 invalidate_dtlb_mapping(addr);
532 /* We have a new mapping. Use it. */
534 write_dtlb_entry(pte, dtlb_probe(addr));
536 /* If the processor can execute from this page, synchronize D$/I$. */
538 if ((vma->vm_flags & VM_EXEC) != 0) {
540 write_itlb_entry(pte, itlb_probe(addr));
542 /* Synchronize caches, if not clean. */
544 if (!test_and_set_bit(PG_cache_clean, &page->flags)) {
545 __flush_dcache_page(vaddr);
546 __invalidate_icache_page(vaddr);