[PATCH] x86_64: Only switch to IPI broadcast timer on Intel when C3 is supported
[linux-2.6/mini2440.git] / drivers / acpi / processor_idle.c
blob3bfca093a870f4e966cd68b6c748b06bde8dfe8f
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
42 #include <asm/io.h>
43 #include <asm/uaccess.h>
45 #include <acpi/acpi_bus.h>
46 #include <acpi/processor.h>
48 #define ACPI_PROCESSOR_COMPONENT 0x01000000
49 #define ACPI_PROCESSOR_CLASS "processor"
50 #define ACPI_PROCESSOR_DRIVER_NAME "ACPI Processor Driver"
51 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
52 ACPI_MODULE_NAME("acpi_processor")
53 #define ACPI_PROCESSOR_FILE_POWER "power"
54 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
55 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
56 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
57 static void (*pm_idle_save) (void);
58 module_param(max_cstate, uint, 0644);
60 static unsigned int nocst = 0;
61 module_param(nocst, uint, 0000);
64 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
65 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
66 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
67 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
68 * reduce history for more aggressive entry into C3
70 static unsigned int bm_history =
71 (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
72 module_param(bm_history, uint, 0644);
73 /* --------------------------------------------------------------------------
74 Power Management
75 -------------------------------------------------------------------------- */
78 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79 * For now disable this. Probably a bug somewhere else.
81 * To skip this limit, boot/load with a large max_cstate limit.
83 static int set_max_cstate(struct dmi_system_id *id)
85 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86 return 0;
88 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
89 " Override with \"processor.max_cstate=%d\"\n", id->ident,
90 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
92 max_cstate = (long)id->driver_data;
94 return 0;
97 static struct dmi_system_id __initdata processor_power_dmi_table[] = {
98 { set_max_cstate, "IBM ThinkPad R40e", {
99 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
100 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
101 { set_max_cstate, "IBM ThinkPad R40e", {
102 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
103 DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
104 { set_max_cstate, "IBM ThinkPad R40e", {
105 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
106 DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
107 { set_max_cstate, "IBM ThinkPad R40e", {
108 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
109 DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
110 { set_max_cstate, "IBM ThinkPad R40e", {
111 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
112 DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
113 { set_max_cstate, "IBM ThinkPad R40e", {
114 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
115 DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
116 { set_max_cstate, "IBM ThinkPad R40e", {
117 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
118 DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
119 { set_max_cstate, "IBM ThinkPad R40e", {
120 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
121 DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
122 { set_max_cstate, "IBM ThinkPad R40e", {
123 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
124 DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
125 { set_max_cstate, "IBM ThinkPad R40e", {
126 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
127 DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
128 { set_max_cstate, "IBM ThinkPad R40e", {
129 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
130 DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
131 { set_max_cstate, "IBM ThinkPad R40e", {
132 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
133 DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
134 { set_max_cstate, "IBM ThinkPad R40e", {
135 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
136 DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
137 { set_max_cstate, "IBM ThinkPad R40e", {
138 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
139 DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
140 { set_max_cstate, "IBM ThinkPad R40e", {
141 DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
142 DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
143 { set_max_cstate, "Medion 41700", {
144 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
145 DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
146 { set_max_cstate, "Clevo 5600D", {
147 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
148 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
149 (void *)2},
153 static inline u32 ticks_elapsed(u32 t1, u32 t2)
155 if (t2 >= t1)
156 return (t2 - t1);
157 else if (!acpi_fadt.tmr_val_ext)
158 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
159 else
160 return ((0xFFFFFFFF - t1) + t2);
163 static void
164 acpi_processor_power_activate(struct acpi_processor *pr,
165 struct acpi_processor_cx *new)
167 struct acpi_processor_cx *old;
169 if (!pr || !new)
170 return;
172 old = pr->power.state;
174 if (old)
175 old->promotion.count = 0;
176 new->demotion.count = 0;
178 /* Cleanup from old state. */
179 if (old) {
180 switch (old->type) {
181 case ACPI_STATE_C3:
182 /* Disable bus master reload */
183 if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
184 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0,
185 ACPI_MTX_DO_NOT_LOCK);
186 break;
190 /* Prepare to use new state. */
191 switch (new->type) {
192 case ACPI_STATE_C3:
193 /* Enable bus master reload */
194 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
195 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1,
196 ACPI_MTX_DO_NOT_LOCK);
197 break;
200 pr->power.state = new;
202 return;
205 static void acpi_safe_halt(void)
207 clear_thread_flag(TIF_POLLING_NRFLAG);
208 smp_mb__after_clear_bit();
209 if (!need_resched())
210 safe_halt();
211 set_thread_flag(TIF_POLLING_NRFLAG);
214 static atomic_t c3_cpu_count;
216 static void acpi_processor_idle(void)
218 struct acpi_processor *pr = NULL;
219 struct acpi_processor_cx *cx = NULL;
220 struct acpi_processor_cx *next_state = NULL;
221 int sleep_ticks = 0;
222 u32 t1, t2 = 0;
224 pr = processors[smp_processor_id()];
225 if (!pr)
226 return;
229 * Interrupts must be disabled during bus mastering calculations and
230 * for C2/C3 transitions.
232 local_irq_disable();
235 * Check whether we truly need to go idle, or should
236 * reschedule:
238 if (unlikely(need_resched())) {
239 local_irq_enable();
240 return;
243 cx = pr->power.state;
244 if (!cx) {
245 if (pm_idle_save)
246 pm_idle_save();
247 else
248 acpi_safe_halt();
249 return;
253 * Check BM Activity
254 * -----------------
255 * Check for bus mastering activity (if required), record, and check
256 * for demotion.
258 if (pr->flags.bm_check) {
259 u32 bm_status = 0;
260 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
262 if (diff > 32)
263 diff = 32;
265 while (diff) {
266 /* if we didn't get called, assume there was busmaster activity */
267 diff--;
268 if (diff)
269 pr->power.bm_activity |= 0x1;
270 pr->power.bm_activity <<= 1;
273 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
274 &bm_status, ACPI_MTX_DO_NOT_LOCK);
275 if (bm_status) {
276 pr->power.bm_activity++;
277 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
278 1, ACPI_MTX_DO_NOT_LOCK);
281 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
282 * the true state of bus mastering activity; forcing us to
283 * manually check the BMIDEA bit of each IDE channel.
285 else if (errata.piix4.bmisx) {
286 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
287 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
288 pr->power.bm_activity++;
291 pr->power.bm_check_timestamp = jiffies;
294 * Apply bus mastering demotion policy. Automatically demote
295 * to avoid a faulty transition. Note that the processor
296 * won't enter a low-power state during this call (to this
297 * funciton) but should upon the next.
299 * TBD: A better policy might be to fallback to the demotion
300 * state (use it for this quantum only) istead of
301 * demoting -- and rely on duration as our sole demotion
302 * qualification. This may, however, introduce DMA
303 * issues (e.g. floppy DMA transfer overrun/underrun).
305 if (pr->power.bm_activity & cx->demotion.threshold.bm) {
306 local_irq_enable();
307 next_state = cx->demotion.state;
308 goto end;
312 #ifdef CONFIG_HOTPLUG_CPU
314 * Check for P_LVL2_UP flag before entering C2 and above on
315 * an SMP system. We do it here instead of doing it at _CST/P_LVL
316 * detection phase, to work cleanly with logical CPU hotplug.
318 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
319 !pr->flags.has_cst && !acpi_fadt.plvl2_up)
320 cx = &pr->power.states[ACPI_STATE_C1];
321 #endif
323 cx->usage++;
326 * Sleep:
327 * ------
328 * Invoke the current Cx state to put the processor to sleep.
330 if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
331 clear_thread_flag(TIF_POLLING_NRFLAG);
332 smp_mb__after_clear_bit();
333 if (need_resched()) {
334 set_thread_flag(TIF_POLLING_NRFLAG);
335 local_irq_enable();
336 return;
340 switch (cx->type) {
342 case ACPI_STATE_C1:
344 * Invoke C1.
345 * Use the appropriate idle routine, the one that would
346 * be used without acpi C-states.
348 if (pm_idle_save)
349 pm_idle_save();
350 else
351 acpi_safe_halt();
354 * TBD: Can't get time duration while in C1, as resumes
355 * go to an ISR rather than here. Need to instrument
356 * base interrupt handler.
358 sleep_ticks = 0xFFFFFFFF;
359 break;
361 case ACPI_STATE_C2:
362 /* Get start time (ticks) */
363 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
364 /* Invoke C2 */
365 inb(cx->address);
366 /* Dummy op - must do something useless after P_LVL2 read */
367 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
368 /* Get end time (ticks) */
369 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
370 /* Re-enable interrupts */
371 local_irq_enable();
372 set_thread_flag(TIF_POLLING_NRFLAG);
373 /* Compute time (ticks) that we were actually asleep */
374 sleep_ticks =
375 ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
376 break;
378 case ACPI_STATE_C3:
380 if (pr->flags.bm_check) {
381 if (atomic_inc_return(&c3_cpu_count) ==
382 num_online_cpus()) {
384 * All CPUs are trying to go to C3
385 * Disable bus master arbitration
387 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1,
388 ACPI_MTX_DO_NOT_LOCK);
390 } else {
391 /* SMP with no shared cache... Invalidate cache */
392 ACPI_FLUSH_CPU_CACHE();
395 /* Get start time (ticks) */
396 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
397 /* Invoke C3 */
398 inb(cx->address);
399 /* Dummy op - must do something useless after P_LVL3 read */
400 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
401 /* Get end time (ticks) */
402 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
403 if (pr->flags.bm_check) {
404 /* Enable bus master arbitration */
405 atomic_dec(&c3_cpu_count);
406 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0,
407 ACPI_MTX_DO_NOT_LOCK);
410 /* Re-enable interrupts */
411 local_irq_enable();
412 set_thread_flag(TIF_POLLING_NRFLAG);
413 /* Compute time (ticks) that we were actually asleep */
414 sleep_ticks =
415 ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
416 break;
418 default:
419 local_irq_enable();
420 return;
423 next_state = pr->power.state;
425 #ifdef CONFIG_HOTPLUG_CPU
426 /* Don't do promotion/demotion */
427 if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
428 !pr->flags.has_cst && !acpi_fadt.plvl2_up) {
429 next_state = cx;
430 goto end;
432 #endif
435 * Promotion?
436 * ----------
437 * Track the number of longs (time asleep is greater than threshold)
438 * and promote when the count threshold is reached. Note that bus
439 * mastering activity may prevent promotions.
440 * Do not promote above max_cstate.
442 if (cx->promotion.state &&
443 ((cx->promotion.state - pr->power.states) <= max_cstate)) {
444 if (sleep_ticks > cx->promotion.threshold.ticks) {
445 cx->promotion.count++;
446 cx->demotion.count = 0;
447 if (cx->promotion.count >=
448 cx->promotion.threshold.count) {
449 if (pr->flags.bm_check) {
450 if (!
451 (pr->power.bm_activity & cx->
452 promotion.threshold.bm)) {
453 next_state =
454 cx->promotion.state;
455 goto end;
457 } else {
458 next_state = cx->promotion.state;
459 goto end;
466 * Demotion?
467 * ---------
468 * Track the number of shorts (time asleep is less than time threshold)
469 * and demote when the usage threshold is reached.
471 if (cx->demotion.state) {
472 if (sleep_ticks < cx->demotion.threshold.ticks) {
473 cx->demotion.count++;
474 cx->promotion.count = 0;
475 if (cx->demotion.count >= cx->demotion.threshold.count) {
476 next_state = cx->demotion.state;
477 goto end;
482 end:
484 * Demote if current state exceeds max_cstate
486 if ((pr->power.state - pr->power.states) > max_cstate) {
487 if (cx->demotion.state)
488 next_state = cx->demotion.state;
492 * New Cx State?
493 * -------------
494 * If we're going to start using a new Cx state we must clean up
495 * from the previous and prepare to use the new.
497 if (next_state != pr->power.state)
498 acpi_processor_power_activate(pr, next_state);
501 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
503 unsigned int i;
504 unsigned int state_is_set = 0;
505 struct acpi_processor_cx *lower = NULL;
506 struct acpi_processor_cx *higher = NULL;
507 struct acpi_processor_cx *cx;
509 ACPI_FUNCTION_TRACE("acpi_processor_set_power_policy");
511 if (!pr)
512 return_VALUE(-EINVAL);
515 * This function sets the default Cx state policy (OS idle handler).
516 * Our scheme is to promote quickly to C2 but more conservatively
517 * to C3. We're favoring C2 for its characteristics of low latency
518 * (quick response), good power savings, and ability to allow bus
519 * mastering activity. Note that the Cx state policy is completely
520 * customizable and can be altered dynamically.
523 /* startup state */
524 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
525 cx = &pr->power.states[i];
526 if (!cx->valid)
527 continue;
529 if (!state_is_set)
530 pr->power.state = cx;
531 state_is_set++;
532 break;
535 if (!state_is_set)
536 return_VALUE(-ENODEV);
538 /* demotion */
539 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
540 cx = &pr->power.states[i];
541 if (!cx->valid)
542 continue;
544 if (lower) {
545 cx->demotion.state = lower;
546 cx->demotion.threshold.ticks = cx->latency_ticks;
547 cx->demotion.threshold.count = 1;
548 if (cx->type == ACPI_STATE_C3)
549 cx->demotion.threshold.bm = bm_history;
552 lower = cx;
555 /* promotion */
556 for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
557 cx = &pr->power.states[i];
558 if (!cx->valid)
559 continue;
561 if (higher) {
562 cx->promotion.state = higher;
563 cx->promotion.threshold.ticks = cx->latency_ticks;
564 if (cx->type >= ACPI_STATE_C2)
565 cx->promotion.threshold.count = 4;
566 else
567 cx->promotion.threshold.count = 10;
568 if (higher->type == ACPI_STATE_C3)
569 cx->promotion.threshold.bm = bm_history;
572 higher = cx;
575 return_VALUE(0);
578 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
580 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_fadt");
582 if (!pr)
583 return_VALUE(-EINVAL);
585 if (!pr->pblk)
586 return_VALUE(-ENODEV);
588 /* if info is obtained from pblk/fadt, type equals state */
589 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
590 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
592 #ifndef CONFIG_HOTPLUG_CPU
594 * Check for P_LVL2_UP flag before entering C2 and above on
595 * an SMP system.
597 if ((num_online_cpus() > 1) && !acpi_fadt.plvl2_up)
598 return_VALUE(-ENODEV);
599 #endif
601 /* determine C2 and C3 address from pblk */
602 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
603 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
605 /* determine latencies from FADT */
606 pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
607 pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
609 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
610 "lvl2[0x%08x] lvl3[0x%08x]\n",
611 pr->power.states[ACPI_STATE_C2].address,
612 pr->power.states[ACPI_STATE_C3].address));
614 return_VALUE(0);
617 static int acpi_processor_get_power_info_default_c1(struct acpi_processor *pr)
619 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_default_c1");
621 /* Zero initialize all the C-states info. */
622 memset(pr->power.states, 0, sizeof(pr->power.states));
624 /* set the first C-State to C1 */
625 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
627 /* the C0 state only exists as a filler in our array,
628 * and all processors need to support C1 */
629 pr->power.states[ACPI_STATE_C0].valid = 1;
630 pr->power.states[ACPI_STATE_C1].valid = 1;
632 return_VALUE(0);
635 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
637 acpi_status status = 0;
638 acpi_integer count;
639 int current_count;
640 int i;
641 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
642 union acpi_object *cst;
644 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_cst");
646 if (nocst)
647 return_VALUE(-ENODEV);
649 current_count = 1;
651 /* Zero initialize C2 onwards and prepare for fresh CST lookup */
652 for (i = 2; i < ACPI_PROCESSOR_MAX_POWER; i++)
653 memset(&(pr->power.states[i]), 0,
654 sizeof(struct acpi_processor_cx));
656 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
657 if (ACPI_FAILURE(status)) {
658 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
659 return_VALUE(-ENODEV);
662 cst = (union acpi_object *)buffer.pointer;
664 /* There must be at least 2 elements */
665 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
666 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
667 "not enough elements in _CST\n"));
668 status = -EFAULT;
669 goto end;
672 count = cst->package.elements[0].integer.value;
674 /* Validate number of power states. */
675 if (count < 1 || count != cst->package.count - 1) {
676 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
677 "count given by _CST is not valid\n"));
678 status = -EFAULT;
679 goto end;
682 /* Tell driver that at least _CST is supported. */
683 pr->flags.has_cst = 1;
685 for (i = 1; i <= count; i++) {
686 union acpi_object *element;
687 union acpi_object *obj;
688 struct acpi_power_register *reg;
689 struct acpi_processor_cx cx;
691 memset(&cx, 0, sizeof(cx));
693 element = (union acpi_object *)&(cst->package.elements[i]);
694 if (element->type != ACPI_TYPE_PACKAGE)
695 continue;
697 if (element->package.count != 4)
698 continue;
700 obj = (union acpi_object *)&(element->package.elements[0]);
702 if (obj->type != ACPI_TYPE_BUFFER)
703 continue;
705 reg = (struct acpi_power_register *)obj->buffer.pointer;
707 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
708 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
709 continue;
711 cx.address = (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) ?
712 0 : reg->address;
714 /* There should be an easy way to extract an integer... */
715 obj = (union acpi_object *)&(element->package.elements[1]);
716 if (obj->type != ACPI_TYPE_INTEGER)
717 continue;
719 cx.type = obj->integer.value;
721 if ((cx.type != ACPI_STATE_C1) &&
722 (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO))
723 continue;
725 if ((cx.type < ACPI_STATE_C2) || (cx.type > ACPI_STATE_C3))
726 continue;
728 obj = (union acpi_object *)&(element->package.elements[2]);
729 if (obj->type != ACPI_TYPE_INTEGER)
730 continue;
732 cx.latency = obj->integer.value;
734 obj = (union acpi_object *)&(element->package.elements[3]);
735 if (obj->type != ACPI_TYPE_INTEGER)
736 continue;
738 cx.power = obj->integer.value;
740 current_count++;
741 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
744 * We support total ACPI_PROCESSOR_MAX_POWER - 1
745 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
747 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
748 printk(KERN_WARNING
749 "Limiting number of power states to max (%d)\n",
750 ACPI_PROCESSOR_MAX_POWER);
751 printk(KERN_WARNING
752 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
753 break;
757 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
758 current_count));
760 /* Validate number of power states discovered */
761 if (current_count < 2)
762 status = -EFAULT;
764 end:
765 acpi_os_free(buffer.pointer);
767 return_VALUE(status);
770 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
772 ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c2");
774 if (!cx->address)
775 return_VOID;
778 * C2 latency must be less than or equal to 100
779 * microseconds.
781 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
782 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
783 "latency too large [%d]\n", cx->latency));
784 return_VOID;
788 * Otherwise we've met all of our C2 requirements.
789 * Normalize the C2 latency to expidite policy
791 cx->valid = 1;
792 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
794 return_VOID;
797 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
798 struct acpi_processor_cx *cx)
800 static int bm_check_flag;
802 ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c3");
804 if (!cx->address)
805 return_VOID;
808 * C3 latency must be less than or equal to 1000
809 * microseconds.
811 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
812 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
813 "latency too large [%d]\n", cx->latency));
814 return_VOID;
818 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
819 * DMA transfers are used by any ISA device to avoid livelock.
820 * Note that we could disable Type-F DMA (as recommended by
821 * the erratum), but this is known to disrupt certain ISA
822 * devices thus we take the conservative approach.
824 else if (errata.piix4.fdma) {
825 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
826 "C3 not supported on PIIX4 with Type-F DMA\n"));
827 return_VOID;
830 /* All the logic here assumes flags.bm_check is same across all CPUs */
831 if (!bm_check_flag) {
832 /* Determine whether bm_check is needed based on CPU */
833 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
834 bm_check_flag = pr->flags.bm_check;
835 } else {
836 pr->flags.bm_check = bm_check_flag;
839 if (pr->flags.bm_check) {
840 /* bus mastering control is necessary */
841 if (!pr->flags.bm_control) {
842 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
843 "C3 support requires bus mastering control\n"));
844 return_VOID;
846 } else {
848 * WBINVD should be set in fadt, for C3 state to be
849 * supported on when bm_check is not required.
851 if (acpi_fadt.wb_invd != 1) {
852 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
853 "Cache invalidation should work properly"
854 " for C3 to be enabled on SMP systems\n"));
855 return_VOID;
857 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD,
858 0, ACPI_MTX_DO_NOT_LOCK);
862 * Otherwise we've met all of our C3 requirements.
863 * Normalize the C3 latency to expidite policy. Enable
864 * checking of bus mastering status (bm_check) so we can
865 * use this in our C3 policy
867 cx->valid = 1;
868 cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
870 return_VOID;
873 static int acpi_processor_power_verify(struct acpi_processor *pr)
875 unsigned int i;
876 unsigned int working = 0;
878 #ifdef ARCH_APICTIMER_STOPS_ON_C3
879 struct cpuinfo_x86 *c = cpu_data + pr->id;
880 cpumask_t mask = cpumask_of_cpu(pr->id);
882 if (c->x86_vendor == X86_VENDOR_INTEL) {
883 on_each_cpu(switch_ipi_to_APIC_timer, &mask, 1, 1);
885 #endif
887 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
888 struct acpi_processor_cx *cx = &pr->power.states[i];
890 switch (cx->type) {
891 case ACPI_STATE_C1:
892 cx->valid = 1;
893 break;
895 case ACPI_STATE_C2:
896 acpi_processor_power_verify_c2(cx);
897 break;
899 case ACPI_STATE_C3:
900 acpi_processor_power_verify_c3(pr, cx);
901 #ifdef ARCH_APICTIMER_STOPS_ON_C3
902 if (cx->valid && c->x86_vendor == X86_VENDOR_INTEL) {
903 on_each_cpu(switch_APIC_timer_to_ipi,
904 &mask, 1, 1);
906 #endif
907 break;
910 if (cx->valid)
911 working++;
914 return (working);
917 static int acpi_processor_get_power_info(struct acpi_processor *pr)
919 unsigned int i;
920 int result;
922 ACPI_FUNCTION_TRACE("acpi_processor_get_power_info");
924 /* NOTE: the idle thread may not be running while calling
925 * this function */
927 /* Adding C1 state */
928 acpi_processor_get_power_info_default_c1(pr);
929 result = acpi_processor_get_power_info_cst(pr);
930 if (result == -ENODEV)
931 acpi_processor_get_power_info_fadt(pr);
933 pr->power.count = acpi_processor_power_verify(pr);
936 * Set Default Policy
937 * ------------------
938 * Now that we know which states are supported, set the default
939 * policy. Note that this policy can be changed dynamically
940 * (e.g. encourage deeper sleeps to conserve battery life when
941 * not on AC).
943 result = acpi_processor_set_power_policy(pr);
944 if (result)
945 return_VALUE(result);
948 * if one state of type C2 or C3 is available, mark this
949 * CPU as being "idle manageable"
951 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
952 if (pr->power.states[i].valid) {
953 pr->power.count = i;
954 if (pr->power.states[i].type >= ACPI_STATE_C2)
955 pr->flags.power = 1;
959 return_VALUE(0);
962 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
964 int result = 0;
966 ACPI_FUNCTION_TRACE("acpi_processor_cst_has_changed");
968 if (!pr)
969 return_VALUE(-EINVAL);
971 if (nocst) {
972 return_VALUE(-ENODEV);
975 if (!pr->flags.power_setup_done)
976 return_VALUE(-ENODEV);
978 /* Fall back to the default idle loop */
979 pm_idle = pm_idle_save;
980 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
982 pr->flags.power = 0;
983 result = acpi_processor_get_power_info(pr);
984 if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
985 pm_idle = acpi_processor_idle;
987 return_VALUE(result);
990 /* proc interface */
992 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
994 struct acpi_processor *pr = (struct acpi_processor *)seq->private;
995 unsigned int i;
997 ACPI_FUNCTION_TRACE("acpi_processor_power_seq_show");
999 if (!pr)
1000 goto end;
1002 seq_printf(seq, "active state: C%zd\n"
1003 "max_cstate: C%d\n"
1004 "bus master activity: %08x\n",
1005 pr->power.state ? pr->power.state - pr->power.states : 0,
1006 max_cstate, (unsigned)pr->power.bm_activity);
1008 seq_puts(seq, "states:\n");
1010 for (i = 1; i <= pr->power.count; i++) {
1011 seq_printf(seq, " %cC%d: ",
1012 (&pr->power.states[i] ==
1013 pr->power.state ? '*' : ' '), i);
1015 if (!pr->power.states[i].valid) {
1016 seq_puts(seq, "<not supported>\n");
1017 continue;
1020 switch (pr->power.states[i].type) {
1021 case ACPI_STATE_C1:
1022 seq_printf(seq, "type[C1] ");
1023 break;
1024 case ACPI_STATE_C2:
1025 seq_printf(seq, "type[C2] ");
1026 break;
1027 case ACPI_STATE_C3:
1028 seq_printf(seq, "type[C3] ");
1029 break;
1030 default:
1031 seq_printf(seq, "type[--] ");
1032 break;
1035 if (pr->power.states[i].promotion.state)
1036 seq_printf(seq, "promotion[C%zd] ",
1037 (pr->power.states[i].promotion.state -
1038 pr->power.states));
1039 else
1040 seq_puts(seq, "promotion[--] ");
1042 if (pr->power.states[i].demotion.state)
1043 seq_printf(seq, "demotion[C%zd] ",
1044 (pr->power.states[i].demotion.state -
1045 pr->power.states));
1046 else
1047 seq_puts(seq, "demotion[--] ");
1049 seq_printf(seq, "latency[%03d] usage[%08d]\n",
1050 pr->power.states[i].latency,
1051 pr->power.states[i].usage);
1054 end:
1055 return_VALUE(0);
1058 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1060 return single_open(file, acpi_processor_power_seq_show,
1061 PDE(inode)->data);
1064 static struct file_operations acpi_processor_power_fops = {
1065 .open = acpi_processor_power_open_fs,
1066 .read = seq_read,
1067 .llseek = seq_lseek,
1068 .release = single_release,
1071 int acpi_processor_power_init(struct acpi_processor *pr,
1072 struct acpi_device *device)
1074 acpi_status status = 0;
1075 static int first_run = 0;
1076 struct proc_dir_entry *entry = NULL;
1077 unsigned int i;
1079 ACPI_FUNCTION_TRACE("acpi_processor_power_init");
1081 if (!first_run) {
1082 dmi_check_system(processor_power_dmi_table);
1083 if (max_cstate < ACPI_C_STATES_MAX)
1084 printk(KERN_NOTICE
1085 "ACPI: processor limited to max C-state %d\n",
1086 max_cstate);
1087 first_run++;
1090 if (!pr)
1091 return_VALUE(-EINVAL);
1093 if (acpi_fadt.cst_cnt && !nocst) {
1094 status =
1095 acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8);
1096 if (ACPI_FAILURE(status)) {
1097 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1098 "Notifying BIOS of _CST ability failed\n"));
1102 acpi_processor_get_power_info(pr);
1105 * Install the idle handler if processor power management is supported.
1106 * Note that we use previously set idle handler will be used on
1107 * platforms that only support C1.
1109 if ((pr->flags.power) && (!boot_option_idle_override)) {
1110 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1111 for (i = 1; i <= pr->power.count; i++)
1112 if (pr->power.states[i].valid)
1113 printk(" C%d[C%d]", i,
1114 pr->power.states[i].type);
1115 printk(")\n");
1117 if (pr->id == 0) {
1118 pm_idle_save = pm_idle;
1119 pm_idle = acpi_processor_idle;
1123 /* 'power' [R] */
1124 entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1125 S_IRUGO, acpi_device_dir(device));
1126 if (!entry)
1127 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1128 "Unable to create '%s' fs entry\n",
1129 ACPI_PROCESSOR_FILE_POWER));
1130 else {
1131 entry->proc_fops = &acpi_processor_power_fops;
1132 entry->data = acpi_driver_data(device);
1133 entry->owner = THIS_MODULE;
1136 pr->flags.power_setup_done = 1;
1138 return_VALUE(0);
1141 int acpi_processor_power_exit(struct acpi_processor *pr,
1142 struct acpi_device *device)
1144 ACPI_FUNCTION_TRACE("acpi_processor_power_exit");
1146 pr->flags.power_setup_done = 0;
1148 if (acpi_device_dir(device))
1149 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1150 acpi_device_dir(device));
1152 /* Unregister the idle handler when processor #0 is removed. */
1153 if (pr->id == 0) {
1154 pm_idle = pm_idle_save;
1157 * We are about to unload the current idle thread pm callback
1158 * (pm_idle), Wait for all processors to update cached/local
1159 * copies of pm_idle before proceeding.
1161 cpu_idle_wait();
1164 return_VALUE(0);